• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical Simulation of Gas-Solid Two-Phase Flow in Reverse Blow ing Pickup Mouth

    2015-08-07 10:54:14XIYuan郗元CHENGKai成凱LOUXitong婁希同CHENGLei程磊DONGChao董超

    XIYuan(郗元),CHENG Kai(成凱)*,LOU Xi-tong(婁希同),CHENG Lei(程磊),DONG Chao(董超)

    1 School of Mechanical Science and Engineering,Jilin University,Changchun 130022,China

    2 XCMG Xuzhou Truck-Mounted Crane Co.,Ltd.,Xuzhou 221007,China

    Numerical Simulation of Gas-Solid Two-Phase Flow in Reverse Blow ing Pickup Mouth

    XIYuan(郗元)1,CHENG Kai(成凱)1*,LOU Xi-tong(婁希同)1,CHENG Lei(程磊)2,DONG Chao(董超)1

    1 School of Mechanical Science and Engineering,Jilin University,Changchun 130022,China

    2 XCMG Xuzhou Truck-Mounted Crane Co.,Ltd.,Xuzhou 221007,China

    Pickup mouth is a key component for the service performance of a street sweeper.Computational fluid dynam ics (CFD)technology,as an analysis tool in fluid flow simulation,is em p loyed in this work because it can greatly shorten the design period.To obtain higher simulation accuracy,the gas-solid coup ling inside the process cannot be neglected during numerical simulation.Our optim ization procedure considers the influence of structure and operational parameters.It is recommended that the outlet diameter is less than 0.42 of the w idth and the outlet inclination angle is110° for structure parameters.The dust collection efficiency is improved when the reverse flow rate is70%of the total volume,the sweepertraveling speed is 10 km/h,and the pressure drop is 2 400 Pa.Simulation results exhibit well consistency with the physical experimental results.

    sweeper;pickup mouth;parameter optimization; computational fluid dynamics(CFD);gas-solid flow

    Introduction

    Road dust is themain particulate pollution in the city,and it has great effects on particle concentration[1].Sweeper is typically practiced to remove the accumulation of dust,silt and rainwater from road surface,somany local authorities take it as an effective sanitation equipment of controlling pollutant[2-3]. Scholars both atdomestic and overseas have paidmuch attention to the sweeper[4-6].In order to improve the dust collection efficiency of pickup mouth,Chen et al.[7]added front,rear and both sides of baffles by experiments.With the rapid development of the computer technology,the computational fluid dynamics(CFD)has been successfully adopted to study various industrial pneumatic conveying processes[8-10].Zeng et al.[11-12]put forward the improvement by changing the structure of pickup mouth with CFD.Yang et al.[13-14]employed dual-phrase distribution of gas and solid model to verify the suction effects of different diameter particles.Singlesuction pickup mouth has been investigated so much,but there are a few research reports about reverse blow ing pickup mouth. This study aims to investigate the structure and operation parameter of pickup mouth considering the size interference between pickup mouth and sweeper,and an optimal structure and operating condition is obtained.

    1 Pneumatic Conveying System

    The schematics diagram and airflow route are shown in Figs.1 and 2 respectively.Sweeper uses rotary brushes to sweep the particle to the center of the sweeper.Negative pressure under the pickup mouth creates a vacuum that carries the particle into the hopper.Regulation handle(in Fig.1)can adjust the allocation of flow rate,and amountof the flow rate is reused to loosen debris on the street after subsidence and filter,causing the air to continually flow through a“regenerative loop”.The rest of flow rate is conveyed to the impulse dust filter,and finally the purified air is exhausted into the air.

    1-water tank;2-auxiliary engine;3-impulse dust filter; 4-centrifugal fans;5-centrifugal cleaner;6-h(huán)opper; 7-cylindrical brush;8-reverse blowing pickup mouthFig.1 Schematics diagram of regenerative air system sweeper

    Fig.2 Flow chart of the pneumatic conveying system

    Schematics diagram of reverse blow ing pickup mouth is shown in Fig.3.Supporting wheel and hoisting lug guarantee ground clearance when the pickup mouth works.The negative pressure is produced at the outletby a centrifugal fan,and larger particle is sucked in across rubber baffle.The inlet is connected with outlet of centrifugal fans by regulation handle.Air thatenters reverse blow ing cavity is jetted through L-type slots (zoneⅥin Fig.4).Under the action of outlet and inlet,particle on the ground is lifted and conveyed to the hopper across the pipeline.

    1-outlet;2-h(huán)oisting lug;3-inlet;4-supporting wheel;5-rubber baffleFig.3 Schematics diagram of reverse blow ing pickup mouth

    2 Numerical Simulation and Solution Methods

    2.1 Physicalmodel and grid generation

    As shown in Fig.4,L is the length,B is the w idth,H is the height,βis the outlet inclination angle,D1is the outlet diameter,D2is the inlet diameter,and V is the sweepertraveling speed.And the constants used in thismodel are L= 1 400 mm,B=480 mm and H=130 mm.

    Fig.4 Structure dimensions of reverse blow ing pickup mouth

    Pro/E was used to establish the whole flow passagemodel of reverse blowing pickup mouth.Particle is sucked at a certain speed by airflow because of ground clearance.While flow rate and pressure,etc.,are unknown,external air domains are employed to simulate the actual situation.

