• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Forest Canopy Flow Analysis Using Turbulence Model with Source/Sink Terms

    2015-08-07 10:54:14YANGHui楊會(huì)FUHaiming付海明
    關(guān)鍵詞:三大法寶發(fā)力師資隊(duì)伍

    YANG Hui(楊會(huì)),F(xiàn)U Hai-ming(付海明)

    College of Environmental Science and Engineering,Donghua University,Shanghai201620,China

    Forest Canopy Flow Analysis Using Turbulence Model with Source/Sink Terms

    YANG Hui(楊會(huì)),F(xiàn)U Hai-ming(付海明)*

    College of Environmental Science and Engineering,Donghua University,Shanghai201620,China

    A com putational fluid dynam ics(CFD)model was presented to simulate wind flow over a forest canopy for analyzing the w ind flow within and above forest canopies.Unlike previous studies on the canopy flow,the effect of canopy contour on the canopy was considered to develop the simulation method into amore general but comp lex case of w ind flow over a forest canopy,using cedrus deodara and cinnamomum camphora.The desire of this work ismainlymotivated to provide a rationalway for predicting the wind flow within and above vegetation canopies.The model of canopy is not incorporated in the geometricalmodel,and it uses a porous domain combined with k-εtwo-equation turbulence model with source/sink term s.The objectives of this paper are to analyze the contour of pressure and velocity and com pare the simulation results with other works and field measurements.Results are encouraging,as themodel profiles ofmean velocity(u)qualitatively agree wellwith other works com pared with and quantitatively have sim ilar exp lanations as several authors.In conclusion,it is demonstrated that the adoption turbulence model with source/sink terms for forest canopies is proved to be a physically accurate and numerically robust method.The model and method are recommended for future use in simulating turbulent flows in forest canopies.

    k-ε;source/sink terms;mean velocity;forest canopy

    Introduction

    In most regions of the world,w indbreaks are vital in specialized agriculture and horticulture,and information about the w ind flow within the vegetation canopy is important for meteorological,agricultural and ecological studies.For a long time,the scientific study of forest canopies has been motivated by the research of the turbulence and vegetation wind flow within and above a plant canopy.Though w ind flow predictions are essential to obtain accurate site assessments,there have been only a limited number of experimental studies of w ind flow within and above the vegetation canopy.Shaw etal.[1]obtained measured values of momentum and heat fluxes at each height within a corn canopy;W ilson et al.[2]obtained normalized profiles of mean w ind speed and momentum flux from withincanopy and canopy-top measurements;Gash[3]obtained turbulence intensity and w ind velocity near a forest-h(huán)ealth interface;Raupach et al.[4]had measured w ind velocity within a model plant in a w ind tunnel;Denmead and Bradley[5]performed experimental studies for scalar transportation on forest canopies;Irvine et al.[6]measured the w ind velocity and the turbulence intensity from a Sitka spruce forest.Duman etal.[7]measured the wind velocity dissipation and turbulent dispersion in atmospheric boundary-layer and canopy flows.Reynolds[8]developed and validated lagrangian probability density function model of horizontally homogeneous turbulencewithin and above plant canopies.Since it is difficult and expensive to perform experiments for measuring airflow within and above forest canopies,for the past several years,various kinds of numerical approaches have been developed as possible solutions to address the experimental problem.However,accurate prediction of w ind flow is difficult due to the complexity in the array of vegetation elements and complex processes of air momentum and eddy diffusion within and above a plant canopy.For a long time the conventional gradient-diffusion theory(K-theory)has been used to study the turbulent air flow within and above the canopy flow.However,calculations based on K-theory don't agree well with field experimental data.A nonlocal closure method for modeling turbulent air flow in the planetary boundary layer(PBL),namely transient turbulent theory(T-theory)has been developed by Stull et al.[9-13]and Ni[14]. Zeng and Takahashi[15]predicted the wind flow within and above vegetation canopies by first-order closure model,while Albertson et al.[16]used a large eddy simulation(LES)model to simulate eddymotion for3D canopy flows.The advantage of the second-order closure model is that it solves an actual transport equation forε[17].Yang et al.[18]and Schlegel et al.[19]offered a detailed view of the recirculation regions,and their sensitivity to leaf area index(LAI)by using LES. Other study[20]puts forward a comprehensive discussion regarding the influence of complex terrain and forest edges on themean and turbulent flow statistics.

    1 Methodology

    1.1 Governing equations

    The Reynolds-averaged Navier-Stokes(RANS)equations in their conservation form and the k-εturbulence model were used for thiswork.Assum ing air asan incompressible,viscous,isothermal and New tonian fluid,the steady state 3D RANS governing equations in Cartesian coordinates and introducing the source terms for the canopy interactions,are given as[21]:

    whereρ[kg·m-3]is the air density,uiand uj[m·s-1]are the air velocity components,xiand xjare the Cartesian coordinate,p[Pa]is the pressure,μt[kg·m-1·s-1]is the turbulent viscosity,and Su[kg·m-2·s-2]is themomentum source term.is the turbulent Reynolds stress tensor which is modeled by adopting the extended Boussinesq hypothesis[22],which relates the turbulent stresses to the mean rate of deformation.

    where k[m2·s-2]is the mean turbulent kinetic energy,and δijis the Kronecker delta(δij=1 if i=j,andδij=0 if i≠j).Turbulent viscosityμtcan be defined using the turbulent kinetic energy k and the turbulent kinetic energy dissipation rateε:

    Here Cμis a constantwith k andεgiven as:

    where lmis them ixing length.Then k andεfrom the standard model aremodelled as[23]:

    where Sk[m2·s-3]and Sε[m2·s-4]are the source terms for the k andεequations.The production of kinetic energy,Pk[m2·s-3]is given by

    Neglecting viscous drag relative to form drag,the canopy momentum source,Suin Eq.(2)is then given by[24]

    where Cdis the dimensionless drag coefficient,A is the leaf area density,and U is the average velocity.

