• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Forest Canopy Flow Analysis Using Turbulence Model with Source/Sink Terms

    2015-08-07 10:54:14YANGHui楊會(huì)FUHaiming付海明
    關(guān)鍵詞:三大法寶發(fā)力師資隊(duì)伍

    YANG Hui(楊會(huì)),F(xiàn)U Hai-ming(付海明)

    College of Environmental Science and Engineering,Donghua University,Shanghai201620,China

    Forest Canopy Flow Analysis Using Turbulence Model with Source/Sink Terms

    YANG Hui(楊會(huì)),F(xiàn)U Hai-ming(付海明)*

    College of Environmental Science and Engineering,Donghua University,Shanghai201620,China

    A com putational fluid dynam ics(CFD)model was presented to simulate wind flow over a forest canopy for analyzing the w ind flow within and above forest canopies.Unlike previous studies on the canopy flow,the effect of canopy contour on the canopy was considered to develop the simulation method into amore general but comp lex case of w ind flow over a forest canopy,using cedrus deodara and cinnamomum camphora.The desire of this work ismainlymotivated to provide a rationalway for predicting the wind flow within and above vegetation canopies.The model of canopy is not incorporated in the geometricalmodel,and it uses a porous domain combined with k-εtwo-equation turbulence model with source/sink term s.The objectives of this paper are to analyze the contour of pressure and velocity and com pare the simulation results with other works and field measurements.Results are encouraging,as themodel profiles ofmean velocity(u)qualitatively agree wellwith other works com pared with and quantitatively have sim ilar exp lanations as several authors.In conclusion,it is demonstrated that the adoption turbulence model with source/sink terms for forest canopies is proved to be a physically accurate and numerically robust method.The model and method are recommended for future use in simulating turbulent flows in forest canopies.

    k-ε;source/sink terms;mean velocity;forest canopy

    Introduction

    In most regions of the world,w indbreaks are vital in specialized agriculture and horticulture,and information about the w ind flow within the vegetation canopy is important for meteorological,agricultural and ecological studies.For a long time,the scientific study of forest canopies has been motivated by the research of the turbulence and vegetation wind flow within and above a plant canopy.Though w ind flow predictions are essential to obtain accurate site assessments,there have been only a limited number of experimental studies of w ind flow within and above the vegetation canopy.Shaw etal.[1]obtained measured values of momentum and heat fluxes at each height within a corn canopy;W ilson et al.[2]obtained normalized profiles of mean w ind speed and momentum flux from withincanopy and canopy-top measurements;Gash[3]obtained turbulence intensity and w ind velocity near a forest-h(huán)ealth interface;Raupach et al.[4]had measured w ind velocity within a model plant in a w ind tunnel;Denmead and Bradley[5]performed experimental studies for scalar transportation on forest canopies;Irvine et al.[6]measured the w ind velocity and the turbulence intensity from a Sitka spruce forest.Duman etal.[7]measured the wind velocity dissipation and turbulent dispersion in atmospheric boundary-layer and canopy flows.Reynolds[8]developed and validated lagrangian probability density function model of horizontally homogeneous turbulencewithin and above plant canopies.Since it is difficult and expensive to perform experiments for measuring airflow within and above forest canopies,for the past several years,various kinds of numerical approaches have been developed as possible solutions to address the experimental problem.However,accurate prediction of w ind flow is difficult due to the complexity in the array of vegetation elements and complex processes of air momentum and eddy diffusion within and above a plant canopy.For a long time the conventional gradient-diffusion theory(K-theory)has been used to study the turbulent air flow within and above the canopy flow.However,calculations based on K-theory don't agree well with field experimental data.A nonlocal closure method for modeling turbulent air flow in the planetary boundary layer(PBL),namely transient turbulent theory(T-theory)has been developed by Stull et al.[9-13]and Ni[14]. Zeng and Takahashi[15]predicted the wind flow within and above vegetation canopies by first-order closure model,while Albertson et al.[16]used a large eddy simulation(LES)model to simulate eddymotion for3D canopy flows.The advantage of the second-order closure model is that it solves an actual transport equation forε[17].Yang et al.[18]and Schlegel et al.[19]offered a detailed view of the recirculation regions,and their sensitivity to leaf area index(LAI)by using LES. Other study[20]puts forward a comprehensive discussion regarding the influence of complex terrain and forest edges on themean and turbulent flow statistics.

    1 Methodology

    1.1 Governing equations

    The Reynolds-averaged Navier-Stokes(RANS)equations in their conservation form and the k-εturbulence model were used for thiswork.Assum ing air asan incompressible,viscous,isothermal and New tonian fluid,the steady state 3D RANS governing equations in Cartesian coordinates and introducing the source terms for the canopy interactions,are given as[21]:

    whereρ[kg·m-3]is the air density,uiand uj[m·s-1]are the air velocity components,xiand xjare the Cartesian coordinate,p[Pa]is the pressure,μt[kg·m-1·s-1]is the turbulent viscosity,and Su[kg·m-2·s-2]is themomentum source term.is the turbulent Reynolds stress tensor which is modeled by adopting the extended Boussinesq hypothesis[22],which relates the turbulent stresses to the mean rate of deformation.

    where k[m2·s-2]is the mean turbulent kinetic energy,and δijis the Kronecker delta(δij=1 if i=j,andδij=0 if i≠j).Turbulent viscosityμtcan be defined using the turbulent kinetic energy k and the turbulent kinetic energy dissipation rateε:

    Here Cμis a constantwith k andεgiven as:

    where lmis them ixing length.Then k andεfrom the standard model aremodelled as[23]:

    where Sk[m2·s-3]and Sε[m2·s-4]are the source terms for the k andεequations.The production of kinetic energy,Pk[m2·s-3]is given by

    Neglecting viscous drag relative to form drag,the canopy momentum source,Suin Eq.(2)is then given by[24]

    where Cdis the dimensionless drag coefficient,A is the leaf area density,and U is the average velocity.