    In order to obtain the high accuracy and efficiency of numerical simulation,grid generation is vital.It is necessary to decompose the complex geometry into several portions.Each portion was meshed with structured grids by the integrated computer engineering and manufacturing code(ICEM).The grid independence test was employed to ensure the higher precision of the calculation.Figure 5 shows the mesh for computationalmodel.

    Fig.5 Mesh for computationalmodel

    2.2 Discrete phase model(DPM)and boundary conditions

    DPM modelwas used to simulate the actual condition and calculate the dust removal efficiency.Road particle model of Wu et al.[14]was employed to calculate dust collection efficiency.Figure 6 shows the cumulative size distribution of sand particle,where Ydis themass fraction and dpis the particle diameter.

    The k-εmodel was chosen in the calculation according to flow characteristic[15].The Euler-Lagrange approach was used to simulate gas-solid flow inside pickup mouth[14].The DPM was employed because of the low volume fraction of solid phase.SIMPLE algorithm and the second-order upw ind scheme were used for the sake of high precision solutions.Pressure-inlet boundary condition was imposed at the externalair domain,and atmospheric pressure was specified.The outlet and the inlet were expressed by utilizing the pressure-outlet and velocity-inlet boundary conditions,respectively.At the bottom shell,static wallwas applied,and the moving wall condition was imposed for the remaining shells.Table 1 shows settings of the CFD simulations.

    Fig.6 Cumulative size distribution of sand particles

    Table 1 Settings of the CFD simulations

    To describe the process of particle inhalation,there are several assumptions.(1)No heat exchange exists between inside and outside of the pickup mouth.(2)External air domains are used around the four narrow slots and its pressure is the same as atmosphere.(3)Particles are static before injection and the sweepermoves forward evenly.

    The initiation of particlemovement refers to theminimum velocity of particle that startsmoving[16-17],so pickup velocity is a vital parameter.Particle pickup velocity of different sizes is shown in Fig.7 combining with formula of Bagnold[18]and experimental results of Zhu[19],which takes the sand density (1.94 t/m3)as an example.

    Fig.7 Pickup speed of different sizes of particles

    2.3 Flow chart

    Flow chart of gas-solid coupling is shown in Fig.8.The whole flow passage model of reverse blow ing pickup mouth is established.Complex model is decomposed into several portions,and each portion is meshed with structured grids by ICEM.This simulation of gas-solid coupling was calculated in the Fluent soft.Continuous phase iterative calculation starts working after setting boundary conditions and initialization.The calculation results whether meet the objective parameters after calculation is converged.Themodelwill be redesigned if results do not meet requirements;on the contrary,disperse phase iterative calculation will start.The overall removal efficiency is calculated by disperse phase,which is compared with the removal efficiency that is no less than 90%in QC/T 51-2006[20].The model will be redesigned if results do notmeet this;conversely,themodelwill be output.

    Fig.8 Flow chart of gas-solid coupling

    3 Resu lts and Discussion

    3.1 Structure parameter analysis

    3.1.1 Outlet diameter

    The L,B and H were not resized because of the size interference between pickup mouth and sweeper.The pressure outlet(1-outlet in Fig.3)and the velocity inlet(3-inlet in Fig.3)were-2 100 Pa and 19 m/s respectively according to themeasured value,and the ground clearanceδwas 10 mm.

    Suppose D2is0.42B.Relation curves of average velocity,pressure and iD1B(the ratio of outlet diameter and w idth)are illustrated in Fig.9.The average velocities of four narrow slots increase with iD1Bincreasing,while the pressure at the inletof 1-outlet(in Fig.3)decreaseswith iD1Bincreasing.Butboth of the two parameters change slightly when iD1B≥0.45 because of the constant pressure at outlet.The larger the diameter is,the higher the dust collection power becomes,whichmakes average velocities increase.The larger diameter causes the reduction of distance between baffle and outlet,whichmakes the friction loss and the pressure decrease simultaneously.The lower pressure causes the increase of airflow velocity,which results in the increase of friction loss.Meanwhile,the increases of friction loss and dust collection power are approximately equalwhen iD1B≥0.45,which makes average velocities and pressure change little.

    1-average velocity of the front narrow slot; 2-average velocity of the rear narrow slot; 3-average velocity of the left narrow slot; 4-average velocity of the right narrow slot;5-pressure of the entrance of outletFig.9 Relation curves of average velocity,pressure and iD1B

    3.1.2 Outlet inclination angle

    Suppose D1is 0.42B and D2is 0.42B respectively. Relation curves of average velocity,pressure and outlet inclination angleβare illustrated in Fig.10.The larger the inclination angleβis,the smoother the air flow becomes when β≤105°,which makes energy loss less.The smaller energy loss causes the increase of average velocities and the decrease of pressure values.But the larger the inclination angleβis,the unsmoother the air flow becomes whenβ≥105°,which makes energy loss larger.The larger energy loss causes the decrease of dust collection power.Meanwhile,it makes the average velocities decrease and pressure increases.What's more,the larger inclination angleβmakes the cross-sectional area larger undoubtedly,which leads to smaller effects of the negative pressure at the outlet.Thus,pressure at the inlet increases dramatically.

