• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fuzzy Model Free Adaptive Control for Rotor Blade Full-Scale Static Testing

    2015-08-07 10:54:14LIAOGaohua廖高華WUJianzhong烏建中

    LIAO Gao-h(huán)ua(廖高華),WU Jian-zhong(烏建中)

    1 School of Mechanical Engineering,Tongji University,Shanghai201804,China

    2 Nanchang Institute of Technology,Nanchang 330099,China

    Fuzzy Model Free Adaptive Control for Rotor Blade Full-Scale Static Testing

    LIAO Gao-h(huán)ua(廖高華)1,2,WU Jian-zhong(烏建中)1*

    1 School of Mechanical Engineering,Tongji University,Shanghai201804,China

    2 Nanchang Institute of Technology,Nanchang 330099,China

    To elim inate the node traction coup ling during w ind turbine blade full-scale static testing,a model free adaptive control algorithm is presented based on fuzzy control performance function com pensation.Based on the universalmodel theory,the fuzzymodel free adaptive control(FMFAC)algorithm is designed by configuring the spot static testing experiences as com pensation function F(·).Then the algorithm im p lementation process is provided and its quick convergence is proved.Using software to establish static load coup ling model of multi-nodes,simulate and verify the validity of FMFAC algorithm,which is applied to wind turbines blade full-scale static testing.The results show that the adaptive decoupling ability of FMFAC is better.The traction of four load points can stay steady and change coordinately.Processerror is not over±6 kN.The error rate is lower than 1%in special phase.This algorithm effectively elim inates the traction coupling of the static testing process,and makesw ind turbine blade testing steadily.

    wind turbines;fuzzy control performance;decoupling; model free adaptive control(MFAC)algorithm;static testing

    Introduction

    As one of the core component of w ind turbines,all the blades new ly developed or changed with significant revisions need tomake static loading test for checking the static strength reserved[1-2].Static testing is accomplished in a number of ways.Hydraulic actuators have also been used in the past but the large displacements required for long bladesmake them an expensive option.Another way of performing a static test is to hang ballast weights from the blade at specified locations,but loading accuracy is difficult to guarantee.Themost common of these uses an electric w inch system,due to ease of control.The test needs to coordinate the force of all the load points.The node traction mutation is very easy to damage the blade.The blade loading points are coupling with each other during the testing process.Themore tractions increase,themore seriously blades bending and coupling.It's easy to cause blade vibrating and affect testing precision[3-5].Besides,controlled objects always change in static testing process.Multi-variable system neural network decoupling control method achieves open-loop decoupling by training neural network[6-8].

    The above control algorithms aremainly based on models' adaptive control,or control by know ledge derivation according to somemodels'parameters.All cannot do without depending on the system models[9-10].Because of the blade shape structure complex,buildingmathematicalmodels is noteasy.A distributed multi-node loading system based on PID algorithm is designed,which does not adopt the w idely used semi-automatic loadingmode[11-13].For the test of static loading small power w ind turbine blade,the PID control strategy can meet the requirement of precision.With the blade's size increasing,the traction value increases correspondingly.It willmake the same node coupling more seriously,which will cause higher requirements on the decoupling ability control algorithm.

    For the above reasons,the coupling is strong in the static testing process and it's hard to build system models.Based on the characteristics analysis of static loading coupling,fuzzy model free adaptive control(FMFAC)algorithm is designed with fuzzy control theory and function compensation. Meanwhile,the convergence and divergence are derived in the paper.Stimulate and analyze FMFAC algorithm by building static loading coupling model ofmulti-nodes.This algorithm is applied in w ind turbine blades full-scale static testing system. The static loading test includes4 loading phases,tomake blades loading state steady.

    1 FMFAC Algorithm Design

    1.1 FM FAC algorithm analysis

    In a discrete-time nonlinear system,the controlled system is represented as:

    where u(k)and y(k)identify the input and the output of system;m and n are for their orders,respectively.

    Given that{ u(k-1),y(k)}is the observation data of system at k moment,while y0(k+1)is the expected output at k+1 moment.Find the optimal controlled quantity as u(k)to make the output as y0(k+1).The existence of some pseudo gradientφ(k)has been proved[14].Do partial format linearization for system(1),and get the basic expression of model free adaptive control(MFAC)algorithm by further transform ing:

    From the algorithm control Formula(2),the controlled system is not related with mathematics model of controlled object,and it is only designed according to system's input and output data.If the valuation ofφ(k)is inaccurate when using MFAC algorithm,it will seriously affect system's control.To avoid it,modify Formula(2)to:

    whereλkis the step sequence,chosen by on-site situation,to avoid the force varying greatly in loading process;αis the weight factor,chosen by on-site situation,to avoid the loading speed too slow;εis the threshold value,avoid too much input motivation;and F(·)is for function compensation.