    Skand Sεare source terms representative of the turbulence generation due to breakage of the mean-flow motion of the vegetation elements[25]:

    whereβp(∈[0,1])is the fraction of the mean flow kinetic energy converted to wake-generated k by canopy drag,andβdhas less physicalmeaning but is considered as the fraction of k dissipated by interactions with the vegetation.The constant Cε4in the Sεmodel is justified by mixing length anisotropy[24]. Table 1 presents a summary of all the contants of the stand k-ε turbulencemodel.

    Table 1 Constants of standard k-εturbulentmodel

    1.2 Simulation cases

    The whole cedrus deodara and cinnamomum camphora field are included in simulations.The boundary conditions considered for the simulations are shown in Fig.1.Air is assumed to flow into the simulation domain through a velocityinlet,the inlet horizontal velocity profiles is defined as u(z)=δ0(110m)is the boundary layer depth and leaves it from a pressure-outlet boundary condition.At the ground surface non-slip boundary conditions togetherwith standard wall functions were applied as described by Launder and Spalding[23].A slip boundary condition was assigned to the lateral sides and the domain top.The inlet and outlet boundary conditions are placed at a distance of 5 times the canopy diameter along the x axis in upstream,and 5 times the canopy diameter downstream from the canopy,3 times the canopy diameter along the y axis and 3 times the average height of the tree along the z axis.As can be seen from Fig.1,we have used periodic boundary conditions on the sides of the computational box.Nevertheless,choice of the lateral boundary conditions does notaffect the simulation results as the flow ismainly in the through-plane direction.

    Fig.1 Simulation domain for simulating the effects of trees and direction

    2 Results and Discussion

    This section puts forward a comparison between the experimental measurements and the computational fluid dynam ics(CFD)simulations.Wind velocity results are presented as the ratio of the predicted velocity over the friction velocity u*.The friction velocity u*is evaluated using a reference velocity,and the velocity and the reference height were imposed at the top of the domain(utop)and the height of the domain(Ztop),respectively:

    where K=0.42 is the dimensionless von kármán constant,andis aerodynam ic roughness length(1.28×10-2m).Here,=1.03 m/s.

    2.1 Velocity and pressure fields

    Bothmethods show that the flow deviates around the tree. In the wake behind the trees,the velocity is significantly reduced.Velocity contour plots in Fig.2,while pressure contours plots in Fig.3.The plots are taken on a plane at the center of a canopy domain and a plane between two canopy domains along the directions of flows of cedrus deodara and cinnamomum camphora,respectively.

    Figures 2 and 3 show velocity contours and pressure contours,respectively.Along the simulation domain on the xzplane that passes through the centre of a canopy(y/W=0.7) and the centre between two canopy(y/W=0.5),show ing detail airflow conditions upstream and downstream of the flow of cedrus deodara and cinnamomum camphora,respectively.It illustrates to what extent the two models represent the wake velocity.

    Fig.2 Velocity contours along the simulation domain on the xz planewith inlet velocity u=10 m/s:(a)&(b)cedrus deodara;(c)&(d)cinnamomum camphora

    Fig.3 Pressure contoursalong the simulation domain on the xz plane with inlet velocity u=10 m/s:(a)&(b)cedrus deodara; (c)&(d)cinnamomum camphora

    Due to a blocking e ffect(the air flow is slowing down inside the forest region due to the effects of leaf and branch drag on air flow),strong velocity gradient and pressure gradient can be created,also the blocking can lead to the formation of long recirculative regions(wakes)[26].According to these plots,both the two planes of the velocity at the wake,the average velocity in thewake exhibits an irregular non-symmetric contour pattern.Obviously,themean w ind speed reaches its peak just above the plant canopy,while the static pressure reaches its peak once reaches the vegetation region.

    Figures 4(a)-(b)and(c)-(d)compare the mean velocity u and the static pressure calculated by the k-εtwoequation turbulentmodel with source/sink terms,respectively,with height z/h=1/2.The horizontal velocity passes through the centre between two canopies along the z/h=0.5(Figs.4 (a)and(b))line shows a slight decrease from the fully developed state up to the edge of the vegetation at x/h=-4 and-7 positions for cedrus deodara and cinnamomum camphora,respectively.Then,the air flow accelerates,and strong suppression of themean w ind speed takes place after reaching its second peak at x/h=3.5 and 5 positions,respectively,while the horizontal velocity passing through the centre of a canopy exhibits differentbehaviors along the z/h=0.5(Figs.4(a)and (b))line.Here,in contract to the previous location,the second peak inside the forest canopies is not present anymore and themean velocity strongly suppressed along the entire forest region.Moreover,the flow recovery of w ind speed starts earlier at x/h=0 and-2 positions for cedrus deodara and cinnamomum camphora,respectively,in other words,immediately after leaving the forest region.Obviously,the minimum average w ind speed occurs in the middle of the canopy,where the turbulence intensity reaches its maximum,and rapidly recovery further to leeward.

