• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Consensus Seeking for Discrete-time Multi-agent Systems with Communication Delay

    2015-08-09 02:01:53ZhenhuaWangJuanjuanXuandHuanshuiZhang
    IEEE/CAA Journal of Automatica Sinica 2015年2期

    Zhenhua Wang,Juanjuan Xu,and Huanshui Zhang

    Consensus Seeking for Discrete-time Multi-agent Systems with Communication Delay

    Zhenhua Wang,Juanjuan Xu,and Huanshui Zhang

    —This paper studies the consensus problem for discrete-time multi-agent systems of fi rst-order in the presence of constant communication delay.Provided that the agent dynamics is unstable and the network topology is undirected,effects of two kinds of communication delays on consensus are investigated. When the relative information is affected by delay,we show that the effect of delay can be alleviated by using the historical input information in the protocol design.On the other hand,if the communication delay only in fl uences the actually transmitted information,suf fi cient condition admitting any large yet bounded delay for consensus is obtained,and the delay in this case is allowed to be unknown and time-varying.Finally,simulation results are provided to demonstrate the effectiveness of the theoretical results.

    Index Terms—Multi-agent systems,consensus protocol,communication delay,eigenratio.

    I.INTRODUCTION

    IN recent years,growing attention has been attracted in studying the consensus problem due to a broad application of multi-agent systems,including automatic control[1],distributed estimation[2]and fl ocking[3],etc.Generally speaking, consensus means that several autonomous agents reach an agreement regarding a certain quantity of interest.Currently, many results on consensus have been obtained.For the Vicsek′s model[4],where all the agents moved in the plane at the same speed but with different headings,its theoretical explanation for the consensus behavior was provided in[5]. Given a time-varying interconnection topology,[6]investigated a group of autonomous agents tracking an active leader by constructing a neighbor-based state-estimation rule.The necessary and suf fi cient condition on consensus for general discrete-time linear systems was given in[7].

    Delay effect on the convergence of consensus is an important issue to be considered.Naturally,the communication delay appearing in the network hinders the information being transmitted from one agent to another[8].So far,many researchers have studied the effect of communication delay on agents′consensus behavior.It was shown in[9]that singleintegrator agents subjected to constant communication delay can achieve consensus if and only if the delay is bounded by a maximum.Given a directed and dynamically changingtopology,[10]investigated the effect of communication delay that only affected the actually transmitted information on consensus.Reference[11]provided a necessary and suf fi cient condition to guarantee quasi-consensus and consensus with the distributed delay in the control input.Assuming that the agent dynamics is at most polynomially unstable,consensus for high-order linear multi-agent systems with delays in both the communication and input was studied in[12].To the best of our knowledge,the relevant results in the context of discrete-time agents are rare since delay effects signi fi cantly complicate the problem.For the scalar agent dynamics that is critically unstable,[13]considered the consensus of multiagent systems with communication delay.Reference[14] studied the existence of maximum delay margin of input delay for the general scalar discrete-time agents to achieve consensus.Under the assumption that neighbors′measured output information can be received by agents,consensus problem of the network with communication delay was studied in[15].A constrained consensus problem requiring every agent to lie in a closed convex set was addressed in[16] over the network with communication delay.Provided that all eigenvalues of the system matrix were in the closed unit disc,[17]investigated the consensus of high-order multi-agent systems in the network with constant communication delay.

    In this paper,we investigate the in fl uences of two kinds of communication delays on consensus for unstable discretetime multi-agent systems.If the delay only affects the relative information that is transmitted,the methods used in[13] and[17]are unavailable due to the system is unstable.The technique in[14]cannot work when the delay is much large. On the other hand,in case that the communication delay only in fl uences the actually transmitted information,the frequencydomain approach used in[13]is helpless to the time-varying delay.

    The main contribution of this paper are twofold.First,for any large yet bounded communication delay that affects the relative state information,consensus condition is given under the assumption that the network topology is exactly known. Second,if the delay only in fl uences the actually transmitted information,a suf fi cient condition related to agent dynamics and network topology is shown for any large yet bounded delay to achieve consensus,and especially the delay in this case is allowed to be unknown and time-varying.

    The remainder of this paper is organized as follows.In Section II,some preliminaries of the algebraic graph theory are presented.The consensus problem to be studied is formulated in Section III.In Section IV,consensus analysis of multiagent networks with two kinds of communication delays are respectively presented in detail.Following that,Section V provides two simulation examples.Finally,conclusions are reported in Section VI.

    The following notations will be used throughout this paper. Symbols R and Z+respectively denote the sets of real numbers and positive integers.For any positive integerN∈Z+, letN:={1,2,···,N}andINbe an identity matrix with dimensionN×N.Notation diag{a1,a2,···,aN}denotes a diagonal matrix.Given that 1Nis anNdimensional vector with all ones andis the Euclidean norm.For a scalarr>0,letCrrepresent the Banach space of continuous-time scalar functions mapping the interval{-r,-r+1,···,0}into R.

    II.PRELIMINARIES

    In this section,a brief introduction to the algebraic graph theory is provided.

