• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    View-invariant Gait Authentication Based on Silhouette Contours Analysis and View Estimation

    2015-08-09 02:01:54SongminJiaLijiaWangandXiuzhiLi
    IEEE/CAA Journal of Automatica Sinica 2015年2期

    Songmin Jia,Lijia Wang,and Xiuzhi Li

    View-invariant Gait Authentication Based on Silhouette Contours Analysis and View Estimation

    Songmin Jia,Lijia Wang,and Xiuzhi Li

    —In this paper,we propose a novel view-invariant gaitauthentication method based on silhouette contours analysis andview estimation.The approach extracts Lucas-Kanade based gaitfl ow image and head and shoulder mea′n shape(LKGFI-HSMS)of a human by using the Lucas-Kanades method and procrustesshape analysis(PSA).LKGFI-HSMS can preserve the dynamicand static features of a gait sequence.The view betw′een a personand a camera is identi fi ed for selecting the targets gait featureto overcome view variations.The similarity scores of LKGFIand HSMS are calculated.The product rule combines the twosimilarity scores to further improve the discrimination powerof extracted features.Experimental results demonstrate that theproposed approach is robust to view variations and has a highauthentication rate.

    Index Terms—Silhouette contours analysis,view estimation,Lucas-Kanade based gait fl ow image,head and shoulder meanshape,gait recognition.

    I.INTRODUCTION

    GAIT analysis is a newly emerged biometrics which utilizes the manner of walking to recognize an individual[1]. During the past decade,gait analysis has been extensively investigated in the computer vision community.The approaches for gait analysis can be mainly divided into two categories:model-based methods and appearance-based methods[2].Model-based gait analysis methods[3-4]focus on studying the movement of various body parts and obtaining measurable parameters.These methods can be less affected by the viewpoint[5].However,complex searching and mapping processes will signi fi cantly increase the size of the feature space and computational cost[6].

    Appearance-based gait analysis methods do not need prior modeling,but operate on silhouette sequences to capture gait characteristics[6].Statistical methods[7-9]are usually applied to describe the silhouettes for their low computational cost. Among them,gait energy image(GEI)[10]is a commonly used method.It re fl ects the major shape of the gait silhouettes and their changes over a gait cycle.However,it loses some intrinsic dynamic characteristics of the gait pattern.Zhang et al.[2]proposed active energy image(AEI)constructed by calculating the active regions of two adjacent silhouette images for gait representation.AEI is projected to a low-dimensional feature subspace via a two-dimensional locality preserving projections (2DLPP)method for improving the discrimination power. Afterwards,Roy et al.[11]took advantage of the key pose state of a gait cycle for extracting a novel feature called pose energy image(PEI).However,it suffers a high computational burden when dealing with PEI.To overcome this shortcoming, pose kinematics was applied to select a set of most probable classes before using PEI.Pratik et al.[12]presented a pose depth volume(PDV)method by using a partial volume reconstruction of the frontal surface of each silhouette.Zeng et al.[13]proposed a radial basis function(RBF)network based method to extract gait′dynamics feature.For recognition,a constant RBF network is obtained from training samples,then the test gait can be recognized according to the smallest error principle.Recently,Lam et al.[14]constructed a gait fl ow image (GFI)by calculating an optical fl ow fi eld between consecutive silhouettes in a gait period to extract motion feature.However, Horn-Schunck′s approach is used to obtain the optical fl ow fi eld,which results in computational complexity.To alleviate the computational cost,Lucas-Kanade′s optical fl ow based gait fl ow image(LKGFI)[15]considering view is proposed to identify human.The Lucas-Kanade′s approach,which is in low computing cost,is adopted to calculate the optical fl ow fi eld.However,the LKGFI can only capture the motion characteristic of a gait,but ignore the structural characteristic which is also important in representing a gait.

    Procrustes shape analysis(PSA)is a popular method in direction statistics to obtain a shape vector which is invariant to scale,translation and rotation[6].Wang et al.[7]used the mean shape of silhouette contours analyzed with PSA to capture the structural characteristic of a gait,especially the shape cues of body biometrics.Choudhury et al.[6]presented a recognition method combining spatio-temporal motion characteristics and statistical and physical parameters(STM-SPP)by analyzing the shape of silhouette contours using PSA and elliptic Fourier descriptors(EFDs).This feature is usually robust to carrying condition.Inspired by STM-SPP,we extract the head and shoulder mean shape(HSMS),which is rarely changed while a person is walking,as the static feature of a gait by using the PSA.

    Most of the existing recognition methods can achieve good performance in the single view case[16-17].These methods can only be conducted with the assumption of the same view,which will signi fi cantly limit their potential applications in real-world.To overcome this drawback,Bodor et al.[18]proposed to use image-based rendering to generate optimal inputs sequences for view-independent motion recognition. The view is constructed from a combination of non-orthogonalviews taken from several cameras.Liu et al.[19]conducts joint subspace learning(JSL)to obtain the prototypes of different views.Then,a gait is represented by the coeffi cients from a linear combination of these prototypes in the corresponding views.Kusakunniran et al.[20]developed a view transformation model(VTM)by adopting singular value decomposition(SVD)technique to project gait features from one viewing angle to the other one.However,it is hard to obtain an optimized VTM,and this method depends on the number of training data which will lead to huge memory consumption.Considering gait sequences collected from different views of the same person as a feature set,Liu et al.[21]devised a subspace representation(MSR)method to measure the variances among samples.Then,a marginal canonical correlation analysis(MCCA)method is proposed to exploit the discriminative information from the subspaces for recognition.

    In this study,we propose a novel method based on analyzing silhouette contours and estimating view for gait recognition. The basic idea of silhouette contours analysis is to extract LKGFI-HSMS from a gait sequence for representing dynamic and static characteristics.LKGFI-HSMS is constructed by calculating an optical fl ow fi eld with the Lucas-Kanade′s approach and analyzing the head and shoulder shape with PSA. In our previous study[22],a view-invariant gait recognition method based on LKGFI and view has been proposed.To further improve recognition rate,HSMS is introduced to represent the static information.HSMS characterizes a person′s head and shoulder contours by analyzing the con fi guration matrix with PSA.Moreover,to overcome the view problem in gait recognition,view is identi fi ed as a criterion to select the target′s gait features in a feature database.Finally,our method is conducted on gait database,and the results illustrate that our method is improved in terms of computation cost and recognition rate.The contributions of this paper are as follows:

    1)As a static feature of a human motion,HSMS is fi rstly proposed.The HSMS is the head and shoulder mean shape extracted from a gait sequence by using the Procrustues Shape Analysis method.Since the head and shoulder silhouette is usually unsheltered,the HSMS is stable when applied on gait authentication.