    When Formula(3)can be used,the essential condition is thatφ(k)'s valuationφ∧(k)can be got in real time and have enough accuracy.To avoid system too sensitive about several abnormal data,for the estimate ofφ(k),use the follow ing formula function:

    where y*(k)is the expected output at k moment.

    whereμis the study step;ηis the penalty factor;andΔU(k-1)is the difference between tw ice input values.Choose parameters above according to the actual loading experience, and adjust in real time by F(·)function.Ifthen

    1.2 F(·)function com pensation design

    For the analysis about the traction's output characteristicsof all static loading nodes,the traction always fluctuates around the expected value ofˉy.Use mathematical relationship to describe four characteristics of system's output y(k)variation.The illustrations are as follows.

    In zone 1:ˉy-y(k)≥0 and y(k-1)-y(k)≥0.

    In zone 2:ˉy-y(k)>0 and y(k-1)-y(k)<0.

    In zone 3:ˉy-y(k)≤0 and y(k-1)-y(k)≤0.

    In zone 4:ˉy-y(k)<0 and y(k-1)-y(k)>0.

    Define Q(k)=(ˉy-y(k))(y(k-1)-y(k));when Q(k)≥0,y(k)is changed in zone 1 and zone 3;when Q(k)<0,y(k)is changed in zone 2 and zone 4.

    To ensure the self-adaptive ability of MFAC algorithm,use variation characteristic of parameter Q(k)as the strengthened item's control rule,put spot static loading experience into MFAC,and apply fuzzy control strategy to add compensation F(·)function.

    In the actual loading process,F(xiàn)iare dependent variables and Viare independent variables.The process is to control node traction Fihydraulic w inch speed Vi.The traction expected value,expected value difference e and the variance ratio d e/d t are the inputs of F(·)function.The clarified inputs are e and ec.The membership function of E is the cross of gauss-type function and trigonometric function.The membership function of ecis full overlap of symmetrical triangle.Membership function of inputs and outputs is shown in Fig.1.

    According to the method of Mamdani reasoning,choose Max-M in method of weighted mean,as follows:

    Fig.1 Membership function of inputs and outputs

    The control rules stand for the experience conclusion of static loading process.Refer to the characteristic curve analysis of output traction;there are 49 control rules for the loading process reasoning as shown in Table 1.In practical applications,each loading node has different value,so integrate the traction values of all nodes into one for easier control.The average traction value of all the loading nodes is expressed as:

    where kk=Fkmax/F0maxis the proportionality coefficientand Fkis the k th value of traction.

    Table 1 Fuzzy control rules

    1.3 FM FAC algorithm diagram

    Make the block diagram of FMFAC algorithm during the static loading process,as shown in Fig.2.The FMFAC algorithm implementing steps and process are as follows.

    IN:the current and target values of traction,hydraulic w inch speed

    OUT:hydraulic w inch speed Vi(k+1).

    Step 1 By using observed input&output data{Fi(k),Vi(k)}and identification algorithm,derive the estimated valueof pseudo partial derivativeφ(k).

    Step 2 According to the expected traction value(k+ 1)of loading process,get the error e(k)at the moment.By inputting expected traction value(k+1),error e(k)and error change rate d e(t)/d t to strengthened function,and get F(·)function compensation.

    Step 3 According to F(·)function and MFAC algorithm,get the hydraulic w inch speed Vi(k)act on the test process at themoment k.

    Step 4 The obtaining results(namely k moments of the hydraulic w inch speed value)Vi(k)applied to the static loading process,to obtain a new set of input and output data{Fi(k+ 1),Vi(k+1)}.

    Step 5 Repeat Step 1 to Step 4,and get a new setof data {Fi(k),Vi(k)},k=1,2,…,continued until the end of the simulation.

    Fig.2 FMFAC algorithm diagram

    2 Convergence and Divergence Analyses of FMFAC Algorithm

    The basic part of FMFAC algorithm is MFAC,and the application condition of it is that both identification algorithm and control strategy are convergent.For a time lag system,if u(k)≠u(k-1),then one vectorφ(k)mustexist in order to make Formula(3)true for any adjacent two sets of data{u(k-1),y(k)}and{u(k),y(k+1)}.The inevitability ofφ(k) existence and the convergence of the identification algorithm have been proved[15-16].The starting point of control strategy convergence is as follows:

    where y(k+1)is the system outputwith u(k)effect.

    Further derive from Eq.(8)

    As the first section describes,get the estimated valueφ∧(k +1)ofφ(k+1)from universalmodel,and then get the system output y(k+2)with the control strategy(9)effect.Again and again until we get the output y(k+h)at k+h moment,expressed as:

    Combine Formula(11)with Formula(12),and get

    Letλk>0.Formula(13)can be changed into:

    According to the infinite product theorem,we get

    The above derivation has proved quick convergence of MFAC algorithm.If the controlled object changes,the identified values of characteristic parameterφ(k)are expressed in both the parameters and the structure.When the amplitude has little change,only one single regulator,the system output y(k)will converge to the expected value.

