• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical Analysis of Balanced Methods for the Impulsive Stochastic Differential Equations

    2015-08-07 10:54:14HULin胡琳WUQiang吳強(qiáng)XUQingcui徐青翠ZHANGZujin張祖錦LIHuacan李華燦
    關(guān)鍵詞:吳強(qiáng)青翠車子

    HU Lin(胡琳),WU Qiang(吳強(qiáng)),XU Qing-cui(徐青翠),ZHANG Zu-jin(張祖錦),LIHuacan(李華燦)

    1 School of Science,Jiangxi University of Science and Technology,Ganzhou 341000,China

    2 Forestry and Environmental Institute,Jiangxi Environmental Engineering Vocational College,Ganzhou 341000,China

    3 School of Resource and Safety Engineering,Central South University,Changsha 410075,China

    4 Department of Information Engineer,Jiangxi University of Science and Technology,Nanchang Campus,Nanchang 340000,China

    5 School of Mathematics and Computer Sciences,Gannan Normal University,Ganzhou 341000,China

    Numerical Analysis of Balanced Methods for the Impulsive Stochastic Differential Equations

    HU Lin(胡琳)1*,WU Qiang(吳強(qiáng))2,3,XU Qing-cui(徐青翠)4,ZHANG Zu-jin(張祖錦)5,LIHuacan(李華燦)1

    1 School of Science,Jiangxi University of Science and Technology,Ganzhou 341000,China

    2 Forestry and Environmental Institute,Jiangxi Environmental Engineering Vocational College,Ganzhou 341000,China

    3 School of Resource and Safety Engineering,Central South University,Changsha 410075,China

    4 Department of Information Engineer,Jiangxi University of Science and Technology,Nanchang Campus,Nanchang 340000,China

    5 School of Mathematics and Computer Sciences,Gannan Normal University,Ganzhou 341000,China

    Positive results are proved here about the ability of balanced methods to reproduce the mean square stability of the impulsive stochastic differential equations.It is shown that the balanced methods with strong convergence can preserve the mean square stability with the sufficiently small stepsize.Weak variants and their mean square stability are also considered.Several numerical experiments are given for illustration and show that the fully implicitmethods are superior to those of the explicitmethods in terms of mean-square stabilities for relatively large stepsizes especially.

    impulsive stochastic differential equation;balancedmethod; convergence;mean square stability

    Introduction

    Stochastic model has come to play an important role in many branches of science and engineering.Impulsive effects exist w idely in many evolution processes in which states are changed abruptly at certain moments of time,involving such fields as biology,econom ics,medicine,mechanics and electronics(see Refs.[1-2]and reference therein). However,in addition to impulsive effects,stochastic effects likew ise exist in real systems.It is well known that a lot of dynamic systems have variable structures subject to stochastic abrupt changes,whichmay result from abrupt phenomena such as stochastic failures and repairs of the components,changes in the interconnections of subsystems,and sudden environment changes.In recent years,the stability investigation of the impulsive stochastic differential equations has been discussed by several authors[3-7].

    Unfortunately,the stochastic differential equations (including the impulsive stochastic differentialequations)rarely have explicit solutions.Thus,appropriate numerical methods are needed to apply in practice and study their properties.The numerical analysis of the stochastic differential equations iswell studied[8-16]and of the impulsive stochastic differential equations is discussed in Refs.[17-22].

    However,in these papers,it is already known that the numericalmethods for impulsive stochastic differentialequations are explicit or semi-implicit.Semi-implicit methods are well adapted for stiff systemswith small stochastic noise intensity or additive noise.But in those cases in which the stochastic part plays an essential role in the dynam ics,e.g.,as it iswith large multiplicative noise,the application of fully implicit methods also involving implicit stochastic terms is unavoidable.One of the most important fully implicit numerical methods was the balanced implicit method,which was first proposed by M ilstein,Platen,and Schurz[24].In 2006,Alcock and Burrage[23]obtained the region of the asymptotic stability and themean square stability of balanced methods for the stochastic differential equations(SDEs).Furthermore,Tan,Gan and Wang[25]investigated the convergence and stability of balanced methods for the stochastic delay differential equations (SDDEs).Lately,Wang and Liu[26]discussed the convergence and stability of the split-step backward balanced M ilstein methods for SDEs.Hu etal.[27-28]investigated the convergence and stability of the balanced methods for SDEs with jumps. Moreover,Hu and Gan[29]proved the order of themean square convergence of the balanced methods for the neutral SDDEs (NSDDEs)with jumps is 1/2.

    Consider the following scalar linear impulsive stochastic differential equation.

    where x(t-)denotesx0≠0with probability one,thecoefficients a,b∈,γ(t):N→/{-1},γ(1),γ(2),…,are independent random variables.Here,W(t)is a scalar Brownianmotion defined on an appropriate complete probability space(Ω,F(xiàn),{Ft}t0,P),with a filtration{Ft}t0satisfying the usual conditions(i.e.,it is increasing and right-continuous while F0contains all P-null sets).

    It is known that Eq.(1)has the analytic solution[21]

    where[t]denotes the greatest integer less than or equal to x.

    Regarding stability analysis,Liu et al.[21]have given a sufficient condition which guarantees the mean square stability of the analytical solution.Furthermore,they have studied the mean square stability of the sem i-implicit Euler method. However,there are few stability results of balancedmethods for the impulsive stochastic differential equations.This paper aims to investigate the convergence and the mean square stability of balanced methods.

    1 Mean Square Stability of Strong Balanced Methods

    Define a mesh with uniform step h=and m is an integer.We define the strong balanced implicitmethods for the

    simulation of the solution x(t)of Eq.(1)as follows.

