• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Existence and Numerical Solution for a Coupled System of Multi-term Fractional Differential Equations

    2015-08-07 10:54:14YANGLifan楊李凡YEHaiping葉海平
    關(guān)鍵詞:蘇美

    YANG Li-fan(楊李凡),YE Hai-ping(葉海平)

    College of Science,Donghua University,Shanghai201620,China

    SOM IA Yassin Hussain Abdalkarim(蘇美兒)1,2,ZHAO Li(趙俐)1,2*

    1 College of Textiles,Donghua University,Shanghai201620,China

    2 Key Laboratory of Textile Science&Technology,Ministry of Education,Donghua University,Shanghai201620,China

    Existence and Numerical Solution for a Coupled System of Multi-term Fractional Differential Equations

    YANG Li-fan(楊李凡),YE Hai-ping(葉海平)*

    College of Science,Donghua University,Shanghai201620,China

    An initial value problem was considered for a coupled differential system with multi-term Caputo type fractional derivatives.By means of nonlinear alternative of Leray-Schauder and Banach contraction principle,the existence and uniqueness of solutions for the system were derived.Using a fractional predictorcorrector method,a numerical method was presented for the specified system.An exam p le was given to illustrate the obtained results.

    multi-term fractional differential equation;Caputo derivative;existence;uniqueness;numerical solution

    Introduction

    Fractional differential equations have been w idely used in various fields of science and engineering(see Refs.[1-3]). Among them,nonlinear coupled systems play an important role in heat transfer,electrode/electrolyte behavior,and subthreshold nerve propagation.Some attention has been paid to the coupled systems of fractional differential equations.Baiand Fang[4]established the existence of a positive solution to a singular coupled system of nonlinear fractional differential equations.Bashir and Ahmed[5]considered an initial value problem(IVP)for a coupled differential system of fractional order given by

    and obtained some existence and uniqueness results by means of the nonlinear alternative of Leray-Schauder and Banach fixed point theorem.Besides,Su[6]concerned a two-point boundary value problem for a coupled differential system of fractional order and Ahmad and Nieto[7]studied three-point boundary problems at resonance.Some existence resultswere obtained.

    In these investigations,existence results for a coupled neutral fractional system have been researched[8].Recently,Sun etal.[9]discussed a coupled system ofmulti-term nonlinear fractional differential equations given by

    where t∈(0,1],0<αi,βi<1.By using Schauder fixed point theorem,they established the sufficient condition of existence for the system.Note that the fractional derivatives in Ref.[9]were the standard Riemann-Liouville derivatives.

    As Pandey et al.[10]pointed out,Caputo definition can avoid(1)mass balance error,(2)hyper-singular improper integral,(3)non-zero derivative of constant,and(4) fractional derivative involved in the initial condition which is often ill-defined.In contrast to the Riemann-Liouville fractional derivative,the Caputo fractional derivative was shown to possess a suitable generalization of the extremum principle[11]. Therefore,in this paper,a coupled differential system with multi-term Caputo fractional derivatives is given by

    where f,g:[0,1]××…×→are given functions,cD denotes the Caputo fractional derivative,ρ,σ∈(m-1,m),αi,βi∈(ni-1,ni),m,ni∈,i=1,2,…,,ρ>β1>β2>…>βN,σ>α1>α2>…>αN,k=0,1,…,m-1,ρ,σ,αi,βi?andηk,ξkare suitable real constants.By means of nonlinear alternative of Leray-Schauder theorem and Banach contraction principle,we derive the existence and uniqueness of solutions for the system.Also,a numerical method for the specified system is presented.An example is given and the results are compared with the exact solution.

    The rest of the paper is organized as follows.In section 1,we give some relevant definitions and lemmas.The existence and uniqueness results are derived in sections 2 and 3,respectively.In section 4,the numerical method is presented. An example is given in section 5 and some conclusions are drawn in section 6.

    1 Prelim inaries

    Definition 1For a function f∈Cn([0,1]),the Caputo derivative of fractional orderα∈(n-1,n]is defined as[2]

    Definition 2[3]The Riemann-Liouville fractional integral of f of orderα>0 is given by

    provided the right side is pointw ise defined on(0,+∞).

    Lemma 1[12]Let f∈Cn([0,1]),n∈Ν,for anyα∈(n-1,n),then

    Remark 1It is worth pointing out that by this lemma,a differential equation(system)can be transformed to an integral one.

    For power function,it follows as below.

    Lemma 2[3]Letα∈(n-1,n),n∈Ν,andβ>n.Then the follow ing relations hold

    To establish existence and uniqueness criteria of solution for Eqs.(1)and(2),we introduce the follow ing notations and lemmas.

    and S=X×X,endowed with the norm

    It can be easily proved that(S,‖·‖S)is a Banach space.

    The rest part of this section will be devoted to establishing the equivalence between Eqs.(1)and(2)and the follow ing integral equations:

    Lemma 3Let f,g:[0,1]××…×→be continuous functions defined on I.Then(u,v)∈S isa solution of Eqs.(1) and(2)if and only if it is the solution of Eqs.(10)and(11).

    ProofBased on Eq.(6),one can easily find that if(u,v)∈S is a solution of Eqs.(1)and(2),then Eq.(1)can be transformed to Eq.(10)and Eq.(2)must be equivalent to Eq.(11).That is,(u,v)must be a solution of coupled integral system(Eqs.(10)and(11)).

    Conversely,let(u,v)∈S be a solution of system Eqs. (10)and(11),then putcDρandcDσinto the both sides of Eqs.(10)and(11),respectively.Taking Eqs.(5),(7)and (9)into consideration,we obtain

    Furthermore,by Eq.(10),the i th order derivative of u(t) can be concluded as

    and

    From Eqs.(12),(15)and Eqs.(13),(17),we figure out that if(u,v)∈S is a solution of system(Eqs.(10)and (11)),itmust be the solution of Eqs.(1)and(2).This completes the proof.

    2 Existence Result

    Firstly,we introduce the follow ing lemma called the nonlinear alternative of Leray-Schauder.

    Lemma 4[13]Let X be a normed linear space,M?X be a convex set,and N be open in M with 0∈N.F:→M is a continuous and compact mapping.Then either the mapping F has a fixed point inor there exist l∈?N andλ∈(0,1),which will lead to l=λFl.

    For the sake of convenience,the follow ing notations are needed.Let the operator P:S→S be given by

    and

    By now,all the preparations have been made,so we can show our existence result favorably.

    Theorem 1Let f,g:[0,1]××…×→be continuous functions.And there exist nonnegative functions a(t),a0(t),a1(t),…,aN(t),b(t),b0(t),b1(t),…,bN(t)∈L(I)

    such that

    If 0<B<∞,0<C<1,then coupled system Eqs.(1)-(2)have a solution,where

    ProofObviously,the solution of Eqs.(1)and(2) coincideswith the fixed point of the operator P.Therefore,it's necessary to prove the existence of the fixed point by means ofLemma 4.Precisely,it comes out that there exists a fixed point of the operator in a“ball”U in the Banach space S.Define

    and similarly

    whereβ0=0,n0=0.From Eqs.(14)and(16),for any i=1,2,…,n1,we have

    Now,note that

    and

    In the next part,we show that the operator P is continuous and compact.For convenience,denote

    Due to the uniform ly continuous property of the power functions,one can figure out that PU is an equicontinuous set.Apparently,PU?.Therefore,the operator P is completely continuous.