    3 FMFAC Algorithm Decoupling Simulation

    AMESim and Matlab/Simulink softwares are used together to build static loading coupling simulation models of multinodes.The output is the traction Fiof allnodes,and the input is the speed Viof all variable stroke pump,shown in Fig.3.Set the stiffness and damping between loading points of the controlled objects as the cross coupling,and the random variable stiffness and damping of the coupling degree are the same.During the loading process,use FMFAC and dynamic master-salve PID control algorithm separately,to check selfadaptive ability of FMFAC control algorithm.

    According to the practical experience,set sampling period T=0.05 s.The values of related control parameters are:kp= 15,ki=0.1,and kd=0.Algorithm decoupling and its error (amplification)curve are shown in Fig.4.From the process curve,the traction of three loading nodes increases progressively.The nodes with stronger traction have larger fluctuations relatively.When the traction is small,the decoupling ability of the algorithm is better.But the more tractions increase,the more nodes coupling increases in the same loading phase.The error of node 1 is almost 6%.It indicates that the decoupling ability of the control algorithm is relatively poor with strong coupling conditions.

    According to the practical loading experience,sampling period T=0.05 s,related control parameters initial values are: λk=10,α=3.5,μ=0.4,η=2,ε=10-5,=0.3, and the simulation result is shown in Fig.5.From the process curve,because of cross coupling among the nodes in the loading process,the traction of each node fluctuates progressively,and the nodes fluctuatemore seriously with stronger traction.After using FMFAC algorithm,the traction of each node is always around the ideal output value,and the variation trend is basically consistent.From the traction error curve of loading node 1,error values also show the increasing trend with the increasing of traction,and the error value is far less than 4%in the loading process.It's proved that the control algorithm has better self-adaptive decoupling ability.

    Fig.3 Static load coupling equivalentmodel

    Fig.4 PID algorithm decoupling and its error curve

    Fig.5 FMFAC algorithm decoupling and its error curve

    4 Test of Static Loading Control Algorithm

    Wind turbine blades root is fixed on the barrel type load bearing,many load trestles take the horizontal traction mode, and control system uses the two-level network communication

    This test system mainly includes an uppermonitor, themain controller,an electric control system,etc.Use the monitor system to coordinatemulti-nodes loading control,which can freely sw itch between automatic and manual operations,display current loading stage,and save real time in loading test data.The on-site testsolution is shown in Fig.6.The testobject is aeroblade2.0 w ind turbine blade,whose power rating is 2 MW.It belongs to the w ind turbine blades with high power rating.The blade full-scale static loading test has four nodes,usingmultistage continuous loadingmode to avoid damaging the blade in the test process.The loading process is divided into four stages.According to the IEC61430-23 level,the traction in 100%stage should stay at least 10 s,and the whole loading process is shown in Fig.7.

    Fig.6 Wind turbine blade static load test scheme

    Fig.7 Static loading stage diagram

    The static loading test uses FMFAC control algorithm,and choosesλk,α,μ,andηas parameters(initial values)according to the loading experience.The traction and error ofw ind turbine blade Flapw ise loading surface are shown in Fig.8.From the traction curve of all the loading surfaces,the tractions of all loading points change coordinately.For each loading stage,the error is grow ing together with traction.With the blade bending grow ing larger,the blade stiffness values increase accordingly. So the coupling degree of nodes is more serious.Introduce compensation function as experience compensation,and FMFAC algorithm controls traction at around the expected value.Make sure the traction error basically remains within ±6 kN,themaximum process error is±4%,and the special stage error only±1%.The algorithm effectively reduces the coupling between nodes and gets better control effect.

    Fig.8 Flapwise loading surface traction test variable and error

    5 Conclusions

    With the full-scale static loading process characteristic analysis of w ind turbine blade of MW type,F(xiàn)MFAC control algorithm is designed to apply to the loading test.By the traction increasing,the blade bending becomes larger with stiffness values grow ing larger accordingly.It leads to a more serious coupling degree between nodes.The error displays grow ing trend basically.Improper control may easily damage the blade.For the full-scale static loading test of w ind turbine blade of smallminiwatt type,using dynamic master-slave PID control algorithm is enough for the accuracy requirement. However,with the blade type grows,the required traction value will increase accordingly.It will cause the nodes coupling degreemore and more serious in the same loading phase,so it needs higher decoupling ability of control algorithm.FMFAC control algorithm has fast convergence and strong decoupling ability.Introduce the fuzzed on-site experience and integrate it into the algorithm.It effectively reduces the coupling degree in the full-scale loading process.The traction between nodes can keep steady and change coordinately,and the traction is controlled ataround the expected value.Thatmeets the needs of practical applications.

    [1]Movaghghar A,Lvov G I.A Method of Estimating W ind Turbine Blade Fatigue Life and Damage Using Continuum Damage Mechanics[J].International Journal of Damage Mechanics,2012,21(6):810-821.

    [2]Kishinam i K,Taniguchi H,Suzuki J.Theoretical and Experimental Study on the Aerodynam ic Characteristics of a Horizontal Axis W ind Turbine[J].Energy,2005,30(11): 2089-2100.