    Here Ykm,iis an approximation to x(tkm,i)with tkm,i=k+ih(0≤i≤m),Y(0)=x(0),Ykm,m≈x((k+1)-)=andΔWkm,i-1=W(tkm,i)-W(tkm,i-1).Here C(Ykm,i-1)is given by

    We always suppose that the C0and C1satisfy some conditions.

    Assum ption 1For any real numberswhereh for all step sizes h considered,1+α0C0(x)+ α1C1(x)has an inverse and satisfies the condition

    Here H is a positive constant.

    The follow ingLemma 1gives a sufficient condition for the mean square stability of system(1).

    Lemma 1[21]Let M=M<+∞,if

    then the analytic solution x(t)of the system(1)ismean square stable,that is,Especially,if γ(j)=γ,?j∈,then the analytic solution x(t)ismean square stable if and only if

    Theorem 1UnderAssumption 1,the balanced methods Formula (2)for Eq.(1)are convergent with order 1/2 in the mean square sense.

    ProofThroughout this proof,we use J1,J2,J3,and J4to denote generic constants,independent of h.We denote x(tkm,i)=x(k+ih),x(tkm,m)=x((k+1)-),mh=1,i= 0,1,…,m-1,k=0,1,2,….The system(1)is a stochastic differential equation on the interval[k,k+1)(k= 0,1,2,…),thus,using Theorem 2.1 with u(·)=0 in Ref.[27],it is not difficult to find that

    Use Eqs.(1)and(2)and yield

    By Eq.(49)in Ref.[27]and the above equation,we find that

    Using the same arguments as above,we can derive

    We obtain the desired results.

    Theorem 1gives a sufficient condition for themean square stability of system(1).

    Definition 1A numerical method is said to be mean square stable if under condition(1),for given parameters a,b and stepsize h,the numerical solutions Ynsatisfies,which is generated by the application of themethod to system(1)

    for any Y0.

    The follow ing theorem will show themean square stability of the balanced methods.

    Theorem 2Under the condition(1)andAssumption 1,the strong balanced methods(2)are mean square stable for the linear system(1).

    ProofNotice that if C0and C1satisfyAssumption 1,the numericalmethods(2)are well-defined and we arrive at

    Noting Y(k-1)m,iis Ft(k-1)m,i-measurable,γ(1),γ(2),…,Y0,andΔWiare independent each other.Squaring and taking expectation on both sides of the first equation in Eq.(6),we show that

    By the properties of the Brownianmotion,we find that

    Lettingξbe independent standard normal random variable,we know that

    We w rite the third term at the right-h(huán)and side of Eq.(9)as the following formAssum ption 1and properties ofΔWkm,jgive

    and

    Insert Eqs.(13)-(14)into Eq.(12)and yield

    Similarly,we have

    and

    Combine Eqs.(10)-(11)and(15)-(17)with Eq.(9) and yield

    Using a similar approach as before,one can derive

    Insert Eqs.(18)and(19)into Eq.(8)and yield

    秦明月簡(jiǎn)直不敢相信線索來(lái)得如此簡(jiǎn)單與突然。邊峰則已經(jīng)舉起相機(jī)對(duì)著車子一通猛拍了。秦明月不放心地說(shuō):“你們會(huì)不會(huì)記錯(cuò)了,這種車其實(shí)很普通的?!?/p>

    From thiswe see that limn→∞E(Yn)2=0 if and only if

    For all sufficiently small stepsize h,we can deduce from

    For all sufficiently small stepsize h,Eq.(22)becomes

    This completes the proof.

    2 Mean Square Stability of Weak Balanced Methods

    It is not difficult to prove that

    Themain theorem in this section is given as follows.

    Theorem 3Under the condition(1)andAssumption 1,the weak balanced methods of Eq.(23)aremean square stable for the linear system(1).

    ProofBy Eq.(23),we find that

    The properties of the Brownianmotion give

    Similarly

    It is not difficult to find that

    using Taylor expansion

    thus,Eq.(29)becomes

    Similarly,we have

    and

    Substitute Eqs.(27)-(28)and(30)-(32)into Eq.(26) and yield

    In a sim ilar way as before,one can derive

    Combine Eqs.(33)-(34)with Eq.(25)and yield

    We can derive the desired assertion using the same arguments inTheorem 2.

    3 Numerical Experiments

    Consider the scalar linear equation

    For simplicity,in all the numericalexperimentswe choose C0= 1 and C1=1.Next,we show the convergence of the strong balanced methods(2).We illustrate the convergence via the two follow ing examples.Example 1:a=-3,b=0.3,andγ =18;Example 2:a=-0.5,b=0.1,andγ=0.6.We use xtand Ynto denote the analytic and the numerical solutions of the system(1),respectively.The mean square errorsεall measured at fixed terminal time T=100,are estimated in the follow ing way.A set of 20 blocks each containing 100 outcomes(ωij:1≤i≤20,1≤j≤100)are simulated and for each block the estimator

    is formed.In Table 1,εdenotes the mean of this estimator,which is self-estimatied with four different stepsize h in the usual way: It is not difficult to find that the mean square errorεbecomes smaller when the stepsize h decreases. Thus our result concerning convergence for the balanced implicit methods is verified.

    Table 1 The global errors of the strong balanced methods

    To verify our result concerning mean square stability for the balanced implicit methods,we compare the numerical approximations of the Euler-Maruyama methods which are explicitmethods versus the balanced methodswhich are implicit methods to show the balanced implicit methods adm it better stability property.In Figs.1-8,the star lines and the solid lines represent the solutions produced by the balancedmethod and the Euler-Maruyama method,respectively.All the graphs are drawn with the vertical axis scaled logarithmically.