    1-average velocity of the front narrow slot; 2-average velocity of the rear narrow slot; 3-average velocity of the left narrow slot; 4-average velocity of the right narrow slot;5-pressure of the entrance of outletFig.10 Relation curves of average velocity,pressure andβ

    Based on the analysis of the influence of structure parameter above,β=110°was selected.This optimalmodel was employed in next analysis.

    3.2 Operation parameter analysis

    3.2.1 Reverse blow ing flow rate

    Particle model mentioned in section 2.2 was used to calculate the dust removal efficiency and simulate the actual circumstance.The overall removal efficiency is calculated by releasing a specified number of particles at the injection surfaceand by monitoring the number of particles escaping through the outlet.And the grade efficiency is simultaneously obtained by the samemethod.

    Take the maximum effective operation speed 12 km/h as an example.The effect of reverse blowing flow rate on the overall removal efficiency is shown in Fig.11.The overall removal efficiency increases when the flow rate is less than 2 172m3/h,otherw ise the overall removal efficiency decreases significantly.Particle leakage phenomenon appears and it becomes more serious with the increase of flow rate when reverse blow ing flow rate is more than 2 172 m3/h.This is because reverse blow ing flow rate and sweeper-traveling speed make the relative velocity between particle and pickup mouth improve andmost particlesmove ata large impactangle,which leads to particles escape after inhalation.According to QC/T 51-2006,the removal efficiency is no less than 90%[20].It is recommended that the maximum reverse blow ing flow rate is 2 172m3/h,70%of total flow rate of the fan.This method was employed in the follow ing operation parameter calculation.

    Fig.11 Reverse flow rate and collection efficiency relation curve

    3.2.2 Sweeper-traveling speed

    Pressure drop and reverse blow ing flow rate were set as 2 200 Pa and 2 172m3/h respectively.Overall removal efficiency and grade are obtained in Fig.12 by changing sweeper-traveling speed.Figure 12(a)shows that the overall removal efficiency decreases with sweeper-traveling speed increasing.The increasing speed leads to the increase of relative velocity,which is between the sweeper and particles.Higher speed makes the particlemass loading ratio larger,and particles get less kinetic energy,which results in the overall removal efficiency decrease.Figure 12(b)shows that the grade efficiency of the smallest particles decreases by 9%with sweeper-traveling speed increasing.While the grade efficiency of the largest particles decreases by 33%.The inertia effects mentioned above can also account for that.It is recommended that themaximum sweeper-traveling speed is10 km/h according to the removal efficiency that is no less than 90%.

    Fig.12 Relation curves of speed and collection efficiency

    3.2.3 Pressure drop

    Overall removal and grade efficiency are obtained in Fig.13 by changing pressure drop across reverse blow ing pickup mouth at the speed of 10 km/h.The overall dust removal efficiency increases slightly when the pressure drop is from 3 200 to 3 500 Pa.The particles getmore kinetic energy with the pressure drop increasing.Therefore,the overall dust removal efficiency is improved.When the pressure drop ismore than 3200 Pa,the increase of friction loss is approximately equal to the increase of dust collection power,and the overall dust removal efficiency increases slightly.Figure 13(b)shows that the grade efficiency of the smallest particles decreases by 14% with the pressure drop decreasing.While the grade efficiency of the largest particles decreases by 35%.It is recommended that the pressure drop is2 400 Pa according to the removalefficiency that is no less than 90%.

    Fig.13 Relation curves of pressure drop and collection efficiency

    3.3 Velocity vector

    The optimization of the structure and operation parameters are listed in Table 2 based on the analysis above.Figure 14 shows velocity vector section of the improved reverse blow ing pickup mouth under the optimization of operation parameters. From Fig.14(a),there isa low-velocity in the zoneⅠ,but the zoneⅠis at the center and is surrounded by high speed airflow,so dust collection efficiency is affected little.Figure 14(b)shows vector diagram of the section of outlet(Y=200 mm). ZoneⅢis the outlet and its maximum velocity is nearly 62.3 m/s.Even a vortex exists in zoneⅡparticles can be sent into hopper with ease.

    Table 2 Structure and operation optim ization

    Fig.14 Velocity vector section of improved reverse blowing pickupmouth

    3.4 Model validation

    Field experiments were selected in the factory in order to verify the accuracy of simulation analysis.The photos of the sample machine and field experiment are shown in Fig.15. Particles spread evenly in the field experiments,and distribution density is 0.15 kg/m2.Experiments were carried out under the conditions that pressure drop and velocity were 2 400 Pa and 10 km/h respectively.KASDA-KV621 hot-wire anemometerwas used to measure the velocity of airflow.Seven test points were selected along the sweeper-traveling direction at X=10mm in Y=200mm plane.Five periods of timeswere tested,and finally the average speed of each test point was obtained.Comparison results are listed in Table 3,and simulation data are obtained by improved reverse blowing pickup mouth under the operation optimizationmentioned in Table 2.

    Fig.15 Photos of samplemachine and field experiment

    Table 3 Comparison between simulation results and experimental results

    Relative error Eq.(1)was quoted to calculate the difference between simulation and test data.Themaximum and theminimum relative errors are 9.8%and 5.29%respectively,and the average relative error is 7.63%.So the error is allowable according to the relative error that is less than 10%[14,19].

    whereΔp is the relative error,psimulationis the simulation data,and pexperimentalis the experimental data.

