• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Cooperative Compressive Spectrum Sensing in Cognitive Underwater Acoustic Communication Networks

    2015-08-07 10:54:14ZUOJiakuo左加闊DAOVanphuong陶文鳳BAOYongqiang包永強(qiáng)ZHAOLi趙力ZOUCairong鄒采榮

    ZUO Jia-kuo(左加闊),DAO Van-phuong(陶文鳳),BAO Yong-qiang(包永強(qiáng)),ZHAO Li(趙力),ZOU Cai-rong(鄒采榮)

    1 School of Internet of Things,Nanjing University of Posts and Telecommunications,Nanjing 210003,China

    2 Key Laboratory of Underwater Acoustic Signal Processing of Ministry of Education,Southeast University,Nanjing 210096,China

    3 School of Communication Engineering,Nanjing Institute of Technology,Nanjing 210096,China

    Cooperative Compressive Spectrum Sensing in Cognitive Underwater Acoustic Communication Networks

    ZUO Jia-kuo(左加闊)1*,DAO Van-phuong(陶文鳳)2,BAO Yong-qiang(包永強(qiáng))3,ZHAO Li(趙力)2,ZOU Cai-rong(鄒采榮)2

    1 School of Internet of Things,Nanjing University of Posts and Telecommunications,Nanjing 210003,China

    2 Key Laboratory of Underwater Acoustic Signal Processing of Ministry of Education,Southeast University,Nanjing 210096,China

    3 School of Communication Engineering,Nanjing Institute of Technology,Nanjing 210096,China

    Because of the specific of underwater acoustic channel,spectrum sensing entails many difficulties in cognitive underwater acoustic communication(CUAC)networks,such as severe frequency-dependent attenuation and low signal-to-noise ratios.To overcome these problems,two cooperative com pressive spectrum sensing(CCSS)schemes are proposed for different scenarios(with and without channel state information).To strengthen collaboration among secondary users(SUs),cognitive central node(CCN)is provided to collect data from SUs.Thus,the proposed schemes can obtain spatial diversity gains and exploit joint sparse structure to improve the performance of spectrum sensing.Since the channel occupancy is sparse,we formulate the spectrum sensing problems into sparse vector recovery problem s,and then present two CCSS algorithm s based on path-w ise coordinate optim ization(PCO)and multi-task Bayesian com pressive sensing(M T-BCS),respectively.Simulation results corroborate the effectiveness of the proposed methods in detecting the spectrum holes in underwater acoustic environment.

    cognitive underwater acoustic communication(CUAC); spectrum sensing;compressive sensing;path-wise coordinate optimization(PCO);multi-task Bayesian compressive sensing(MTBCS)

    Introduction

    Practical application of high-speed underwater acoustic communication(UAC)is impeded by typical underwater acoustic channel,including severe frequency-dependent attenuation,low speed of wave propagation,excessive multipath delay spread and noise[1].To realize a stable and high rate UAC system,cognitive underwater acoustic communication (CUAC)is proposed.Similar to terrestrial cognitive radio (CR),CUAC is an intelligentand high reliable communication system utilizing all available resourcesmore efficiently.

    Recently,many researches have been presented for CUAC.The application of software defined radio techniques to UAC and the definition of cognitive underwater communication system were first discussed in Ref.[2].Bandw idth management by utilizing dynam ic spectrum access and dynamic spectrum sharing were investigated for CUAC in Ref.[3]. Channel allocation schemeswere also proposed tomaximize the channel capacity in Refs.[4-5].An intelligent underwater communication system was proposed to accurately measure the underwater channel parameters and estimate underwater channel models in Ref.[6].Reference[7]studied cognitive access for underwater active sensor network where each cognitive node applied pattern analysis procedure to evaluating the presence of interference and its nature.In Refs.[8-9],a cognitive control architecture for automous marine vehicles was proposed to reduce overhead costs and level of operator intervention.