    LetG=(V,E,A)be a weighted undirected network of orderN,whereV={1,2,···,N}is the set of nodes;E=V×Vis the set of edges andA=[aij]∈RN×Nis the weighted adjacency matrix with symmetric nonnegative elements.Assumeaij>0 if and only if(i,j)∈E, i.e.,information can be exchanged between nodesiandj. Moreover,supposeaii=0 for alli∈V.An undirected graphGis connected if there exists a path between any pair of distinct nodesiandj(j∈N).The degree of nodeiis de fi ned asdi:=and we introduce anN×Ndiagonal matrixD=diag{d1,···,dN}as the degree matrix ofG. Then the Laplacian matrix ofGis de fi ned asLG:=D-A. Obviously,matrixLGis symmetric and 1Nis its eigenvector corresponding to eigenvalue 0.IfGis connected,all the eigenvalues ofLGare positive except one 0 eigenvalue and can be written as 0=λ1<λ2≤···≤λN.In addition, the eigenratiois an important factor[7,18],and a larger eigenratio corresponds to a better synchronizability of the underlying communication graph.If every node can directly communicate with other nodes in the network,i.e.,(i,j)∈Efor,then the graph is called complete.Especially,the eigenratio=1 in the complete case.

    III.PROBLEM STATEMENT

    In this paper,assume all the agents considered have the following dynamics

    wherexi(k)∈R andui(k)∈R are the state and control input of agenti,respectively.The coef fi cients satisfya∈R,b∈R andb/=0.In addition,assumexi(0)are known initial values.

    Regarding the aboveNagents as nodes in a network,the information fl ow between two agents can be regarded as a path between the nodes.Thus,the interconnection topology in multi-agent systems can be conveniently captured by an undirected graphG=(V,E,A)withV={1,2,···,N}andA=[aij]∈RN×N.

    Note that the communication delay is common in network control.Letd∈Z+denote the delay during the information communication.Making use of the relative state information, the commonly used protocol[9,17]is described as

    wherek1is a fi xed control gain and independent of the indexi.

    In case the network topology is exactly known,we design the following protocol to eliminate the effect of delay on consensus

    wherek1,k2are fi xed control gains and are independent of agent′s indexi.

    Remark 1.It should be noted that the designing of protocol (3)adopts the predictor-like technique,which is inspired by the famous Smith predictor[19],the fi nite spectrum assignment method[20]and the Artstein reduction[21].

    Remark 2.In the designing of protocol(3),we assume that the constant communication delay is exactly known.However, in case that the constant delay is unknown,we can get the delay information by the method of“time-stamping”in[22], i.e.,all the transferred information is marked with the time when it was generated,then the time delay can be calculated by comparing the“time stamp”with the local clock.

    Remark 3.In protocol(3),the distributed historical input information are used in the protocol design.In fact,comparing with the relative state information,agent′s own state information cannot be used directly.However,it is feasible for agent to acquire its own historical input information.Thus,every agent can transmit its own historical input information to neighbors directly on the condition that the network topology is exactly known.It should be noted that similar protocol named as predictor feedback protocol has been given in[12].Besides, literature[23]has also used the relative input information in the protocol design.

    To further show the reasonability of the designed protocol (3),we give a physical example as follows.

    Suppose there areNaircrafts fl ying in the same direction with dynamics

    where ΔT>0 is sampling time.It is known that formation keeping for aircrafts is an important issue in reality.As a special case,this example aims to guarantee that the distance between any two aircrafts is zero along the fl ying direction. Assumexi(k)is the position of thei-th aircraft,andui(k)is the corresponding velocity controller[24].In the fl ying direction,considering that the relative position detected by aircrafts are delayed by constantd,i.e.,To eliminate the effect of delay on the aim above,every pilot in the aircraft is required to send part of historical velocities to neighbors.

    If the communication delay only affects the actually transmitted information as in[10]and[13],we design the following protocol

    whered∈Z+is the communication delay,anddi=is the degree of agenti.

    Without loss of generality,we additionally set the initial valuesxi(θ)=0 andui(θ)=0 for anyθ<0 to make the systems(1)operational under above given protocols.The de fi nition of consensus is shown as follows.

    De fi nition 1.Given an undirected graphG,the discrete-time multi-agent systems(1)are said to achieve consensus under the designed protocols above if for any fi nite initial values,the states of all agents satisfy0 ask→∞fori,j∈N.

    From above de fi nition,it is obvious to know that the consensus problem can be solved when the systems(1)are stable by takingui(k)≡0.In this paper,we focus on unstable multi-agent systems,i.e.,|a|≥1 in(1)to make the problem interesting.The problems studied in this paper are as follows

    1)Provide conditions such that multi-agent systems(1) achieve consensus under protocols(3)and(4),respectively.

    2)Comparing with the commonly used protocol(1),show the advantage of the designed protocol(3).

    Remark 4.The problem studied in this paper is more general than those investigated in[7,13]and[17].In fact, [7]concerns consensus without time delay;[13]is limited to time-invariant delay and[17]focuses on the systems that are at most critically unstable.

    IV.MAIN RESULTS

    In this section,only the case ofa≥1 in(1)is considered, and the results fora≤-1 can similarly be obtained.Before presenting our main results,we fi rst show the following technical lemmas.

    A.Lemmas

    The following lemma can be found in[25].

    Lemma 1.Consider a retarded difference equation

    wherexk(s)=x(k+s),ands∈{-r,-r+1,...,0}.The functionf:R×Cris such that the image byfof R×(a bounded subset ofCr)is a bounded subset of R and the functionsu,v,w,p:R+→R+are continuous and strictly increasing functions,withu(0)=v(0)=0 andp(t)>tfor anyt>0.Suppose that there is a continuous functionV:R→R,such that for allx∈R the following conditions are satis fi ed,

    Then the retarded difference equation is globally uniformly asymptotically stable.

    From Lemma 1,we can get the following lemma,which plays an important role in this section.

    Lemma 2.For the discrete-time delayed systemη(k+1)=fη(k)+gη(k-d),wheref∈R,g∈R are constants,if|f|+|g|<1,the delayed system is asymptotically stable atη(k)≡0.