    Fig.4 Simulated normalized mean wind speed and pressurewith z/h= 0.5:(a)&(b)cedrus deodara;(c)&(d)cinnamomum camphora

    2.2 Profiles of mean air velocities

    Fig.5 Normalized vertical profiles of average longitudinal air velocity (u)obtained by simulations from(a)cedrus deodara and(b) cinnamomum camphora respectively with y/W=0.5

    Figures 5(a)and(b)compare the mean velocity u calculated by the k-εtwo-equation turbulent model with source/sink terms at different characteristic locations:x/h=-3.31,-1.88,-1.11,0.55,and x/h=-5.33,-4.67,-3.50,-2.33 for cedrus deodara and cinnamomum camphora,respectively.Four characteristic locations show detail airflow conditions upstream and downstream of the flow of cedrus deodara and cinnamomum camphora,respectively.The horizontal velocity passes through the centre of vegetation canopies along the y/W=0.5(Figs.5(a)and(b))line shows a decrease from the fully developed state up to the edge of the vegetation canopy at z/h=0.5 location for cedrus deodara and cinnamomum camphora,respectively.Then,the air flow accelerates,and strong suppression of the mean w ind speed takes place after reaching its nadir at about z/h=0.5 for both cedrus deodara and cinnamomum camphora.And the peak of air mean velocity occurs when z/h reaches about 2.Furthermore,the horizontal velocity exhibits different behaviors upstream of the flow,the mean velocity slightly accelerates along entire z axis,and the airmean velocity reaches its peak at about z/h= 2.

    Normalized vertical profiles of average longitudinal air velocity(u)obtained by simulation using the 3D canopies in the domain with source/sink terms in a porous domain are compared with other works and field measurements from Raupach et al.[4],Albertson et al.[16],Duman et al.[7],and Reynolds[8]in Fig.6.And u is normalized with the friction velocity(u*)and the vertical axis(z)is normalized with the average tree height h.The comparison of the simulated mean w ind speed profile with the experimental results from literature shows that there is reasonable agreement for the use of twoequation turbulentmodelwith source/sink terms.

    Fig.6 Normalized vertical profiles between average longitudinal air velocity(u)obtained by simulation and otherworks

    3 Conclusions

    Bymodeling the3D structure of the forest canopy using 2D canopy geometry in which the vegetation is packed in square and circle configurations,itprovides the basis ofmostexsiting forest canopy simulation model that has been developed over the past 50 years.In the paper,3D canopy architectures with similar canopy contour configuration as cedrus deodara and cinnamomum camphora are introduced to predict pressure drop and mean velocity profile.In addition,the inlet horizontal velocity profiles is introduced as u(z)andδ0(110 m)is the boundary layer depth,which are different from the previous studies.

    For turbulent air flow within and above the vegetation canopy,strong turbulent shear takes place within and above the plant canopy due to the effects of leaf and branch drag on air flow.The model profiles of mean velocity(u)qualitatively agree well with other works compared with and quantitatively have similar explanations.A comparison of results from simulated velocity profile and fieldmeasurements shows that the two-equation turbulent model with source/sink terms can wellpredict the wind speed profile within and above the forest canopies.

    However,the mean velocity and static pressure data are lim ited in this paper,and the presented integrated CFD modelling approach will be validated in the further experiments. At the same time,the turbulent kinetic energy k,the turbulent kinetic energy dissipation rateεand the turbulent intensity have not been analyzed and validated.So,in subsequentworks,the shortages showed above will be studied.

    [1]Shaw R H,Silversides R H,ThurtellGW.Some Observations of Turbulence and Turbulent Transport within and above Plant Canopies[J].Boundary-Layer Meteorol,1974,5(4):429-449.

    [2]W ilson J D,Ward D P,Rhurtell G W,et al.Statistics of Atmospheric Turbulence within and above a Corn Canopy[J]. Boundary-Layer Meteorol,1982,24(4):495-519.

    [3]Gash JH C.Observations of Turbulence Downw ind of a Forest-Heath Interface[J].Boundary-Layer Meteorology,1986,36 (3):227-237.

    [4]Raupach M R,Coppin P A,Legg B J.Experiments on Scalar Dispersion within a Model Plant Canopy Part I:the Turbulence Structure[J].Boundary-Layer Meteorology,1986,35(1/2): 21-52.

    [5]Denmead O T,Bradley E F.On Scalar Transport in Plant Canopies[J].Irrigation Science,1987,8(2):131-149.

    [6]Irvine M R,Gardiner B A,Hill M K.The Evolution of Turbulence across a Forest Edge[J].Boundary-Layer Meteorology,1997,84(3):467-496.

    [7]Duman T,Katul G G,Siqueira M B,et al.A Velocity-Dissipation Lagrangian Stochastic Model for Turbulent Dispersion in Atmospheric Boundary-Layer and Canopy Flows[J]. Boundary-Layer Meteorology,2014,152(1):1-18.

    [8]Reynolds A M.Development and Validation of a Lagrangian Probability Density Function Model of Horizontally-Homogeneous Turbulence within and above Plant Canopies[J].Boundary-Layer Meteorology,2012,142(2):193-205.