    2)The HSMS and LKGFI are combined to analyze gait. The HSMS captures the most salient static feature from a gait sequence,while the LKGFI extracts more dynamic information of a human motion.Taking advantage of both the features,the LKGFI-HSMS has a powerful discriminative ability.

    3)To resolve the view problem,walking direction is estimated and used as a selection criterion for gait authentication. The walking direction is computed based on the positions and heights at the walking beginning and ending points in a gait cycle.View is identi fi ed according to the obtained walking direction.For gait authentication,the view is applied to select the target′s gait features in a feature database.This approach guarantees our method performs well when there are view changes.

    II.OVERVIEW OF THEAPPROACH

    As mentioned above,most previous work adopted lowlevel information such as single static features(GEI[10], STM-SPP[6])or single dynamic information(AEI[2],GFI[14]). Commonly,the dynamic features included in human walking motion are suf fi cient for gait analysis.However,it is unstable when there are self-occlusions of limbs.For obtaining optimal performance,the statistical analysis should be applied to the temporal patterns of an individual.Therefore,we consider higher level information including both the static and dynamic features for gait recognition.Moreover,most of the available gait analysis algorithms achieve good performance in the frontal view.However,their performance is seriously affected when the view changes.Based on the above consideration,we present a novel method based on analyzing silhouette contours and estimating view for gait recognition.

    The proposed approach is shown in Fig.1.For each input sequence,preprocessing is fi rstly conducted for extracting gait silhouettes and gait cycle.Secondly,the gait′s dynamic feature LKGFI and static feature HSMS are extracted from the gait silhouettes.Simultaneously,the walking direction is recognized and the view between the person and the camera is determined.Finally,the view is applied for fi nding the target′s LKGFI(HSMS)in the corresponding database estimated in advance,and then the similarity scores are calculated by using the Euclidean distance metric.Furthermore,the product rule is applied to combine the classi fi cation results of LKGFI and HSMS.

    III.GAITRECOGNITIONUSINGLKGFI-HSMSANDVIEW

    Here,two classi fi ers are estimated for gait recognition:one is based on dynamic feature LKGFI and view,the other is based on the static feature HSMS and view.The scores obtained from the two classi fi ers represent two gait′s similarity. However,a single classi fi er′s performance is unsatisfactory.To further improve algorithm′s ef fi ciency and accuracy,the two classi fi ers are combined by using a product rule.

    A.Silhouettes Extraction

    Silhouettes extraction involves segmenting regions corresponding to a walking person in a cluttered scene[6].The gait sequence is fi rst processed by using background subtraction,binarization,Morphologic processing and connectedcomponent analysis.Then,the silhouette images in each frame are extracted and their bounding boxes are computed.Furthermore,silhouettes are normalized to fi xed size(120×200) and aligned centrally with respect to their horizontal centers to eliminate size difference caused by the distance between the person and the camera.In addition,gait cycle is estimated in an individual’s walking sequence according to the heightwidth ratios of silhouettes[14].After gait period is determined, silhouette images would further be divided into several cycles and hence made ready for generating LKGFI and HSMS.

    B.Human Recognition Based on LKGFI and View

    Lam[14]proposed GFI for human recognition.An optical fl ow fi eld or image velocity fi eld is calculated from a gait sequence with the Horn-Schunck′s method to generate GFI. The optical fl ow fi eld represents the motion of the moving human in the scene.Therefore,GFI contains the human′s motion information in a gait period.Unfortunately,every pixel in the image should be computed to obtain the dense opticalfl ow in the Horn-Schunck′s method,which will suffer a high computational burden.In contrast,Lucas-Kanade′s approach is a popular sparse optical fl ow function,where a group of corners of the image are extracted before the optical fl ow is calculated.Therefore,Lucas-Kanade′s approach can reduce computing cost and be applied to generate LKGFI[22].The LKGFIs of a person under different views are shown in Fig.2.

    Most of the existing gait recognition methods suffer from view variations.In order to resolve this problem,we have proposed a gait recognition approach based on LKGFI and view in the literature[15,22].A person′s walking direction is computed based on the positions and heights at the walking beginning and ending points in a gait cycle as shown in Fig.3. We suppose that the walking direction is 0°when a person walks towards the camera along its optical axis and it is 90°when the person walks in parallel with the camera.The walking direction is divided into four main categories based on the four quadrants of the camera′s coordinate system.Then, the view is identi fi ed according to the relationship between walking directions and views.

    For human authentication,a database about a target′s gait features(LKGFI)under different views is established in advance.Then,once there is a passerby,his/her LKGFI will be extracted and the walking direction will be computed. Afterwards,the view,identi fi ed according to the walking direction,is applied to select the target′s LKGFI in the feature database.At last,the gait authentication is solved by measuring similarities among gait sequences.We make use of the Euclidean distance to measure the similarity.Obviously, the two gaits,having the smaller distance measures,are more similar.

    whereN=120×200 is the number of pixels in the LKGFI image.LKGFIGnandLKGFIPnare the values of then-th point in the target′s imageLKGFIGand the person′s imageLKGFIP,respectively.

    The LKGFI database of the target under different views is established in advance for this method.In the phase of gait recognition,the view is estimated precisely and treated as the criterion to choose the target′s gait feature.The proposed method is robust to view variations.

    Fig.1.The illustration of human recognition using LKGFI-HSMS and view.

    Fig.2.The illustration of LKGFIs of a person under different views.

    Fig.3.The illustration of determining walking direction.αis the walking direction.θis the angle between the walking direction andyaxis.xbandxeare the starting point and the ending point in the image plane,respectively.hbandheare the silhouettes′heights atxbandxe.