    [3]Malhotra P,Hyers R W,Manwell J F,et al.A Review and Design Study of Blade Testing Systems for Utility-Scale W ind Turbines[J].Renewable and Sustainable Energy Reviews,2012,16(1):284-292.

    [4]Chen J,Wang X D,Shen W Z,et al.Optimization Design of Blade Shapes for Wind Turbines[J].Journal of Mechanical Engineering,2010,46(3):131-134.(in Chinese)

    [5]Wang X D,Wang L C,Li P,et al.Design and Trial of MW W ind Turbine Blade Static Loading Control System[J]. Mechanical Science and Technology for Aerospace Engineering,2012,31(5):806-809.

    [6]Yang J S,Peng C Y,Xiao J Y.Structural Investigation of CompositeW ind Turbine Blade Considering Structural Collapse in Full-Scale Static Tests[J].Composite Structures,2013,97(3): 15-29.

    [7]Chai T Y,Wang G.Globally ConvergentMultivariable Adaptive Decoupling Control and Its Application to a Binary Distillation Column[J].International Journal of Control,1992,55(2): 415-429.

    [8]Jensen FM,F(xiàn)alzon B G,Ankersen J,et al.Structural Testing and Numerical Simulation of 34m CompositeWind Turbine Blade[J].Composite Structures,2006,76(1/2):52-61.

    [9]Kirikera G R,Shinde V,Schulz M J.Monitoring Multi-site Damage Grow th During Quasi-Static Testing of a W ind Turbine Blade Using a Structural Neural System[J].Structural Health Monitoring,2008,7(2):157-183.

    [10]Liang L H,Liu Q,Zhao L L.Reseaarch on Feed-Forward Compensation Decouple Control for the Electro Hydraulic Load Simulators of Fin Stabilizer[J].China Mechanical Engineering,2007,18(4):439-441.(in Chinese)

    [11]Daynes S,Weaver P M.Design and Testing of a Deformable Wind Turbine Blade Control Surface[J].Smart Materials and Structures,2012,21(10):1-11.

    [12]Zhang L A,Wu J Z,Wang W D.Design of MW Blade Static Loading System[J].Control Engineering of China,2011,18 (6):986-989.(in Chinese)

    [13]Zhang L A,Wu JZ,WangW D,etal.Design and Trialof MW W ind Turbine Blade Static Loading Control System[J].China Mechanical Engineering,2011,22(18):2182-2185.(in Chinese)

    [14]Cao R M,Hou Z S.Simulation Study on Model-Free Control Method in Linear Motor Control System[J].Journal of System Simulation,2006,18(10):2874-2878.(in Chinese)

    [15]Ma J,Chen Z Y,Hou Z S.Modal Free Adaptive Control of Integrated Roll Reducing System for LargeWarships[J].Control Theory&Applications,2009,26(11):1289-1292.(in Chinese)

    [16]Huang X M,Zhang L A,Wei X T.D-MFAC Algorithm Control of Megawatt Wind Turbine Blade Static Loading Process[J]. Journal of Zhejiang University:Engineering Science,2012,46 (12):118-123.(in Chinese)

    [17]Han Z G,Wan L.Adaptive Control Law by Universal[J]. Journal of Natural Science of Heilongjiang University,1999,16 (1):42-47.

    [18]Zhang L A.Research on Key Technology of MW W ind Turbine Blade Loading System[D].Shanghai:TongjiUniversity,2011. (in Chinese)

    TH122

    A

    1672-5220(2015)04-0536-05

    date:2014-09-08

    National Natural Science Foundation of China(No.51567018)