    [9]Stull R B.Transilient Turbulence Theory.Part I:the Concept of Eddy M ixing across Finite Distances[J].Journal of the Atmospheric Sciences,1984,41(23):3351-3367.

    [11]Stull R B.A Convective Transport Theory for Surface Fluxes[J].Journal of the Atmospheric Sciences,1994,51(1):3-22.

    [12]Stull R B,Hasagswa T.Transilient Turbulence Theory.Part II: Turbulent Adjustment[J].Journal of the Atmospheric Sciences, 1984,41(23):3368-3379.

    [13]Stull R B,Driedonks A G M.Application of the Transilient Turbulence Parameterization to Atmospheric Boundary-Layer Simulations[J].Boundary-Layer Meteorology,1987,40(3): 209-239.

    [14]NiW G.A Coupled Transilience Model for Turbulent Air Flow within Plant Canopies and the Planetary Boundary Layer[J]. Agricultural and Forest Meteorology,1997,86(1/2):77-105.

    [15]Zeng P T,Takahashi H.A First-Order Closure Model for the W ind Flow within and above Vegetation Canopies[J]. Agricultural and ForestMeteorology,2000,103(3):301-313.

    [16]Albertson J D,Katul G G,Wiberg P.Relative Importance of Local and Regional Controls on Coupled Water,Carbon,and Energy Fluxes[J].Advances in Water Resources,2001,24(9/ 10):1103-1118.

    [17]Siqueira M,Katul G,Tanny J.The Effect of the Screen on the Mass,Momentum,and Energy Exchange Rates of a Uniform Crop Situated in an Extensive Screen House[J].Boundary-Layer Meteorology,2012,142(3):339-363.

    [18]Yang B,Raupach M R,Shaw R H,et al.Large-Eddy Simulation of Turbulent Flow across a Forest Edge.Part I:Flow Statistics[J].Boundary-Layer Meteorology,2006,120(3): 377-412.

    建立建全體制機(jī)制是推動(dòng)全行業(yè)創(chuàng)新創(chuàng)業(yè)教育改革的重中之重,完善課程體系建設(shè)、加強(qiáng)師資隊(duì)伍建設(shè)、保障流暢的市場(chǎng)運(yùn)營是完善機(jī)制正常運(yùn)行的三大法寶,配合高效成果轉(zhuǎn)化,加強(qiáng)校企合作,設(shè)立創(chuàng)新創(chuàng)業(yè)孵化基地,多方協(xié)同發(fā)力,為醫(yī)學(xué)生想創(chuàng)業(yè)、能創(chuàng)業(yè)提供更好的平臺(tái)和堅(jiān)實(shí)的保障。

    [19]Schlegel F,Stiller J,Bienert A,et al.Large-Eddy Simulation of Inhomogeneous Canopy Flows Using High Resolution Terrestrial Laser Scanning Data[J].Boundary-Layer Meteorology,2012,142(2):223-243.

    [20]Belcher S E,Harman I N,F(xiàn)innigan J J.The Wind in the willows:Flows in Forest Canopies in Complex Terrain[J]. Annual Review of Fluid Mechanics,2012,44(1):479-504.

    [21]Endalew A M,Hertog M,Gebrehiwot M G,et al.Modelling Airflow within Model Plant Canopies Using an Integrated Approach[J].Computers and Electronics in Agriculture,2009,66(1):9-24.

    [22]Versteeg H K,Malalasekera W.An Introduction to Computational Fluid Dynam ics[M].NJ:Prentice-Hall,Englewood Cliffs,1995:257.

    [23]Launder B E,Spalding D B.The Numerical Computation of Turbulent Flows[J].Computer Methods in Applied Mechanics and Engineering,1974,3(2):269-289.

    [24]Sanz C.A Note on k-εModelling of Vegetation Canopy Air-Flows[J].Boundary-Layer Meteorology,2003,108(1):191-197.

    [25]Katul G G,Mahrt L,Poggi D,et al.One-and Two-Equation Models for Canopy Turbulence[J].Boundary-Layer Meteorology,2004,113(1):81-109.

    [26]Kenjere?S,ter Kuile B.Modelling and Simulations of Turbulent Flows in Urban Areas with Vegetation[J].Journal of Wind Engineering and Industrial Aerodynamics,2013,123A:43-55.

    X513;S731.2

    A

    1672-5220(2015)04-0588-06

    date:2014-07-29

    s:National Natural Science Foundations of China(Nos.51178094,41371445)