    4 Summary and Conclusions

    This study firstly optim ized the structure parameters considering the size interference between pickup mouth and sweeper.Dust removal efficiency increased with outlet diameter increasing when iD1Bwas less than 0.42 orβincreasing whenβ was less than 110°.Secondly,operation parameters,such as reverse blow ing flow rate,sweeper-traveling speed and pressure drop,were evaluated.The overall removal efficiency improved with larger reverse flow rate when reverse flow rate was not more than 70%of the total volume.The overall removal and grade efficiency increased with pressure drop increasing,but both of them decreased with speed increasing.

    A trade-off is obtained among high quality,high speed,and low energy consumption.It is recommended that reverse blow ing flow rate is less than 70%of the total volume,and an optimal sweeper-traveling speed is 10 km/h under the pressure drop of 2 400 Pa.The improved pickup mouth is easy to install withoutmodifying greatly because it is connected to the hopper by vacuum hose.Simulated values are closelymatched with the measured values by sweeping field experiments,which proved the appropriateness of numerical simulation and practical significance of CFD technology.

    References

    [1]Khanal R,F(xiàn)urumaiH,Nakajima F.Toxicity Assessmentof Size-Fractionated Urban Road Dust Using Ostracod Heterocypris Incongruens Direct Contact Test[J].Journal of Hazardous Materials,2014,264:53-64.

    [2]Tobin G A,Brinkmann R.The Effectiveness of Street Sweepers in Removing Pollutants from Road Surfaces in Florida[J]. Journal of EnvironmentScience and Health,2002,37(9):1687-1700.

    [3]Breault R F,Sm ith K P,Sorenson JR.Residential Street-Dirt Accumulation Rates and Chem ical Composition,and Removal Efficiencies by Mechanical-and Vacuum-Type Sweepers,New Bedford,Massachusetts,2003-04[M].Reston,VA:US Department of the Interior,USGeological Survey,2005:11-21.

    [4]Walter S,Ulli-Beer S,Wokaun A.Assessing Customer Preferences for Hydrogen-Powered Street Sweepers:a Choice Experiment[J].International Journal of Hydrogen Energy,2012,37(16):12003-12014.

    [5]Chang Y M,Chou C M,Su K T,et al.Effectiveness of Street Sweeping and Washing for Controlling Ambient TSP[J]. Atmospheric Environment,2005,39(10):1891-1902.

    [6]Jia C,Tai J,Bi Z J,et al.The Requirement Study of Subcompact Street Cleaning Vehicles[J].Environmental Engineering,2013,32(s1):786-788.(in Chinese)

    [7]Chen Z J,Wu X Y,Xu G P,et al.Experimental Study on Suction Mouth of Vacuum Sweeper[J].Journal of Tongji University:Science and Technology,2001,29(12):1483-1485. (in Chinese)

    [8]Zhou Z Y,Kuang S B,Chu K W,et al.Discrete Particle Simulation of Particle-Fluid Flow:Model Formulations and Their Applicability[J].Journal of Fluid Mechanics,2010,661: 482-510.

    [9]He L L,Zhou Y F,Huang Z L,et al.Acoustic Analysis of Particle-Wall Interaction and Detection of Particle Mass Flow Rate in Vertical Pneumatic Conveying[J].Industrial&Engineering Chemistry Research,2014,53(23):9938-9948.

    [10]Laín S.Pneumatic Conveying of Solids along a Channel with Different Wall Roughness[J].Chemical Engineering Communications,2014,201(4):437-455.

    [11]Zeng G Y,Li X F,Xiao T Y,et al.Simulation for the Design of Dust Suction System of Highway Sweeper[J].Journal of System Simulation,2004,16(12):2770-2773.(in Chinese)

    [12]Zhu F L,Zhang G Z,Chen J.Flow Field Analysis and Structure Optim ization of Vacuum Sweeper Suction Mouth[J].Machinery Design&Manufacture,2008(11):50-52.

    [13]Yang C Z,Zhang Y C,Ouyang Z J,et al.Parametric Design of Dust Collection Port of Vacuum Sweeper based on Flow Simulation[J].Journal of Central South University:Science and Technology,2012,43(9):3704-3709.(in Chinese)

    [14]Wu B F,Men JL,Chen J.Numerical Study on Particle Removal Performance of Pickup Mouth for a Street Vacuum Sweeper[J]. Powder Technology,2010,200(1/2):16-24.

    [15]Wang F J.Computational Fluid Dynam ics:Principles and Applications Analysis in CFD Software[M].Beijing:Tsinghua University Press,2004.(in Chinese)

    [16]Chuah T G,Gimbun J,Choong T S Y.A CFD Study of the Effect of Cone Dimensions on Sampling Aerocyclones Performance and Hydrodynam ics[J].Powder Technology,2006,162(2):126-132.

    [17]Nickling W G.The Initiation of Particle Movement by W ind[J].Sedimentology,1998,35(3):499-511.

    [18]Bagnold R A.The Physics of Blown Sand and Desert Dunes[M].New York:william Morrow&Company,1941:167-181.