    *Correspondence should be addressed to WU Jian-zhong,E-mail:tjjd328@163.com

    97在线视频观看| 国产精品 欧美亚洲| 91在线精品国自产拍蜜月| 国产精品久久久久久精品电影小说| 韩国精品一区二区三区| 伦理电影大哥的女人| 街头女战士在线观看网站| 日韩大片免费观看网站| 天天躁日日躁夜夜躁夜夜| 飞空精品影院首页| 99re6热这里在线精品视频| 日韩一本色道免费dvd| 美女国产视频在线观看| 亚洲婷婷狠狠爱综合网| 三上悠亚av全集在线观看| 日韩一区二区视频免费看| 你懂的网址亚洲精品在线观看| 26uuu在线亚洲综合色| 美女xxoo啪啪120秒动态图| 亚洲欧美一区二区三区国产| 国产xxxxx性猛交| 久久久国产精品麻豆| 国产一区二区三区av在线| 亚洲精品国产一区二区精华液| av电影中文网址| 黑人巨大精品欧美一区二区蜜桃| 老司机影院毛片| 69精品国产乱码久久久| 人人妻人人添人人爽欧美一区卜| 激情视频va一区二区三区| 午夜福利一区二区在线看| 久久99一区二区三区| 菩萨蛮人人尽说江南好唐韦庄| 亚洲精品av麻豆狂野| 啦啦啦啦在线视频资源| 久久久久国产网址| 久久久久精品久久久久真实原创| 久久97久久精品| 国产精品久久久久久精品古装| 亚洲精华国产精华液的使用体验| 麻豆av在线久日| 国产男女内射视频| 最近的中文字幕免费完整| 精品视频人人做人人爽| 母亲3免费完整高清在线观看 | 日韩一区二区三区影片| 久久亚洲国产成人精品v| 18在线观看网站| 黑人猛操日本美女一级片| 美女国产高潮福利片在线看| 久热这里只有精品99| 国产成人精品无人区| 成年女人毛片免费观看观看9 | 国产男人的电影天堂91| 国产精品99久久99久久久不卡 | av网站免费在线观看视频| 日韩中文字幕视频在线看片| 亚洲精品国产av成人精品| 国产乱人偷精品视频| 亚洲成色77777| 视频区图区小说| 色播在线永久视频| 十八禁高潮呻吟视频| 国产成人精品在线电影| 99香蕉大伊视频| 天堂8中文在线网| 韩国高清视频一区二区三区| 18禁国产床啪视频网站| 亚洲人成电影观看| 久久99热这里只频精品6学生| 亚洲国产欧美日韩在线播放| 成年人免费黄色播放视频| 国产 一区精品| 亚洲色图综合在线观看| 男女午夜视频在线观看| 黄频高清免费视频| 亚洲综合色网址| 在现免费观看毛片| 热99久久久久精品小说推荐| 欧美日韩视频精品一区| 午夜日韩欧美国产| av在线app专区| 美女脱内裤让男人舔精品视频| av片东京热男人的天堂| 下体分泌物呈黄色| 午夜免费男女啪啪视频观看| 这个男人来自地球电影免费观看 | 日韩中文字幕欧美一区二区 | 国产又色又爽无遮挡免| 国产福利在线免费观看视频| 免费观看a级毛片全部| 久久99精品国语久久久| 999久久久国产精品视频| 80岁老熟妇乱子伦牲交| 成年美女黄网站色视频大全免费| 99香蕉大伊视频| 国产黄频视频在线观看| 日本午夜av视频| 国产精品成人在线| av一本久久久久| 又黄又粗又硬又大视频| 伊人久久国产一区二区| 国产成人精品福利久久| 日韩一本色道免费dvd| 最近最新中文字幕免费大全7| 亚洲色图综合在线观看| 国产一级毛片在线| 欧美+日韩+精品| 精品国产一区二区三区久久久樱花| 2022亚洲国产成人精品| 日日撸夜夜添| 久久青草综合色| 热99国产精品久久久久久7| 国产成人aa在线观看| 黄色 视频免费看| 国产色婷婷99| 亚洲在久久综合| 99国产综合亚洲精品| 2022亚洲国产成人精品| 女人精品久久久久毛片| 欧美少妇被猛烈插入视频| 日日摸夜夜添夜夜爱| 韩国av在线不卡| 熟妇人妻不卡中文字幕| 一区福利在线观看| 捣出白浆h1v1| 亚洲激情五月婷婷啪啪| 久久ye,这里只有精品| 成人二区视频| 国产免费现黄频在线看| 日韩大片免费观看网站| 国产无遮挡羞羞视频在线观看| 国产一区二区三区综合在线观看| 各种免费的搞黄视频| 亚洲欧美精品综合一区二区三区 | 最新的欧美精品一区二区| 黄片播放在线免费| 久久久久久久大尺度免费视频| 亚洲av电影在线进入| 中文精品一卡2卡3卡4更新| 最近2019中文字幕mv第一页| 久久鲁丝午夜福利片| 日韩一卡2卡3卡4卡2021年| 亚洲av免费高清在线观看| 久久久精品免费免费高清| 91国产中文字幕| 日日摸夜夜添夜夜爱| 