    Skand Sεare source terms representative of the turbulence generation due to breakage of the mean-flow motion of the vegetation elements[25]:

    whereβp(∈[0,1])is the fraction of the mean flow kinetic energy converted to wake-generated k by canopy drag,andβdhas less physicalmeaning but is considered as the fraction of k dissipated by interactions with the vegetation.The constant Cε4in the Sεmodel is justified by mixing length anisotropy[24]. Table 1 presents a summary of all the contants of the stand k-ε turbulencemodel.

    Table 1 Constants of standard k-εturbulentmodel

    1.2 Simulation cases

    The whole cedrus deodara and cinnamomum camphora field are included in simulations.The boundary conditions considered for the simulations are shown in Fig.1.Air is assumed to flow into the simulation domain through a velocityinlet,the inlet horizontal velocity profiles is defined as u(z)=δ0(110m)is the boundary layer depth and leaves it from a pressure-outlet boundary condition.At the ground surface non-slip boundary conditions togetherwith standard wall functions were applied as described by Launder and Spalding[23].A slip boundary condition was assigned to the lateral sides and the domain top.The inlet and outlet boundary conditions are placed at a distance of 5 times the canopy diameter along the x axis in upstream,and 5 times the canopy diameter downstream from the canopy,3 times the canopy diameter along the y axis and 3 times the average height of the tree along the z axis.As can be seen from Fig.1,we have used periodic boundary conditions on the sides of the computational box.Nevertheless,choice of the lateral boundary conditions does notaffect the simulation results as the flow ismainly in the through-plane direction.

    Fig.1 Simulation domain for simulating the effects of trees and direction

    2 Results and Discussion

    This section puts forward a comparison between the experimental measurements and the computational fluid dynam ics(CFD)simulations.Wind velocity results are presented as the ratio of the predicted velocity over the friction velocity u*.The friction velocity u*is evaluated using a reference velocity,and the velocity and the reference height were imposed at the top of the domain(utop)and the height of the domain(Ztop),respectively:

    where K=0.42 is the dimensionless von kármán constant,andis aerodynam ic roughness length(1.28×10-2m).Here,=1.03 m/s.

    2.1 Velocity and pressure fields

    Bothmethods show that the flow deviates around the tree. In the wake behind the trees,the velocity is significantly reduced.Velocity contour plots in Fig.2,while pressure contours plots in Fig.3.The plots are taken on a plane at the center of a canopy domain and a plane between two canopy domains along the directions of flows of cedrus deodara and cinnamomum camphora,respectively.

    Figures 2 and 3 show velocity contours and pressure contours,respectively.Along the simulation domain on the xzplane that passes through the centre of a canopy(y/W=0.7) and the centre between two canopy(y/W=0.5),show ing detail airflow conditions upstream and downstream of the flow of cedrus deodara and cinnamomum camphora,respectively.It illustrates to what extent the two models represent the wake velocity.

    Fig.2 Velocity contours along the simulation domain on the xz planewith inlet velocity u=10 m/s:(a)&(b)cedrus deodara;(c)&(d)cinnamomum camphora

    Fig.3 Pressure contoursalong the simulation domain on the xz plane with inlet velocity u=10 m/s:(a)&(b)cedrus deodara; (c)&(d)cinnamomum camphora

    Due to a blocking e ffect(the air flow is slowing down inside the forest region due to the effects of leaf and branch drag on air flow),strong velocity gradient and pressure gradient can be created,also the blocking can lead to the formation of long recirculative regions(wakes)[26].According to these plots,both the two planes of the velocity at the wake,the average velocity in thewake exhibits an irregular non-symmetric contour pattern.Obviously,themean w ind speed reaches its peak just above the plant canopy,while the static pressure reaches its peak once reaches the vegetation region.

    Figures 4(a)-(b)and(c)-(d)compare the mean velocity u and the static pressure calculated by the k-εtwoequation turbulentmodel with source/sink terms,respectively,with height z/h=1/2.The horizontal velocity passes through the centre between two canopies along the z/h=0.5(Figs.4 (a)and(b))line shows a slight decrease from the fully developed state up to the edge of the vegetation at x/h=-4 and-7 positions for cedrus deodara and cinnamomum camphora,respectively.Then,the air flow accelerates,and strong suppression of themean w ind speed takes place after reaching its second peak at x/h=3.5 and 5 positions,respectively,while the horizontal velocity passing through the centre of a canopy exhibits differentbehaviors along the z/h=0.5(Figs.4(a)and (b))line.Here,in contract to the previous location,the second peak inside the forest canopies is not present anymore and themean velocity strongly suppressed along the entire forest region.Moreover,the flow recovery of w ind speed starts earlier at x/h=0 and-2 positions for cedrus deodara and cinnamomum camphora,respectively,in other words,immediately after leaving the forest region.Obviously,the minimum average w ind speed occurs in the middle of the canopy,where the turbulence intensity reaches its maximum,and rapidly recovery further to leeward.