    Consider the strong Euler-Maruyamamethod

    and the weak Euler-Maruyamamethod

    To verify our result concerning strongmean square stability for the strong balanced method and the strong Euler-Maruyama method,we illustrate them via the four follow ing examples.

    Example 3:a=-5,b=1,γ=5.

    Example 4:a=-2,b=0.1,γ=-0.5.

    Example 5:a=-3,b=2.2,γ=-0.6.

    Example 6:a=-1.1,b=-1.4,γ=0.1.

    The values of the coefficients in Examples 3-6 satisfy the condition(5),and thus the system(36)ismean square stable. Applying the strong balanced implicit methods(2)and the strong Euler-Maruyamamethod(37)to Examples3-6,we plot the numerical solutions in Figs.1-4.In Fig.1,the behavior of the strong balanced implicitmethods for h=,h=,and h =are clearly consistentwith mean square stability,whereas the strong Euler-Maruyama method is mean-square stable only on h=and h=Figure 2 shows that both kinds of methods aremean square stable on h=and h=.For some larger stepsize h=,the strong balanced implicitmethods are still stable,however,the solution produced by the strong Euler-Maruyamamethod becomes very large and is unstable.From Fig.3,one can easily observe that the two numerical simulations are stable for small stepsize h=0.05 and 0.25.But when the stepsize h increases to 1.5,the strong Euler-Maruyamamethod becomes unstable whereas the strong balanced implicitmethods are still stable.For Example 6,we can obtain the similar observation as shown in Fig.4.

    Fig.1 Strong balanced methods and strong Euler-Maruyamamethod for Example 3:(a)h=,(b)h=,and(c)h=

    Fig.2 Strong balanced methods and strong Euler-Maruyama method for Example 4:(a)h=,(b)h=,and(c)h=

    Fig.3 Strong balanced methods and strong Euler-Maruyamamethod for Example 5:(a)h=,(b)h=,and(c)h=

    Fig.4 Strong balanced methods and strong Euler-Maruyamamethod for Example 6:(a)h=,(b)h=,and(c)h=2

    The graphs clearly show that these two kinds of strong numericalmethods are stable with small stepsize,but for large stepsize h,the strong balanced implicitmethods are still stable whereas the strong Euler-Maruyamamethod becomes unstable. The numerical results in Figs.1-4 show that,the strong balancedmethods possess better stability properties and have less restriction on the stepsize.

    In the follow ing,wewill show themean square stability of the weak numerical methods.We consider the follow ing examples.

    Example 7:a=-4,b=-1,γ=8.

    Example 8:a=-1,b=-1.2,γ=0.2.Example 9:a=-2,b=0.5,γ=4.

    Example 10:a=-0.6,b=0.8,γ=-0.5.

    Note that the parameters in these four examples satisfy the condition(5),and thus both solutions of the system(36)are mean square stable.Applying the weak balanced implicit methods(23)and the weak Euler-Maruyama method(38)to Examples 7-10,we plot the numerical solutions in Figs.5-8. In Fig.5,the behavior of the weak balanced implicitmethods for h=,h=,and h=is clearly consistentwith mean square stability,whereas the weak Euler-Maruyama method is mean-square stable only on h=,and h=.In Fig.6,we find that the weak Euler-Maruyama method becomes unstable whereas the weak balanced methods still successfully reproducethe mean square stability of the test problem even for large stepsize h=.In Fig.7,the weak Euler-Maruyama method guarantees stability on h=and,but fails to preserve stability on larger stepsize h=2.However the weak balanced methods ensure their good performance even the stepsizes h increase to 2.From Fig.8,one can observe a sim ilar effect brought by increasing the stepsize.

    Fig.5 Weak balanced methods and weak Euler-Maruyama method for Example 7:(a)h=,(b)h=,and(c)h=

    Fig.6 Weak balanced methods and weak Euler-Maruyama method for Example 8:(a)h=,(b)h=,and(c)h=

    Fig.7 Weak balanced methods and weak Euler-Maruyama method for Example 9:(a)h=,(b)h=,and(c)h=2

    Fig.8 Weak balanced methods and weak Euler-Maruyama method for Example10:(a)h=,(b)h=,and(c)h=

    From above,one can see that for large stepsize h,the weak balanced implicit methods are stable whereas the weak Euler-Maruyamamethod is unstable.Hence the weak balanced methods also allow larger range of the stepsize than the weak Euler-Maruyamamethod.

    The numerical results in Figs.1-8 show that,to preserve stability the balanced methods allow for larger range of thestepsize than the Euler-Maruyama methods.The balanced implicitmethods adm it better stable properties than the Euler-Maruyama method with the same stepsize.Overall,they are consistentwith the established results.

    4 Conclusions

    In this work,we have examined the convergence and the mean-square stability of the balanced methods for the pulse stochastic differential equations.It is shown that the balanced implicitmethods give strong convergence rate,at least1/2.The forgoing results show the mean square stability of strong balanced methods and weak balanced methods for the pulse stochastic differential equations.The theory result and the numerical experiment show that balanced methods which have the implicit diffusion term are indeed the superior schemes for relatively large stepsizes and admit better stability property than the Euler-schememethod which has the explicit diffusion term.

    [1]Samoilenko A M,Perestyuk N A.Impulsive Differential Equations[M].Singapore:World Scientific,1995.

    [2]Nieto J J,Rodriguez-Lopez R.Boundary Value Problems for a Class of Impulsive Functional Equations[J].Computers&Mathematicswith Applications,2008,55(12):2715-2731.