天天躁狠狠躁夜夜躁狠狠躁| 成人黄色视频免费在线看| 丰满少妇做爰视频| 国产不卡av网站在线观看| 国产 一区精品| 亚洲国产最新在线播放| 18+在线观看网站| 国产极品粉嫩免费观看在线| 一二三四在线观看免费中文在| 伦精品一区二区三区| 国产麻豆69| 免费日韩欧美在线观看| 亚洲精品美女久久av网站| 日韩大片免费观看网站| 婷婷成人精品国产| 天堂中文最新版在线下载| av天堂久久9| 韩国精品一区二区三区| 亚洲精品aⅴ在线观看| 两个人看的免费小视频| 在线观看人妻少妇| 午夜av观看不卡| 亚洲国产欧美网| 亚洲国产看品久久| 99热国产这里只有精品6| 一本大道久久a久久精品| 少妇被粗大的猛进出69影院| 日本wwww免费看| 下体分泌物呈黄色| 老司机影院毛片| 男女边吃奶边做爰视频| 18禁观看日本| 亚洲av国产av综合av卡| 婷婷色综合www| 欧美老熟妇乱子伦牲交| 一本色道久久久久久精品综合| 一级a爱视频在线免费观看| 精品少妇黑人巨大在线播放| 2018国产大陆天天弄谢| 久久久久久人妻| 欧美精品人与动牲交sv欧美| 色播在线永久视频| 国产又色又爽无遮挡免| av片东京热男人的天堂| 国产成人欧美| 亚洲精品aⅴ在线观看| 久久精品久久精品一区二区三区| 成人午夜精彩视频在线观看| 精品亚洲乱码少妇综合久久| 天天操日日干夜夜撸| 久久午夜综合久久蜜桃| 亚洲国产毛片av蜜桃av| 最黄视频免费看| 日本欧美国产在线视频| 亚洲成色77777| 中文字幕色久视频| 晚上一个人看的免费电影| 中文字幕另类日韩欧美亚洲嫩草| 亚洲精品久久午夜乱码| 一区二区日韩欧美中文字幕| 99热网站在线观看| 久久久久久人人人人人| 久久久久久久久久久久大奶| 丝袜美足系列| 久久精品国产亚洲av涩爱| 在线观看三级黄色| 中文字幕亚洲精品专区| 视频在线观看一区二区三区| 亚洲欧美一区二区三区久久| 亚洲精品一二三| 精品一区二区免费观看| 欧美成人精品欧美一级黄| 亚洲欧美一区二区三区黑人 | 久久久久久久久久人人人人人人| 国产精品女同一区二区软件| 久久久精品免费免费高清| 亚洲美女视频黄频| 国产成人欧美| 亚洲精品久久久久久婷婷小说| 一级毛片我不卡| 深夜精品福利| 国产精品欧美亚洲77777| 熟妇人妻不卡中文字幕| 成人黄色视频免费在线看| 女性被躁到高潮视频| 亚洲中文av在线| 国产精品免费大片| 久久久久久久亚洲中文字幕| 亚洲欧洲国产日韩| 亚洲国产欧美日韩在线播放| 大香蕉久久成人网| 少妇 在线观看| 久久国产精品大桥未久av| 成人18禁高潮啪啪吃奶动态图| 国产野战对白在线观看| 一区二区av电影网| 婷婷色av中文字幕| 国产极品天堂在线| 成年人午夜在线观看视频| videosex国产| 国产精品一区二区在线不卡| 亚洲第一av免费看| 日本vs欧美在线观看视频| 欧美成人午夜精品| 日韩av不卡免费在线播放| av电影中文网址| 十八禁网站网址无遮挡| 2018国产大陆天天弄谢| 女人高潮潮喷娇喘18禁视频| 人人妻人人澡人人看| 亚洲精品第二区| 黄频高清免费视频| 性色avwww在线观看| 国产一区二区三区综合在线观看| 黑人欧美特级aaaaaa片| 考比视频在线观看| 少妇的丰满在线观看| 欧美成人精品欧美一级黄| 日韩av不卡免费在线播放| 亚洲精品国产av成人精品| 在线天堂中文资源库| 久久ye,这里只有精品| 在线观看一区二区三区激情| 国产欧美日韩综合在线一区二区| 丝袜在线中文字幕| 香蕉国产在线看| 亚洲欧美一区二区三区国产| 亚洲国产精品一区二区三区在线| 午夜老司机福利剧场| 在线精品无人区一区二区三| 9色porny在线观看| 国产成人午夜福利电影在线观看| 精品午夜福利在线看| av线在线观看网站| 欧美bdsm另类| 欧美亚洲日本最大视频资源| av在线观看视频网站免费| 亚洲一区中文字幕在线| 免费女性裸体啪啪无遮挡网站| 国产免费视频播放在线视频| 黄色一级大片看看| 天美传媒精品一区二区| 国产精品二区激情视频| 天堂8中文在线网| 少妇被粗大的猛进出69影院| 黑人猛操日本美女一级片| 国产成人精品一,二区| 亚洲欧美成人综合另类久久久| 精品国产超薄肉色丝袜足j| 老鸭窝网址在线观看| 美国免费a级毛片| 性高湖久久久久久久久免费观看| 黄色毛片三级朝国网站| 黄色一级大片看看| 久久 成人 亚洲| 99国产精品免费福利视频| 欧美精品av麻豆av| 