    Fig.4 Simulated normalized mean wind speed and pressurewith z/h= 0.5:(a)&(b)cedrus deodara;(c)&(d)cinnamomum camphora

    2.2 Profiles of mean air velocities

    Fig.5 Normalized vertical profiles of average longitudinal air velocity (u)obtained by simulations from(a)cedrus deodara and(b) cinnamomum camphora respectively with y/W=0.5

    Figures 5(a)and(b)compare the mean velocity u calculated by the k-εtwo-equation turbulent model with source/sink terms at different characteristic locations:x/h=-3.31,-1.88,-1.11,0.55,and x/h=-5.33,-4.67,-3.50,-2.33 for cedrus deodara and cinnamomum camphora,respectively.Four characteristic locations show detail airflow conditions upstream and downstream of the flow of cedrus deodara and cinnamomum camphora,respectively.The horizontal velocity passes through the centre of vegetation canopies along the y/W=0.5(Figs.5(a)and(b))line shows a decrease from the fully developed state up to the edge of the vegetation canopy at z/h=0.5 location for cedrus deodara and cinnamomum camphora,respectively.Then,the air flow accelerates,and strong suppression of the mean w ind speed takes place after reaching its nadir at about z/h=0.5 for both cedrus deodara and cinnamomum camphora.And the peak of air mean velocity occurs when z/h reaches about 2.Furthermore,the horizontal velocity exhibits different behaviors upstream of the flow,the mean velocity slightly accelerates along entire z axis,and the airmean velocity reaches its peak at about z/h= 2.

    Normalized vertical profiles of average longitudinal air velocity(u)obtained by simulation using the 3D canopies in the domain with source/sink terms in a porous domain are compared with other works and field measurements from Raupach et al.[4],Albertson et al.[16],Duman et al.[7],and Reynolds[8]in Fig.6.And u is normalized with the friction velocity(u*)and the vertical axis(z)is normalized with the average tree height h.The comparison of the simulated mean w ind speed profile with the experimental results from literature shows that there is reasonable agreement for the use of twoequation turbulentmodelwith source/sink terms.

    Fig.6 Normalized vertical profiles between average longitudinal air velocity(u)obtained by simulation and otherworks

    3 Conclusions

    Bymodeling the3D structure of the forest canopy using 2D canopy geometry in which the vegetation is packed in square and circle configurations,itprovides the basis ofmostexsiting forest canopy simulation model that has been developed over the past 50 years.In the paper,3D canopy architectures with similar canopy contour configuration as cedrus deodara and cinnamomum camphora are introduced to predict pressure drop and mean velocity profile.In addition,the inlet horizontal velocity profiles is introduced as u(z)andδ0(110 m)is the boundary layer depth,which are different from the previous studies.

    For turbulent air flow within and above the vegetation canopy,strong turbulent shear takes place within and above the plant canopy due to the effects of leaf and branch drag on air flow.The model profiles of mean velocity(u)qualitatively agree well with other works compared with and quantitatively have similar explanations.A comparison of results from simulated velocity profile and fieldmeasurements shows that the two-equation turbulent model with source/sink terms can wellpredict the wind speed profile within and above the forest canopies.

    However,the mean velocity and static pressure data are lim ited in this paper,and the presented integrated CFD modelling approach will be validated in the further experiments. At the same time,the turbulent kinetic energy k,the turbulent kinetic energy dissipation rateεand the turbulent intensity have not been analyzed and validated.So,in subsequentworks,the shortages showed above will be studied.

    [1]Shaw R H,Silversides R H,ThurtellGW.Some Observations of Turbulence and Turbulent Transport within and above Plant Canopies[J].Boundary-Layer Meteorol,1974,5(4):429-449.

    [2]W ilson J D,Ward D P,Rhurtell G W,et al.Statistics of Atmospheric Turbulence within and above a Corn Canopy[J]. Boundary-Layer Meteorol,1982,24(4):495-519.

    [3]Gash JH C.Observations of Turbulence Downw ind of a Forest-Heath Interface[J].Boundary-Layer Meteorology,1986,36 (3):227-237.

    [4]Raupach M R,Coppin P A,Legg B J.Experiments on Scalar Dispersion within a Model Plant Canopy Part I:the Turbulence Structure[J].Boundary-Layer Meteorology,1986,35(1/2): 21-52.

    [5]Denmead O T,Bradley E F.On Scalar Transport in Plant Canopies[J].Irrigation Science,1987,8(2):131-149.

    [6]Irvine M R,Gardiner B A,Hill M K.The Evolution of Turbulence across a Forest Edge[J].Boundary-Layer Meteorology,1997,84(3):467-496.

    [7]Duman T,Katul G G,Siqueira M B,et al.A Velocity-Dissipation Lagrangian Stochastic Model for Turbulent Dispersion in Atmospheric Boundary-Layer and Canopy Flows[J]. Boundary-Layer Meteorology,2014,152(1):1-18.

    [8]Reynolds A M.Development and Validation of a Lagrangian Probability Density Function Model of Horizontally-Homogeneous Turbulence within and above Plant Canopies[J].Boundary-Layer Meteorology,2012,142(2):193-205.