    In view ofLemma 4,it is necessary to consider the eigenvalue problem given by

    As a solution(ω1,ω2)of the above for 0<λ<1,we take Formulas(23)-(24)into consideration and find that

    which implies that(ω(t),ω(t))??U,By Lemma 4,P

    12has a fixed point in

    This completes the proof.

    3 Uniqueness Result

    In this section,we focus on establishing the sufficient conditions of the uniqueness of solution for the coupled system (Eqs.(1)and(2))by Lipschitz type assumptions as follows.

    (H)Let f,g:[0,1]×R×…×R→R be continuous functions.And there exist nonnegative functionsδ1,0(t),δ1,1(t),…,δ1,N(t)andδ2,0(t),δ2,1(t),…,δ2,N(t)such that

    Theorem 2If the assumption(H)holds and 0<D<1,0<E<∞,then the system(Eqs.(1)and(2))has a unique solution,where

    ProofAttention is focused on that the operator P given by Eq.(18)has a unique fixed point in,where U=

    Furthermore

    Similarly

    It follows that

    Therefore,it appears that P:→.

    What's more,enlightened by the estimation above,we obtain

    Hence,

    Since 0<D<1,by the Banach contraction principle,the operator P has a unique fixed point in U-.That is,there is a solution of the coupled integral Eqs.(10)and(11).

    This completes the proof.

    4 NumericalMethod

    Due to themathematical complexity of analytical solutions for the fractional coupled system,it demands an effective and easy-to-use numerical scheme for solving such equations.It should be noticed that the numerical approximation of linear multi-term FODEswas investigated by Garrappa[14].Also,the predictor-correctormethod,as a stable and effective way,was promoted for fractional differential systems[15].It works whether it is for linear or nonlinear equations,and itmay be extended to multi-term FODEs.Using the fractional predictorcorrector method,we present a numerical method for the coupled system(Eqs.(1)and(2)).

    Firstly,we rew rite the system(Eqs.(1)and(2))as[16]

    with initial conditions

    whereγ=1/M,M is the least common multiple of the denom inators ofρ,σ,α1,…,αN,β1,…,βN,

    and

    The system(39)-(40)is equivalent to the follow ing Volterra integral system

    A obp tpa li yn in thg e p th ree dic f treadc ti voanl uale predictor-corrector method[15],we

    where h is chosen as suitable iteration step,tj(j=0,1,…,n +1)are nodes in interval I,and

    and corrector formula is given by

    where

    5 An Exam p le

    Consider the follow ing fractional coupled system

    with initial condition

    where

    To prove the uniqueness of solutions for Eqs.(50)-(53) we need to verify the assumptions of Theorem 2.Here I=[0,1],ρ=13/4,σ=7/2,β1=5/4,β2=3/4,α1=3/2,α2= 1/2 andη0=0,η1=1/4,η2=0,η3=0,ξ0=0,ξ1=0,ξ2=1/2,ξ3=0.Withδ1,1(t)=t/5,δ1,2(t)=(t+1)/6,δ2,1(t)=■t/2,δ2,2(t)=(t2+1)/3,we obtain D1,0≈0.021,D1,1≈0.083,D1,2≈0.515,D1=D1,0+D1,1+D1,2≈0.619<1,D2,0≈0.026,D2,1≈0.114,D2,2≈0.389,D2=D2,0+D2,1+D2,2≈0.529<1,E1,0≈0.505<∞,E1,1≈1.280<∞,E1,2≈3.142<∞,E2,0≈0.505<∞,E2,1≈1.531<∞,E2,2≈3.664<∞.

    In view of Theorem 2,the system(Eqs.(50)-(53))has a unique solution.Indeed,the explicit solution of the system is u(t)=(t+t4)/4,v(t)=(t2+t4)/4.

    On the other hand,using the numericalmethod described in section 4,we obtain the numerical solution of the system Eqs.(50)-(53).

    A comparison of the exact solution and the numerical solution is shown in Figs.1 and 2.It appears that the numerical solutions perform in good agreementwith the exact ones.

    Fig.1 Exact solution(line)and numerical solution(symbol)of u(t)with h=0.005

    Fig.2 Exact solution(line)and numerical solution(symbol)of v(t)with h=0.01

    6 Conclusions

    This paper concerns about fractional coupled system involved with multi-term Caputo derivatives.By nonlinear alternative theorem and Banach contraction principle,the existence and uniqueness results are obtained.Furthermore,a numericalmethod for fractional coupled system is presented.An example is given to verify the effectiveness of the theorems and the numerical scheme.

    [1]Samko SG,Kilbas A A,Marichev O I.Fractional Integrals and Derivatives:Theory and Applications[M].Yverdon:Gordon and Breach Science Publishers,1993.

    [2]Podlubny I,F(xiàn)ractional Differential Equations[M].New York: Academ ic Press,1999.

    [3]Kilbas A A,Srivastava H M,Trujillo J J.Theory and Applications of Fractional Differential Equations[M]. Netherlands:Elsevier Science Limited,2006.

    [4]Bai C,F(xiàn)ang J.The Existence of a Positive Solution for a Singular Coupled System of Nonlinear Fractional Differential Equations[J].Applied Mathematics and Computation,2004,150(3): 611-621.

    [5]Bashir A,Ahmed A.Existence and Uniqueness of Solutions for Coupled Systems of Higher-Order Nonlinear Fractional Differential Equations[J].Fixed Point Theory and Applications,2010,doi: 10.1155/2010/364560.

    [6]Su X.Boundary Value Problem for a Coupled System of Nonlinear Fractional Differential Equations[J].Applied Mathematics Letters,2009,22(1):64-69.

    [7]Ahmad B,Nieto J J.Existence Results for a Coupled System of Nonlinear Fractional Differential Equations with Three-Point Boundary Conditions[J].Computers and Mathematics with Applications,2009,58(9):1838-1843.

    [8]Liu S Y,Wang G T,Zhang L H.Existence Results for a Coupled System of Nonlinear Neutral Fractional Differential Equations[J].Applied Mathematcs Letters,2013,26(12):1120-1124.

    [9]Sun SR,LiQ P,LiY N.Existence and Uniquenessof Solutions for a Coupled System of Multi-term Nonlinear Fractional Differential Equations[J].Computers and Mathematics with Applications,2012,64(10):3310-3320.

    [10]Pandey R K,Singh O P,Baranwal V K.An Analytic Algorithm for the Space Time Fractional Advection Dispersion Equation[J]. Computer Physics Communications,2011,182(5):1134-1144.

    [11]Luchko Y.Maximum Principle and its Application for the Time-Fractional Diffusion Equations[J].Fractional Calculus and Applied Analysis,2011,14(1):110-124.