18禁国产床啪视频网站| 久久影院123| 一区二区日韩欧美中文字幕| 久久这里只有精品19| 日本欧美国产在线视频| 涩涩av久久男人的天堂| 国产精品一二三区在线看| 黄片小视频在线播放| av片东京热男人的天堂| 久久国内精品自在自线图片| 精品国产超薄肉色丝袜足j| 十八禁网站网址无遮挡| 日韩三级伦理在线观看| 国产日韩欧美视频二区| 90打野战视频偷拍视频| 夫妻午夜视频| 欧美成人精品欧美一级黄| 久久99一区二区三区| 热re99久久国产66热| 一区福利在线观看| 少妇被粗大猛烈的视频| 少妇猛男粗大的猛烈进出视频| 日韩视频在线欧美| 久久久久久久久久久久大奶| av在线播放精品| 另类亚洲欧美激情| 男女高潮啪啪啪动态图| kizo精华| 青春草亚洲视频在线观看| 精品一品国产午夜福利视频| 国产精品欧美亚洲77777| 美女中出高潮动态图| 成年女人毛片免费观看观看9 | 两个人看的免费小视频| 宅男免费午夜| 综合色丁香网| 黄色配什么色好看| 男男h啪啪无遮挡| 国产一区二区激情短视频 | 日本-黄色视频高清免费观看| 国产精品久久久久久av不卡| 成人亚洲精品一区在线观看| videossex国产| av有码第一页| av国产久精品久网站免费入址| 国产成人精品福利久久| 亚洲成人手机| 国产白丝娇喘喷水9色精品| 看免费av毛片| 国产欧美亚洲国产| 男男h啪啪无遮挡| 国产白丝娇喘喷水9色精品| 一二三四中文在线观看免费高清| 亚洲经典国产精华液单| 人妻人人澡人人爽人人| 亚洲欧美一区二区三区黑人 | 欧美精品一区二区免费开放| 99热全是精品| 大香蕉久久成人网| 如何舔出高潮| 成年人午夜在线观看视频| h视频一区二区三区| 少妇被粗大猛烈的视频| 热99国产精品久久久久久7| 肉色欧美久久久久久久蜜桃| 国产老妇伦熟女老妇高清| 久久99一区二区三区| 色婷婷久久久亚洲欧美| 美女脱内裤让男人舔精品视频| 丰满少妇做爰视频| 国产免费福利视频在线观看| 国产 精品1| 满18在线观看网站| 欧美日韩精品网址| 亚洲人成电影观看| 丝袜在线中文字幕| 久久这里只有精品19| 伊人久久国产一区二区| 精品久久蜜臀av无| 80岁老熟妇乱子伦牲交| 黑人欧美特级aaaaaa片| 国产在线免费精品| 人妻人人澡人人爽人人| 国产成人精品无人区| a 毛片基地| 日韩av不卡免费在线播放| 少妇 在线观看| 国产精品国产三级专区第一集| 天堂俺去俺来也www色官网| 亚洲美女黄色视频免费看| 精品国产超薄肉色丝袜足j| 如日韩欧美国产精品一区二区三区| 老汉色∧v一级毛片| 最黄视频免费看| 日韩制服丝袜自拍偷拍| 极品人妻少妇av视频| 丁香六月天网| 亚洲精品乱久久久久久| 精品国产一区二区三区四区第35| 国产精品 欧美亚洲| 1024香蕉在线观看| 观看美女的网站| 在线精品无人区一区二区三| 精品少妇内射三级| 在线天堂最新版资源| 高清欧美精品videossex| 国产福利在线免费观看视频| 99热全是精品| 看非洲黑人一级黄片| 丝瓜视频免费看黄片| 日本wwww免费看| 久久久国产欧美日韩av| 欧美日韩亚洲国产一区二区在线观看 | 老司机亚洲免费影院| 亚洲av日韩在线播放| 九色亚洲精品在线播放| 亚洲色图 男人天堂 中文字幕| 三上悠亚av全集在线观看| 日韩一卡2卡3卡4卡2021年| 午夜福利视频在线观看免费| 久久久国产一区二区| 国产又色又爽无遮挡免| 国产av国产精品国产| 看十八女毛片水多多多| 热99国产精品久久久久久7| 老鸭窝网址在线观看| 日韩中文字幕欧美一区二区 | 人人妻人人添人人爽欧美一区卜| 久久久精品免费免费高清| 色婷婷av一区二区三区视频| 天天躁日日躁夜夜躁夜夜| 亚洲精品一区蜜桃| 99精国产麻豆久久婷婷| 久久久久精品久久久久真实原创| 中文字幕最新亚洲高清| 日韩 亚洲 欧美在线| 99国产精品免费福利视频| 欧美bdsm另类| 国产在视频线精品| 美女中出高潮动态图| 汤姆久久久久久久影院中文字幕| 一本久久精品| 欧美老熟妇乱子伦牲交| 国产精品一国产av| 免费观看无遮挡的男女| 亚洲人成网站在线观看播放| 国产麻豆69| 久久精品久久精品一区二区三区| 久久久久精品性色| 99re6热这里在线精品视频| 久久久久久久久久人人人人人人| 欧美日韩精品成人综合77777| 久久午夜福利片| 成年av动漫网址| 狠狠婷婷综合久久久久久88av| 激情五月婷婷亚洲| 