    [9]Stull R B.Transilient Turbulence Theory.Part I:the Concept of Eddy M ixing across Finite Distances[J].Journal of the Atmospheric Sciences,1984,41(23):3351-3367.

    [11]Stull R B.A Convective Transport Theory for Surface Fluxes[J].Journal of the Atmospheric Sciences,1994,51(1):3-22.

    [12]Stull R B,Hasagswa T.Transilient Turbulence Theory.Part II: Turbulent Adjustment[J].Journal of the Atmospheric Sciences, 1984,41(23):3368-3379.

    [13]Stull R B,Driedonks A G M.Application of the Transilient Turbulence Parameterization to Atmospheric Boundary-Layer Simulations[J].Boundary-Layer Meteorology,1987,40(3): 209-239.

    [14]NiW G.A Coupled Transilience Model for Turbulent Air Flow within Plant Canopies and the Planetary Boundary Layer[J]. Agricultural and Forest Meteorology,1997,86(1/2):77-105.

    [15]Zeng P T,Takahashi H.A First-Order Closure Model for the W ind Flow within and above Vegetation Canopies[J]. Agricultural and ForestMeteorology,2000,103(3):301-313.

    [16]Albertson J D,Katul G G,Wiberg P.Relative Importance of Local and Regional Controls on Coupled Water,Carbon,and Energy Fluxes[J].Advances in Water Resources,2001,24(9/ 10):1103-1118.

    [17]Siqueira M,Katul G,Tanny J.The Effect of the Screen on the Mass,Momentum,and Energy Exchange Rates of a Uniform Crop Situated in an Extensive Screen House[J].Boundary-Layer Meteorology,2012,142(3):339-363.

    [18]Yang B,Raupach M R,Shaw R H,et al.Large-Eddy Simulation of Turbulent Flow across a Forest Edge.Part I:Flow Statistics[J].Boundary-Layer Meteorology,2006,120(3): 377-412.

    建立建全體制機(jī)制是推動(dòng)全行業(yè)創(chuàng)新創(chuàng)業(yè)教育改革的重中之重,完善課程體系建設(shè)、加強(qiáng)師資隊(duì)伍建設(shè)、保障流暢的市場(chǎng)運(yùn)營是完善機(jī)制正常運(yùn)行的三大法寶,配合高效成果轉(zhuǎn)化,加強(qiáng)校企合作,設(shè)立創(chuàng)新創(chuàng)業(yè)孵化基地,多方協(xié)同發(fā)力,為醫(yī)學(xué)生想創(chuàng)業(yè)、能創(chuàng)業(yè)提供更好的平臺(tái)和堅(jiān)實(shí)的保障。

    [19]Schlegel F,Stiller J,Bienert A,et al.Large-Eddy Simulation of Inhomogeneous Canopy Flows Using High Resolution Terrestrial Laser Scanning Data[J].Boundary-Layer Meteorology,2012,142(2):223-243.

    [20]Belcher S E,Harman I N,F(xiàn)innigan J J.The Wind in the willows:Flows in Forest Canopies in Complex Terrain[J]. Annual Review of Fluid Mechanics,2012,44(1):479-504.

    [21]Endalew A M,Hertog M,Gebrehiwot M G,et al.Modelling Airflow within Model Plant Canopies Using an Integrated Approach[J].Computers and Electronics in Agriculture,2009,66(1):9-24.

    [22]Versteeg H K,Malalasekera W.An Introduction to Computational Fluid Dynam ics[M].NJ:Prentice-Hall,Englewood Cliffs,1995:257.

    [23]Launder B E,Spalding D B.The Numerical Computation of Turbulent Flows[J].Computer Methods in Applied Mechanics and Engineering,1974,3(2):269-289.

    [24]Sanz C.A Note on k-εModelling of Vegetation Canopy Air-Flows[J].Boundary-Layer Meteorology,2003,108(1):191-197.

    [25]Katul G G,Mahrt L,Poggi D,et al.One-and Two-Equation Models for Canopy Turbulence[J].Boundary-Layer Meteorology,2004,113(1):81-109.

    [26]Kenjere?S,ter Kuile B.Modelling and Simulations of Turbulent Flows in Urban Areas with Vegetation[J].Journal of Wind Engineering and Industrial Aerodynamics,2013,123A:43-55.

    X513;S731.2

    A

    1672-5220(2015)04-0588-06

    date:2014-07-29

    s:National Natural Science Foundations of China(Nos.51178094,41371445)