    C.Human Recognition Based on HSMS and View

    As a prominent feature of upper-body,the head and shoulder silhouette can be identi fi ed easily and is usually unsheltered.It is an ideal module for identifying a human being whether the person is under the frontal view or the rear view.In addition, PSA provides an ef fi cient approach to obtain mean shape, especially for coping with 2-D shapes[6].The obtained shape feature is invariant to scale,translation and rotation.Moreover, the Procrustes mean shape has considerable discriminative power for identifying individuals[7].Thus,this work extracts HSMS from a gait sequence using PSA for human recognition.

    Once a person′s silhouettes have been obtained,the head and shoulder models can be extracted according to morphology(i.e.,0.35Hmeasured from the top of the bounding box[10]whereHis the box′s height).Then,each head and shoulder contour is approximated by 100 points(xi,yi),i= 1,2,···,100 using interpolation based on point correspondence analysis[23].Furthermore,the contour is de fi ned in a complex plane asZ=[z1,z2,···,zi,···,zk],zi=xi+jyi,k=100.

    Togetthecon fi gurationmatrix,itisnecessaryto center the shape by de fi ning a complex vectorU= [u1,u2,···,ui,···,uk]T,ui=zi-ˉz,ˉz=(ˉx,ˉy).Given a set ofNhead and shoulder shapes in a gait cycle,Ncomplex vectorsUi(i=1,2,···,N)are gotten and the con fi guration matrix is computed:

    where the superscript“?”means the complex conjugate transpose.

    As a result,the Procrustes mean shape?Ucorresponding to the largest eigenvector ofSrepresents HSMS for gait recognition.?Uis a complex vector whose length isk.It characterizes the head and shoulder shape of a gait sequence. The illustration of the HSMS is shown in Fig.4.

    The gait recognition method using HSMS and view is similar to the approach based on LKGFI and view mentioned above.The similarity score between the target′s HSMS and the person′s HSMS is calculated as:

    wherek=100 is the number of HSMS.HSMSGnandHSMSPnare then-th points of the target′sHSMSGand the person′sHSMSP,respectively.

    D.Combining Rule

    We have calculated the similarity scores for LKGFI and HSMS,respectively.However,the recognition rate obtained by using a single classi fi er is unsatisfactory.To improve the system′s ef fi ciency and accuracy,the two classi fi ers are combined.Since a variety of fusion approaches are available for combining independent classi fi ers,we adopted the product rule.

    These similarity scores cannot be directly combined because they are with quite different ranges and distributions.Therefore,to make these scores comparable for fusion,they must be transformed to a same scale.The linear mapping method is applied here.

    and

    whereSCLKGFIandSCHSMSare the vectors of the similarity scores before mapping,whilesclkgfiandschsmsare the elements of theSCLKGFIandSCHSMS.?sclkgfiand?schsmsare the results of the linear mapping.

    Then,the product rule combines?sclkgfiand?schsmsto obtain the fi nal decision,which enhances the veri fi cation performance.The product rule is:

    The human authentication based on LKGFI-HSMS is implemented as follows:

    Fig.4.The illustration of HSMS.

    Step 1.A database about a target′s gait features(LKGFI and HSMS)under different views is established in advance.

    Step 2.Once a person is coming,his/her gait features (LKGFIPandHSMSP)are extracted.

    Step 3.Walking direction of the passerby person is computed and view is obtained.

    Step 4.The target′s gait features(LKGFIGandHSMSG) under the special view are selected from the established database.

    Step 5.The similarity scores for LKGFI and HSMS are obtained according to(1)and(4),respectively.

    Step 6.The similarity scores from step 5 are mapped according to(5)and(6).

    Step 7.The mapped similarity scores are combined according the product rule(7)to obtain the fi nal decision.

    Step 8.The passerby is identi fi ed according to the relationship between the fi nal decision and a threshold.

    IV.EXPERIMENTAL RESULTS

    A.Experiment on CASIA B Database

    This section presents the results of person identi fi cation experiments conducted on the CASIA B database.This database contains sequences of 124 persons from 11 views,namely 0°,18°,36°,54°,72°,90°,108°,126°,144°,162°,180°. Six normal gait sequences are captured for each person under different views.The database is divided into 2 subgroups:the fi rst subgroup of one person is used for establishing the LKGFI (HSMS)database;the rest of other persons are for evaluating the veri fi cation rate of the proposed recognition algorithm.For view identi fi cation,the direction range of 0°~180°is divided into 11 regions for the views(0°,18°,36°,54°,···,180°). The fi rst region of 0°~9°is for the view 0°.The last region of 171°~180°is for the view 180°.The middle area is equally divided and each region has a range of 18°:9°~27°for the view 18°,27°~45°for 36°,45°~63°for 54°, etc.All experiments are implemented using Opencv 2.1 in the Microsoft Visual Studio 2008 Express Edition environment.

    The veri fi cation performance of LKGFI-HSMS is compared with the following gait representation approaches:GEI,GFI, LKGFI,HSMS,AEI[2],and STM-SPP[6].The target is the 001thperson in the CASIA B database.The testing gait sequences include 124 persons walking under 11 views.LKGFIHSMS can preserve more dynamic and static information of a person′s silhouette contours using the Lucas-Kanade′s method and PSA.It can achieve a very good discrimination power and low computing cost.The testing person can walk under different views.The view is extracted using the proposed approach to select the target′s gait feature before recognition, which can deal with view variations.To evaluate the ef fi ciency of the GFI and LKGFI,all of the gait sequences for every person are tested one time.As a result,we can get the average time consume illustrated in Table I.To construct the GFI[12], the Horn-Schunck′s method,suffering a high computational load,is adopted to get the dense optical fl ow.In contrast,the Lucas-Kanade′s approach is used to construct the LKGFI to reduce the computational cost.It is shown that the LKGFI can satisfy the real-time requirement.Moreover,the results show that both the LKGFI and GEI can reach a lower operation time(12ms for LKGFI and 11ms for GEI).However,the LKGFI can achieve better performance than GEI,which will be discussed below.To further evaluate the proposed method, we compare the average false rejection rates(FRR)at the false acceptance rates(FAR)of 4%and 10%for different gait representations[4].The LKGFI only captures the motion characteristic of a gait sequence in a period,while the HSMS is only a shape cue.The LKGFI-HSMS can capture both the motion and structural characteristics of a gait.Therefore, the LKGFI-HSMS has the most discrimination power.The results are shown in Table II.The FRRs achieved by LKGFIHSMS are the least in the same FAR cases.Fig.5 shows the receiver operating characteristic(ROC)curves.Thex-axis is for the false rejection rate,while they-axis is for the false acceptance rate.The smaller the area below the ROC curve is,the better the performance is.The experiment results show that the area below the ROC curve achieved by LKGFI-HSMS is the smallest.It is evident from Table II and Fig.5 that the veri fi cation performance of LKGFI-HSMS is better than the other gait representations and our proposed approach is robust to view variations.