    *Correspondence should be addressed to FU Hai-m ing,E-mail:fhm@dhu.edu.cn

    猜你喜歡
    三大法寶發(fā)力師資隊(duì)伍
    胡永明:“糧”心人的三大法寶
    關(guān)于加強(qiáng)鐵路職工培訓(xùn)師資隊(duì)伍建設(shè)的思考
    三大法寶助我高考數(shù)學(xué)滿分上北大
    趣·合·拓——打造小學(xué)數(shù)學(xué)高效課堂的三大法寶
    甘肅教育(2020年18期)2020-10-28 09:07:06
    人大發(fā)力 讓“執(zhí)行難”不再難
    翻譯碩士師資隊(duì)伍建設(shè)的反思
    班主任的三大法寶
    這12件事,十九大將全面發(fā)力
    瞄準(zhǔn)“房子不是用來炒的”發(fā)力
    2016年推進(jìn)新型城鎮(zhèn)化在發(fā)力
    电影成人av| 久久天躁狠狠躁夜夜2o2o| 另类亚洲欧美激情| 丁香欧美五月| 亚洲欧美日韩另类电影网站| 久久国产亚洲av麻豆专区| 丰满人妻熟妇乱又伦精品不卡| 免费观看a级毛片全部| 久久免费观看电影| 欧美在线一区亚洲| 久久99一区二区三区| 视频区欧美日本亚洲| 国产伦理片在线播放av一区| 亚洲 欧美一区二区三区| 欧美 日韩 精品 国产| 午夜日韩欧美国产| 久久99热这里只频精品6学生| 国产精品一区二区在线不卡| 丰满人妻熟妇乱又伦精品不卡| 法律面前人人平等表现在哪些方面| 777米奇影视久久| 亚洲精品国产一区二区精华液| 国产亚洲欧美精品永久| 婷婷丁香在线五月| 久久久久国产一级毛片高清牌| 国产精品免费大片| www.999成人在线观看| av超薄肉色丝袜交足视频| 国产福利在线免费观看视频| 少妇裸体淫交视频免费看高清 | 岛国在线观看网站| 亚洲av成人一区二区三| 91九色精品人成在线观看| 亚洲av片天天在线观看| 色综合婷婷激情| 9191精品国产免费久久| 一本色道久久久久久精品综合| 一级片'在线观看视频| 国产激情久久老熟女| 欧美乱码精品一区二区三区| 一个人免费看片子| 免费观看人在逋| 日本vs欧美在线观看视频| 精品国内亚洲2022精品成人 | 悠悠久久av| 国产精品国产av在线观看| 国产成人精品无人区| 十分钟在线观看高清视频www| 看免费av毛片| 免费在线观看影片大全网站| 一个人免费在线观看的高清视频| 国产97色在线日韩免费| 亚洲va日本ⅴa欧美va伊人久久| 新久久久久国产一级毛片| 亚洲精品粉嫩美女一区| 国产成人av教育| 50天的宝宝边吃奶边哭怎么回事| 亚洲精品国产区一区二| 国产欧美日韩精品亚洲av| 桃红色精品国产亚洲av| 国产高清国产精品国产三级| 亚洲欧美激情在线| av在线播放免费不卡| 免费女性裸体啪啪无遮挡网站| 别揉我奶头~嗯~啊~动态视频| 黄片播放在线免费| 999久久久国产精品视频| av有码第一页| av福利片在线| 两个人看的免费小视频| 色综合婷婷激情| 天堂8中文在线网| 大片电影免费在线观看免费| 久久国产精品人妻蜜桃| 国产精品欧美亚洲77777| 成人国产av品久久久| 少妇被粗大的猛进出69影院| 国产伦理片在线播放av一区| 日韩三级视频一区二区三区| 国产欧美亚洲国产| 亚洲成人国产一区在线观看| 午夜福利乱码中文字幕| 欧美变态另类bdsm刘玥| 91麻豆精品激情在线观看国产 | 久久久国产欧美日韩av| 日韩熟女老妇一区二区性免费视频| 视频在线观看一区二区三区| 99精国产麻豆久久婷婷| 亚洲色图综合在线观看| av网站在线播放免费| 久久ye,这里只有精品| 菩萨蛮人人尽说江南好唐韦庄| 免费在线观看黄色视频的| 日本一区二区免费在线视频| 视频区图区小说| 欧美亚洲 丝袜 人妻 在线| 亚洲精品自拍成人| 欧美成狂野欧美在线观看| 国产黄频视频在线观看| 日韩有码中文字幕| 成人国语在线视频| 久久精品国产99精品国产亚洲性色 | 黄色视频不卡| 久久久久久亚洲精品国产蜜桃av| 欧美日韩精品网址| 深夜精品福利| 国产成人一区二区三区免费视频网站| 色婷婷久久久亚洲欧美| 黄片小视频在线播放| 青草久久国产| 啦啦啦中文免费视频观看日本| 三上悠亚av全集在线观看| videosex国产| 欧美成人免费av一区二区三区 | 国产精品久久久久久精品古装| 久久久久精品人妻al黑| 性少妇av在线| √禁漫天堂资源中文www| www.