    [12]Li C,Deng W.Remarks on Fractional Derivatives[J].Applied Mathematics and Computation,2007,187(2):777-784.

    [13]Fucik S,Kufner A.Nonlinear Differential Equations[M].New York:Elsevier Science Ltd.,1980.

    [14]Garrappa R.Stability-Preserving High-Order Methods for Multiterm Fractional Differential Equations[J].International Journal of Bifurcation and Chaos,2012,22(4),doi:1142/ S0218127412500733.

    [15]Diethelm K,F(xiàn)ord N J,F(xiàn)reed A D.A Predictor-Corrector Approach For the Numerical Solution of Fractional Differential Equations[J].Nonlinear Dynamics,2002,29(1/2/3/4):3-22.

    [16]Diethelm K.The Analysis of Fractional Differential Equations:an Application-Oriented Exposition Using Differential Operators of Caputo Type[M].Heidelberg:Springer,2004.

    Finishing Effect on Warm th Property of Cotton/Kapok Blended Knitted Fabric

    SOM IA Yassin Hussain Abdalkarim(蘇美兒)1,2,ZHAO Li(趙俐)1,2*

    1 College of Textiles,Donghua University,Shanghai201620,China

    2 Key Laboratory of Textile Science&Technology,Ministry of Education,Donghua University,Shanghai201620,China

    Abstract:Nowadays,more and more naturalor functional fibers are being investigated due to their utilization in thermal underwear.Kapok fiber is one of the natural cellulosic fiberswhose source is the kapok p lant.It has hollow body and sealed tail,which exhibits desirable features required for functional textiles of this nature.In this study,cotton/kapok(80/20 by mass)blended yarn with two types of yarn size 18.5 and 14.8 tex,respectively are knitted into plain stitches.The fabrics are undergone with an optimal preparation p lan according to orthogonal design.Then,after dyeing and softening,fabric properties including thermal and water-vapour resistances,w icking property,pilling behaviour,and surface morphology,are tested and scrutinized for their candidacy for thermal underwear.The results showed that cotton/kapok blended fabrics have good thermal resistance which is significantly higher than those of cotton/modal blended fabrics,and the same water vapour resistance compared with cotton/modal blended fabrics which are normally used as underwear.Cotton/modal blended knitted fabrics has better pilling grade than cotton/kapok blended fabrics.M eanwhile,the cotton/kapok blends fabrics have good w icking property.Collectively,it was concluded that cotton/kapok blended fabric was appropriate for thermal underwear.However,themain lim itation of these fabrics is their pilling properties.

    Keywords:cotton/kapok blended yarn;knitted fabric;orthogonal design;performance;thermal underwear

    CLCnumber:TS941.6Documentcode:AArticleID:1672-5220(2015)04-0620-06

    Introduction

    Underwear,is one of the most important garments for human clothing for all seasons,because it supports the human skin adaptable to the body heat balance such as warm th or cold[1].Today,themajor function of the garments is to build regulation system for keeping body temperature at the mean value even though physical activities and outer atmospheric conditions change spatially underwear[2-3].Underwear has become the second type of garment manufacturing sector in whole world.To date,many textilematerials have been used to produce underwear.Firstly,synthetic fiber such as polyester and nylon has been used as underwearmaterials but these types ofmaterials are uncom fortable clammy,clingy and sweaty[4]. For all these reasons,some researchers declare the use of natural fibers,especially those which contain 100%cotton,or cottonblends,because it can bemore com fortable for human body to absorb water vapors and perspiration than synthetic fibers[5-7]. Therefore,com fort,which is defined as an agreeable state of physical and psychological conformity between environmentand human being becomes the main feature along with the development of textile technology[8-9].Thus,human body in contact with garment fabric is associated with three main factors:sensorial,thermal and physiological.Thermophysiological com fort is a general expression for factors such as sweat absorption,water vapor transmission,drying ability and thermal properties of fabrics[10-11].Underwear manufacturers used different types of structures of fabrics such as woven and knitting.The structure of knitted fabrics has significant parameter estimated for influencing the moisture and thermal management properties of garment than woven structure[11]. The most important factors influencing heat transfers through fabrics are enclosed air and thickness.Reduction in thickness of fabric,together with corresponding decrease of fabric volume,is normally followed by the decrease of air entrapped in fabric structure changing the overall thermal properties of the fabric[12-13].However,more studies have been focused on kapok fibers characterization,structure,batting and spinning. Thus,kapok fibers are usually blended with other fibers to spin yarn instead of spinning into pure kapok yarn due to their defects such as short length,smooth surface and low strength[14].From previous studies,few researches focused on com fort properties of cotton/kapok fabric underwear.

    Themain intention of this study is to find the advantages and disadvantages of cotton/kapok blended knitted fabrics through the whole process of manufacturing.Moreover,the thermal and water-vapor resistances,w icking property,pilling behavior,and surfacemorphology have been evaluated in order to determine the utilization of cotton/kapok blended yarn for knitted fabrics used in thermal underwear,and meanwhile to give some advice for the spinning factory in order to improve their spinning techniques and produce qualified cotton/kapok blended yarns.

    1 Materials and Methods

    1.1 M aterials and knitted fabrics

    Kapok fiber is one kind of natural cellulose fiber and the cross section area of the kapok fiber is oval to round shown in Fig.1[15].IR spectra clearly indicated thatkapok fiber is similar to cotton fibers,but XRD showed that the degree of crystalline of kapok fiber is 46.4%,less than cotton fibers 70.3%.The strength and elongation of the kapok fiber is lower compared with cotton fibers,because it's lower crystalinity and thinner cell structure[16].

    In this study two types of yarns(18.5 and 14.8 tex)were used and produced from cotton/kapok blended fibers.Themass ratio of blended fiberswas80%cotton and 20%kapok obtainedfrom Xiajin Fengrun Textile Co.,Ltd.,Shandong Province,China Cotton/kapok knitted fabricsweremanufactured on B.C. M circular knitting machine(Ban Yan Tai International Co.,Ltd.,F(xiàn)ujian Province,China)with 28 gauges and 16 diameters inch.

    Fig.1 Kapok fiber

    1.2 Scouring and bleaching

    The scouring and bleaching agents,which affect properties of cotton/kapok blended fabrics,are studied.Because of the lower crystalinity,strength and elongation of kapok fiber compared with cotton fiber,the preparation of kapok fiber should be differentiated with cotton fiber.The method of orthogonal array L9(34)is used to determ ine the optimal method of treating the fabric to meet the demand of thermal underwear.This experiment has four variables at three different levels.Levels indicate that three types of concentrations have been used in the scouring process.Them inimum concentration is level1,the medium concentration is level 2,and level 3 is themaximum concentration of the chem ical agents.Some other experimental parameters,such as temperature,liquor ratio,and time are selected as 90℃,1∶50,and 2 h,respectively.A four factor and three level factorial design is used to evaluate the follow ing factors.Concentrations of NaOH(A),H2O2(B),Na2SiO3(C),and surface active agent(SAA)(D)are based on the weight of fabrics(o.w.f).The factors and their respected levels are shown in Table 1 and several experiments are preformed as shown in Table 2.