    [3]Xu W,Niu Y J,Rong H W,et al.p-Moment Stability of Stochastic Impulsive Differential Equations and Its Application in Impulsive Control[J].Science in China Series E:Technological Sciences,2009,52(3):782-786.

    [4]Yang J,Zhong SM,Luo W P.Mean Square Stability Analysis of Impulsive Stochastic Differential Equations with Delays[J]. Journal of Computational and Applied Mathematics,2008,216 (2):474-483.

    [5]Yang Z G,Xu D Y.Mean Square Exponential Stability of Impulsive Stochastic Difference Equations[J].Applied Mathematics Letters,2007,20(8):938-945.

    [6]Wu K N,Ding X H.Stability and Stabilization of Impulsive Stochastic Delay Differential Equations[J].Mathematical Problems in Engineering,2012,2012:Article ID 176375.DOI: 10.1155/2012/176375.

    [7]Bao JH,Hou Z T,Wang F X.Exponential Stability in Mean Square of Impulsive Stochastic Difference Equations with Continuous Time[J].Applied Mathematics Letters,2009,22 (5):749-753.

    [8]Wu F K,Mao X R.Numerical Solutions of Neutral Stochastic Functional Differential Equations[J].Siam Journalon Numerical Analysis,2008,46(4):1821-1841.

    [9]Higham D J,Mao X R,Yuan C G.Preserving Exponential Mean-Square Stability in the Simulation of Hybrid Stochastic Differential Equations[J].Numerische Mathematik,2007,108 (2):295-325.

    [10]Jiang F,Shen Y,Hu JH.Stability of the Split-Step Backward Euler Scheme for Stochastic Delay Integro-Differential Equations with Markovian Switching[J].Communications in Nonlinear Science and Numerical Simulation,2011,16(2):814-821.

    [11]Hu P,Huang C M.Stability of Stochasticθ-Methods for Stochastic Delay Integro-differential Equations[J].International Journal of Computer Mathematics,2011,88(7):1417-1429.

    [12]Rathinasamy A,Balachandran K.T-Stability of the Split-Stepθ-Methods for Linear Stochastic Delay Integro-Differential Equations[J].Nonlinear Analysis:Hybrid Systems,2011,5(4):639-646.

    [13]Yin ZW,Gan S Q,Li R D.General Modified Split-Step Balanced Methods for Stiff Stochastic Differential Equations[J]. Jounal of Donghua University:English Edition,2013,30(3): 189-196.

    [14]Tretyakov M V,Zhang Z Q.A Fundamental Mean-Square Convergence Theorem for SDEs with Locally Lipschitz Coefficients and Its Applications[J].SIAM Journal on Numerical Analysis,2013,51(6):3135-3162.

    [15]Cao W R,Zhang Z Q.On Exponential Mean-Square Stability of Two-Step Maruyama Methods for Stochastic Delay Differential Equations[J].Journal of Computational and Applied Mathematics,2013,245(1):182-193.

    [16]Jing F,Shen Y,Liao X X.A Note on Stability of the Split-Step Backward Euler Method for Linear Stochastic Delay Integro-Differential Equations[J].Journal of Systems Science and Complexity,2012,25(5):873-879.

    [17]Wu S J.The Euler Scheme for Random Impulsive Differential Equations[J].Applied Mathematics and Computation,2007,191(1):164-175.

    [18]Wu S J,Han D.Algorithmic Analysis of Euler Scheme for a Class of Stochastic Differential Equations with Jumps[J]. Statistics&Probability Letters,2007,77(2):211-219.

    [19]Li B,Li D S,Xu D Y.Stability Analysis for Impulsive Stochastic Delay Differrential Equationswith Markovian Sw itching[J].Journal of the Franklin Institute,2013,350(7):1848-1864.

    [20]Zhao G H,Song M H,Liu M Z.Exponential Stability of Euler-Maruyama Solutions for Impulsive Stochastic Differential Equations with Delay[J].Applied Mathematics and Computation,2010,215(9):3425-3432.

    [21]Liu M Z,Zhao G H,Song M H.Stability of the Semi-implicit Euler Method for a Linear Impulsive Stochastic Differential Equation[J].Discrete and Continuous Dynamical Systems Series B:Applications Algorithms,2011,18(2):123-134.

    [22]Wu K N,Ding X H.Convergence andStability of Euler Method for Impulsive Stochastic Delay Differential Equations[J]. Applied Mathematics and Computation,2014,229:151-158.

    [23]Alcock J,Burrage K.A Note on the Balanced Method[J].BIT Numerical Mathematics,2006,46(4):689-710.

    [24]M ilstein G N,Platen E,Schurz H.Balanced ImplicitMethods for Stiff Stochastic Systems[J].SIAM Journal on Numerical Analysis,1998,35(3):1010-1019.

    [25]Tan Y X,Gan S Q,Wang X J.Mean-Square Convergence and Stability of Balanced Method for Stochastic Delay Differential Equations[J].Mathematica Numerica Sinica,2011,33(1):25-36.(in Chinese)

    [26]Wang P,Liu Z X.Split-Step Backward Balanced M ilstein Methods for Stiff Stochastic Systems[J].Applied Numerical Mathematics,2009,59(6):1198-1213.

    [27]Hu L,Gan S Q.Convergence and Stability of the Balanced Methods for Stochastic Differential Equations with Jumps[J]. International Journal of Computer Mathematics,2011,88(10): 2089-2108.

    [28]Hu L,Gan S Q,Wang X J.Asymptotic Stability of Balanced Methods for Stochastic Jump-Diffusion Differential Equations[J].Journal of Computational and Applied Mathematics,2013,238:126-143.