    TABLE I AVERAGE TIME CONSUME OF CONSTRUCTING GFI, ___________________GEI AND LKGFI

    TABLE II AVERAGE FALSE REJECTION RATES(%)AT THE FALSE ACCEPTANCE RATE(%)OF 4%AND 10%FOR GEI,LKGFI, HSMS,AEI,STM-SPP,AND LKGFI-HSMS ON ________________CASIA B DATABASE

    Fig.5.Receiver operating characteristic(ROC)(%)by different gait representations:GEI,LKGFI,HSMS,AEI,STM-SPP,and LKGFIHSMS on CASIA B database.

    B.Experiment on NLPR Database

    This section presents the experimental results conducted on the NLPR database.This database contains 2880 sequences for 20 persons from 3 views(0°,45°,90°).Four normal sequences are captured under each views.For identi fi cation, the direction range 0°~90°is divided into 3 regions for each views,which means:0°~36°for 0°,37°~63°for 45°,and 64°~90°for 90°.The sequences for the person“fyc”is chosen as the target,while the rest of other persons are for evaluating the veri fi cation rate of the LKGFI-HSMS, GEI,GFI,LKGFI,HSMS,AEI,and STM-SPP.We test these methods in two terms:the fi rst one is the average FRR at FAR of 4%and 10%for different gait representation,the second is the ROC curves.The results are shown in Table III and Fig.6,respectively.The results further illustrate that the veri fi cation of the LKGFI-HSMS is better than the other gait representations.

    V.CONCLUSION

    In this paper,we have proposed a gait representation,i.e., LKGFI-HSMS,which can analyze the motion and shape of silhouette contours of a person in a video sequence.Firstly, LKGFI was generated by calculating an optical fl ow fi eld with the Lucas-Kanade′s method.This method can preserve more motion information of the silhouette contours and signi fi cantly reduce the processing time.Secondly,HSMS characterizing the head and shoulder shape of the person in a gait cycle was analyzed by using PSA.It has a very good discrimination power and lower computing cost due to the part-based shape analysis instead of whole contour shape analysis.Thirdly, considering view,the method can deal with view variations. Furthermore,the veri fi cation performance was enhanced by combining the above two classi fi ers.Experimental results have shown the effectiveness of the proposed approach compared with several related silhouette-based gait recognition methods.

    TABLE III AVERAGE FALSE REJECTION RATES(%)AT THE FALSE ACCEPTANCE RATE(%)OF 4,%AND 10%FOR GEI,LKGFI, HSMS,AEI,STM-SPP,AND LKGFI-HSMS ON NLPR ____________________DATABASE

    Fig.6.Receiver operating characteristic(ROC)(%)by different gait representations:GEI,LKGFI,HSMS,AEI,STM-SPP,and LKGFIHSMS on NLPR database.

    REFERENCES

    [1]Yang X C,Zhou Y,Zhang T H,Shu G.Yang J.Gait recognition based on dynamic region analysis.Signal Processing,2008,88(9):2350-2356

    [2]Zhang E,Zhao Y W,Xiong W.Active energy image plus 2DLPP for gait recognition.Signal Processing,2010,90(7):2295-2302

    [3]Boulgouris N V,Chi Z X.Human gait recognition based on matching of body components.Pattern Recognition,2007,40(6):1763-1770

    [4]Zhang R,Vogler C,Metaxas D.Human gait recognition at sagittal plane.Image and Vision Computing,2007,25(3):321-330

    [5]Liu Y Q,Wang X.Human gait recognition for multiple views.Procedia Engineering,2011,15:1832-1836

    [6]Choudhury S D,Tjahjadi T.Silhouette-based gait recognition using Procrustes shape analysis and elliptic Fourier descriptors.Pattern Recognition,2012,45(9):3414-3426

    [7]Wang L,Tan T N,Hu W M,Ning H Z.Automatic gait recognition based on statistical shape analysis.IEEE Transactions on Image Processing, 2003,12(9):1120-1131

    [8]Shutler J D,Nixon M S.Zernike velocity moments for sequence-based description of moving features.Image and Vision Computing,2006, 24(4):343-356

    [9]Shutler J D,Nixon M S,Harris C J.Statistical gait description via temporal moments.In:Proceedings of the 4th IEEE Southwest Symposium on Image Analysis and Interpretation.Austin,TX:IEEE,2004. 291-295

    [10]Han J,Bhanu B.Individual recognition using gait energy image.IEEE Transactions on Pattern Analysis and Machine Intelligence,2006,28(2): 316-322

    [11]Roy A,Sural S,Mukherjee J.Gait recognition using pose Kinematics and pose energy image.Signal Processing,2012,92(3):780-792

    [12]Pratik C,Aditi R,Shamik S,Jayanta M.Pose depth volume extraction from RGB-D streams for frontal gait recognition.Journal of Visual Communication and Image Representation,2014,25(1):53-63

    [13]Zeng W,Wang C,Yang F F.Silhouette-based gait recognition via deterministic learning.Pattern Recognition,2014,47(11):3568-2584

    [14]Lam T H W,Cheung K H,Liu J N K.Gait fl ow image:a silhouettebased gait representation for human identi fi cation.Pattern Recognition, 2011,44(4):973-987

    [15]Jia S M,Wang L J,Wang S,Li X Z.Personal identi fi cation combining modi fi ed gait fl ow image and view.Optical and Precision Engineering, 2012,20(11):2500-2507