    Table 1 Design of factor level

    Table 2 L9(34)orthogonal array

    1.3 Orthogonal array analysis

    According to the assignment of the experiment,the mean of property for the corresponding factors at each level is calculated.The mean ratio values and the range of mean are calculated for each factor and each levelas shown in Table3.In Table 3,KA1,KA2 and KA3 are submission values of levels 1,2 and 3.And kA1,kA2 and kA3 aremean values for levels 1,2 and 3 respectively.The range R(the difference between the mean values of the highestand the lowest)for each parameter is also calculated.The larger the R value for a parameter,larger the effect of the variable has on the process.Based on the overall evaluation of the results,1.4%,8.0%,2.0%and 1.0%have been selected for concentrations of NaOH,H2O2,Na2SiO3and S.A.A,respectively as the optimum level.

    1.4 Dyeing and finishing

    Dying bath contains 0.5%-1.0%reactive dye(o.w.f),liquor ratio is 1∶50,NaCl is 15.0-30.0 g/L and Na2CO3is 10.0 g/L.After dyeing process,SoulsoftWALIQ(50.0 g/L) was used as the softener with liquor ratio 1∶50 at 40℃for 30 min.Figure 2 is the schematic presentation of dyeing and finishing.

    Table 3 Design of factor level of wicking,whiteness and weight loss tests

    Fig.2 Schematic presentation of dyeing and finishing

    2 Testing Methods

    Thermal and water-vapor resistances under steady-state conditions are measured by YG606G ventilated thermal wet tester(Ningbo Textile Instrument Factory,China)according to GB/T11048—2008[17].A vertical w icking effect is measured according to AATCC TM 197—2011,and pilling of the fabrics is measured by YG401E fabric abrasion tester Martindale (Ningbo Textile Instrument Factory,China)according to ISO 12945—2:2000.The surface morphology of cotton/kapok blended fabric is observed by using a scanning electron microscope(SEM).

    3 Results and Discussion

    3.1 Thermal com fort properties

    Figure 3 shows the relationship of fabric thickness and thermal resistance,(a)and(b)are cotton/kapok blended fabricswith yarn size 18.5 and 14.8 tex,respectively and(c) is cotton/modal blended fabric(50/50 by mass)with yarn size 14.8 tex.According to the results,it is observed that the thermal resistance of all fabrics types has linear correlation with thickness.As the fabric thickness decreases,the thermal resistance value also decreases.Consequently,with decrease in fabric thickness,the thermal resistancewill decrease as given in Eq.(1).

    where R is the thermal resistance(m2·K·W-1),h is the thickness(mm),andλis the thermal conductivity(W·m2· K-1).

    Fig.3 Influence of thickness on the thermal resistance:(a) cotton/kapok blended fabrics with yarn size 18.5 tex,(b)cotton/kapok blended fabrics with yarn size 14.8 tex,and(c)cotton/modal blended fabrics,with yarn size 14.8 tex

    Thus the comparative analysis wasmade among the fabrics types.From Table4,it could be seen that themass per square of cotton/kapok blended fabrics was lighter and their thermal resistance was higher than those of cotton/model blended fabric. The achievable reason is that the kapok fiber has special cross section area with oval to round,and high bulkiness.There is large hollow structure as high as 80%-90%of fiber which condenses the volume quality of fiber and stores a large amount of stationary air.It is concluded thatboth thickness and structural characteristics are affecting the thermal resistance.

    Table 4 Thermal resistance of blended knitted fabric

    3.2 Water vapor resistance

    When the fabrics have low rate of water vapor resistance,the water vapor can pass easier through the fabric and to the environment,followed by drier skin.By thismeans it leads to improving body com fort.Table 5 displays the water vapor resistance valueswhich are very close to each other and have no difference between cotton/kapok and cotton/modal blended fabrics.This indicates that the cotton/kapok and cotton/modal blended knitted fabrics have quite good vapor transmission property.

    Table 5 Water vapor resistance of blended knitted fabrics

    3.3 Verticalw icking

    The relationships between the w icking length and the time of cotton/kapok blended fabrics are shown in Fig.4.From Figs.4(a)and(b),the w icking length of cotton/kapok blended fabric yarn size is 18.5 tex and the dye concentration are 0.5%and 1.0%,respectively,and their w icking lengths have linear correlation with the time.The w icking length increases with time increase.Therefore,w icking property in longitudinal direction is better than that in traverse direction. Themost important reason for this observable fact is that the tension in longitudinal direction is high during the knitting process so that capillary is noteasy to be infertile or collapse for the deformation and bending of yarn.As a result the wet conductivity in longitudinal direction is higher than that in traverse direction.From Figs.4(c)and(d),with dye concentration 0.5%and 1.0%,respectively it is observed that both the w icking lengths have linear correlation with the time. Thus,the w icking length increases with the time increase and better w icking property is observed in two directions than those in Figs.4(a)and(b).In general,the natural fibers have bulky hydrophilic group(hydroxyl groups).Compared with cotton fiber,kapok blended fabrics have better water transmission properties.Kapok fiber has larger interior porosity,more loose structure,and lower crystalline degree.As a result,kapok fiber has exhibited bettermoisture absorption.Thus,the liquid water conductivity essentially depends on w icking length.

    Fig.4 Relationship between verticalwicking lengths vs.time

    3.4 Pilling properties of the fabrics

    Fabric surface pilling is the result from a dynamic balance between two conflicting impacts,pill wearing off and pill formation.Pilling is produced by fabrics formed from spunyarns(yarns made from staple fibers).Figure 5 shows the pilling results of all cotton/kapok and cotton/modal blended fabric with 125,500,1 000,2 000,5 000 and 7 000 pilling rubs.From Fig.5,the pilling grade for each fabric type decreases gradually with the increase of the pilling rubs.It is due to the decreasings of the extension at break and breaking tenacity,which create the pills easily to be pulled off during the abrasion action.The pilling grades are rated by photographic and visual description standards in an evaluation cabinet under daylight lighting from 1 to 5 in a dark room according to ISO 12945-2:2000,Modified Martindale Method.The pilling standards used for evaluation of the fabrics have the follow ing scales,5 is no pills,4 is slight pilling,3 ismoderate pilling,2 is severe pilling and 1 is very severe pilling.According to the results,all samples in Fig.5(c)at125 rubs have no pills and all samples in Figs.5(a)and(b)have the same pilling rate (themaximum 2.5 with 125 rubs).For the comparison of the fabric types,it is indicated that the cotton/modal blended fabric has better pilling grade than cotton/kapok blended fabrics.This is due to the configuration of kapok fibers,such as short length and smooth surface of the fibers,causing poor inter-fiber cohesion.These defects have prohibited kapok from being processed by modern spinning machines.Also the spun yarns,causing yarn hairiness on the surface of the fiber,yarn hairiness or projecting fibers,are free fiber ends forming fabric surface fuzziness that then develop into pills.Thus,an increase in yarn hairiness leads to a higher propensity for pill formation.It was concluded that the cotton/kapok blended knitted fabrics had pilling grade almost between moderate and severe pilling at the m inimum rubs.