    [29]Hu L,Gan SQ.Mean-Square Convergence of Drift-ImplicitOne-Step Methods for Neutral Stochastic Delay Differential Equations with Jump Diffusion[J].Discrete Dynamics in Nature and Society,2011,2011:Article ID 917892.DOI:10.1155/2011/ 917892.

    O175;O24

    A

    1672-5220(2015)04-0626-10

    date:2014-03-26

    s:National Natural Science Foundations of China(Nos.11561028,11101101,11461032,11401267);Natural Science Foundations of Jiangxi Province,China(Nos.20151BAB201013,20151BAB201010,20151BAB201015)

    *Correspondence should be addressed to HU Lin,E-mail:littleleave05@163.com

    猜你喜歡
    吳強(qiáng)青翠車子
    車影和車子
    車子睡覺(jué)的一天
    幼兒園(2021年17期)2021-12-06 02:35:12
    請(qǐng)注意,奇形怪狀的車出沒(méi)
    望玉女峰
    Where is Spring? 春天在哪里?
    從機(jī)構(gòu)遠(yuǎn)離看AGM和EFB
    好詞聚焦
    早上離家晚上回
    滇池(2014年5期)2014-05-29 07:32:16
    211282 Comparison of long-term graft patency of onpump versus off-pump coronary artery bypass grafting
    歐元危機(jī)與歐洲的未來(lái)
    新民周刊(2011年44期)2011-05-30 10:48:04
    丝袜人妻中文字幕| 飞空精品影院首页| 这个男人来自地球电影免费观看 | 久久久久国产精品人妻一区二区| 精品免费久久久久久久清纯 | 看非洲黑人一级黄片| 久久久久久免费高清国产稀缺| 国产精品成人在线| 男女床上黄色一级片免费看| 人妻一区二区av| 多毛熟女@视频| 高清在线视频一区二区三区| 精品久久久久久电影网| 悠悠久久av| 视频区图区小说| 国产乱人偷精品视频| e午夜精品久久久久久久| av在线app专区| 成年女人毛片免费观看观看9 | 999精品在线视频| 国产熟女午夜一区二区三区| 欧美日韩亚洲高清精品| 精品国产乱码久久久久久小说| 天天躁夜夜躁狠狠躁躁| 男人操女人黄网站| 亚洲精品在线美女| 久久精品久久久久久噜噜老黄| 欧美日韩亚洲高清精品| 亚洲欧洲国产日韩| 国产亚洲精品第一综合不卡| 国产成人免费观看mmmm| 国产不卡av网站在线观看| 久久婷婷青草| 999精品在线视频| 国产老妇伦熟女老妇高清| 亚洲国产精品一区三区| 一区二区av电影网| 午夜福利乱码中文字幕| 精品少妇久久久久久888优播| 大陆偷拍与自拍| 免费日韩欧美在线观看| 亚洲国产欧美一区二区综合| 久久精品久久久久久久性| 成人国产麻豆网| 国产又爽黄色视频| av天堂久久9| 最新的欧美精品一区二区| 亚洲天堂av无毛| 成人亚洲欧美一区二区av| 日韩视频在线欧美| 丝袜在线中文字幕| 男人爽女人下面视频在线观看| 最近最新中文字幕免费大全7| 欧美人与善性xxx| 一级毛片我不卡| 国产探花极品一区二区| 热re99久久国产66热| 欧美在线一区亚洲| 老司机靠b影院| 精品久久蜜臀av无| 亚洲成av片中文字幕在线观看| 午夜91福利影院| 日韩一本色道免费dvd| 午夜激情av网站| 日韩伦理黄色片| 国产日韩欧美在线精品| 青青草视频在线视频观看| 天天添夜夜摸| 亚洲欧美日韩另类电影网站| 操出白浆在线播放| 男女无遮挡免费网站观看| av国产精品久久久久影院| 免费女性裸体啪啪无遮挡网站| 五月天丁香电影| 99香蕉大伊视频| 午夜影院在线不卡| 91老司机精品| 久久精品国产亚洲av高清一级| 秋霞在线观看毛片| 国产麻豆69| 日韩电影二区| 久久精品久久精品一区二区三区| 制服丝袜香蕉在线| 超碰97精品在线观看| 国产一区二区在线观看av| 两个人免费观看高清视频| 成人18禁高潮啪啪吃奶动态图| 99国产综合亚洲精品| 国产亚洲一区二区精品| 亚洲成国产人片在线观看| 十八禁网站网址无遮挡| 一本大道久久a久久精品| 波多野结衣一区麻豆| 亚洲第一av免费看| 亚洲色图综合在线观看| 久久99一区二区三区| 