    [16]Wang L,Ning H,Tan T,Hu W.Fusion of static and dynamic body biometrics for gait recognition.IEEE Transactions on Circuits and Systems for Video Technology,2004,14(2):149-158

    [17]Barnich O,Droogenbroech M V.Frontal-view gait recognition by intraand inter-frame rectangle size distribution.Pattern Recognition Letters, 2009,30(10):893-901

    [18]Bodor R,Drenner A,Fehr D,Masoud O,Papanikolopoulos N.Viewindependent human motion classi fi cation using image-based reconstruction.Image and Vision Computing,2009,27(8):1197-1206

    [19]Liu N,Lu J W,Tan Y P.Joint subspace learning for view-invariant gait recognition.IEEE Signal Processing Letters,2011,18(7):431-434

    [20]Kusakunniran W,Wu Q,Li H D,Zhang J.Multiple views gait recognition using view transformation model based on optimized gait energy image.In:Proceedings of the 12th IEEE International Conference on Computer Vision Workshops.Kyoto:IEEE,2009.1058-1064

    [21]Liu N N,Lu J W,Yang G,Tan Y P.Robust gait recognition via discriminative set matching.JournalofVisualCommunicationandImage Representation,2013,24(4):439-447

    [22]Wang L J,Jia S M,Li X Z,Wang S.Human gait recognition based on gait fl ow image considering walking direction.In:Proceedings of the 2012 IEEE International Conference on Mechatronics and Automation. Chengdu,China:IEEE,2012.1990-1995

    [23]Mowbray S D,Nixon M S.Automatic gait recognition via Fourier descriptors of deformable objects.In:Proceedings of the 4th International Conference on Audio-and Video-Based Biometric Person Authentication.Guildford:Springer-Verlag,2003.556-573

    Songmin Jia Professor at the College of Electronic Information&Control Engineering,Beijing University of Technology.Her research interests include robotics,machine learning,visual computation,and image processing.Corresponding author of this paper.

    Lijia Wang graduated from Zhengzhou University,China in 2005.She received her M.Sc.degree from Zhengzhou University,China,in 2008.She is currently a Ph.D.candidate at the College of Electronic Information&Control Engineering,Beijing University of Technology.Her research interests include visual computation and image processing.

    received the Ph.D.degree from Beihang University,China in 2008. He is currently a lecturer at the College of Electronic Information&Control Engineering,Beijing University of Technology.His research interests include image processing and visual computation.

    Manuscript received March 28,2014;accepted November 27,2014. This work was supported by National Natural Science Foundation of China(61105033,61175087).Recommended by Associate Editor Xin Xu.

    :Songmin Jia,Lijia Wang,Xiuzhi Li.View-invariant gait authentication based on silhouette contours analysis and view estimation.IEEE/CAA Journal of Automatica Sinica,2015,2(2):226-232

    Songmin Jia is with the College of Electronic Information&Control Engineering,Beijing University of Technology,Beijing 100124,China(email:jsm@bjut.edu.cn).

    Lijia Wang is with the College of Electronic Information&Control Engineering,Beijing University of Technology,Beijing 100124,China,and also with the Department of Information Engineering and Automation,Hebei College of Industry and Technology,Shijiazhuang 050091,China(e-mail: wanglijia1981@hotmail.com).

    Xiuzhi Li is with the College of Electronic Information&Control Engineering,Beijing University of Technology,Beijing 100124,China(e-mail: xiuzhi.lee@163.com).