    Proof.Ifg=0,it is obvious that limk→∞η(k)=0 from|f|<1.Without loss of generality,in the following we assumeg/=0.Take a functionV(η(k))=|η(k)|.Then

    there exists constantr?>0 such that the delayed system is not asymptotically stable for any choice of the feedback gainαif the delayr≥r?.

    B.Consensus Results

    Now,we are in position to give the main results of this paper.We fi rst show the consensus result of multi-agent systems(1)witha>1 under protocol(3).

    Proof.Inserting protocol(3)into systems(1)follows

    Letx(k):=[x1(k),···,xN(k)]T.Based on(5),the dynamical equation ofx(k)can be written as

    Thus,0<ad|k2-k1|λN<1.Similarly as proven in 1), consensus can be guaranteed.□

    Remark 5.It is shown in Theorem 1 that the consensus condition is related toi.e.,the eigenratio of undirected graphG.Thus,the more unstable are the multi-agent systems, the bigger eigenratio corresponding a topology with better synchronizability is needed to guarantee consensus.Especially, when the undirected graphGis completed,any unstable agent dynamics is allowed for consensus by the method in Theorem 1.

    Whena=1,the above method is also applicable,and we give the following corollary.

    Proof.The proof is similar to Theorem 1 and omitted for simplicity.□

    To show the advantage of protocol(3),we investigate the consensus problem of multi-agent systems(1)witha>1 under the commonly used protocol(2).

    Theorem 2.For any connected undirected graphG,the multi-agent systems(1)cannot achieve consensus under protocol(2)for any gaink1∈R if the communication delay is large enough.

    Proof.From protocol(2)and systems(1),we get

    By the method in Theorem 1,it yields that the consensus is achieved if and only if the error system

    is stable simultaneously fori∈{2,···,N}.Due toa>1 and in view of Lemma 3,the proof is completed.□

    Remark 6.It is known from Theorem 2 that the communication delay indeed affects consensus.However,the results in Theorem 1 show that the effect of delay on consensus can be eliminated if the network topology is exactly known and every agent transmits historical input information to neighbors.

    In the following,we are to state the consensus result of the discrete-time multi-agent systems(1)under protocol(4).

    When the undirected graphGis connected,we know that matrix[D-1A]is anN×Nirreducible stochastic matrix[26], and there is a unique invariant probability vectorα= [α1,α2,···,αN]Twithαi>0,?i∈Nandsuch thatαT[D-1A]=αT.In the following,letμi,i∈Ndenote the eigenvalues of matrix[D-1A].It is known from Lemma 1 in[27]that matrix[D-1A]has a simple eigenvalueμ1=1 if the undirected graphGis connected,and other eigenvalues are real with modulus no bigger than 1.Without loss generality,letμN(yùn)=max{|μi|,i=2,···,N}.Now,we state the following result.

    Remark 7.The condition for consensus becomes 1≤a<Nif the network topology in Theorem 3 is complete,whereNis the number of the agents in the network.In fact,when the undirected graphGin Theorem 3 is complete,the eigenvalues of matrix[D-1A]satisfyμ1=1 andμ2=···=μN(yùn)=

    Remark 8.It should be noted that the communication delay in protocol(4)is allowed to be unknown.In fact,from the proof of Theorem 3,the precise information of the delay or the historical input information of agents is not needed.In addition,Lemma 1 and the proof of Theorem 3 admit the communication delay to be time-varying in protocol(4)by using exactly the same method in Theorem 3.

    V.SIMULATIONS

    In this section,two examples are carried out to verify the theoretical results obtained by the previous analysis.

    Consider a network consisting of 4 agents indexed by 1,2,3, 4,respectively.The topology among those agents is described by an undirected graphG={V,E,A},whereV={1,2,3,4}. The adjacency matrix and Laplacian matrix are described as

    Clearly,undirected graphGis connected and the nonzero eigenvalues ofLGareλ2=2,λ3=4 andλ4=4.Under the connected undirected graphG,we consider the following two examples.

    Example 1.Assumea=2,b=2 in the discretetime agent dynamics(1).Let the initial values be given asx(0)=[8,2,-4,8]Tandxi(s)=0,ui(s)=0 for anys<0. Given the communication delayd=4,make use of protocol (3)and take gainsk1=0.6 andk2=0.606 in view of Theorem 1,then Fig.1 shows the asymptotic stability of the error systems,where(k)=[x1(k)+x2(k)+x3(k)+x4(k)].

    Fig.1.Example 1.

    where[4sin2(k)]represents to the integer part of timevarying communication delay 4sin2(k).From Theorem 3, take consensus gaink1=1.31,then for the given initial valuesx(0)=[10,-2,5,20]Tandxi(s)=0(s<0),Fig.2 reveals the error systems converge to zero asymptotically, where(k)=0.3x1(k)+0.2x2(k)+0.2x3(k)+0.3x4(k) denotes the weighted average state of all agents.

    Fig.2.Example 2.

    VI.CONCLUSION

    This paper addresses the consensus problem for unstable discrete-time multi-agent systems with two kinds of communication delays,which only affect the relative information and the actually transmitted information,respectively.The effect of the fi rst kind of communication delay is eliminated if the network topology is exactly known.Suf fi cient condition for consensus is provided in case of the second communication delay,where the delay is also allowed to be unknown and timevarying in this case.It is worth mentioning that the proposed results are expected to extend to the vector state and the timevarying topology.

    REFERENCES

    [1]Pettersen K,Gravdahl J T,Nijmeijer H.Group Coordination and Cooperative Control.Berlin:Springer,2006.