精华液| 日本精品一区二区三区蜜桃| 99精国产麻豆久久婷婷| 叶爱在线成人免费视频播放| 中文字幕人妻丝袜制服| 黄片大片在线免费观看| 免费不卡黄色视频| 法律面前人人平等表现在哪些方面| 国产精品一区二区精品视频观看| 日韩欧美三级三区| 国产成人免费观看mmmm| 国产精品亚洲一级av第二区| 午夜福利,免费看| 69精品国产乱码久久久| 91精品国产国语对白视频| 黑人巨大精品欧美一区二区蜜桃| 亚洲七黄色美女视频| 多毛熟女@视频| 国产亚洲一区二区精品| 性高湖久久久久久久久免费观看| av网站在线播放免费| 亚洲精品成人av观看孕妇| 丁香欧美五月| 精品国产超薄肉色丝袜足j| 一本—道久久a久久精品蜜桃钙片| 无人区码免费观看不卡 | 美女福利国产在线| 亚洲美女黄片视频| 这个男人来自地球电影免费观看| 91精品国产国语对白视频| 国产男靠女视频免费网站| 亚洲七黄色美女视频| www.熟女人妻精品国产| 每晚都被弄得嗷嗷叫到高潮| 黄频高清免费视频| 黄片播放在线免费| 亚洲欧美色中文字幕在线| 久久天躁狠狠躁夜夜2o2o| 黄色a级毛片大全视频| 欧美日韩亚洲高清精品| 久久精品国产亚洲av高清一级| 高清在线国产一区| 韩国精品一区二区三区| 在线av久久热| 妹子高潮喷水视频| 久久精品国产亚洲av高清一级| 久久久久精品国产欧美久久久| 国产精品久久久久久精品古装| 日韩熟女老妇一区二区性免费视频| 亚洲成国产人片在线观看| 老司机在亚洲福利影院| 国产精品九九99| 色婷婷av一区二区三区视频| 侵犯人妻中文字幕一二三四区| 中文字幕人妻丝袜一区二区| 久久久久视频综合| 黄色 视频免费看| 午夜福利,免费看| a级毛片在线看网站| 99精品久久久久人妻精品| 热99re8久久精品国产| 欧美中文综合在线视频| 成年女人毛片免费观看观看9 | 亚洲一码二码三码区别大吗| 午夜福利在线观看吧| 亚洲熟女精品中文字幕| bbb黄色大片| 熟女少妇亚洲综合色aaa.| 青青草视频在线视频观看| 欧美在线一区亚洲| 日韩有码中文字幕| 人人妻人人添人人爽欧美一区卜| 一个人免费看片子| 一区在线观看完整版| 天天躁日日躁夜夜躁夜夜| 丁香欧美五月| 中文字幕人妻熟女乱码| 欧美精品亚洲一区二区| 久久国产精品大桥未久av| 777米奇影视久久| 精品国产亚洲在线| 性色av乱码一区二区三区2| 在线播放国产精品三级| 成人国产一区最新在线观看| 色精品久久人妻99蜜桃| 99国产精品99久久久久| 少妇被粗大的猛进出69影院| 国产麻豆69| 午夜激情av网站| 日本黄色日本黄色录像| 成人三级做爰电影| 狠狠精品人妻久久久久久综合| 天堂中文最新版在线下载| 国产aⅴ精品一区二区三区波| 久久人人97超碰香蕉20202| 一夜夜www| 丰满迷人的少妇在线观看| 精品亚洲乱码少妇综合久久| 两性夫妻黄色片| 国产精品久久久久成人av| 久久av网站| 精品久久久久久电影网| 一区二区三区激情视频| 国产免费福利视频在线观看| 啦啦啦视频在线资源免费观看| 久久狼人影院| av片东京热男人的天堂| 麻豆乱淫一区二区| 久久人妻熟女aⅴ| 亚洲欧洲精品一区二区精品久久久| 欧美+亚洲+日韩+国产| 电影成人av| 一区二区三区国产精品乱码| 久久精品aⅴ一区二区三区四区| 后天国语完整版免费观看| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲色图av天堂| 美女高潮到喷水免费观看| 精品午夜福利视频在线观看一区 | 一级,二级,三级黄色视频| 啦啦啦在线免费观看视频4| 亚洲第一av免费看| 国产麻豆69| 亚洲五月色婷婷综合| 女人久久www免费人成看片| 国产激情久久老熟女| 亚洲全国av大片| 免费观看人在逋| 久久久国产一区二区| 99久久99久久久精品蜜桃| 丰满饥渴人妻一区二区三| 两个人免费观看高清视频| cao死你这个sao货| 18禁黄网站禁片午夜丰满| 50天的宝宝边吃奶边哭怎么回事| 老熟妇乱子伦视频在线观看| 国产男靠女视频免费网站| 黄色视频不卡| 超色免费av| av一本久久久久| 午夜视频精品福利| 国产精品免费一区二区三区在线 | 狠狠精品人妻久久久久久综合| 欧美午夜高清在线| 精品福利永久在线观看| av天堂久久9| 欧美日韩黄片免| 国产一卡二卡三卡精品| 人人妻人人澡人人爽人人夜夜| 一区二区av电影网| 亚洲中文日韩欧美视频| 建设人人有责人人尽责人人享有的| 国产亚洲精品第一综合不卡| 日韩人妻精品一区2区三区| 免费av中文字幕在线| 久久精品亚洲熟妇少妇任你| 亚洲国产毛片av蜜桃av| 亚洲av第一区精品v没综合| 高清av免费在线| 女性被躁到高潮视频| 亚洲第一青青草原| 最新的欧美精品一区二区| 亚洲欧洲精品一区二区精品久久久| 在线观看66精品国产| 国产精品麻豆人妻色哟哟久久| 久久人妻熟女aⅴ| 亚洲国产中文字幕在线视频| 亚洲自偷自拍图片 自拍| 一个人免费看片子| 国产福利在线免费观看视频| 制服人妻中文乱码| 丝袜在线中文字幕| 