    在线播放国产精品三级| videos熟女内射| 国产亚洲精品久久久久久毛片 | 精品人妻熟女毛片av久久网站| 久久中文看片网| 婷婷精品国产亚洲av在线 | 69av精品久久久久久| www.熟女人妻精品国产| 久久人妻熟女aⅴ| 久久香蕉国产精品| 99国产精品免费福利视频| 国产欧美亚洲国产| 国产精品偷伦视频观看了| 天天操日日干夜夜撸| 亚洲久久久国产精品| 国产精品国产av在线观看| av视频免费观看在线观看| 看免费av毛片| 午夜福利乱码中文字幕| 在线视频色国产色| 免费看a级黄色片| 啦啦啦免费观看视频1| 啦啦啦免费观看视频1| 久久亚洲精品不卡| 国产又色又爽无遮挡免费看| 91成人精品电影| 99国产极品粉嫩在线观看| 国产一区有黄有色的免费视频| av在线播放免费不卡| 波多野结衣av一区二区av| 亚洲少妇的诱惑av| 好男人电影高清在线观看| 最新在线观看一区二区三区| 国产成人精品在线电影| 91麻豆精品激情在线观看国产 | 亚洲精品在线观看二区| 久热这里只有精品99| 美女高潮到喷水免费观看| 亚洲av日韩在线播放| 黄片大片在线免费观看| 国产熟女午夜一区二区三区| 久久久国产成人精品二区 | 精品国产乱子伦一区二区三区| 成人影院久久| 欧美国产精品一级二级三级| 亚洲精品国产一区二区精华液| 夫妻午夜视频| 最新美女视频免费是黄的| 黄色毛片三级朝国网站| 国产免费男女视频| 侵犯人妻中文字幕一二三四区| 老司机深夜福利视频在线观看| 少妇 在线观看| 好男人电影高清在线观看| 日韩精品免费视频一区二区三区| 久久天堂一区二区三区四区| 露出奶头的视频| 久久精品91无色码中文字幕| 99久久国产精品久久久| 99热网站在线观看| 成年人午夜在线观看视频| 国产野战对白在线观看| 人成视频在线观看免费观看| 丰满人妻熟妇乱又伦精品不卡| 欧美日韩精品网址| 欧美黄色片欧美黄色片| 免费在线观看黄色视频的| 亚洲 欧美一区二区三区| 久久久久久免费高清国产稀缺| 亚洲成人国产一区在线观看| 一进一出抽搐动态| 日日摸夜夜添夜夜添小说| 国产精品久久久久久精品古装| 99热只有精品国产| 18禁黄网站禁片午夜丰满| 看黄色毛片网站| 午夜精品国产一区二区电影| 天天添夜夜摸| 法律面前人人平等表现在哪些方面| 欧美 亚洲 国产 日韩一| 午夜影院日韩av| 久久中文字幕一级| 国产色视频综合| 欧美一级毛片孕妇| 丰满迷人的少妇在线观看| 人人妻人人澡人人看| 日韩成人在线观看一区二区三区| 99国产极品粉嫩在线观看| avwww免费| 亚洲第一青青草原| 国产一区二区激情短视频| 人成视频在线观看免费观看| 成人手机av| 久久这里只有精品19| 在线av久久热| 成人18禁在线播放| 99国产精品99久久久久| 欧美日韩av久久| 悠悠久久av| 精品国产一区二区三区四区第35| 另类亚洲欧美激情| 国产一区二区激情短视频| 亚洲国产欧美一区二区综合| 国产成人影院久久av| 女人精品久久久久毛片| 国产片内射在线| 精品久久久精品久久久| 欧美黑人精品巨大| 午夜精品久久久久久毛片777| 国产99久久九九免费精品| 亚洲全国av大片| 日韩视频一区二区在线观看| 欧美另类亚洲清纯唯美| 黄色 视频免费看| 亚洲精品国产精品久久久不卡| 99热国产这里只有精品6| 精品卡一卡二卡四卡免费| 村上凉子中文字幕在线| 国产成人影院久久av| 人人妻人人添人人爽欧美一区卜| 日韩制服丝袜自拍偷拍| 涩涩av久久男人的天堂| 天天操日日干夜夜撸| 国产高清videossex| 在线观看www视频免费| 久久香蕉国产精品| 一级片'在线观看视频| 国产乱人伦免费视频| 丰满的人妻完整版| 99精品久久久久人妻精品| 日日摸夜夜添夜夜添小说| 免费看a级黄色片| 精品福利永久在线观看| 我的亚洲天堂| 久久久久久久国产电影| 高清黄色对白视频在线免费看| 国产精品免费大片| 午夜精品国产一区二区电影| 69av精品久久久久久| 成人三级做爰电影| 黄色 视频免费看| 99精国产麻豆久久婷婷| 欧美日韩亚洲国产一区二区在线观看 | 淫妇啪啪啪对白视频| 国产欧美日韩一区二区三区在线| 国产亚洲欧美98| 久久久久久久国产电影| 在线观看免费视频网站a站| 国产男女超爽视频在线观看| 99久久国产精品久久久| 日日爽夜夜爽网站| 大型黄色视频在线免费观看| 国产精品av久久久久免费| 国产97色在线日韩免费| 一级毛片高清免费大全| 国产成人欧美| 久久人妻福利社区极品人妻图片| 国产精品免费大片| ponron亚洲| 色94色欧美一区二区| 国产欧美日韩综合在线一区二区| av不卡在线播放| 丁香欧美五月| 国产欧美日韩一区二区精品| 欧美国产精品va在线观看不卡| 丁香欧美五月| 中文欧美无线码| 国产激情欧美一区二区| 国产精品久久久av美女十八| 久久性视频一级片| 女人爽到高潮嗷嗷叫在线视频| 色在线成人网| 黄片大片在线免费观看| 黑人操中国人逼视频| 国产成人系列免费观看| 高清毛片免费观看视频网站 | 看黄色毛片网站| 欧美av亚洲av综合av国产av| 高清毛片免费观看视频网站 | 女人爽到高潮嗷嗷叫在线视频| 欧美在线黄色| 如日韩欧美国产精品一区二区三区| 少妇猛男粗大的猛烈进出视频| 精品亚洲成a人片在线观看| 久久99一区二区三区| 欧美大码av| ponron亚洲| 精品国产乱码久久久久久男人| √禁漫天堂资源中文www| 建设人人有责人人尽责人人享有的| 黄色视频不卡| 法律面前人人平等表现在哪些方面| 亚洲三区欧美一区| 午夜亚洲福利在线播放| 淫妇啪啪啪对白视频| 男人舔女人的私密视频| 久久精品91无色码中文字幕| 亚洲av成人一区二区三| 国产不卡av网站在线观看| 欧美人与性动交α欧美精品济南到| 色综合婷婷激情| av欧美777| 国产精品偷伦视频观看了| 中文字幕高清在线视频| 在线永久观看黄色视频| 99久久精品国产亚洲精品| 