    *Correspondence should be addressed to FU Hai-m ing,E-mail:fhm@dhu.edu.cn

    猜你喜歡
    三大法寶發(fā)力師資隊(duì)伍
    胡永明:“糧”心人的三大法寶
    關(guān)于加強(qiáng)鐵路職工培訓(xùn)師資隊(duì)伍建設(shè)的思考
    三大法寶助我高考數(shù)學(xué)滿分上北大
    趣·合·拓——打造小學(xué)數(shù)學(xué)高效課堂的三大法寶
    甘肅教育(2020年18期)2020-10-28 09:07:06
    人大發(fā)力 讓“執(zhí)行難”不再難
    翻譯碩士師資隊(duì)伍建設(shè)的反思
    班主任的三大法寶
    這12件事,十九大將全面發(fā)力
    瞄準(zhǔn)“房子不是用來炒的”發(fā)力
    2016年推進(jìn)新型城鎮(zhèn)化在發(fā)力
    99视频精品全部免费 在线| 久久99热这里只有精品18| 精品久久久久久成人av| 久久久久久久精品吃奶| 12—13女人毛片做爰片一| 欧美xxxx性猛交bbbb| 久久草成人影院| 九九爱精品视频在线观看| 麻豆成人午夜福利视频| 国产男靠女视频免费网站| 日日摸夜夜添夜夜添小说| 桃色一区二区三区在线观看| 欧美成人a在线观看| 亚洲av.av天堂| 欧美中文日本在线观看视频| 偷拍熟女少妇极品色| 91麻豆精品激情在线观看国产| 三级国产精品欧美在线观看| 人人妻人人看人人澡| 国产美女午夜福利| 日本免费a在线| 神马国产精品三级电影在线观看| 蜜桃久久精品国产亚洲av| 男插女下体视频免费在线播放| 欧美日韩中文字幕国产精品一区二区三区| av在线观看视频网站免费| 精品福利观看| 国产av麻豆久久久久久久| aaaaa片日本免费| 免费观看的影片在线观看| 超碰av人人做人人爽久久| 午夜a级毛片| 亚洲第一区二区三区不卡| 欧美激情久久久久久爽电影| 又爽又黄a免费视频| 日日干狠狠操夜夜爽| www.色视频.com| 麻豆久久精品国产亚洲av| 亚洲,欧美,日韩| 国产精品久久电影中文字幕| 91麻豆av在线| 欧美黑人巨大hd| 长腿黑丝高跟| 无遮挡黄片免费观看| 成年版毛片免费区| 成人一区二区视频在线观看| 99热这里只有是精品在线观看| 乱人视频在线观看| 少妇丰满av| 日本免费一区二区三区高清不卡| 成年版毛片免费区| 国产欧美日韩精品一区二区| 亚洲欧美精品综合久久99| 国产亚洲av嫩草精品影院| 国产一区二区在线av高清观看| 一区二区三区高清视频在线| 欧美日韩瑟瑟在线播放| 啦啦啦观看免费观看视频高清| 成年免费大片在线观看| 97热精品久久久久久| 国产亚洲91精品色在线| eeuss影院久久| 久久精品人妻少妇| 日本成人三级电影网站| 中文字幕高清在线视频| 一卡2卡三卡四卡精品乱码亚洲| 精品久久久久久久末码| 深夜精品福利| 国产一区二区三区av在线 | 悠悠久久av| 搡老熟女国产l中国老女人| 乱码一卡2卡4卡精品| 成人鲁丝片一二三区免费| 日本一二三区视频观看| 最近中文字幕高清免费大全6 | 女人十人毛片免费观看3o分钟| 亚洲18禁久久av| 国产真实伦视频高清在线观看 | 美女高潮喷水抽搐中文字幕| 精品人妻视频免费看| 亚洲电影在线观看av| 在线天堂最新版资源| 成人高潮视频无遮挡免费网站| 日韩欧美在线乱码| 日本一本二区三区精品| 成人亚洲精品av一区二区| 国产69精品久久久久777片| a在线观看视频网站| 日韩欧美免费精品| 欧美一区二区国产精品久久精品| 久久久久久久久久黄片| 五月伊人婷婷丁香| 日本与韩国留学比较| 亚洲av中文av极速乱 | 久久精品综合一区二区三区| 丰满的人妻完整版| 97人妻精品一区二区三区麻豆| 一进一出抽搐gif免费好疼| 人妻夜夜爽99麻豆av| 亚洲欧美日韩东京热| 久久久久免费精品人妻一区二区| 又黄又爽又刺激的免费视频.