    [2]Cao Y C,Ren W,Meng Z Y.Decentralized fi nite-time sliding mode estimators and their applications in decentralized fi nite-time formation tracking.System&Control Letters,2010,59(9):522-529

    [3]Yu W W,Chen G R,Cao M.Distributed Leader-follower fl ocking control for multi-agent dynamical systems with time-varying velocities.System&Control Letters,2010,59(9):543-552

    [4]Vicsek T,Czir′ok A,Ben-Jacob E,Cohen I,Shochet O.Novel type of phase transition in a system of self-driven particles.Physical Review Letters,1995,75(6):1226-1229

    [5]Jadbabaie A,Lin J,Morse A S.Coordination of groups of mobile automous agents using nearest neighbor rules.IEEE Transactions on Automatic Control,2003,48(6):998-1001

    [6]Hong Y G,Wang X L.Multi-agent tracking of a high-dimensional active leader with switching topology.Journal of Systems Science and Complexity,2009,22(4):722-731

    [7]You K Y,Xie L H.Network topology and communication data rate for consensusability of discrete-time multi-agent systems.IEEE Transactions on Automatic Control,2011,56(10):2062-2075

    [8]Tian Y P,Liu C L.Robust consensus of multi-agent systems with diverse input delays and asymmetric interconnection perturbations.Automatica, 2009,45(5):1347-1353

    [9]Olfati-Saber R,Murray R M.Consensus problems in networks of agents with switching topology and time-delays.IEEE Transactions on Automatic Control,2004,49(9):1520-1533

    [10]Moreau L.Stability of continuous-time distributed consensus algorithms. In:Proceedings of the 43rd IEEE Conference on Decision and Control. Nassau:IEEE,2004.3998-4003

    [11]Yu W W,Chen G R,Cao M,Ren W.Delay-induced consensus and quasi-consensus in multi-agent dynamical systems.IEEE Transactions onCircuitsandSystems,PartI:RegularPaper,2013,60(10):2679-2687

    [12]Zhou B,Lin Z L.Consensus of high-order multi-agent systems with large input and communication delays.Automatica,2014,50(2): 452-464

    [13]Tian Y P,Liu C L.Consensus of multi-agent systems with diverse input and communication delays.IEEE Transactions on Automatic Control, 2008,53(9):2122-2128

    [14]Xu J J,Zhang H S,Xie L H.Input delay marigin for consensusability of multi-agent systems.Automatica,2013,49(6):1816-1820

    [15]Tan C,Liu G P.Consensus of discrete-time linear networked multi-agent systems with communication delays.IEEE Transactions on Automatic Control,2013,58(11):2962-2968

    [16]Lin P,Ren W.Constrained consensus in unbalanced networks with communication delays.IEEE Transactions on Automatic Control,2014, 59(3):775-781

    [17]Wang X,Saberi A,Stoovogel A A,Grip H F,Yang T.Synchronization in a network of identical discrete-time agents with uniform constant communication delay.International Journal of Robust and Nonlinear Control,2013,24(18):3076-3091

    [18]Barahona M,Pecora L M.Synchronization in small-word systems.Physical Review Letters,2002,89(5):054101

    [19]Smith O.Controller to overcome dead time.Instrument Society of America-Journal,1959,6(2):28-33

    [20]Manitius A,Olbrot A.Finite spectrum assignment problem for systems with delays.IEEE Transactions on Automatic Control,1979,24(4): 541-553

    [21]Artstein Z.Linear systems with delayed control:a reduction.IEEE Transactions on Automatic Control,1982,27(4):869-879

    [22]Hua J W,Liang T,Sun H X,Lei Z M.Time-delay compensation control of networked control systems using time-stemp based state prediction.In:Proceedings of the 2008 ISECS International Colloquium on Computing,Communication,Control,and Management.Washington, DC,USA:IEEE,2008.198-202

    [23]You K Y,Xie L H.Coordination of discrete-time multi-agent systems via relative output feedback.International Journal of Robust and Nonlinear Control,2011,21(13):1587-1605

    [24]Ren W,Atkins E.Distributed multi-vehicle coordinated control via local information exchange.International Journal of Robust and Nonlinear Control,2007,17(10-11):1002-1033

    [25]Lin Z L.On asymptotic stabilizability of discrete-time linear systems with delayed input.Communications in Information and Systems,2007, 7(3):227-264

    [26]Fang H T,Chen H F,Wen L.On control of strong consensus for networked agents with noisy observations.Journal of Systems Science and Complexity,2012,25(1):1-12

    [27]Zeng L,Hu G D.Consensus of linear multi-agent systems with communication and input delays.Acta Automatica Sinica,2013,39(7): 1133-1140

    Juanjuan Xu received the B.E.degree in mathematics from Qufu Normal University in 2006,and M.E.degree in mathematics in 2009 from Shandong University,and the Ph.D.degree in control science and engineering in 2013 from Shandong University,then worked as postdoctoral researcher at the School of Control Science and Engineering, Shandong University.Her research interests include distributed consensus,optimal control,game theory, stochastic systems,and time-delay systems.

    Huanshui Zhang graduated in mathematics from Qufu Normal University in 1986 and received his M.sc.and Ph.D.degrees in control theory from Heilongjiang University,China,and Northeastern University,China in 1991 and 1997,respectively. He worked as a postdoctoral fellow at the Nanyang Technological University from 1998 to 2001 and research fellow at Hong Kong Polytechnic University from 2001 to 2003.He is currently a Changjiang Professor at Shandong University,China.His research interests include optimal estimation,robust fi ltering and control,time delay systems,singular systems,wireless communication and signal processing.Corresponding author of this paper.

    ang

    the B.E.degree in mathematics from Jinan University in 2008,and M.E. degree in mathematics in 2011 from Shandong University.Since 2011,he is a Ph.D.candidate with the school of Control Science and Engineering, Shandong University,China.His research interests include multi-agent systems,networked control systems,and time-delay systems.