9热在线视频观看99| 国产精品国产av在线观看| 国产欧美日韩一区二区精品| 国产精品99久久99久久久不卡| 亚洲av美国av| 777米奇影视久久| 天堂俺去俺来也www色官网| 午夜福利免费观看在线| av天堂久久9| 国产高清视频在线播放一区| av网站免费在线观看视频| 夜夜躁狠狠躁天天躁| 女人高潮潮喷娇喘18禁视频| 青草久久国产| 曰老女人黄片| 90打野战视频偷拍视频| 50天的宝宝边吃奶边哭怎么回事| 日韩成人在线观看一区二区三区| 波多野结衣一区麻豆| 超碰成人久久| 成人亚洲精品一区在线观看| av天堂久久9| 精品人妻1区二区| 免费人成视频x8x8入口观看| 亚洲国产欧美网| 精品人妻在线不人妻| 一级作爱视频免费观看| 国产精品亚洲一级av第二区| 狠狠婷婷综合久久久久久88av| 成人影院久久| 国产精品久久久av美女十八| 黄色片一级片一级黄色片| 久久久久国产精品人妻aⅴ院 | 9191精品国产免费久久| 人人妻人人爽人人添夜夜欢视频| 大码成人一级视频| 欧美+亚洲+日韩+国产| 天天操日日干夜夜撸| 啦啦啦视频在线资源免费观看| 99re在线观看精品视频| 国产成人一区二区三区免费视频网站| av免费在线观看网站| 国产三级黄色录像| 91大片在线观看| tube8黄色片| 免费在线观看影片大全网站| 99国产精品一区二区蜜桃av | 中文字幕另类日韩欧美亚洲嫩草| 夜夜躁狠狠躁天天躁| 99re在线观看精品视频| av片东京热男人的天堂| 女人被躁到高潮嗷嗷叫费观| 国产成人影院久久av| 91在线观看av| 亚洲熟妇中文字幕五十中出 | 免费日韩欧美在线观看| 色94色欧美一区二区| 久久午夜综合久久蜜桃| 一a级毛片在线观看| 麻豆国产av国片精品| 亚洲国产精品合色在线| 香蕉丝袜av| 夜夜躁狠狠躁天天躁| av欧美777| 老司机午夜十八禁免费视频| 国产成人欧美| 久久精品亚洲av国产电影网| 老司机在亚洲福利影院| 欧美日韩乱码在线| 精品高清国产在线一区| 欧美日本中文国产一区发布| 搡老乐熟女国产| 精品亚洲成国产av| 免费在线观看亚洲国产| 每晚都被弄得嗷嗷叫到高潮| a在线观看视频网站| 无限看片的www在线观看| 天堂动漫精品| 国产人伦9x9x在线观看| 日韩 欧美 亚洲 中文字幕| 国产欧美日韩综合在线一区二区| 身体一侧抽搐| 18禁裸乳无遮挡免费网站照片 | 亚洲,欧美精品.| 可以免费在线观看a视频的电影网站| 午夜视频精品福利| 久久九九热精品免费| 在线十欧美十亚洲十日本专区| 国产一区二区三区综合在线观看| 制服人妻中文乱码| 久久精品熟女亚洲av麻豆精品| 热99re8久久精品国产| 麻豆乱淫一区二区| 精品福利永久在线观看| 9191精品国产免费久久| 久久精品人人爽人人爽视色| 亚洲精品久久午夜乱码| 在线免费观看的www视频| 欧美一级毛片孕妇| 精品亚洲成a人片在线观看| 在线观看日韩欧美| 国产成人欧美| 欧美色视频一区免费| 国产乱人伦免费视频| 精品国产一区二区三区久久久樱花| 黄色a级毛片大全视频| 一a级毛片在线观看| 两人在一起打扑克的视频| 999精品在线视频| 日韩人妻精品一区2区三区| 成人永久免费在线观看视频| 免费高清在线观看日韩| 亚洲av片天天在线观看| 成人免费观看视频高清| 99精品在免费线老司机午夜| 国产一区二区三区综合在线观看| 黄色怎么调成土黄色| 国产91精品成人一区二区三区| 91麻豆av在线| 亚洲国产毛片av蜜桃av| 最新在线观看一区二区三区| 婷婷精品国产亚洲av在线 | 亚洲国产精品sss在线观看 | www.精华液| 欧美精品高潮呻吟av久久| 精品国产一区二区久久| 99久久人妻综合| 91国产中文字幕| 在线观看免费视频日本深夜| 一级片免费观看大全| av不卡在线播放| 国内毛片毛片毛片毛片毛片| 咕卡用的链子| 一个人免费在线观看的高清视频| 看黄色毛片网站| 久久香蕉国产精品| 黄色毛片三级朝国网站| 大香蕉久久网| 在线国产一区二区在线| 午夜福利免费观看在线| 久久精品国产综合久久久| 岛国毛片在线播放| 欧美最黄视频在线播放免费 | 视频区欧美日本亚洲| 午夜免费鲁丝| 久久久久精品人妻al黑| 免费观看精品视频网站| 亚洲精品美女久久av网站| 黄色a级毛片大全视频| 日韩欧美三级三区| 黑人欧美特级aaaaaa片| 久久精品国产清高在天天线| 搡老乐熟女国产| 丰满的人妻完整版| 正在播放国产对白刺激| 午夜福利,免费看| 丰满人妻熟妇乱又伦精品不卡| 久热这里只有精品99| 欧美中文综合在线视频| 日韩欧美一区视频在线观看| 中文字幕色久视频| 国产xxxxx性猛交| 久久久国产成人精品二区 | 精品国产一区二区三区久久久樱花| 亚洲成人手机| 久久国产精品大桥未久av| 黑人操中国人逼视频| 国产一区二区三区在线臀色熟女 | 三上悠亚av全集在线观看| 嫁个100分男人电影在线观看| 欧美成人午夜精品| 十八禁人妻一区二区| 手机成人av网站| 久久99一区二区三区| 亚洲一区中文字幕在线| 夜夜爽天天搞| 久久国产精品影院| 两性夫妻黄色片| 婷婷成人精品国产| 99久久国产精品久久久| 午夜影院日韩av| 18禁裸乳无遮挡动漫免费视频| 精品亚洲成a人片在线观看| 女人精品久久久久毛片| 国产精品久久久av美女十八| 欧美中文综合在线视频| 欧美激情 高清一区二区三区| 国产日韩一区二区三区精品不卡| 国产精品二区激情视频| 看片在线看免费视频| 成人免费观看视频高清| 99久久99久久久精品蜜桃| 国产精品.