    Fig.5 Pilling properties of blended fabrics

    3.5 Surfacemorphology of cotton/kapok knitting fabric

    In order to estimate the wet chem ical process effect on surface morphology,cotton/kapok blended fabric surface structure has been exam ined by SEM.Figures 6(a)and(d) show the small scales in themicrograph untreated cotton/kapok blended fabrics.It is observed that the surface morphology of fiber has poor tw ist,thus leads to poor cohesion between the fibers as shown in Figs.6(b),(c),(e)and(f).The same scales in the cotton/kapok blended fabrics have being treated with scouring,bleaching,dyeing and finishing.After a period of wear,this processing causes a lot of fluffy in the surface of the fabric,along with the electrostatic interaction;pilling on surface of the fabricswill affect the appearance and com fort.In addition,kapok fiber hasmore poor resistance to alkali than that of cotton fiber,and highmass concentrationsof NaOHmay lead to ribbed serrated surface for kapok fiber.

    Fig.6 Surfacemorphologies of cotton/kapok blended fabrics before and after treatment

    4 Conclusions

    In this research,the com fort properties of single jersey blends fabrics made from yarn 80/20 cotton/kapok with two types of size,18.5 and 14.8 tex as underwear have been investigated and then compared with 50/50 cotton/modal blended fabric of14.8 tex.The orthogonalarray L9(34)isused to determine the optimal condition to treat the fabric tomeet the demand of thermal underwear.Based on the overall evaluation of the results,1.4%,8.0%,2.0%and 1.0%have been selected for concentrations of NaOH,H2O2,Na2SiO3and S.A. A,respectively as the optimum level.

    It is found that cotton/kapok blended fabrics have good thermal resistance and the rate of thermal resistance is significantly higher than that of cotton/modal blended fabrics. In contrast to water vapor resistance,it is almost similar and no more difference between cotton/kapok and cotton/modal blended fabrics have been observed.Therefore,the cotton/ kapok and cotton/modal blended knitted fabrics have less breathable air to vapor transmission.Also thew icking length of cotton/kapok blends fabrics increases with testing time increasing.Meanwhile,cotton/modal blended knitted fabrics have better pilling grade than cotton/kapok blended fabrics.It was concluded that cotton/kapok blended fabrics were appropriate for thermal underwear.But the disadvantage of these fabrics is pilling properties.

    Acknow ledgements

    The authors of this articlew ish to thank the Xiajin Fengrun Textile Co.,Ltd.for spinning the blended yarn.

    References

    [1]Schindelka B,Litzenberger S,Sabao A.Body Climate Differences for Men and Women Wearing Functional Underwear during Sport at Temperatures below Zero Degrees Celsius[J]. Procedia Engineering,2013,60:46-50.

    [2]Li Y.The Science of Clothing Com fort[J].Textile Progress,2001,31(1/2):1-135.

    [3]Havenith G.Interaction of Clothing and Thermoregulation[J]. Exogenous Dermatology,2003,1(5):221-230.

    [4]Byrne M S,Gardner A PW,F(xiàn)ritz A M.Fiber Types and End-Uses:a Perceptual Study[J].Journal of the Textile Institute,1993,84(2):275-288.

    [5]Smith J.The Com fort of Clothing[J].Textiles,1986,15(1): 23-27.

    [6]Ruckman JE,Green JA.Com fort of Shirts for Distance Runners[J].Journal of Clothing Tecnology and Management,1995,12: 1-25.

    [7]Ghali K,Ghadder N,Harathania J,et al.Experimental and Numerical Investigation of the Effect of Phase Change Materials on Clothing during Periodic Ventilation[J].Textile Research Journal,2004,74(3):205-214.

    [8]?nder E,Sarier N.Improving Thermal Regulation Functions of Textiles[C].WTC 4th AUTEX Conference,Roubaix,F(xiàn)rance,2004.

    [9]Bedek G,Salauan F,Martinkovska Z,et al.Evaluation of Thermal and Moisture Management Properties on Knitted Fabrics and Comparison with a Physiological Model in Warm Conditions[J].Applied Ergonomics,2011,42(6):792-800.

    [10]Dem iryurek O,Uysalturk D.Thermal Com fort Properties of Viloft/Cotton and Viloft/Polyester Blended Knitted Fabrics[J]. Textile Research Journal,2013,83(16):1740-1753.

    [11]Onofrei E,Rocha A M,Catarino A.The Influence of Knitted Fabrics'Structure on the Thermal and Moisture Management Properties[J].Engineered Fabrics and Fibers(JEFF),2011,6 (4):10-22.

    [12]Holcombe B V,Hoschke B N.Dry Heat Transfer Characteristics of Underwear Fabrics[J].Textile Research Journal,1983,53 (6):368-374.

    [13]Obendorf S K,Smith J P.Heat Transfer Characteristics of Nonwoven Insulating Materials[J].Textile Research Journal,1986,56(11):691-696.

    [14]Yan J,F(xiàn)ang C,Wang FM,et al.Compressibility of the Kapok Fibrous Assembly[J].Textile Research Journal,2013,83(10): 1020-1029.

    [15]Cui P,Wang F M,Wei A,et al.The Performance of Kapok/ Down Blended Wadding[J].Textile Research Journal,2010,80 (6):516-523.

    [16]Xiao H,Yu W D,Shi M W.Structures and Performances of the Kapok Fiber[J].Textile Research Journal,2005,26(4):4-6.

    [17]GB/T 11048—2008.Textile Physiological Com fort under Steady-State Conditions Thermal Resistance and Moisture Resistance Measurement[S].Beijing:China Standard Press,2008.(in Chinese)

    O175.14

    A

    1672-5220(2015)04-0613-07

    date:2014-04-21

    National Natural Science Foundation of China(No.11371087)

    *Correspondence should be addressed to YE Hai-ping,E-mail:hpye@dhu.edu.cn

    Received date:2014-04-08

    Foundation item:Technical Standards for the Development of Kinitted Jinlong Underwear Factory of Guangdong Province,China(No. HX201303000008)