    Manuscript received June 10,2014;accepted November 17,2014.This work was supported by the Taishan Scholar Construction Engineering by Shandong Government,the National Natural Science Foundation of China (61034007,61120106011,61203029,61304045,61403235).Recommended by Associate Editor Jie Chen.

    :Zhenhua Wang,Juanjuan Xu,Huanshui Zhang.Consensus seeking for discrete-time multi-agent systems with communication delay.IEEE/CAA Journal of Automatica Sinica,2015,2(2):151-157

    Zhenhua Wang,Juanjuan Xu,and Huanshui Zhang are with the School of Control Science and Engineering,Shandong University,Jinan,Shandong,250061,China(e-mail:wzhua111@126.com;jnxujuan@163.com; hszhang@sdu.edu.cn).

    91精品三级在线观看| 欧美成人一区二区免费高清观看 | 午夜福利视频1000在线观看 | 精品国产超薄肉色丝袜足j| 亚洲中文字幕日韩| 激情在线观看视频在线高清| 9热在线视频观看99| 欧美乱色亚洲激情| 午夜日韩欧美国产| 久久 成人 亚洲| 男男h啪啪无遮挡| 九色国产91popny在线| 中文字幕av电影在线播放| 亚洲最大成人中文| 熟妇人妻久久中文字幕3abv| 91九色精品人成在线观看| 欧美性长视频在线观看| 亚洲国产精品合色在线| 精品国产超薄肉色丝袜足j| 亚洲成人久久性| 伊人久久大香线蕉亚洲五| www.自偷自拍.com| 日本 av在线| 99精品欧美一区二区三区四区| 天堂√8在线中文| 亚洲av电影在线进入| 国产三级黄色录像| 女生性感内裤真人,穿戴方法视频| av在线天堂中文字幕| 久久久久国内视频| 一级片免费观看大全| 免费在线观看完整版高清| 97碰自拍视频| 亚洲第一av免费看| 亚洲男人天堂网一区| 丰满的人妻完整版| 中文字幕人成人乱码亚洲影| 黄色视频不卡| 黄频高清免费视频| 一进一出好大好爽视频| 国产精品一区二区精品视频观看| 色婷婷久久久亚洲欧美| 香蕉久久夜色| 侵犯人妻中文字幕一二三四区| 国产精品乱码一区二三区的特点 | 亚洲熟妇熟女久久| 国产一区二区三区在线臀色熟女| 丝袜美腿诱惑在线| 两个人视频免费观看高清| 午夜福利在线观看吧| 国产熟女午夜一区二区三区| 欧美丝袜亚洲另类 | 午夜免费观看网址| 久久久水蜜桃国产精品网| 少妇裸体淫交视频免费看高清 | netflix在线观看网站| 亚洲国产欧美网| 午夜福利影视在线免费观看| 侵犯人妻中文字幕一二三四区| 午夜精品国产一区二区电影| 国产又爽黄色视频| 国产私拍福利视频在线观看| 美女免费视频网站| 亚洲精品国产精品久久久不卡| 丝袜美腿诱惑在线| 1024视频免费在线观看| 亚洲人成伊人成综合网2020| 久久久久久亚洲精品国产蜜桃av| 少妇的丰满在线观看| 国产成人欧美在线观看| 久久伊人香网站| 日日摸夜夜添夜夜添小说| 亚洲国产日韩欧美精品在线观看 | 国产欧美日韩综合在线一区二区| 亚洲欧美激情综合另类| 一卡2卡三卡四卡精品乱码亚洲| 天堂影院成人在线观看| 在线国产一区二区在线| 成人国产综合亚洲| 一边摸一边做爽爽视频免费| 黄色 视频免费看| 亚洲欧美日韩无卡精品| 美女免费视频网站| 日韩欧美一区二区三区在线观看| 欧美激情极品国产一区二区三区| 搡老妇女老女人老熟妇| www.www免费av| 国产麻豆成人av免费视频| 中出人妻视频一区二区| 国产成人啪精品午夜网站| 丁香六月欧美| 99国产精品一区二区三区| 激情视频va一区二区三区| 波多野结衣av一区二区av| 欧美在线黄色| 夜夜看夜夜爽夜夜摸| 久久久水蜜桃国产精品网| 黑人巨大精品欧美一区二区蜜桃| 亚洲性夜色夜夜综合| 亚洲av成人不卡在线观看播放网| 18禁观看日本| 91字幕亚洲| 12—13女人毛片做爰片一| 国产av一区二区精品久久| 国产三级黄色录像| 一级,二级,三级黄色视频| 国产极品粉嫩免费观看在线| 成人三级做爰电影| 成人18禁高潮啪啪吃奶动态图| 日日夜夜操网爽| 精品福利观看| 亚洲专区中文字幕在线| 久久亚洲精品不卡| 