久久久| 高潮久久久久久久久久久不卡| 精品国产美女av久久久久小说| 成熟少妇高潮喷水视频| 在线观看免费视频网站a站| 色综合欧美亚洲国产小说| 国产一区有黄有色的免费视频| 久久这里只有精品19| 12—13女人毛片做爰片一| 国产精华一区二区三区| 成人特级黄色片久久久久久久| 一边摸一边抽搐一进一小说 | 亚洲五月婷婷丁香| 动漫黄色视频在线观看| 99精品久久久久人妻精品| 超碰97精品在线观看| 久久九九热精品免费| 建设人人有责人人尽责人人享有的| 又大又爽又粗| 老汉色∧v一级毛片| 欧美日韩成人在线一区二区| 久久香蕉精品热| 国产成人影院久久av| 国产亚洲av高清不卡| 亚洲五月天丁香| 精品少妇一区二区三区视频日本电影| av不卡在线播放| 亚洲av第一区精品v没综合| 曰老女人黄片| 一级,二级,三级黄色视频| 国产精品98久久久久久宅男小说| 亚洲五月天丁香| 国产精品98久久久久久宅男小说| 啪啪无遮挡十八禁网站| 97人妻天天添夜夜摸| 欧美精品人与动牲交sv欧美| 麻豆乱淫一区二区| 香蕉国产在线看| 日本黄色视频三级网站网址 | 国产精品久久久久久精品古装| 超色免费av| 在线观看免费视频日本深夜| 99riav亚洲国产免费| 女同久久另类99精品国产91| 两性夫妻黄色片| 精品国产超薄肉色丝袜足j| 后天国语完整版免费观看| 欧美日韩亚洲高清精品| 极品人妻少妇av视频| 无遮挡黄片免费观看| 精品午夜福利视频在线观看一区| 精品国产美女av久久久久小说| 我的亚洲天堂| 人人妻人人澡人人爽人人夜夜| 精品久久久精品久久久| av超薄肉色丝袜交足视频| 久久香蕉精品热| 在线观看日韩欧美| 亚洲国产毛片av蜜桃av| www.熟女人妻精品国产| 亚洲av成人av| 亚洲欧美一区二区三区久久| 99国产精品一区二区蜜桃av | 精品国产一区二区久久| 精品一区二区三卡| 国产aⅴ精品一区二区三区波| 捣出白浆h1v1| 欧美日韩国产mv在线观看视频| 18禁美女被吸乳视频| 777久久人妻少妇嫩草av网站| 高清毛片免费观看视频网站 | 在线观看一区二区三区激情| 欧洲精品卡2卡3卡4卡5卡区| 天堂√8在线中文| 精品卡一卡二卡四卡免费| 在线看a的网站| 又紧又爽又黄一区二区| 在线观看日韩欧美| 丁香欧美五月| 亚洲情色 制服丝袜| 一二三四社区在线视频社区8| 午夜91福利影院| 久久99一区二区三区| 成人特级黄色片久久久久久久| bbb黄色大片| 亚洲成人免费av在线播放| 精品欧美一区二区三区在线| 欧美黄色片欧美黄色片| 色综合婷婷激情| 69av精品久久久久久| 一区二区三区激情视频| 日本撒尿小便嘘嘘汇集6| 亚洲精品在线观看二区| 欧美另类亚洲清纯唯美| 深夜精品福利| netflix在线观看网站| 欧美精品人与动牲交sv欧美| 飞空精品影院首页| 大码成人一级视频| 美女高潮喷水抽搐中文字幕| 搡老熟女国产l中国老女人| 亚洲五月天丁香| 一进一出抽搐gif免费好疼 | 欧美性长视频在线观看| 日韩大码丰满熟妇| 午夜免费成人在线视频| 国产片内射在线| 国产精品.久久久| 亚洲一区中文字幕在线| 国产熟女午夜一区二区三区| 搡老岳熟女国产| 久久人人爽av亚洲精品天堂| 国产精品自产拍在线观看55亚洲 | 精品熟女少妇八av免费久了| 国产一区在线观看成人免费| 91老司机精品| 香蕉丝袜av| 亚洲欧美激情在线| 久久这里只有精品19| 午夜福利乱码中文字幕| 啦啦啦在线免费观看视频4| 国产亚洲精品久久久久5区| 午夜两性在线视频| 亚洲成a人片在线一区二区| 精品国产美女av久久久久小说| 一级毛片高清免费大全| 日韩人妻精品一区2区三区| 精品电影一区二区在线| 午夜久久久在线观看| 欧美激情极品国产一区二区三区| 美女国产高潮福利片在线看| 成人黄色视频免费在线看| 色在线成人网| 精品一区二区三区av网在线观看| 午夜亚洲福利在线播放| 超碰97精品在线观看| 少妇的丰满在线观看| 欧美激情 高清一区二区三区| 欧美日韩国产mv在线观看视频| 这个男人来自地球电影免费观看| 成人国产一区最新在线观看| 久99久视频精品免费| 成年动漫av网址| 久久青草综合色| 99国产精品一区二区蜜桃av | 婷婷丁香在线五月| 欧美日本中文国产一区发布| 美女国产高潮福利片在线看| 操出白浆在线播放| 午夜福利一区二区在线看| 久久 成人 亚洲| 久久久久久久久久久久大奶| 日韩制服丝袜自拍偷拍| 国产片内射在线| 成在线人永久免费视频| 麻豆乱淫一区二区| 亚洲一区高清亚洲精品| 亚洲av美国av| 老司机亚洲免费影院| 国产av又大| 99re在线观看精品视频| 日日摸夜夜添夜夜添小说| 久久久久久久精品吃奶| 天天躁夜夜躁狠狠躁躁| www.熟女人妻精品国产| 99国产综合亚洲精品| 动漫黄色视频在线观看| 99久久综合精品五月天人人| 在线天堂中文资源库| 亚洲色图av天堂| 国产精品秋霞免费鲁丝片| 在线永久观看黄色视频| 美国免费a级毛片| 亚洲色图 男人天堂 中文字幕| 99re在线观看精品视频| 在线观看免费高清a一片| 老鸭窝网址在线观看| 久久人人97超碰香蕉20202| 伦理电影免费视频| 黄色视频,在线免费观看| 亚洲精品在线美女| 大码成人一级视频| 五月开心婷婷网| 国产精品98久久久久久宅男小说| 日本vs欧美在线观看视频| 人人妻人人爽人人添夜夜欢视频| 久久久久国产精品人妻aⅴ院 | 欧美在线黄色| 一级毛片高清免费大全| a在线观看视频网站| 国产成人系列免费观看| 中文字幕av电影在线播放| av网站免费在线观看视频| 婷婷精品国产亚洲av在线 | 黄色视频,在线免费观看| 在线观看www视频免费| 人妻久久中文字幕网| 国产三级黄色录像| 欧美成人午夜精品| 成年女人毛片免费观看观看9 | 国产精品一区二区在线不卡| 欧美日韩亚洲综合一区二区三区_| 国产一区二区三区视频了| 成人三级做爰电影| videosex国产| 国产亚洲精品久久久久久毛片 | 国产不卡av网站在线观看| 欧美人与性动交α欧美软件| 在线观看免费午夜福利视频| 国产免费av片在线观看野外av| 亚洲专区字幕在线| 国产欧美日韩一区二区精品| 国产av一区二区精品久久| 精品久久久精品久久久| 久久久国产成人免费| 久热这里只有精品99| 欧美乱色亚洲激情|