狠狠精品人妻久久久久久综合| 午夜久久久在线观看| 色94色欧美一区二区| 久热爱精品视频在线9| 性少妇av在线| 欧美黑人欧美精品刺激| 一边摸一边抽搐一进一出视频| 69精品国产乱码久久久| 精品视频人人做人人爽| 国产免费一区二区三区四区乱码| 亚洲精品视频女| av在线老鸭窝| 免费观看性生交大片5| 日韩人妻精品一区2区三区| av线在线观看网站| 黑人欧美特级aaaaaa片| 欧美日本中文国产一区发布| 综合色丁香网| 又大又爽又粗| 色94色欧美一区二区| 妹子高潮喷水视频| 制服人妻中文乱码| 91aial.com中文字幕在线观看| 欧美黑人精品巨大| 性色av一级| 国产在视频线精品| 成人三级做爰电影| 日韩人妻精品一区2区三区| 高清视频免费观看一区二区| 九九爱精品视频在线观看| 建设人人有责人人尽责人人享有的| 少妇猛男粗大的猛烈进出视频| 国产精品亚洲av一区麻豆 | 美女视频免费永久观看网站| 王馨瑶露胸无遮挡在线观看| 日韩av免费高清视频| 18在线观看网站| 欧美激情极品国产一区二区三区| 91成人精品电影| a 毛片基地| 国产成人免费无遮挡视频| 一级毛片 在线播放| 国产黄频视频在线观看| 中文字幕人妻熟女乱码| 亚洲国产av新网站| 午夜av观看不卡| 精品免费久久久久久久清纯 | 夫妻性生交免费视频一级片| 国产精品国产av在线观看| 男女午夜视频在线观看| 秋霞在线观看毛片| 一区二区三区四区激情视频| 777米奇影视久久| 亚洲精品日韩在线中文字幕| 一本一本久久a久久精品综合妖精| 少妇精品久久久久久久| 黄色视频在线播放观看不卡| 午夜福利视频精品| 精品一区在线观看国产| 七月丁香在线播放| 国产精品成人在线| 美女高潮到喷水免费观看| 欧美av亚洲av综合av国产av | 最黄视频免费看| 亚洲精品日韩在线中文字幕| 看免费成人av毛片| 久久毛片免费看一区二区三区| 999久久久国产精品视频| 97精品久久久久久久久久精品| 精品久久久精品久久久| 天美传媒精品一区二区| 久久久久精品国产欧美久久久 | 国产激情久久老熟女| 日本猛色少妇xxxxx猛交久久| 两个人看的免费小视频| av卡一久久| 亚洲三区欧美一区| 丝袜在线中文字幕| 一级爰片在线观看| 中文字幕人妻丝袜一区二区 | 色播在线永久视频| 久久久久网色| 蜜桃国产av成人99| 欧美在线黄色| 欧美激情极品国产一区二区三区| 美女大奶头黄色视频| 亚洲美女视频黄频| 国产熟女午夜一区二区三区| 国产成人欧美在线观看 | 叶爱在线成人免费视频播放| 亚洲av国产av综合av卡| 欧美日韩一级在线毛片| 搡老乐熟女国产| 2021少妇久久久久久久久久久| 激情视频va一区二区三区| 国产一区有黄有色的免费视频| 高清视频免费观看一区二区| 国产免费福利视频在线观看| 国产熟女午夜一区二区三区| √禁漫天堂资源中文www| 国语对白做爰xxxⅹ性视频网站| 亚洲精品在线美女| 欧美在线黄色| 国产av精品麻豆| 国产精品偷伦视频观看了| 高清av免费在线| 大片免费播放器 马上看| 黄网站色视频无遮挡免费观看| 国产又爽黄色视频| 欧美日韩综合久久久久久| 哪个播放器可以免费观看大片| 国产精品 欧美亚洲| 女人爽到高潮嗷嗷叫在线视频| 婷婷成人精品国产| 18禁国产床啪视频网站| 人人妻人人澡人人爽人人夜夜| 超色免费av| 精品久久蜜臀av无| 99久久综合免费| 麻豆乱淫一区二区| 青春草视频在线免费观看| 黄色一级大片看看| 免费高清在线观看视频在线观看| 午夜激情久久久久久久| 一级毛片我不卡| www.自偷自拍.com| 亚洲成av片中文字幕在线观看| 午夜日本视频在线| 日韩中文字幕视频在线看片| 人妻人人澡人人爽人人| 精品亚洲乱码少妇综合久久| 男女床上黄色一级片免费看| 在线看a的网站| 日日撸夜夜添| 日日摸夜夜添夜夜爱| 悠悠久久av| 在线精品无人区一区二区三| 午夜日本视频在线| 亚洲精品国产一区二区精华液| av国产久精品久网站免费入址| 另类精品久久| 欧美黑人精品巨大| 亚洲精品自拍成人| 搡老乐熟女国产| 天美传媒精品一区二区| 少妇人妻精品综合一区二区| 男人添女人高潮全过程视频| 黑丝袜美女国产一区| 最黄视频免费看| 久久久久久久精品精品| 一二三四在线观看免费中文在| 亚洲欧美色中文字幕在线| 91精品三级在线观看| av在线观看视频网站免费| 国产精品 欧美亚洲| 黄色视频在线播放观看不卡| 久热这里只有精品99| 国产成人一区二区在线| 女的被弄到高潮叫床怎么办| 视频在线观看一区二区三区| 欧美成人午夜精品| 大香蕉久久成人网| 乱人伦中国视频| 久久久久国产一级毛片高清牌| 欧美另类一区| 一级毛片我不卡| 国产深夜福利视频在线观看| 性高湖久久久久久久久免费观看| 制服诱惑二区| 精品第一国产精品| 国产乱来视频区| 欧美变态另类bdsm刘玥| 亚洲一区二区三区欧美精品| 久久久久精品性色| 少妇精品久久久久久久| 肉色欧美久久久久久久蜜桃| 各种免费的搞黄视频| 一区二区三区乱码不卡18| 