变态另类丝袜制服| 久久久久久久久久久久大奶| 一级作爱视频免费观看| 午夜福利成人在线免费观看| 黄色a级毛片大全视频| 欧美 亚洲 国产 日韩一| 老熟妇乱子伦视频在线观看| 少妇粗大呻吟视频| 97人妻精品一区二区三区麻豆 | 超碰成人久久| 侵犯人妻中文字幕一二三四区| 亚洲精品一区av在线观看| 亚洲男人天堂网一区| 国产精品自产拍在线观看55亚洲| 国产伦人伦偷精品视频| 老鸭窝网址在线观看| 波多野结衣一区麻豆| 欧美绝顶高潮抽搐喷水| 老司机在亚洲福利影院| 亚洲国产高清在线一区二区三 | 熟妇人妻久久中文字幕3abv| 不卡一级毛片| 欧美日本亚洲视频在线播放| 亚洲第一青青草原| 国产精品自产拍在线观看55亚洲| 高清毛片免费观看视频网站| 国产熟女午夜一区二区三区| 国产激情久久老熟女| 啦啦啦观看免费观看视频高清 | 俄罗斯特黄特色一大片| 亚洲五月天丁香| 别揉我奶头~嗯~啊~动态视频| 久久久精品国产亚洲av高清涩受| 亚洲第一电影网av| 99国产精品99久久久久| 国产熟女xx| 国产亚洲av高清不卡| 亚洲专区国产一区二区| 精品人妻1区二区| 国产91精品成人一区二区三区| 男女之事视频高清在线观看| 中亚洲国语对白在线视频| 大香蕉久久成人网| 很黄的视频免费| 黄片播放在线免费| 亚洲一区二区三区不卡视频| 中文亚洲av片在线观看爽| 久久欧美精品欧美久久欧美| 国产精品久久久人人做人人爽| 99国产综合亚洲精品| 99riav亚洲国产免费| 成年人黄色毛片网站| 首页视频小说图片口味搜索| 国产成人啪精品午夜网站| 精品卡一卡二卡四卡免费| 国产亚洲精品久久久久久毛片| 国产亚洲精品第一综合不卡| 午夜免费观看网址| 国产精品精品国产色婷婷| 国产精华一区二区三区| 国产亚洲欧美精品永久| 九色国产91popny在线| 又黄又粗又硬又大视频| 999久久久精品免费观看国产| 美女免费视频网站| 国产成人精品在线电影| 夜夜爽天天搞| 久久草成人影院| 真人做人爱边吃奶动态| 12—13女人毛片做爰片一| 精品乱码久久久久久99久播| 丝袜美腿诱惑在线| 久久性视频一级片| 99久久综合精品五月天人人| 成人精品一区二区免费| 999精品在线视频| 天堂动漫精品| 母亲3免费完整高清在线观看| 国产97色在线日韩免费| 欧美最黄视频在线播放免费| 亚洲中文字幕日韩| 精品人妻1区二区| 国产精品免费一区二区三区在线| а√天堂www在线а√下载| 麻豆国产av国片精品| 天堂影院成人在线观看| 亚洲午夜精品一区,二区,三区| 久久婷婷成人综合色麻豆| 99热只有精品国产| 欧美日韩亚洲综合一区二区三区_| 一级片免费观看大全| 美女扒开内裤让男人捅视频| 国产片内射在线| 老司机在亚洲福利影院| 精品人妻1区二区| 女生性感内裤真人,穿戴方法视频| 麻豆国产av国片精品| 亚洲欧洲精品一区二区精品久久久| 欧美激情久久久久久爽电影 | 极品人妻少妇av视频| 久久国产亚洲av麻豆专区| 丝袜在线中文字幕| 深夜精品福利| 久久久久国内视频| 国内久久婷婷六月综合欲色啪| 免费在线观看视频国产中文字幕亚洲| 黑人巨大精品欧美一区二区蜜桃| 亚洲精品美女久久av网站| 国产欧美日韩一区二区精品| 国产精品电影一区二区三区| 色哟哟哟哟哟哟| 亚洲激情在线av| 国产精华一区二区三区| 国产aⅴ精品一区二区三区波| 一级黄色大片毛片| 97人妻精品一区二区三区麻豆 | 国产xxxxx性猛交| 国产精品av久久久久免费| 亚洲成a人片在线一区二区| 成人永久免费在线观看视频| 波多野结衣av一区二区av| 亚洲欧美一区二区三区黑人| 成人国语在线视频| 在线国产一区二区在线| 日韩欧美国产一区二区入口| 亚洲久久久国产精品| 如日韩欧美国产精品一区二区三区| 两个人看的免费小视频| 亚洲三区欧美一区| 日韩欧美一区二区三区在线观看| 午夜福利在线观看吧| 婷婷丁香在线五月| 久久中文字幕人妻熟女| 大型av网站在线播放| 性欧美人与动物交配| 级片在线观看| 亚洲国产精品合色在线| 美女午夜性视频免费| а√天堂www在线а√下载| 校园春色视频在线观看| 精品不卡国产一区二区三区| 亚洲男人天堂网一区| 欧美成狂野欧美在线观看| 精品一区二区三区av网在线观看| 999精品在线视频| 国产三级黄色录像| 老司机午夜十八禁免费视频| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美精品亚洲一区二区| 久久精品国产亚洲av香蕉五月| 免费人成视频x8x8入口观看| 国产成人啪精品午夜网站| 亚洲人成网站在线播放欧美日韩| 宅男免费午夜| 久久性视频一级片| 国产精品电影一区二区三区| 欧美+亚洲+日韩+国产| 免费看美女性在线毛片视频| 国产成人啪精品午夜网站| 亚洲专区国产一区二区| 日韩欧美三级三区| 给我免费播放毛片高清在线观看| 最近最新中文字幕大全电影3 | 国产1区2区3区精品| 久久婷婷成人综合色麻豆| 精品一品国产午夜福利视频| 久久久久久久精品吃奶| 99久久国产精品久久久| 色综合婷婷激情| 亚洲成人免费电影在线观看| 无遮挡黄片免费观看| 黑丝袜美女国产一区| 夜夜夜夜夜久久久久| 国语自产精品视频在线第100页| 午夜福利一区二区在线看| 日日干狠狠操夜夜爽| 成人18禁在线播放| 久久香蕉精品热| 亚洲熟妇熟女久久| 在线观看免费日韩欧美大片| 黄色a级毛片大全视频| 成人国产一区最新在线观看| 久久久久久久午夜电影| 精品欧美国产一区二区三| 国产精品久久电影中文字幕| 一边摸一边抽搐一进一出视频| 亚洲片人在线观看| 久久亚洲真实| 国产高清videossex| 日本黄色视频三级网站网址| 99在线人妻在线中文字幕| 精品无人区乱码1区二区| 久久久久久久久中文| 国产亚洲精品一区二区www| 涩涩av久久男人的天堂| 叶爱在线成人免费视频播放| 精品日产1卡2卡| 美女国产高潮福利片在线看| 日本 av在线| 国产色视频综合| 亚洲av成人一区二区三| 国产精品久久久av美女十八| 久久久久久久久久久久大奶| 在线播放国产精品三级| 女同久久另类99精品国产91| 欧美日韩中文字幕国产精品一区二区三区 | 久久久久九九精品影院| 最近最新中文字幕大全电影3 | 91在线观看av| 中文字幕人成人乱码亚洲影| 99国产精品一区二区蜜桃av| 久久久久精品国产欧美久久久| 在线观看免费视频日本深夜| 亚洲久久久国产精品| 极品人妻少妇av视频| 91在线观看av| 搡老岳熟女国产| 国产成人精品久久二区二区91| 中文字幕色久视频| 一边摸一边抽搐一进一出视频| 深夜精品福利| 精品一区二区三区四区五区乱码| 国产免费男女视频| 婷婷六月久久综合丁香| 午夜精品在线福利| 亚洲av片天天在线观看| 精品久久久久久,| 亚洲精华国产精华精| 久久热在线av| 大型黄色视频在线免费观看| 午夜亚洲福利在线播放| 成人18禁在线播放| 身体一侧抽搐| 俄罗斯特黄特色一大片| 久久久久精品国产欧美久久久| 悠悠久久av| 大陆偷拍与自拍| 亚洲男人的天堂狠狠| 夜夜看夜夜爽夜夜摸| 国产成人精品在线电影| 成年女人毛片免费观看观看9| 久久国产精品影院| 人人妻人人爽人人添夜夜欢视频| 国产区一区二久久| 曰老女人黄片| 日韩欧美一区视频在线观看| 黄片大片在线免费观看| 91精品国产国语对白视频| 亚洲自拍偷在线| 嫁个100分男人电影在线观看| 国产精品一区二区免费欧美| 大型黄色视频在线免费观看| 中文字幕另类日韩欧美亚洲嫩草| 国产精品永久免费网站| 亚洲 国产 在线| 人成视频在线观看免费观看| 国内精品久久久久精免费| 亚洲精品在线观看二区| 色精品久久人妻99蜜桃| 国产精品野战在线观看| 午夜影院日韩av| 免费看十八禁软件| 啦啦啦观看免费观看视频高清 | 最近最新中文字幕大全电影3 | 国产精品一区二区在线不卡| 激情视频va一区二区三区| 国产精品日韩av在线免费观看 | 乱人伦中国视频| 在线观看午夜福利视频| 久久久久久久久免费视频了| 亚洲精品中文字幕在线视频| 大陆偷拍与自拍| 国产日韩一区二区三区精品不卡| av中文乱码字幕在线| 狠狠狠狠99中文字幕| xxx96com| 国产三级在线视频| 午夜福利视频1000在线观看 | 国产精品爽爽va在线观看网站 | 好男人在线观看高清免费视频 | 看片在线看免费视频| 在线视频色国产色| a级毛片在线看网站| 日本在线视频免费播放| 亚洲欧美精品综合一区二区三区| 欧美激情极品国产一区二区三区| 久久久久久亚洲精品国产蜜桃av| 亚洲三区欧美一区| 亚洲狠狠婷婷综合久久图片| 国产成人啪精品午夜网站| 老司机靠b影院| 香蕉丝袜av| 久久久久久久久免费视频了| 久久人人精品亚洲av| 欧美乱妇无乱码| 91九色精品人成在线观看| 91麻豆精品激情在线观看国产| 99香蕉大伊视频| 色综合婷婷激情| 亚洲激情在线av| 国产97色在线日韩免费| 午夜两性在线视频| 天天添夜夜摸| 精品久久久久久成人av| 亚洲三区欧美一区| 免费观看人在逋| 免费观看精品视频网站| 免费看a级黄色片| 青草久久国产| 亚洲av片天天在线观看| 午夜福利一区二区在线看| 国产亚洲欧美98| 亚洲熟女毛片儿| 日本a在线网址| 午夜免费鲁丝| 久久精品aⅴ一区二区三区四区| 久9热在线精品视频| 色婷婷久久久亚洲欧美| 18禁国产床啪视频网站| 成人国语在线视频| 久久婷婷成人综合色麻豆| 满18在线观看网站| 黄色毛片三级朝国网站| av视频免费观看在线观看| 日本撒尿小便嘘嘘汇集6| 亚洲一区二区三区色噜噜| 日韩av在线大香蕉| 一级毛片高清免费大全| 一进一出好大好爽视频| 91麻豆av在线| 亚洲 国产 在线| 久久精品成人免费网站| 亚洲午夜理论影院| 国产精品免费一区二区三区在线| 一进一出抽搐gif免费好疼| 