    [19]Zhu F L.The Structure Research and Flow Field Analysis of Dust Collection Port Based on Sucking Performance[D].Shanghai: Shanghai Jiao Tong University,2008:27-28.(in Chinese)

    [20]The National Development and Reform Commission of the People's Republic of China.QC/T 51-2006,the National Automotive Industry Standard[S].Beijing:China Coal Industry Publishing House,2006.(in Chinese)

    U418.3

    A

    1672-5220(2015)04-0530-06

    date:2015-03-20

    National Natural Science Foundation of China(No.51375202)

    *Correspondence should be addressed to CHENG Kai,E-mail:chengkai@jlu.edu.cn

    av天堂久久9| 日本91视频免费播放| 一本—道久久a久久精品蜜桃钙片| 国产69精品久久久久777片| 只有这里有精品99| 免费黄色在线免费观看| 最黄视频免费看| 国产日韩欧美亚洲二区| 伦理电影免费视频| 少妇高潮的动态图| 91久久精品国产一区二区成人| 高清黄色对白视频在线免费看 | 日本与韩国留学比较| 久久精品夜色国产| 一级毛片 在线播放| 伊人亚洲综合成人网| 精品一区二区三卡| 99热6这里只有精品| 亚洲国产精品一区三区| 国产永久视频网站| 久久这里有精品视频免费| av不卡在线播放| 午夜激情久久久久久久| 日日啪夜夜撸| 一个人看视频在线观看www免费| 丰满饥渴人妻一区二区三| 国产成人免费观看mmmm| 你懂的网址亚洲精品在线观看| 亚洲人成网站在线播| 青青草视频在线视频观看| 国产真实伦视频高清在线观看| 蜜桃在线观看..| 国产亚洲一区二区精品| 校园人妻丝袜中文字幕| 国产免费福利视频在线观看| 婷婷色av中文字幕| 久久国产亚洲av麻豆专区| 一级,二级,三级黄色视频| 两个人的视频大全免费| 国产高清不卡午夜福利| kizo精华| 99re6热这里在线精品视频| 在线播放无遮挡| 少妇被粗大的猛进出69影院 | 欧美激情极品国产一区二区三区 | www.色视频.com| 亚洲一级一片aⅴ在线观看| 五月开心婷婷网| 少妇人妻精品综合一区二区| 人人澡人人妻人| 少妇人妻 视频| 寂寞人妻少妇视频99o| av专区在线播放| 中文字幕人妻熟人妻熟丝袜美| 成人二区视频| 热re99久久国产66热| 日韩三级伦理在线观看| 国产伦精品一区二区三区视频9| 精品国产露脸久久av麻豆| 亚洲性久久影院| 久久久国产欧美日韩av| 日本黄色片子视频| 少妇的逼好多水| 最近的中文字幕免费完整| 九色成人免费人妻av| 国产高清不卡午夜福利| 国产白丝娇喘喷水9色精品| 性色av一级| 精品卡一卡二卡四卡免费| 在线观看国产h片| 国产男人的电影天堂91| 91久久精品电影网| 亚洲国产精品999| 亚洲不卡免费看| 精品一区二区三区视频在线| 我要看日韩黄色一级片| 欧美日韩综合久久久久久| 在线观看一区二区三区激情| 一区二区三区四区激情视频| 日本av免费视频播放| 久久鲁丝午夜福利片| av黄色大香蕉| 曰老女人黄片| 青春草亚洲视频在线观看| 亚洲av男天堂| 国产免费又黄又爽又色| 乱系列少妇在线播放| 欧美国产精品一级二级三级 | 91久久精品国产一区二区成人| 九色成人免费人妻av| 亚洲综合色惰| 美女脱内裤让男人舔精品视频| 亚洲av成人精品一区久久| 国产黄片视频在线免费观看| 精品一区二区免费观看| av福利片在线观看| 秋霞伦理黄片| 热re99久久精品国产66热6| 久久 成人 亚洲| 美女国产视频在线观看| 国产成人精品久久久久久| 精品亚洲成国产av| 欧美日韩av久久| 久久影院123| 久久久久久伊人网av| 亚洲av日韩在线播放| 97超碰精品成人国产| 国产一级毛片在线| 美女xxoo啪啪120秒动态图| 亚洲怡红院男人天堂| 成人毛片a级毛片在线播放| 国产亚洲av片在线观看秒播厂| 最近手机中文字幕大全| 国产日韩一区二区三区精品不卡 | 国产成人freesex在线| 久久av网站| 又黄又爽又刺激的免费视频.