国产精品二区激情视频| 女警被强在线播放| 中文字幕精品免费在线观看视频| 12—13女人毛片做爰片一| 国产欧美日韩一区二区三| 久久午夜亚洲精品久久| 精品少妇内射三级| 午夜视频精品福利| 少妇裸体淫交视频免费看高清 | 免费久久久久久久精品成人欧美视频| 欧美日韩av久久| 免费黄频网站在线观看国产| 色精品久久人妻99蜜桃| 亚洲欧洲精品一区二区精品久久久| 一二三四在线观看免费中文在| 热99久久久久精品小说推荐| 69精品国产乱码久久久| 亚洲精品国产色婷婷电影| 精品国产超薄肉色丝袜足j| 欧美激情 高清一区二区三区| 久久亚洲真实| 99国产精品99久久久久| 欧美av亚洲av综合av国产av| 国产精品久久久久久人妻精品电影 | av福利片在线| 久久精品国产综合久久久| 国产精品久久久av美女十八| 久久久久久久精品吃奶| 久久久国产成人免费| 久久人妻av系列| 国产日韩欧美视频二区| 男女床上黄色一级片免费看| 日本vs欧美在线观看视频| 飞空精品影院首页| av网站免费在线观看视频| 一本大道久久a久久精品| 亚洲精品国产精品久久久不卡| 国产aⅴ精品一区二区三区波| 国产亚洲一区二区精品| 亚洲av电影在线进入| 大码成人一级视频| 在线观看舔阴道视频| 久久热在线av| 色播在线永久视频| 亚洲少妇的诱惑av| 成人亚洲精品一区在线观看| 久久这里只有精品19| 亚洲专区字幕在线| 亚洲精品久久成人aⅴ小说| 国产单亲对白刺激| 亚洲美女黄片视频| 国产成人免费观看mmmm| 欧美+亚洲+日韩+国产| 久久香蕉激情| 丝袜在线中文字幕| 亚洲一卡2卡3卡4卡5卡精品中文| 国产亚洲av高清不卡| 男女免费视频国产| 色婷婷久久久亚洲欧美| 大型av网站在线播放| 亚洲自偷自拍图片 自拍| 黑丝袜美女国产一区| 少妇猛男粗大的猛烈进出视频| 国产在线视频一区二区| 久久久久久久久免费视频了| 美女高潮喷水抽搐中文字幕| 黄片播放在线免费| 精品人妻熟女毛片av久久网站| 国产高清videossex| 亚洲国产看品久久| 亚洲伊人久久精品综合| 大型黄色视频在线免费观看| 最黄视频免费看| 国产无遮挡羞羞视频在线观看| 久久精品成人免费网站| 又紧又爽又黄一区二区| 超色免费av| 欧美成人午夜精品| 日韩大码丰满熟妇| 亚洲欧美激情在线| 两性夫妻黄色片| 一区二区三区激情视频| 亚洲熟女精品中文字幕| 久久久久久人人人人人| 人人妻人人澡人人看| 狠狠精品人妻久久久久久综合| 久9热在线精品视频| 欧美亚洲日本最大视频资源| 欧美精品一区二区免费开放| 国产日韩欧美视频二区| 一区二区三区精品91| 少妇 在线观看| 啪啪无遮挡十八禁网站| 亚洲专区国产一区二区| 午夜福利在线观看吧| 一级a爱视频在线免费观看| 久久久久久久精品吃奶| 国产精品98久久久久久宅男小说| 亚洲av国产av综合av卡| 动漫黄色视频在线观看| 久久午夜亚洲精品久久| 纯流量卡能插随身wifi吗| 亚洲人成电影免费在线| av线在线观看网站| 日韩大片免费观看网站| av线在线观看网站| 亚洲伊人久久精品综合| 男女午夜视频在线观看| 首页视频小说图片口味搜索| av欧美777| 久久久国产一区二区| 国产淫语在线视频| 亚洲精品国产色婷婷电影| 亚洲视频免费观看视频| 欧美国产精品一级二级三级| 国产精品国产av在线观看| 中文字幕最新亚洲高清| 中文字幕人妻丝袜一区二区| 看免费av毛片| 亚洲精品粉嫩美女一区| 精品卡一卡二卡四卡免费| 亚洲,欧美精品.| 多毛熟女@视频| 少妇被粗大的猛进出69影院| 亚洲情色 制服丝袜| 欧美黑人欧美精品刺激| 脱女人内裤的视频| 免费高清在线观看日韩| 成人永久免费在线观看视频 | 久久精品国产综合久久久| 精品国产一区二区三区久久久樱花| 国产亚洲精品一区二区www | 亚洲精品国产一区二区精华液| h视频一区二区三区| 国产激情久久老熟女| 在线永久观看黄色视频| 黄色a级毛片大全视频| 99在线人妻在线中文字幕 | 国产高清视频在线播放一区| 99精品久久久久人妻精品| 天天躁夜夜躁狠狠躁躁| 国产国语露脸激情在线看| 午夜视频精品福利| 亚洲成a人片在线一区二区| 少妇精品久久久久久久| 国产精品欧美亚洲77777| 久久精品国产亚洲av香蕉五月 | 成年人午夜在线观看视频| 国产精品一区二区在线观看99| 高清欧美精品videossex| 久久久久精品人妻al黑| 又黄又粗又硬又大视频| 极品人妻少妇av视频| 成人特级黄色片久久久久久久 | 女警被强在线播放| 精品一区二区三区视频在线观看免费 | 99久久国产精品久久久| 另类精品久久| a级毛片在线看网站| 欧美精品啪啪一区二区三区| 人人妻人人澡人人爽人人夜夜| 看免费av毛片| 日韩欧美三级三区| 国产精品欧美亚洲77777| 国产伦理片在线播放av一区| 成人精品一区二区免费| 99国产精品一区二区蜜桃av | 精品乱码久久久久久99久播| 亚洲中文日韩欧美视频| 69av精品久久久久久 | 99热网站在线观看| 人妻 亚洲 视频| 欧美久久黑人一区二区| 久久国产精品大桥未久av| 色老头精品视频在线观看| 亚洲人成电影观看| www.