久久国产乱子伦精品免费另类| 青草久久国产| 美国免费a级毛片| 亚洲熟妇中文字幕五十中出| 精品久久久久久成人av| 人人妻,人人澡人人爽秒播| 香蕉国产在线看| 亚洲色图av天堂| 久久久久久大精品| 制服人妻中文乱码| 午夜影院日韩av| 久9热在线精品视频| 无限看片的www在线观看| 美女高潮喷水抽搐中文字幕| 可以免费在线观看a视频的电影网站| 国产高清视频在线播放一区| 老鸭窝网址在线观看| 在线观看舔阴道视频| 91精品三级在线观看| 法律面前人人平等表现在哪些方面| 久久欧美精品欧美久久欧美| 桃红色精品国产亚洲av| 亚洲va日本ⅴa欧美va伊人久久| 琪琪午夜伦伦电影理论片6080| 午夜久久久在线观看| 久久国产乱子伦精品免费另类| av福利片在线| 亚洲三区欧美一区| 亚洲aⅴ乱码一区二区在线播放 | 日本免费a在线| 淫妇啪啪啪对白视频| 一区二区日韩欧美中文字幕| 久久久久久亚洲精品国产蜜桃av| 成人国产一区最新在线观看| 男人的好看免费观看在线视频 | 亚洲一卡2卡3卡4卡5卡精品中文| 免费无遮挡裸体视频| 免费高清在线观看日韩| 91精品国产国语对白视频| av欧美777| 99久久精品国产亚洲精品| 欧美成人午夜精品| 母亲3免费完整高清在线观看| 精品国产国语对白av| 国产黄a三级三级三级人| 久久国产精品人妻蜜桃| av在线播放免费不卡| 97超级碰碰碰精品色视频在线观看| 激情视频va一区二区三区| 国产精品 国内视频| 久久精品国产综合久久久| 深夜精品福利| 久久午夜综合久久蜜桃| 一区二区日韩欧美中文字幕| 首页视频小说图片口味搜索| 91字幕亚洲| 99香蕉大伊视频| 精品一区二区三区视频在线观看免费| 人成视频在线观看免费观看| 色婷婷久久久亚洲欧美| 日韩欧美免费精品| 成人精品一区二区免费| 日韩精品青青久久久久久| 亚洲一卡2卡3卡4卡5卡精品中文| 精品不卡国产一区二区三区| 亚洲av熟女| 一本综合久久免费| 国产成人精品在线电影| 成人18禁高潮啪啪吃奶动态图| 国产高清激情床上av| 国产成人啪精品午夜网站| 丁香欧美五月| 老司机午夜十八禁免费视频| 一区二区三区高清视频在线| 两性夫妻黄色片| 老熟妇乱子伦视频在线观看| 国内毛片毛片毛片毛片毛片| 黑人操中国人逼视频| 成人免费观看视频高清| 中文字幕久久专区| 亚洲av美国av| 久久影院123| 久久精品国产清高在天天线| 亚洲第一电影网av| 一区二区日韩欧美中文字幕| 亚洲国产中文字幕在线视频| 国产一区在线观看成人免费| 中文字幕色久视频| 啦啦啦免费观看视频1| 99久久精品国产亚洲精品| 久久欧美精品欧美久久欧美| 黄色片一级片一级黄色片| 精品电影一区二区在线| 欧美人与性动交α欧美精品济南到| 亚洲 欧美 日韩 在线 免费| 成人手机av| 国产一区二区三区视频了| 久久久久国内视频| 亚洲欧美激情在线| 91国产中文字幕| 亚洲 欧美 日韩 在线 免费| 一区二区三区精品91| 亚洲中文字幕一区二区三区有码在线看 | 亚洲av美国av| 国产精品久久电影中文字幕| 男人舔女人下体高潮全视频| 欧美日韩亚洲国产一区二区在线观看| 一级a爱片免费观看的视频| 婷婷丁香在线五月| 97人妻精品一区二区三区麻豆 | 久久亚洲真实| 精品不卡国产一区二区三区| 欧美成人一区二区免费高清观看 | 悠悠久久av| 国产麻豆成人av免费视频| 成人国产一区最新在线观看| 在线观看免费午夜福利视频| 女人被躁到高潮嗷嗷叫费观| 禁无遮挡网站| 亚洲精品国产区一区二| 久久久久九九精品影院| 国语自产精品视频在线第100页| 1024视频免费在线观看| 国产亚洲精品久久久久久毛片| 午夜免费激情av| 在线观看www视频免费| 18禁裸乳无遮挡免费网站照片 | 窝窝影院91人妻| 久久久久久久午夜电影| 香蕉久久夜色| 两个人视频免费观看高清| 欧美不卡视频在线免费观看 | 国产午夜福利久久久久久| 波多野结衣一区麻豆| 18禁观看日本| 女人被狂操c到高潮| 一级a爱片免费观看的视频| 亚洲欧美精品综合久久99| 日韩欧美一区二区三区在线观看| www.熟女人妻精品国产| 欧美黑人欧美精品刺激| 午夜免费鲁丝| 变态另类丝袜制服| 久久人妻av系列| 国产高清激情床上av| 久久热在线av| 人人妻人人爽人人添夜夜欢视频| 人人澡人人妻人| 一个人免费在线观看的高清视频| 在线观看舔阴道视频| 18禁美女被吸乳视频| 黄色成人免费大全| 母亲3免费完整高清在线观看| 97人妻天天添夜夜摸| 18禁裸乳无遮挡免费网站照片 | 黄色a级毛片大全视频| 国产三级黄色录像| 一本大道久久a久久精品| 色精品久久人妻99蜜桃| 一区二区三区激情视频| 国产av又大| 人人妻,人人澡人人爽秒播| 91麻豆av在线| 久久精品国产清高在天天线| 怎么达到女性高潮| 国内毛片毛片毛片毛片毛片| 亚洲av五月六月丁香网|