| 日韩欧美国产在线观看| 国产v大片淫在线免费观看| 国产中年淑女户外野战色| 日韩av在线大香蕉| 亚洲av美国av| 九九久久精品国产亚洲av麻豆| 亚洲av中文av极速乱 | 国产精品日韩av在线免费观看| 人人妻,人人澡人人爽秒播| 欧美精品啪啪一区二区三区| 窝窝影院91人妻| av黄色大香蕉| 麻豆精品久久久久久蜜桃| 国产成人福利小说| 日本与韩国留学比较| 中文字幕高清在线视频| 中文在线观看免费www的网站| 久久99热6这里只有精品| 99精品久久久久人妻精品| 一区二区三区四区激情视频 | 亚洲欧美日韩高清专用| 亚洲七黄色美女视频| 毛片女人毛片| 麻豆精品久久久久久蜜桃| 久久午夜福利片| 国产一区二区三区在线臀色熟女| 免费不卡的大黄色大毛片视频在线观看 | 一本精品99久久精品77| 俺也久久电影网| 日日干狠狠操夜夜爽| 国产成人福利小说| 国产三级中文精品| 色5月婷婷丁香| 少妇的逼水好多| 成人二区视频| 精品欧美国产一区二区三| 少妇裸体淫交视频免费看高清| 久久久久久伊人网av| 午夜福利欧美成人| 亚洲经典国产精华液单| 淫妇啪啪啪对白视频| 欧美色欧美亚洲另类二区| 成人无遮挡网站| 俄罗斯特黄特色一大片| 美女黄网站色视频| 最新中文字幕久久久久| 日韩精品青青久久久久久| 日本成人三级电影网站| 99久久九九国产精品国产免费| 国产亚洲精品综合一区在线观看| 免费在线观看日本一区| 精品久久久久久久人妻蜜臀av| 日本在线视频免费播放| 亚洲avbb在线观看| 国产69精品久久久久777片| 午夜激情欧美在线| 国产69精品久久久久777片| 夜夜夜夜夜久久久久| 精品人妻熟女av久视频| 久99久视频精品免费| 成人无遮挡网站| 久久久久久久精品吃奶| 亚洲精品国产成人久久av| 中文字幕熟女人妻在线| 97超视频在线观看视频| 99热只有精品国产| 美女高潮喷水抽搐中文字幕| 国产不卡一卡二| 草草在线视频免费看| 男女下面进入的视频免费午夜| 最好的美女福利视频网| 波野结衣二区三区在线| 少妇熟女aⅴ在线视频| 国产毛片a区久久久久| 欧美高清成人免费视频www| 亚洲av成人精品一区久久| 直男gayav资源| 天堂影院成人在线观看| 久久人妻av系列| 久久久精品大字幕| 国产在线精品亚洲第一网站| 国产精品一区二区免费欧美| 天堂网av新在线| 日日摸夜夜添夜夜添小说| 久久久成人免费电影| av国产免费在线观看| 日本色播在线视频| 最新中文字幕久久久久| 色综合亚洲欧美另类图片| 丰满人妻一区二区三区视频av| 色综合亚洲欧美另类图片| 精品午夜福利在线看| 日韩强制内射视频| 欧美成人性av电影在线观看| 午夜福利在线观看吧| 国产亚洲av嫩草精品影院| 狂野欧美白嫩少妇大欣赏| 欧美色欧美亚洲另类二区| 欧美日韩亚洲国产一区二区在线观看| 如何舔出高潮| 一本精品99久久精品77| 人妻丰满熟妇av一区二区三区| 免费一级毛片在线播放高清视频| 波多野结衣巨乳人妻| 在线国产一区二区在线| 伦精品一区二区三区| 女同久久另类99精品国产91| 婷婷精品国产亚洲av| 亚洲av中文字字幕乱码综合| 99久久久亚洲精品蜜臀av| 日本五十路高清| 熟女人妻精品中文字幕| 欧美精品国产亚洲| 偷拍熟女少妇极品色| 国产精华一区二区三区| 亚洲人与动物交配视频| 女的被弄到高潮叫床怎么办 | 国产高潮美女av| 国产男靠女视频免费网站| 亚洲美女视频黄频| 99在线人妻在线中文字幕| 国产精品精品国产色婷婷| 超碰av人人做人人爽久久| 亚洲黑人精品在线| 99riav亚洲国产免费| x7x7x7水蜜桃| 精品久久久久久成人av| 国产在线精品亚洲第一网站| 精品久久久久久久人妻蜜臀av| 欧美人与善性xxx| 伦精品一区二区三区| 日韩中文字幕欧美一区二区| 亚洲成人久久性| 欧美一区二区精品小视频在线| 亚洲中文字幕日韩| 国产乱人视频| 一a级毛片在线观看| 精品午夜福利在线看| 国产精品三级大全| 岛国在线免费视频观看| 毛片一级片免费看久久久久 | 成年免费大片在线观看| av在线老鸭窝| 91在线观看av| 国产精品久久久久久久电影| 久久精品人妻少妇| 亚洲av.av天堂| 最近视频中文字幕2019在线8| 午夜老司机福利剧场| 美女高潮的动态| 日日夜夜操网爽| 免费av不卡在线播放| 亚洲精品在线观看二区| 国产精品免费一区二区三区在线| 男女边吃奶边做爰视频| 国产精品久久视频播放| 最新在线观看一区二区三区| 中文在线观看免费www的网站| 国产精品亚洲美女久久久| 久久久久久九九精品二区国产| 久久99热这里只有精品18| 亚洲性夜色夜夜综合| 在线观看午夜福利视频| 桃色一区二区三区在线观看| 在线播放国产精品三级| 特级一级黄色大片| 一区二区三区高清视频在线| 搡女人真爽免费视频火全软件 | 亚洲av二区三区四区| 国产真实伦视频高清在线观看 | 99热这里只有精品一区| 成人综合一区亚洲| 国产精品一区二区三区四区免费观看 | 最近中文字幕高清免费大全6 | 亚洲图色成人| 少妇的逼水好多| 久久精品91蜜桃| 久久国产乱子免费精品| 淫秽高清视频在线观看| 国产成人影院久久av| 狂野欧美白嫩少妇大欣赏| 亚洲第一电影网av| 少妇的逼水好多| 中文亚洲av片在线观看爽| 91久久精品国产一区二区成人| 欧美激情在线99| 热99re8久久精品国产| 亚洲人成网站高清观看| 