    *Correspondence should be addressed to ZHAO Li,E-mail:zhaoli@dhu.edu.cn

    猜你喜歡
    蘇美
    有恙之年
    讓企業(yè)沐浴在安全的陽光下——江蘇蘇美達集團有限公司安全文化“長成”記
    游走在時光里的魚
    閨蜜變兒媳,互抖隱私相殺又相愛
    老人生前的百萬拆遷款,為何鄰居能繼承一半
    新傳奇(2020年27期)2020-08-04 17:21:34
    被“閨蜜”騙走了千萬元
    方圓(2019年15期)2019-09-09 06:11:10
    蘇美達 光伏技術(shù)派
    英才(2017年5期)2017-06-01 17:42:03
    傾城
    天津詩人(2017年1期)2017-05-07 03:23:46
    “鬼城”迷影
    “鬼城”迷影
    日本欧美视频一区| 麻豆乱淫一区二区| 欧美成人精品欧美一级黄| 欧美97在线视频| 岛国毛片在线播放| 最黄视频免费看| 久久综合国产亚洲精品| 在线观看www视频免费| 国产日韩欧美在线精品| 精品熟女少妇av免费看| 自拍欧美九色日韩亚洲蝌蚪91| 91久久精品国产一区二区三区| videossex国产| 亚洲精品国产av蜜桃| 国产毛片在线视频| 日本色播在线视频| 欧美另类一区| 精品人妻熟女av久视频| 国产日韩欧美在线精品| 边亲边吃奶的免费视频| 我的女老师完整版在线观看| 欧美 亚洲 国产 日韩一| 乱人伦中国视频| 少妇高潮的动态图| 国产欧美日韩综合在线一区二区| 91精品伊人久久大香线蕉| 少妇熟女欧美另类| 伦精品一区二区三区| 人妻夜夜爽99麻豆av| 日韩大片免费观看网站| 色婷婷久久久亚洲欧美| 亚洲三级黄色毛片| 一级,二级,三级黄色视频| 国产亚洲欧美精品永久| 日韩 亚洲 欧美在线| 久久狼人影院| 午夜福利网站1000一区二区三区| 午夜久久久在线观看| 国产精品熟女久久久久浪| 国产亚洲精品第一综合不卡 | 亚洲精品aⅴ在线观看| 亚洲一级一片aⅴ在线观看| av国产久精品久网站免费入址| 亚洲不卡免费看| 国产成人精品福利久久| 国产一区二区在线观看日韩| 91精品国产国语对白视频| 欧美亚洲日本最大视频资源| 成人免费观看视频高清| av免费在线看不卡| 热99国产精品久久久久久7| 一个人免费看片子| 99视频精品全部免费 在线| 久久久久久久久久久久大奶| 22中文网久久字幕| 久久青草综合色| 国产免费视频播放在线视频| av电影中文网址| 亚洲精品日本国产第一区| 丝瓜视频免费看黄片| 免费人成在线观看视频色| 免费av不卡在线播放| 汤姆久久久久久久影院中文字幕| 亚洲综合色网址| 日韩欧美精品免费久久| 免费看av在线观看网站| 曰老女人黄片| videos熟女内射| 久久亚洲国产成人精品v| 日韩av不卡免费在线播放| 国产欧美另类精品又又久久亚洲欧美| 18禁在线播放成人免费| 下体分泌物呈黄色| 欧美丝袜亚洲另类| 亚洲人成网站在线观看播放| 免费看不卡的av| 制服丝袜香蕉在线| 日韩制服骚丝袜av| 久久精品久久精品一区二区三区| 少妇 在线观看| 黄色欧美视频在线观看| 欧美日韩综合久久久久久| 亚洲精品,欧美精品| 国产成人91sexporn| 国精品久久久久久国模美| 少妇熟女欧美另类| 国产色婷婷99| 美女脱内裤让男人舔精品视频| a级毛片在线看网站| 午夜激情久久久久久久| 卡戴珊不雅视频在线播放| 男人爽女人下面视频在线观看| 国产成人aa在线观看| 在线观看www视频免费| 国产爽快片一区二区三区| 18禁在线无遮挡免费观看视频| 亚洲国产av影院在线观看| 插逼视频在线观看| 欧美变态另类bdsm刘玥| 韩国高清视频一区二区三区| 黄色怎么调成土黄色| 日韩精品有码人妻一区| 免费av不卡在线播放| 亚洲欧美色中文字幕在线| 九色亚洲精品在线播放| 18禁在线播放成人免费| 又大又黄又爽视频免费| 国产av码专区亚洲av| 精品久久久噜噜| 99热6这里只有精品| 日本爱情动作片www.在线观看| 日韩制服骚丝袜av| 大话2 男鬼变身卡| 亚洲精华国产精华液的使用体验| 国产无遮挡羞羞视频在线观看| 久久 成人 亚洲| 成人国产av品久久久| 国产高清不卡午夜福利| 亚洲欧美色中文字幕在线| 欧美xxxx性猛交bbbb| 综合色丁香网| 国产精品秋霞免费鲁丝片| 免费观看在线日韩| 少妇被粗大的猛进出69影院 | 各种免费的搞黄视频| 日韩av不卡免费在线播放| 日本黄色日本黄色录像| 乱码一卡2卡4卡精品| 精品人妻熟女av久视频| 日本爱情动作片www.在线观看| 桃花免费在线播放| 母亲3免费完整高清在线观看 | 欧美三级亚洲精品| 91精品一卡2卡3卡4卡| 99热这里只有精品一区| 2021少妇久久久久久久久久久| 一级毛片电影观看| 久久久久精品久久久久真实原创| 欧美xxⅹ黑人| 人妻一区二区av| 极品少妇高潮喷水抽搐| 国产黄色视频一区二区在线观看| 国产黄片视频在线免费观看| 如何舔出高潮| 制服人妻中文乱码| 少妇人妻 视频| 永久免费av网站大全| 亚洲久久久国产精品| 少妇精品久久久久久久| 麻豆乱淫一区二区| 能在线免费看毛片的网站| 精品一区在线观看国产| 亚洲国产av新网站| 亚洲精品视频女| 人体艺术视频欧美日本| 赤兔流量卡办理| 伊人久久国产一区二区| 午夜激情福利司机影院| 国产成人a∨麻豆精品| 亚洲精品国产色婷婷电影| 18禁在线无遮挡免费观看视频| 18禁动态无遮挡网站| 国产一区有黄有色的免费视频| 国产精品一二三区在线看| 亚洲婷婷狠狠爱综合网| 伦理电影免费视频| 99热网站在线观看| 亚洲av中文av极速乱| 黑丝袜美女国产一区| 国产伦理片在线播放av一区| 日本91视频免费播放| 亚洲欧美一区二区三区国产| 美女内射精品一级片tv| 伦理电影免费视频| 日韩大片免费观看网站| 日本午夜av视频| 中文天堂在线官网| 国产成人精品在线电影| 熟女av电影| 黄色欧美视频在线观看| 免费黄网站久久成人精品| 国产日韩欧美视频二区| 国产精品熟女久久久久浪| 91精品伊人久久大香线蕉| 青春草亚洲视频在线观看| 