| 日日啪夜夜爽| 亚洲国产成人一精品久久久| 一级a做视频免费观看| 亚洲综合色惰| 国产一区亚洲一区在线观看| 各种免费的搞黄视频| 我的女老师完整版在线观看| 国产熟女欧美一区二区| 一个人免费看片子| 欧美3d第一页| 日本黄色片子视频| 简卡轻食公司| 在线免费观看不下载黄p国产| 在线观看国产h片| 一本—道久久a久久精品蜜桃钙片| 亚洲精品乱码久久久久久按摩| 欧美激情国产日韩精品一区| 免费黄频网站在线观看国产| 免费在线观看成人毛片| 春色校园在线视频观看| 2018国产大陆天天弄谢| 亚洲真实伦在线观看| 三级经典国产精品| 国产在线男女| 久久久久久人妻| 精品国产国语对白av| 成人国产av品久久久| 欧美激情极品国产一区二区三区 | 99久久中文字幕三级久久日本| 国内揄拍国产精品人妻在线| 一区在线观看完整版| 看非洲黑人一级黄片| 日韩不卡一区二区三区视频在线| 26uuu在线亚洲综合色| 欧美日韩在线观看h| 免费看不卡的av| 高清毛片免费看| 水蜜桃什么品种好| 免费观看性生交大片5| 最黄视频免费看| 亚洲电影在线观看av| 成人午夜精彩视频在线观看| 下体分泌物呈黄色| 久久久久人妻精品一区果冻| 国产一区二区三区av在线| 亚洲在久久综合| 男人添女人高潮全过程视频| 亚洲精品中文字幕在线视频 | 亚洲一区二区三区欧美精品| 亚洲在久久综合| 午夜激情福利司机影院| 亚洲精品国产av成人精品| 国产精品一区二区在线不卡| 一本色道久久久久久精品综合| 久久精品久久久久久噜噜老黄| 国产精品一区二区性色av| 国产成人一区二区在线| 久久久国产欧美日韩av| 午夜激情福利司机影院| 美女内射精品一级片tv| 久久影院123| 一本—道久久a久久精品蜜桃钙片| 午夜日本视频在线| 免费人成在线观看视频色| 精品亚洲乱码少妇综合久久| 婷婷色综合www| 美女xxoo啪啪120秒动态图| 哪个播放器可以免费观看大片| 最近中文字幕2019免费版| 精品久久久噜噜| 欧美丝袜亚洲另类| 在线观看免费高清a一片| 欧美性感艳星| 9色porny在线观看| 精品一区二区免费观看| 蜜臀久久99精品久久宅男| 亚洲,欧美,日韩| 国产午夜精品一二区理论片| 亚洲欧美成人精品一区二区| 亚洲欧美日韩另类电影网站| 国产精品久久久久成人av| 最近的中文字幕免费完整| 国产69精品久久久久777片| 欧美成人精品欧美一级黄| 亚洲图色成人| 免费少妇av软件| 少妇的逼水好多| 内射极品少妇av片p| 亚洲中文av在线| 国产熟女欧美一区二区| 寂寞人妻少妇视频99o| 亚洲精品视频女| 日韩精品有码人妻一区| 97超视频在线观看视频| a级毛片免费高清观看在线播放| 青青草视频在线视频观看| 精品卡一卡二卡四卡免费| 亚洲精品国产av成人精品| 丝袜脚勾引网站| 韩国av在线不卡| 老熟女久久久| 人人妻人人爽人人添夜夜欢视频 | h日本视频在线播放| 中文天堂在线官网| 亚洲美女视频黄频| 777米奇影视久久| 免费av中文字幕在线| 在线观看免费高清a一片| 下体分泌物呈黄色| 嘟嘟电影网在线观看| 极品少妇高潮喷水抽搐| 男人添女人高潮全过程视频| 色5月婷婷丁香| av福利片在线观看| 日本午夜av视频| 精华霜和精华液先用哪个| 国产伦精品一区二区三区视频9| 亚洲内射少妇av| 青春草亚洲视频在线观看| 好男人视频免费观看在线| 国产精品熟女久久久久浪| 日韩一区二区三区影片| 中文字幕亚洲精品专区| 亚洲人成网站在线播| 中文字幕久久专区| 亚洲国产精品999| 老司机影院毛片| 亚洲精品亚洲一区二区| 亚洲国产精品专区欧美| 有码 亚洲区| 日韩成人av中文字幕在线观看| 精品久久久精品久久久| 男人狂女人下面高潮的视频| 国产乱人偷精品视频| av视频免费观看在线观看| 久久鲁丝午夜福利片| 中文字幕人妻丝袜制服| 国产 一区精品| 最近最新中文字幕免费大全7| 国国产精品蜜臀av免费| 日韩不卡一区二区三区视频在线| 日韩av免费高清视频| 黄色毛片三级朝国网站 | 欧美精品高潮呻吟av久久| 久久久欧美国产精品| 久久久久久久久久人人人人人人| 国产黄色免费在线视频| 色吧在线观看| 久久精品久久精品一区二区三区| 国产精品久久久久久精品电影小说| 纯流量卡能插随身wifi吗| 午夜免费男女啪啪视频观看| 你懂的网址亚洲精品在线观看| 最近中文字幕2019免费版| 欧美精品一区二区免费开放| 啦啦啦在线观看免费高清www| 久久韩国三级中文字幕| 少妇 在线观看| av黄色大香蕉| 久久久久国产网址| freevideosex欧美| 免费观看性生交大片5| 亚洲美女搞黄在线观看| 国产精品一区二区在线观看99| av播播在线观看一区| 色视频在线一区二区三区| 