欧美日韩瑟瑟在线播放| 人人妻,人人澡人人爽秒播| 欧美黑人欧美精品刺激| 中国美女看黄片| 蜜桃亚洲精品一区二区三区| av专区在线播放| 永久网站在线| 国产91精品成人一区二区三区| 久久6这里有精品| 亚洲一区高清亚洲精品| 99热精品在线国产| 国产极品精品免费视频能看的| 最新中文字幕久久久久| 免费观看人在逋| 可以在线观看的亚洲视频| 日韩欧美国产在线观看| 亚洲av二区三区四区| 精品久久久久久,| 嫩草影院精品99| bbb黄色大片| 国产精品电影一区二区三区| 在线a可以看的网站| 黄片wwwwww| 日日干狠狠操夜夜爽| 国产69精品久久久久777片| 亚洲国产日韩欧美精品在线观看| 欧美三级亚洲精品| 国产伦精品一区二区三区视频9| 制服丝袜大香蕉在线| 99热这里只有是精品在线观看| 人妻丰满熟妇av一区二区三区| 亚洲国产精品合色在线| 国产精品福利在线免费观看| 国产精品三级大全| 51国产日韩欧美| 久久精品国产亚洲av涩爱 | 精品免费久久久久久久清纯| 国产亚洲精品久久久com| 欧美国产日韩亚洲一区| 亚洲av二区三区四区| 97人妻精品一区二区三区麻豆| 国产黄a三级三级三级人| 日本 欧美在线| 色尼玛亚洲综合影院| 熟妇人妻久久中文字幕3abv| 日韩精品青青久久久久久| 国产黄a三级三级三级人| 午夜精品在线福利| 国产aⅴ精品一区二区三区波| 欧美不卡视频在线免费观看| 色噜噜av男人的天堂激情| 免费人成视频x8x8入口观看| 欧美日韩亚洲国产一区二区在线观看| 欧美日韩国产亚洲二区| 成人三级黄色视频| 99九九线精品视频在线观看视频| 美女 人体艺术 gogo| 久久久久久久久中文| 午夜福利在线在线| 久久久精品欧美日韩精品| 美女 人体艺术 gogo| 午夜免费男女啪啪视频观看 | 成人毛片a级毛片在线播放| 色综合站精品国产| 欧美色欧美亚洲另类二区| 国产精品亚洲美女久久久| av国产免费在线观看| а√天堂www在线а√下载| 99热这里只有精品一区| 99久久九九国产精品国产免费| 99久久精品热视频| 精品久久久久久久末码| 国产大屁股一区二区在线视频| 全区人妻精品视频| 十八禁网站免费在线| 乱系列少妇在线播放| 国产精品人妻久久久久久| 日本与韩国留学比较| 制服丝袜大香蕉在线| 人妻久久中文字幕网| 国产午夜精品论理片| eeuss影院久久| 午夜老司机福利剧场| 精品久久久噜噜| 男女啪啪激烈高潮av片| 国产精品女同一区二区软件 | 精品一区二区三区人妻视频| 亚洲av成人av| 久久午夜亚洲精品久久| 成人一区二区视频在线观看| 久久精品人妻少妇| 欧美性猛交黑人性爽| 久久久久性生活片| 天堂av国产一区二区熟女人妻| 国产一级毛片七仙女欲春2| 亚洲av成人av| 国产美女午夜福利| 在线国产一区二区在线| 亚洲自拍偷在线| 成人午夜高清在线视频| 精品久久久久久久久久久久久| 国语自产精品视频在线第100页| 日本 av在线| 欧美成人一区二区免费高清观看| 又黄又爽又刺激的免费视频.| 欧美日韩黄片免| 亚洲熟妇熟女久久| 国产美女午夜福利| 搡老熟女国产l中国老女人| 波多野结衣高清无吗| 69人妻影院| 精品人妻一区二区三区麻豆 | 精品人妻一区二区三区麻豆 | 日本在线视频免费播放| 国产亚洲精品久久久久久毛片| 免费不卡的大黄色大毛片视频在线观看 | 成人高潮视频无遮挡免费网站| 日本五十路高清| 日本爱情动作片www.在线观看 | 国产亚洲欧美98| 欧美日韩瑟瑟在线播放| 亚洲一级一片aⅴ在线观看| 男人的好看免费观看在线视频| 国产探花在线观看一区二区| 人人妻,人人澡人人爽秒播| 色综合站精品国产| 成年免费大片在线观看| 亚洲国产精品合色在线| 欧美bdsm另类| 日本一二三区视频观看| 亚洲av中文字字幕乱码综合| 人人妻人人澡欧美一区二区| 亚洲黑人精品在线| 中出人妻视频一区二区| 国产高清不卡午夜福利| 久久久久久久久大av| 亚洲国产色片| 在线观看舔阴道视频| 久久精品夜夜夜夜夜久久蜜豆| 日韩高清综合在线| 国产伦精品一区二区三区四那| 国产极品精品免费视频能看的| 亚洲欧美日韩无卡精品| 毛片一级片免费看久久久久 | 欧美高清成人免费视频www| 成年女人看的毛片在线观看| 午夜a级毛片| 国产一区二区激情短视频| 美女 人体艺术 gogo| 国产毛片a区久久久久| 一进一出好大好爽视频| 国产美女午夜福利| 又黄又爽又免费观看的视频| 波多野结衣高清作品| 美女 人体艺术 gogo| 麻豆av噜噜一区二区三区| 内射极品少妇av片p| 久久中文看片网| 99热这里只有是精品在线观看| 国产高清不卡午夜福利| 成年女人永久免费观看视频| 色av中文字幕| 国产午夜福利久久久久久| 