国产乱人偷精品视频| 欧美日韩亚洲综合一区二区三区_| 十分钟在线观看高清视频www| 好男人视频免费观看在线| 亚洲伊人色综图| 99精国产麻豆久久婷婷| 少妇人妻久久综合中文| 大片免费播放器 马上看| 亚洲美女搞黄在线观看| www.av在线官网国产| 69精品国产乱码久久久| 黄色怎么调成土黄色| 天天躁夜夜躁狠狠躁躁| 国产精品一区二区在线观看99| 午夜老司机福利片| 午夜91福利影院| 十八禁高潮呻吟视频| 精品国产一区二区三区久久久樱花| 亚洲av成人精品一二三区| 国产成人免费无遮挡视频| 国产深夜福利视频在线观看| 欧美最新免费一区二区三区| 亚洲成国产人片在线观看| 中文字幕精品免费在线观看视频| 极品少妇高潮喷水抽搐| 国产成人精品久久二区二区91 | 精品福利永久在线观看| 精品午夜福利在线看| 狂野欧美激情性bbbbbb| 午夜福利乱码中文字幕| 亚洲精品久久久久久婷婷小说| 亚洲av电影在线观看一区二区三区| 国产日韩欧美视频二区| 国产成人一区二区在线| 亚洲色图 男人天堂 中文字幕| 一区二区三区四区激情视频| 纯流量卡能插随身wifi吗| 久久精品人人爽人人爽视色| 国产成人欧美在线观看 | 久久这里只有精品19| 卡戴珊不雅视频在线播放| 极品少妇高潮喷水抽搐| 亚洲第一区二区三区不卡| 精品午夜福利在线看| 水蜜桃什么品种好| 赤兔流量卡办理| 国产精品 国内视频| 国产激情久久老熟女| 麻豆精品久久久久久蜜桃| 亚洲欧美成人精品一区二区| 只有这里有精品99| xxxhd国产人妻xxx| 999久久久国产精品视频| 黑丝袜美女国产一区| 成人三级做爰电影| 一二三四在线观看免费中文在| 亚洲成av片中文字幕在线观看| 午夜av观看不卡| 美女福利国产在线| 涩涩av久久男人的天堂| 久久99一区二区三区| 成人影院久久| 悠悠久久av| 你懂的网址亚洲精品在线观看| 啦啦啦在线观看免费高清www| 狂野欧美激情性bbbbbb| 亚洲成av片中文字幕在线观看| 视频区图区小说| 天天躁日日躁夜夜躁夜夜| 国产精品麻豆人妻色哟哟久久| 天天操日日干夜夜撸| 国产亚洲最大av| 蜜桃国产av成人99| 亚洲av电影在线进入| 久久久久国产一级毛片高清牌| 黄色视频在线播放观看不卡| a级片在线免费高清观看视频| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲国产欧美网| 天天躁狠狠躁夜夜躁狠狠躁| 久久久亚洲精品成人影院| 久久ye,这里只有精品| 国产无遮挡羞羞视频在线观看| 天天添夜夜摸| 一本色道久久久久久精品综合| 欧美日韩av久久| 国产毛片在线视频| 一区二区av电影网| 色婷婷久久久亚洲欧美| 国产又色又爽无遮挡免| 亚洲欧美成人综合另类久久久| 久久精品久久精品一区二区三区| 人人妻,人人澡人人爽秒播 | av在线老鸭窝| 一级片免费观看大全| 久久久久久久久免费视频了| 欧美日韩亚洲高清精品| 夫妻性生交免费视频一级片| 中文精品一卡2卡3卡4更新| 国产精品熟女久久久久浪| 亚洲成人国产一区在线观看 | 一区二区av电影网| 99久国产av精品国产电影| 亚洲精品久久成人aⅴ小说| 免费高清在线观看视频在线观看| 午夜福利视频精品| 国产又爽黄色视频| 亚洲av国产av综合av卡| 午夜免费鲁丝| 久久久久久人妻| 国产成人精品无人区| 丰满迷人的少妇在线观看| 国产精品国产三级国产专区5o| 国产成人欧美| 国产精品av久久久久免费| 十八禁人妻一区二区| 人人澡人人妻人| 涩涩av久久男人的天堂| 母亲3免费完整高清在线观看| 最近中文字幕高清免费大全6| videos熟女内射| 又大又爽又粗| netflix在线观看网站| 国产精品国产av在线观看| 免费在线观看黄色视频的| 国产片特级美女逼逼视频| 日韩,欧美,国产一区二区三区| 中国三级夫妇交换| 国产亚洲av高清不卡| 老司机影院毛片| 久久久精品94久久精品| 老熟女久久久| 欧美精品人与动牲交sv欧美| 亚洲 欧美一区二区三区| 国产又爽黄色视频| 最黄视频免费看| 9热在线视频观看99| 大香蕉久久网| 日韩中文字幕视频在线看片| 免费看av在线观看网站| 国产av码专区亚洲av| 日本av手机在线免费观看| 久久狼人影院| 精品国产一区二区久久| 丝袜脚勾引网站| 国产成人精品福利久久| 熟女少妇亚洲综合色aaa.| 九九爱精品视频在线观看| 日韩av不卡免费在线播放| 国产1区2区3区精品| 精品视频人人做人人爽| 99热国产这里只有精品6| 国产精品99久久99久久久不卡 | 国产亚洲最大av| 亚洲精品一区蜜桃| 亚洲人成电影观看| 女人爽到高潮嗷嗷叫在线视频| 久久精品aⅴ一区二区三区四区| 日韩伦理黄色片| 秋霞在线观看毛片| 国产有黄有色有爽视频| 我的亚洲天堂| 亚洲国产看品久久| 日韩伦理黄色片| 国产亚洲av高清不卡| 国产伦理片在线播放av一区| 精品午夜福利在线看| 在线亚洲精品国产二区图片欧美| 男的添女的下面高潮视频| 亚洲婷婷狠狠爱综合网| 亚洲国产精品999| 亚洲国产欧美在线一区| 亚洲国产成人一精品久久久| 久久天躁狠狠躁夜夜2o2o | 亚洲成人手机| 亚洲精华国产精华液的使用体验| 日韩大片免费观看网站| 女人被躁到高潮嗷嗷叫费观| 国产成人精品无人区| 大片免费播放器 马上看| 免费看不卡的av| 可以免费在线观看a视频的电影网站 | 97人妻天天添夜夜摸| 性高湖久久久久久久久免费观看| 在线观看免费日韩欧美大片| 国产精品亚洲av一区麻豆 | 电影成人av| 国语对白做爰xxxⅹ性视频网站| 99国产精品免费福利视频| www.