自偷自拍.com| 人妻久久中文字幕网| 一进一出好大好爽视频| 精品国产乱子伦一区二区三区| 久久精品人人爽人人爽视色| 老司机亚洲免费影院| 十八禁人妻一区二区| 又紧又爽又黄一区二区| 91国产中文字幕| 黑丝袜美女国产一区| 国产成人免费观看mmmm| 涩涩av久久男人的天堂| 亚洲av国产av综合av卡| 婷婷成人精品国产| 最新在线观看一区二区三区| 国产高清激情床上av| 人妻久久中文字幕网| 免费在线观看完整版高清| 真人做人爱边吃奶动态| 亚洲av日韩精品久久久久久密| www日本在线高清视频| 国产淫语在线视频| 久久青草综合色| 一个人免费在线观看的高清视频| 亚洲av成人一区二区三| 中亚洲国语对白在线视频| 欧美亚洲日本最大视频资源| 亚洲天堂av无毛| 日韩成人在线观看一区二区三区| 国产欧美日韩综合在线一区二区| 999久久久国产精品视频| 免费观看a级毛片全部| 欧美av亚洲av综合av国产av| 99精品欧美一区二区三区四区| 日本一区二区免费在线视频| 精品福利观看| 美女高潮喷水抽搐中文字幕| 一级毛片精品| 黄片小视频在线播放| 老司机午夜十八禁免费视频| 午夜视频精品福利| 久久久久国内视频| 999久久久国产精品视频| 99热国产这里只有精品6| 在线观看人妻少妇| bbb黄色大片| 亚洲成人免费av在线播放| 99久久精品国产亚洲精品| 色在线成人网| 18禁黄网站禁片午夜丰满| 国产亚洲一区二区精品| 最黄视频免费看| 久久久精品区二区三区| 亚洲色图 男人天堂 中文字幕| 建设人人有责人人尽责人人享有的| 成在线人永久免费视频| 国产精品一区二区精品视频观看| 黄频高清免费视频| 女同久久另类99精品国产91| 69av精品久久久久久 | 亚洲av片天天在线观看| 岛国毛片在线播放| 亚洲欧美日韩高清在线视频 | 黑人猛操日本美女一级片| 老熟女久久久| 国产精品 欧美亚洲| 午夜福利欧美成人| 黄色怎么调成土黄色| 丝袜喷水一区| 久久精品国产亚洲av高清一级| 国产精品久久久久久精品古装| 国产成人欧美| 国产午夜精品久久久久久| 青草久久国产| 真人做人爱边吃奶动态| 国产日韩欧美在线精品| 成人国语在线视频| 精品少妇一区二区三区视频日本电影| 日韩欧美三级三区| 久久久精品国产亚洲av高清涩受| 老司机深夜福利视频在线观看| 欧美黑人精品巨大| 99国产精品一区二区蜜桃av | 亚洲一区二区三区欧美精品| 大型黄色视频在线免费观看| 18禁黄网站禁片午夜丰满| 久久久精品免费免费高清| 亚洲成人手机| 久久天躁狠狠躁夜夜2o2o| 久久国产精品影院| 亚洲伊人久久精品综合| 黑人巨大精品欧美一区二区蜜桃| √禁漫天堂资源中文www| 999久久久精品免费观看国产| 久久久久久亚洲精品国产蜜桃av| 欧美亚洲日本最大视频资源| 久久久久国产一级毛片高清牌| 国产在线视频一区二区| 啦啦啦视频在线资源免费观看| 久久免费观看电影| 国产日韩欧美视频二区| 国产成人免费观看mmmm| 国产精品香港三级国产av潘金莲| 熟女少妇亚洲综合色aaa.| 亚洲精品国产精品久久久不卡| 伦理电影免费视频| 黄色视频,在线免费观看| 夜夜骑夜夜射夜夜干| 十八禁网站免费在线| 久久久国产成人免费| 亚洲色图av天堂| 色94色欧美一区二区| 精品午夜福利视频在线观看一区 | 日日夜夜操网爽| 伊人久久大香线蕉亚洲五| 日韩欧美免费精品| 国精品久久久久久国模美| 精品亚洲乱码少妇综合久久| 在线看a的网站| 少妇猛男粗大的猛烈进出视频| 亚洲少妇的诱惑av| 制服诱惑二区| 好男人电影高清在线观看| 一个人免费在线观看的高清视频| 欧美大码av| 亚洲国产毛片av蜜桃av| 91国产中文字幕| 中文字幕制服av| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲专区国产一区二区| 久久久久久久精品吃奶| 美女福利国产在线| 精品人妻1区二区| 欧美成狂野欧美在线观看| 欧美国产精品va在线观看不卡| 黄色视频,在线免费观看| 免费久久久久久久精品成人欧美视频| 午夜两性在线视频| 国产伦人伦偷精品视频| 老司机亚洲免费影院| 精品久久久久久久毛片微露脸| 欧美 亚洲 国产 日韩一| 美女高潮到喷水免费观看| 亚洲成国产人片在线观看| 国产真人三级小视频在线观看| 午夜久久久在线观看| 日本五十路高清| 十分钟在线观看高清视频www| 久久人人97超碰香蕉20202|