亚州av有码| 久久精品久久久久久噜噜老黄| 这个男人来自地球电影免费观看 | 亚洲,欧美,日韩| 男女无遮挡免费网站观看| 亚洲精品一区蜜桃| 国产一级毛片在线| 韩国av在线不卡| 在线 av 中文字幕| 精品国产国语对白av| 人人妻人人添人人爽欧美一区卜| 精品久久国产蜜桃| 一级毛片 在线播放| 欧美日韩精品成人综合77777| 男女边摸边吃奶| 日本-黄色视频高清免费观看| 成人免费观看视频高清| 在线精品无人区一区二区三| 人妻 亚洲 视频| av在线app专区| 纯流量卡能插随身wifi吗| 国产精品一二三区在线看| 久久精品夜色国产| 中文乱码字字幕精品一区二区三区| 美女内射精品一级片tv| 91在线精品国自产拍蜜月| 丰满迷人的少妇在线观看| 久久人人爽人人爽人人片va| 久久久久久久久大av| 久久久久精品久久久久真实原创| 成人手机av| 久久99精品国语久久久| 精品熟女少妇av免费看| 99视频精品全部免费 在线| 久久久久久久久久久免费av| 久久精品国产亚洲av涩爱| 久久亚洲国产成人精品v| 久久毛片免费看一区二区三区| 黄色欧美视频在线观看| 又黄又爽又刺激的免费视频.| 亚洲不卡免费看| 精品99又大又爽又粗少妇毛片| 成人二区视频| 亚洲成人一二三区av| 麻豆精品久久久久久蜜桃| 在线免费观看不下载黄p国产| 欧美日韩av久久| 人妻少妇偷人精品九色| 日韩亚洲欧美综合| 亚洲av免费高清在线观看| 久久99热这里只频精品6学生| 狂野欧美激情性xxxx在线观看| 97在线视频观看| 一本一本综合久久| 国产精品久久久久久精品古装| 国产成人一区二区在线| 另类亚洲欧美激情| 国产av一区二区精品久久| 中文字幕久久专区| 成人综合一区亚洲| 成人免费观看视频高清| 黑人高潮一二区| 毛片一级片免费看久久久久| 欧美成人精品欧美一级黄| 岛国毛片在线播放| 一级毛片黄色毛片免费观看视频| 2022亚洲国产成人精品| 中文字幕最新亚洲高清| 亚洲精品国产av蜜桃| 国产熟女欧美一区二区| 一边亲一边摸免费视频| 性色avwww在线观看| 老女人水多毛片| 少妇高潮的动态图| 日本vs欧美在线观看视频| 一本大道久久a久久精品| 国产日韩欧美视频二区| 岛国毛片在线播放| 亚洲精品,欧美精品| 91久久精品国产一区二区成人| 中文字幕人妻熟人妻熟丝袜美| 亚洲精品aⅴ在线观看| 亚洲av电影在线观看一区二区三区| 中文精品一卡2卡3卡4更新| 99热这里只有是精品在线观看| 18+在线观看网站| av播播在线观看一区| 国产高清国产精品国产三级| 亚洲国产欧美日韩在线播放| 波野结衣二区三区在线| 成人国产av品久久久| 精品久久久久久久久av| 韩国高清视频一区二区三区| 久久精品人人爽人人爽视色| 十分钟在线观看高清视频www| 亚洲精品日本国产第一区| 秋霞伦理黄片| 国产熟女午夜一区二区三区 | 国产精品久久久久久久电影| 五月玫瑰六月丁香| 能在线免费看毛片的网站| 纯流量卡能插随身wifi吗| 亚洲经典国产精华液单| 十分钟在线观看高清视频www| 在现免费观看毛片| av视频免费观看在线观看| 国产一区二区三区av在线| av国产精品久久久久影院| 乱码一卡2卡4卡精品| 国产女主播在线喷水免费视频网站| 亚洲精品国产色婷婷电影| 美女视频免费永久观看网站| 国产精品.久久久| 在线观看三级黄色| 麻豆乱淫一区二区| 国产精品.久久久| 日韩三级伦理在线观看| 日韩一区二区三区影片| .国产精品久久| 国产精品免费大片| 欧美 日韩 精品 国产| .国产精品久久| 日本爱情动作片www.在线观看| 国产不卡av网站在线观看| 亚洲国产欧美在线一区| 亚洲第一av免费看| 国产一区亚洲一区在线观看| 老女人水多毛片| 亚洲欧美成人综合另类久久久| 另类精品久久| 午夜av观看不卡| 一边摸一边做爽爽视频免费| 久久久午夜欧美精品| 成年人午夜在线观看视频| 高清午夜精品一区二区三区| 国产在视频线精品| 肉色欧美久久久久久久蜜桃| 国产免费一区二区三区四区乱码| 亚洲国产日韩一区二区| 日日爽夜夜爽网站| 日本黄色日本黄色录像| av国产精品久久久久影院| 色5月婷婷丁香| 91久久精品国产一区二区三区| 在线亚洲精品国产二区图片欧美 | 中文字幕最新亚洲高清| 美女大奶头黄色视频| 国精品久久久久久国模美| 午夜免费观看性视频| 国产精品一国产av| 日韩免费高清中文字幕av| 伦精品一区二区三区| 欧美日韩视频精品一区| 黄色视频在线播放观看不卡| 成人综合一区亚洲| 色94色欧美一区二区| 中国国产av一级| 乱人伦中国视频| 蜜臀久久99精品久久宅男| 国产免费视频播放在线视频| 人妻系列 视频| 免费大片黄手机在线观看| 少妇的逼好多水| 女的被弄到高潮叫床怎么办| av网站免费在线观看视频| 又粗又硬又长又爽又黄的视频| 最近的中文字幕免费完整| 精品人妻在线不人妻| 97超视频在线观看视频| 久久精品久久久久久久性| 高清黄色对白视频在线免费看| 9色porny在线观看| 久久久久久久久久久丰满| 人妻制服诱惑在线中文字幕| 爱豆传媒免费全集在线观看| 国产精品一二三区在线看| 国产有黄有色有爽视频| 中国国产av一级| 国产精品麻豆人妻色哟哟久久| 国产精品成人在线| 亚洲av免费高清在线观看| 亚洲精品美女久久av网站| 午夜激情久久久久久久| 18禁动态无遮挡网站| 成人毛片a级毛片在线播放| 国精品久久久久久国模美| 久久精品熟女亚洲av麻豆精品| 国产一区二区在线观看日韩| 国产精品一区www在线观看| 久久ye,这里只有精品| 欧美丝袜亚洲另类| 欧美日韩综合久久久久久| 国产精品一区二区在线不卡| 国产精品国产av在线观看| 国产片内射在线| 免费看不卡的av| 制服人妻中文乱码| 国产成人freesex在线| 日本爱情动作片www.