男人狂女人下面高潮的视频| 亚洲精华国产精华液的使用体验| 成年美女黄网站色视频大全免费 | 亚洲精品日韩在线中文字幕| 亚洲一级一片aⅴ在线观看| 王馨瑶露胸无遮挡在线观看| av黄色大香蕉| 色94色欧美一区二区| 国产真实伦视频高清在线观看| 欧美少妇被猛烈插入视频| 久久韩国三级中文字幕| 韩国高清视频一区二区三区| 久热这里只有精品99| 黑丝袜美女国产一区| 精品午夜福利在线看| 青青草视频在线视频观看| 中文字幕av电影在线播放| 少妇 在线观看| 午夜影院在线不卡| 久久国产精品大桥未久av | 欧美 日韩 精品 国产| 美女中出高潮动态图| 国产成人精品久久久久久| 亚洲欧洲国产日韩| 黄色怎么调成土黄色| 国产精品一二三区在线看| 国产av一区二区精品久久| 国产高清不卡午夜福利| 国产极品粉嫩免费观看在线 | 亚洲精品亚洲一区二区| 亚洲av.av天堂| 日日爽夜夜爽网站| 色视频www国产| 亚洲国产毛片av蜜桃av| videos熟女内射| 久久这里有精品视频免费| 成人免费观看视频高清| 国产免费福利视频在线观看| 69精品国产乱码久久久| 有码 亚洲区| 日韩强制内射视频| 国产美女午夜福利| 久久久国产欧美日韩av| 不卡视频在线观看欧美| 亚洲精品久久久久久婷婷小说| 亚洲av福利一区| 亚洲国产精品一区三区| 国产精品久久久久成人av| 少妇 在线观看| 欧美精品高潮呻吟av久久| 老司机影院毛片| 精华霜和精华液先用哪个| 国国产精品蜜臀av免费| 婷婷色综合www| 建设人人有责人人尽责人人享有的| 中文字幕人妻熟人妻熟丝袜美| 免费大片黄手机在线观看| 国产一区二区在线观看日韩| 一级毛片久久久久久久久女| 国产 精品1| 精品亚洲成a人片在线观看| 色视频在线一区二区三区| 一级毛片我不卡| 极品教师在线视频| 国产成人一区二区在线| 欧美日韩精品成人综合77777| 午夜91福利影院| 国产日韩欧美亚洲二区| 伊人久久精品亚洲午夜| 日韩一本色道免费dvd| 亚洲av.av天堂| 中文在线观看免费www的网站| 日韩亚洲欧美综合| 三上悠亚av全集在线观看 | 肉色欧美久久久久久久蜜桃| 国产白丝娇喘喷水9色精品| 91午夜精品亚洲一区二区三区| 97超视频在线观看视频| 18禁在线无遮挡免费观看视频| 建设人人有责人人尽责人人享有的| 亚洲欧美成人精品一区二区| 一区二区三区精品91| 美女xxoo啪啪120秒动态图| 香蕉精品网在线| 在线精品无人区一区二区三| 亚洲av中文av极速乱| 2018国产大陆天天弄谢| 水蜜桃什么品种好| 国产伦精品一区二区三区四那| 日韩欧美 国产精品| 我要看日韩黄色一级片| 建设人人有责人人尽责人人享有的| 日韩一区二区视频免费看| 全区人妻精品视频| av免费在线看不卡| 91在线精品国自产拍蜜月| 99热这里只有是精品在线观看| 18+在线观看网站| 欧美精品人与动牲交sv欧美| 精品午夜福利在线看| 老司机影院成人| 免费少妇av软件| 午夜福利在线观看免费完整高清在| 99久久精品热视频| 少妇猛男粗大的猛烈进出视频| 超碰97精品在线观看| 一级黄片播放器| 亚洲性久久影院| 爱豆传媒免费全集在线观看| 国产乱来视频区| 日本-黄色视频高清免费观看| 一级毛片久久久久久久久女| 一级毛片aaaaaa免费看小| 最新中文字幕久久久久| 51国产日韩欧美| 肉色欧美久久久久久久蜜桃| 免费观看性生交大片5| 少妇被粗大的猛进出69影院 | 国产一级毛片在线| 国产白丝娇喘喷水9色精品| 啦啦啦在线观看免费高清www| 欧美3d第一页| 欧美最新免费一区二区三区| 欧美少妇被猛烈插入视频| 99热这里只有是精品在线观看| 成年人免费黄色播放视频 | 人妻少妇偷人精品九色| 久久久欧美国产精品| 亚洲精品日韩av片在线观看| 美女福利国产在线| 成人午夜精彩视频在线观看| av福利片在线| 大香蕉97超碰在线| 97超碰精品成人国产| 亚洲国产精品专区欧美| 男人狂女人下面高潮的视频| 亚洲av欧美aⅴ国产| 亚洲,一卡二卡三卡| 蜜桃久久精品国产亚洲av| 全区人妻精品视频| 偷拍熟女少妇极品色| 亚洲国产精品国产精品| 欧美精品一区二区大全| av天堂久久9| 久久久久久久国产电影| 99精国产麻豆久久婷婷| 五月玫瑰六月丁香| 51国产日韩欧美| 欧美老熟妇乱子伦牲交| 又大又黄又爽视频免费| 亚洲精品国产av成人精品| 看免费成人av毛片| av一本久久久久| 秋霞伦理黄片| 各种免费的搞黄视频| 嘟嘟电影网在线观看| 亚洲欧美精品自产自拍| 日韩成人av中文字幕在线观看| 午夜影院在线不卡| 久久精品国产自在天天线| 99久久精品国产国产毛片| 亚洲,欧美,日韩| 99久久中文字幕三级久久日本| 亚洲精品中文字幕在线视频 | 久久免费观看电影| 精品久久久精品久久久| 国产又色又爽无遮挡免| 久久久久视频综合| 亚洲精品乱码久久久v下载方式| 男女边摸边吃奶| 午夜福利影视在线免费观看| 99re6热这里在线精品视频| 午夜激情久久久久久久| 香蕉精品网在线| 日韩人妻高清精品专区| 最后的刺客免费高清国语| 中文字幕久久专区| av播播在线观看一区| 插阴视频在线观看视频| 18+在线观看网站| 晚上一个人看的免费电影| h日本视频在线播放| 精品国产乱码久久久久久小说| 午夜老司机福利剧场| h视频一区二区三区| 久久久午夜欧美精品| 久久精品久久精品一区二区三区| 久久精品国产鲁丝片午夜精品| 人妻夜夜爽99麻豆av| 国产精品一区二区在线不卡| 欧美 日韩 精品 国产| 精品国产露脸久久av麻豆| 色哟哟·www| 欧美成人精品欧美一级黄| 色94色欧美一区二区| 一级片'在线观看视频| 国产 精品1| 久久鲁丝午夜福利片| 免费不卡的大黄色大毛片视频在线观看| 日韩 亚洲 欧美在线| 国产欧美亚洲国产| 精品午夜福利在线看| 国产视频内射| 人人妻人人澡人人爽人人夜夜| 久久人人爽人人爽人人片va| 韩国av在线不卡| 国产精品.久久久| 五月玫瑰六月丁香| 另类精品久久| 国产av码专区亚洲av| 色哟哟·www| 狠狠精品人妻久久久久久综合| 全区人妻精品视频| 在线观看国产h片| 美女视频免费永久观看网站| 美女中出高潮动态图| 国产 一区精品| 美女xxoo啪啪120秒动态图| 国产亚洲一区二区精品| 肉色欧美久久久久久久蜜桃| av国产久精品久网站免费入址| 亚洲欧美日韩东京热| 国产精品欧美亚洲77777| 国产色婷婷99| 亚洲一级一片aⅴ在线观看| 乱码一卡2卡4卡精品| 亚洲精品亚洲一区二区| 2021少妇久久久久久久久久久| 亚洲成色77777| 国产高清有码在线观看视频| 久久狼人影院| 国产成人免费观看mmmm| 黑人巨大精品欧美一区二区蜜桃 | 国产精品一区二区在线不卡| 久久精品夜色国产| 九草在线视频观看| 国产高清国产精品国产三级| a级一级毛片免费在线观看| √禁漫天堂资源中文www| 免费黄频网站在线观看国产| 欧美亚洲 丝袜 人妻 在线| 99久国产av精品国产电影| 亚洲中文av在线| 久久97久久精品| 国产成人一区二区在线| 午夜激情久久久久久久| 99久久人妻综合| 日日啪夜夜撸| 日本欧美国产在线视频| 国产高清不卡午夜福利| 欧美日韩视频高清一区二区三区二| 国产av一区二区精品久久| 久久久国产一区二区| 十八禁高潮呻吟视频 | 亚洲国产精品成人久久小说| 日韩熟女老妇一区二区性免费视频| 久久久久人妻精品一区果冻| 夜夜爽夜夜爽视频| 国产一区二区在线观看av| 丝袜在线中文字幕| 日本av免费视频播放| 欧美 日韩 精品 国产| 国产极品天堂在线| 亚洲国产色片| 日本-黄色视频高清免费观看| 久久国产亚洲av麻豆专区| 熟女av电影| 18禁在线播放成人免费| 久久av网站| 9色porny在线观看| 99国产精品免费福利视频| 久久影院123| 国产伦理片在线播放av一区| 国产视频首页在线观看| 精品一区二区三卡| 久久久久视频综合| 免费黄频网站在线观看国产| 九九久久精品国产亚洲av麻豆| 特大巨黑吊av在线直播| 精品久久久久久电影网| 久久久久久久国产电影| 美女国产视频在线观看| 99热这里只有精品一区| 欧美日韩视频精品一区| 极品教师在线视频| 亚洲怡红院男人天堂| 在线观看人妻少妇| 在线观看三级黄色| 日韩电影二区| 有码 亚洲区| 男人添女人高潮全过程视频| 亚州av有码| 又黄又爽又刺激的免费视频.| 一本—道久久a久久精品蜜桃钙片| 高清毛片免费看| 久久精品国产自在天天线| 亚洲不卡免费看| 免费播放大片免费观看视频在线观看| 18禁动态无遮挡网站| 国产一区二区三区av在线| 韩国av在线不卡| 2022亚洲国产成人精品| 少妇 在线观看| 日韩一本色道免费dvd| 老司机影院成人| 三级国产精品欧美在线观看| 中文字幕精品免费在线观看视频 | 午夜久久久在线观看| 国产在线男女| 男女边吃奶边做爰视频| 欧美老熟妇乱子伦牲交| 噜噜噜噜噜久久久久久91| 欧美变态另类bdsm刘玥| 男女边吃奶边做爰视频| 80岁老熟妇乱子伦牲交| 2018国产大陆天天弄谢| 国产av一区二区精品久久| 国产日韩一区二区三区精品不卡 | 久久 成人 亚洲| .国产精品久久| 一级毛片我不卡| 亚洲欧美精品自产自拍| 男人和女人高潮做爰伦理| 亚洲电影在线观看av| 人妻人人澡人人爽人人| 亚洲电影在线观看av| 丝袜脚勾引网站| 久久免费观看电影| 建设人人有责人人尽责人人享有的| 亚洲精品,欧美精品| 嘟嘟电影网在线观看| 少妇人妻 视频|