日本欧美视频一区| 成人国产av品久久久| 久久精品国产亚洲av涩爱| 亚洲精品久久午夜乱码| 中文字幕制服av| 精品人妻偷拍中文字幕| 少妇猛男粗大的猛烈进出视频| 国产精品国产av在线观看| 成人国产av品久久久| 永久免费av网站大全| 少妇猛男粗大的猛烈进出视频| 国产淫语在线视频| av免费观看日本| 亚洲精品日本国产第一区| 亚洲成人av在线免费| 免费观看性生交大片5| 国产av一区二区精品久久| 亚洲av成人精品一二三区| 性色avwww在线观看| 捣出白浆h1v1| 中文精品一卡2卡3卡4更新| av线在线观看网站| 91aial.com中文字幕在线观看| 欧美日韩精品网址| 国产有黄有色有爽视频| 热re99久久国产66热| 中文字幕人妻丝袜一区二区 | 自拍欧美九色日韩亚洲蝌蚪91| 亚洲伊人色综图| 日韩不卡一区二区三区视频在线| 国产精品一二三区在线看| 伊人亚洲综合成人网| 午夜日韩欧美国产| 免费大片黄手机在线观看| 亚洲国产精品一区三区| 亚洲国产看品久久| 国产精品免费大片| 晚上一个人看的免费电影| 在线天堂最新版资源| 久久ye,这里只有精品| 黑人巨大精品欧美一区二区蜜桃| 久久久久久久久久久久大奶| 免费日韩欧美在线观看| 久久精品人人爽人人爽视色| 男男h啪啪无遮挡| 国产探花极品一区二区| 欧美少妇被猛烈插入视频| 97在线人人人人妻| 日韩不卡一区二区三区视频在线| 中文字幕亚洲精品专区| 最新的欧美精品一区二区| 亚洲欧美中文字幕日韩二区| 丝袜美腿诱惑在线| 国产av国产精品国产| 久久av网站| 国产视频首页在线观看| 久热这里只有精品99| 久久久国产一区二区| 美女午夜性视频免费| 中文字幕色久视频| 国产xxxxx性猛交| 国产成人精品婷婷| 国产精品香港三级国产av潘金莲 | 亚洲三区欧美一区| 永久免费av网站大全| 人妻少妇偷人精品九色| 亚洲激情五月婷婷啪啪| 侵犯人妻中文字幕一二三四区| 永久免费av网站大全| 一级a爱视频在线免费观看| a级毛片在线看网站| 在线 av 中文字幕| 边亲边吃奶的免费视频| 777久久人妻少妇嫩草av网站| 大陆偷拍与自拍| 国产免费一区二区三区四区乱码| 国产精品二区激情视频| 久久久久久久精品精品| 国产探花极品一区二区| 精品少妇久久久久久888优播| 人人妻人人爽人人添夜夜欢视频| 久久午夜综合久久蜜桃| 久久久欧美国产精品| 国产人伦9x9x在线观看 | 啦啦啦在线观看免费高清www| 国产色婷婷99| 欧美精品国产亚洲| 午夜免费观看性视频| 免费av中文字幕在线| 亚洲人成网站在线观看播放| 成人影院久久| 少妇被粗大的猛进出69影院| 99久久中文字幕三级久久日本| 久久久久久久国产电影| 免费在线观看黄色视频的| 三上悠亚av全集在线观看| 日韩制服骚丝袜av| 欧美av亚洲av综合av国产av | 可以免费在线观看a视频的电影网站 | 一区二区三区精品91| 丰满饥渴人妻一区二区三| 一区在线观看完整版| 热re99久久精品国产66热6| 免费观看a级毛片全部| 如何舔出高潮| 精品国产一区二区久久| 国产亚洲av片在线观看秒播厂| av免费在线看不卡| av在线老鸭窝| 中文字幕最新亚洲高清| 国产在线视频一区二区| 高清不卡的av网站| 男女下面插进去视频免费观看| 久久久久久人妻| 免费av中文字幕在线| 欧美日韩综合久久久久久| 亚洲三区欧美一区| 在线观看三级黄色| 久久久久久久久久久免费av| 久久久久国产精品人妻一区二区| 国产97色在线日韩免费| 亚洲,欧美,日韩| 国产精品嫩草影院av在线观看| 69精品国产乱码久久久| 成年动漫av网址| 久久 成人 亚洲| 精品国产露脸久久av麻豆| 欧美日韩精品网址| 国产精品一国产av| 秋霞伦理黄片| av国产久精品久网站免费入址| 免费观看在线日韩| 狂野欧美激情性bbbbbb| 看非洲黑人一级黄片| 国产不卡av网站在线观看| 久久国内精品自在自线图片| 日本午夜av视频| 秋霞伦理黄片| 人妻人人澡人人爽人人| 五月伊人婷婷丁香| 日韩欧美一区视频在线观看| 色播在线永久视频| 免费人妻精品一区二区三区视频| 国产精品麻豆人妻色哟哟久久| 久久青草综合色| 日韩人妻精品一区2区三区| 在线观看人妻少妇| xxxhd国产人妻xxx| 美女大奶头黄色视频| 国产乱人偷精品视频| 亚洲情色 制服丝袜| 最近最新中文字幕大全免费视频 | 国产一级毛片在线| 男女高潮啪啪啪动态图| 欧美xxⅹ黑人|