在线观看| 一个人看视频在线观看www免费| 视频中文字幕在线观看| 伦理电影大哥的女人| 久久国产亚洲av麻豆专区| 国产免费现黄频在线看| 最后的刺客免费高清国语| 国产有黄有色有爽视频| a级毛片黄视频| 永久免费av网站大全| 午夜激情av网站| 日本黄大片高清| 精品一区二区三区视频在线| 久久久午夜欧美精品| 日本黄色片子视频| 26uuu在线亚洲综合色| 亚洲精品乱码久久久v下载方式| 草草在线视频免费看| 十八禁高潮呻吟视频| 十分钟在线观看高清视频www| 欧美精品高潮呻吟av久久| 亚洲国产欧美在线一区| 国产精品国产av在线观看| 青春草亚洲视频在线观看| 亚洲久久久国产精品| 亚洲色图综合在线观看| 成人亚洲欧美一区二区av| 中文字幕精品免费在线观看视频 | 午夜福利网站1000一区二区三区| 少妇人妻精品综合一区二区| 大香蕉久久成人网| 久久久久久久国产电影| 亚洲一级一片aⅴ在线观看| 欧美一级a爱片免费观看看| 午夜久久久在线观看| 国产又色又爽无遮挡免| 一级二级三级毛片免费看| 精品人妻熟女毛片av久久网站| 久久久久久久精品精品| 久久久久久久久久久免费av| 欧美 亚洲 国产 日韩一| 天天操日日干夜夜撸| 免费黄色在线免费观看| av免费观看日本| 亚洲不卡免费看| 日韩大片免费观看网站| 两个人免费观看高清视频| 久久ye,这里只有精品| 欧美激情国产日韩精品一区| 少妇猛男粗大的猛烈进出视频| 最近中文字幕2019免费版| 亚洲四区av| 天天躁夜夜躁狠狠久久av| 日韩一区二区三区影片| 最新中文字幕久久久久| 亚洲国产毛片av蜜桃av| 男女边吃奶边做爰视频| 一个人看视频在线观看www免费| 午夜福利视频精品| 国产免费福利视频在线观看| 亚洲欧美日韩另类电影网站| 精品久久久久久久久亚洲| 乱人伦中国视频| 五月玫瑰六月丁香| 在线播放无遮挡| 久久97久久精品| 人体艺术视频欧美日本| 欧美精品亚洲一区二区| 亚洲精品日韩av片在线观看| av在线app专区| 亚洲综合色网址| 欧美老熟妇乱子伦牲交| 美女福利国产在线| 成人手机av| 一级毛片黄色毛片免费观看视频| 精品久久久久久电影网| 亚洲精品成人av观看孕妇| 天堂中文最新版在线下载| 日韩强制内射视频| 国产一区有黄有色的免费视频| 亚洲欧洲国产日韩| 水蜜桃什么品种好| 午夜福利在线观看免费完整高清在| 天美传媒精品一区二区| 久久久精品免费免费高清| 亚洲一级一片aⅴ在线观看| 在线观看www视频免费| 最新的欧美精品一区二区| 老司机亚洲免费影院| 国产av码专区亚洲av| 99久久综合免费| 人人妻人人澡人人爽人人夜夜| 久久 成人 亚洲| 国产精品国产av在线观看| 精品午夜福利在线看| 老女人水多毛片| 色婷婷av一区二区三区视频| 99热这里只有精品一区| 观看av在线不卡| 成人二区视频| 亚洲美女黄色视频免费看| 久久精品久久久久久久性| 日产精品乱码卡一卡2卡三| 韩国av在线不卡| 最新的欧美精品一区二区| 狂野欧美激情性bbbbbb| 国产精品 国内视频| 简卡轻食公司| 天天操日日干夜夜撸| a级毛片黄视频| 国产成人精品久久久久久| 99热6这里只有精品| 99热国产这里只有精品6| 午夜影院在线不卡| 人人澡人人妻人| 免费高清在线观看日韩| 久久精品夜色国产| 久久久久精品久久久久真实原创| 大又大粗又爽又黄少妇毛片口| 久久综合国产亚洲精品| 99国产综合亚洲精品| 51国产日韩欧美| 国产欧美日韩综合在线一区二区| 男人添女人高潮全过程视频| 国产黄片视频在线免费观看| 亚洲欧美精品自产自拍| 国产精品久久久久久精品古装| 女人精品久久久久毛片| 亚洲欧美成人精品一区二区| videossex国产| 亚洲精品视频女| 蜜桃久久精品国产亚洲av| 亚洲内射少妇av| 日韩,欧美,国产一区二区三区| 欧美 亚洲 国产 日韩一| 大香蕉久久成人网| 免费黄频网站在线观看国产| 久久人人爽av亚洲精品天堂| 全区人妻精品视频| 99热这里只有是精品在线观看| 国产成人91sexporn| 久久久欧美国产精品| 18禁在线无遮挡免费观看视频| 母亲3免费完整高清在线观看 | 大片电影免费在线观看免费| 亚洲精品美女久久av网站| 一本一本综合久久| av免费观看日本| 夜夜爽夜夜爽视频| 国产高清有码在线观看视频| 满18在线观看网站| 亚洲国产成人一精品久久久| 有码 亚洲区| 女性生殖器流出的白浆| 九色亚洲精品在线播放| 国产精品秋霞免费鲁丝片| 国产av一区二区精品久久| 热re99久久国产66热| 亚洲精品自拍成人| 极品少妇高潮喷水抽搐| 18禁在线播放成人免费| 免费观看av网站的网址| 蜜桃国产av成人99| 久久人人爽人人爽人人片va| 大香蕉久久网| 久久久久国产精品人妻一区二区| 国产一区二区在线观看av| 国产精品人妻久久久久久| 能在线免费看毛片的网站| 欧美亚洲 丝袜 人妻 在线| 国产亚洲av片在线观看秒播厂| 99九九线精品视频在线观看视频| 欧美三级亚洲精品| 飞空精品影院首页| 精品久久久久久久久av| 久久精品人人爽人人爽视色| 99热6这里只有精品| 桃花免费在线播放| 亚洲久久久国产精品| 老司机影院成人| 99热国产这里只有精品6| 80岁老熟妇乱子伦牲交| 能在线免费看毛片的网站| 街头女战士在线观看网站| 男女高潮啪啪啪动态图| 黑丝袜美女国产一区| 久久久精品区二区三区| 中文精品一卡2卡3卡4更新| 大香蕉久久网| 99热6这里只有精品| av免费在线看不卡| 久久精品国产亚洲av涩爱| 曰老女人黄片| 精品久久久久久电影网| 人妻一区二区av| 亚洲精品日本国产第一区| 成人国产麻豆网| 亚洲欧美成人精品一区二区| 欧美 亚洲 国产 日韩一| 精品久久久久久久久亚洲| 80岁老熟妇乱子伦牲交| 国语对白做爰xxxⅹ性视频网站| 制服诱惑二区| 亚洲精品久久成人aⅴ小说 | 亚洲,欧美,日韩| a级毛片黄视频| 亚洲怡红院男人天堂| 亚洲无线观看免费| 在线 av 中文字幕| 国产精品秋霞免费鲁丝片| 久久av网站| 亚洲精品日本国产第一区| 一区二区av电影网| 亚洲无线观看免费| 成年人午夜在线观看视频| 国产精品秋霞免费鲁丝片| 99国产综合亚洲精品| 国产精品久久久久久精品电影小说| 亚洲av成人精品一二三区| 中国美白少妇内射xxxbb| 女性被躁到高潮视频| 最黄视频免费看| 少妇的逼水好多| av电影中文网址| 少妇被粗大猛烈的视频| 亚洲人成网站在线观看播放| 国产精品久久久久成人av| 最新中文字幕久久久久| 国产精品不卡视频一区二区| 久久久久网色| 少妇人妻久久综合中文| 伊人久久精品亚洲午夜|