精品久久久久久久久av| 亚洲欧美精品综合久久99| 日本-黄色视频高清免费观看| 黄色视频,在线免费观看| 午夜久久久久精精品| 男女啪啪激烈高潮av片| 亚洲五月天丁香| 少妇的逼水好多| 3wmmmm亚洲av在线观看| 久久久色成人| 欧美日韩瑟瑟在线播放| 九色成人免费人妻av| 蜜桃久久精品国产亚洲av| 老熟妇仑乱视频hdxx| 校园人妻丝袜中文字幕| 国产成人a区在线观看| 欧美日本亚洲视频在线播放| a在线观看视频网站| 国产亚洲精品av在线| 国产高清激情床上av| 亚洲成人久久爱视频| 一个人看视频在线观看www免费| 久久婷婷人人爽人人干人人爱| 亚洲欧美精品综合久久99| 免费电影在线观看免费观看| 狂野欧美激情性xxxx在线观看| 免费看日本二区| 91久久精品电影网| 女人十人毛片免费观看3o分钟| 又黄又爽又刺激的免费视频.| 精华霜和精华液先用哪个| 在线免费十八禁| 亚洲专区国产一区二区| 成人特级av手机在线观看| 亚洲久久久久久中文字幕| 国产精品综合久久久久久久免费| 男女视频在线观看网站免费| 色5月婷婷丁香| 九色成人免费人妻av| 日韩欧美在线二视频| 欧美日本亚洲视频在线播放| 国产精品嫩草影院av在线观看 | 欧美+日韩+精品| 免费不卡的大黄色大毛片视频在线观看 | 亚洲久久久久久中文字幕| 中文字幕av成人在线电影| 欧美xxxx黑人xx丫x性爽| 99久久精品一区二区三区| 丰满的人妻完整版| x7x7x7水蜜桃| 1000部很黄的大片| 国产精品久久视频播放| 国产伦一二天堂av在线观看| 亚洲av免费在线观看| 极品教师在线视频| 久久欧美精品欧美久久欧美| 一个人观看的视频www高清免费观看| 赤兔流量卡办理| 久久亚洲精品不卡| 夜夜夜夜夜久久久久| av.在线天堂| 亚洲五月天丁香| 熟妇人妻久久中文字幕3abv| 国产一区二区在线av高清观看| 欧美国产日韩亚洲一区| 国产一区二区三区av在线 | 一区二区三区高清视频在线| 中亚洲国语对白在线视频| 亚洲无线观看免费| 亚洲av日韩精品久久久久久密| 国产在视频线在精品| 亚洲成人精品中文字幕电影| 99精品久久久久人妻精品| 亚洲电影在线观看av| 天天躁日日操中文字幕| 国产精品不卡视频一区二区| 午夜福利欧美成人| 美女 人体艺术 gogo| 日本黄大片高清| 日韩欧美精品免费久久| 欧美激情久久久久久爽电影| 亚洲最大成人av| 国产成人a区在线观看| 热99在线观看视频| 99久国产av精品| 国产午夜精品久久久久久一区二区三区 | 日韩精品中文字幕看吧| 99九九线精品视频在线观看视频| av专区在线播放| 长腿黑丝高跟| 在线播放国产精品三级| 欧美bdsm另类| 又爽又黄无遮挡网站| 亚洲精品一区av在线观看| 亚洲国产色片| 亚洲中文字幕一区二区三区有码在线看| 久久天躁狠狠躁夜夜2o2o| 一个人看视频在线观看www免费| 国产精品精品国产色婷婷| 日韩欧美在线二视频| 黄片wwwwww| 成年女人毛片免费观看观看9| 欧美又色又爽又黄视频| 可以在线观看的亚洲视频| 国产免费一级a男人的天堂| 嫁个100分男人电影在线观看| 国产乱人伦免费视频| 两个人视频免费观看高清| 老司机深夜福利视频在线观看| 国产精品爽爽va在线观看网站| 成人欧美大片| 波多野结衣高清作品| 成人美女网站在线观看视频| 亚洲自偷自拍三级| 内地一区二区视频在线| 日本黄大片高清| 男人的好看免费观看在线视频| 在线观看免费视频日本深夜| 欧美黑人巨大hd| av福利片在线观看| 日韩高清综合在线| 欧美三级亚洲精品| 精品一区二区三区视频在线| 成人毛片a级毛片在线播放| 熟女人妻精品中文字幕| 中文字幕av成人在线电影| 国产美女午夜福利| 男女啪啪激烈高潮av片| 可以在线观看的亚洲视频| 成人毛片a级毛片在线播放| 久99久视频精品免费| 欧美日本亚洲视频在线播放| 国产人妻一区二区三区在| 日韩欧美国产一区二区入口| 午夜激情欧美在线| 人人妻,人人澡人人爽秒播| 免费看av在线观看网站| 91av网一区二区| 久久草成人影院| 一区福利在线观看| 在线播放国产精品三级| 国产精品,欧美在线| 又黄又爽又刺激的免费视频.| 日本精品一区二区三区蜜桃| 免费在线观看日本一区| 女生性感内裤真人,穿戴方法视频| 国产精品电影一区二区三区| 国产精品日韩av在线免费观看| 色综合婷婷激情| 我要搜黄色片| 99久久九九国产精品国产免费| 毛片一级片免费看久久久久 | 91av网一区二区| 99热这里只有精品一区| 免费av毛片视频| 天堂网av新在线| 亚洲无线在线观看| 久久久久久久久久成人| 亚洲欧美日韩卡通动漫| 欧美区成人在线视频| 国产欧美日韩一区二区精品| 嫩草影视91久久|