精华液| 久久久国产欧美日韩av| 如日韩欧美国产精品一区二区三区| 中文字幕精品免费在线观看视频| 91精品三级在线观看| 夫妻午夜视频| 久久国产精品男人的天堂亚洲| 国产成人91sexporn| 蜜桃国产av成人99| 亚洲一区二区三区欧美精品| 超碰成人久久| 九草在线视频观看| 中文精品一卡2卡3卡4更新| 十八禁高潮呻吟视频| 久久这里只有精品19| 免费看av在线观看网站| 午夜福利网站1000一区二区三区| 热re99久久国产66热| 欧美黄色片欧美黄色片| 高清av免费在线| 免费黄频网站在线观看国产| 看非洲黑人一级黄片| 国产日韩欧美视频二区| 男的添女的下面高潮视频| 久久精品国产综合久久久| 欧美激情极品国产一区二区三区| 男女国产视频网站| 美女中出高潮动态图| 精品午夜福利在线看| 韩国精品一区二区三区| 免费人妻精品一区二区三区视频| 亚洲精品日本国产第一区| 丝袜美腿诱惑在线| 国产免费一区二区三区四区乱码| 亚洲,欧美,日韩| 国产男女内射视频| 搡老岳熟女国产| 十分钟在线观看高清视频www| 久久人人97超碰香蕉20202| 午夜日本视频在线| 曰老女人黄片| 在线看a的网站| 亚洲国产最新在线播放| 亚洲国产日韩一区二区| 最新在线观看一区二区三区 | 卡戴珊不雅视频在线播放| 精品少妇黑人巨大在线播放| 在线观看国产h片| 少妇被粗大的猛进出69影院| 成人国语在线视频| 亚洲av在线观看美女高潮| 精品国产乱码久久久久久小说| 婷婷成人精品国产| 91国产中文字幕| 青春草国产在线视频| 1024视频免费在线观看| 国产黄色视频一区二区在线观看| 大话2 男鬼变身卡| 一级毛片我不卡| 国产男女超爽视频在线观看| 黄色毛片三级朝国网站| 精品人妻熟女毛片av久久网站| 男女高潮啪啪啪动态图| 久热这里只有精品99| 欧美日韩亚洲国产一区二区在线观看 | 秋霞伦理黄片| 亚洲免费av在线视频| 亚洲图色成人| 99精品久久久久人妻精品| 女人被躁到高潮嗷嗷叫费观| 久久精品亚洲av国产电影网| 亚洲欧美激情在线| 51午夜福利影视在线观看| 中文字幕高清在线视频| 国产精品.久久久| av国产精品久久久久影院| 精品人妻熟女毛片av久久网站| 天堂8中文在线网| 热99久久久久精品小说推荐| 啦啦啦在线观看免费高清www| 国产日韩欧美在线精品| 国产97色在线日韩免费| 乱人伦中国视频| 在线观看免费午夜福利视频| 欧美 日韩 精品 国产| 日本色播在线视频| 免费黄色在线免费观看| 高清黄色对白视频在线免费看| 高清欧美精品videossex| 久久女婷五月综合色啪小说| 精品卡一卡二卡四卡免费| 国产男女超爽视频在线观看| 精品久久久精品久久久| 美女脱内裤让男人舔精品视频| 精品卡一卡二卡四卡免费| 欧美激情极品国产一区二区三区| 一二三四中文在线观看免费高清| 精品酒店卫生间| 卡戴珊不雅视频在线播放| 久久久国产精品麻豆| 国产免费一区二区三区四区乱码| 国产高清不卡午夜福利| 欧美乱码精品一区二区三区| 男女床上黄色一级片免费看| 国产精品女同一区二区软件| 一本一本久久a久久精品综合妖精| 制服人妻中文乱码| 亚洲欧美成人精品一区二区| 亚洲精品国产色婷婷电影| 亚洲第一青青草原| 久久综合国产亚洲精品| 熟女av电影| 啦啦啦中文免费视频观看日本| 伦理电影大哥的女人| 精品国产国语对白av| 久久人妻熟女aⅴ| 曰老女人黄片| 这个男人来自地球电影免费观看 | 成人亚洲精品一区在线观看| 国产免费视频播放在线视频| 国产免费现黄频在线看| av国产久精品久网站免费入址| 国产av码专区亚洲av| 亚洲四区av| 久久免费观看电影| 日韩中文字幕欧美一区二区 | 大香蕉久久成人网| 国产一级毛片在线| 在线观看免费午夜福利视频| av在线app专区| 精品午夜福利在线看| 秋霞伦理黄片| 国产一区二区 视频在线| 啦啦啦 在线观看视频| 卡戴珊不雅视频在线播放| 大陆偷拍与自拍| 日本欧美国产在线视频| 天天躁夜夜躁狠狠久久av| 国产精品国产三级国产专区5o| 波多野结衣一区麻豆| 亚洲国产成人一精品久久久| 操美女的视频在线观看| 在线观看一区二区三区激情| 一级毛片电影观看| 精品人妻熟女毛片av久久网站| 好男人视频免费观看在线| 51午夜福利影视在线观看| 日韩 亚洲 欧美在线| 亚洲精品,欧美精品| 亚洲美女搞黄在线观看| 国产一区亚洲一区在线观看| 80岁老熟妇乱子伦牲交|