    While the research on CUAC is still in its infancy,the researches above have outlined the general framework. Spectrum sensing is a key step for CUAC.Because the underwater environment varies significantly,many spectrum sensing techniques in CR can not be simply transplanted to CUAC.So,there is a pressing requirement for efficientand low complexity spectrum sensing methods for CUAC.Analog to terrestrialw ireless communication,due to the low percentage of spectrum occupancy in UAC,the signals are very sparse in the frequency domain.For sparse signals,recent advances in compressed sensing(CS)[10-11]and multi-task Bayesian compressive sensing(MT-BCS)[12-13]have demonstrated the principle of reliable signal recovery via computationally feasible algorithms.Several schemes based on CS[14-26]and BCS[27-29]have been developed to detectwideband spectrum for CR.

    In CUAC networks,underwater propagation environments are highly complex and uncertain,and the signal transmitted in underwater channel usually experiences deep fading.In addition,nodes or users are battery operated and the computing resources are very limited.Spectrum sensing in CUAC entails severe challenges.To overcome these problems,inspired by Ref.[16],we present two new cooperative compressive spectrum sensing(CCSS)schemes for CUAC networks. Spectrum sensing algorithm in Ref.[16]is a single secondary user(SU)scheme which can not be used for CUAC.Different from Ref.[16],we first consider the frequency-dependent attenuation in spectrum sensing and explore amore complicated scenario thatmultiple SUs collaborate to sense spectrum in an underwater network instead of a single SU.Two new CCSS models for different scenarios,i.e.,with and without channel state information(CSI),are presented.The CCSS problems are first formulated as two sparse vector recovery problems,then path-w ise coordinate optimization(PCO)[30]and MTBCS[13]are used to solve the two problems,respectively.At last,CCSSwith CSIand CCSSwithout CSIare proposed.

    The rest of this paper is organized as follows.In section 1,a brief introduction of underwater acoustic channel model is given.In section 2,the signalmodel and problem statement is presented.The two new CCSS schemes are described in section 3.Simulation results are given in section 4 and conclusions are drawn in section 5.

    1 Underwater Acoustic Channel Model and the Ambient Noise in Underwater

    Usually,the underwater acoustic channel transfer function is defined as:

    where P is the total number ofmultiple propagation path,Γpis the addition losses,d0is the distance between the transm itter and the receiver,dpis the length of the p-th path,τp=dp/c is the delay of the p-th path(c=1 500 m/s is the normal speed of sound underwater),j is the imaginary unit,and A(d,f)is the path losswhich is defined as

    where A0is a unit-normalizing constant,k0is the spreading factor,and a(f)is the absorption coefficient.

    The ambient noise in underwater depends on four sources: turbulence Nt(f),shipping Ns(f),waves Nw(f),and thermal noise Nth(f)(the details definitions of the four sources can be found in Ref.[1]).Therefore,the overall power spectrum density(p.s.d)can be w ritten as

    2 SignalModeland Problem Statement

    Consider a simplified schematic diagram of CUAC network with cognitive central node(CCN)as shown in Fig.1.Assume primary users(PUs)can be heard by all SUs,and during detection interval,higher-layer protocols can guarantee that all SUs stay silent when the PUs emit spectral power.The total bandw idth of the underwater acoustic channel of W(Hz)is shared by PUs and SUs.Assume that each user in CUAC network needs a bandw idth of B(Hz)for communication.The entire channel is divided into M(M=W/B)non-overlapping subchannels and the m th subchannel's center frequency is denoted by fm.

    Fig.1 Simplified schematic diagram of CUAC network

    Suppose that there are I active PUswhose transmitted signals are denoted by s(i)(t)(i=1,2,…,I)and J SUs in the CUAC network.The received signal at the j th SU is given by

    where*denotes the convolution operation,h(i,j)(t)is the underwater acoustic channel impulse response from i th PU to j th SU,and w(j)(t)is the underwater noise at j th SU.The equivalent expression of Eq.(4)in frequency domain is

    where X(j)(f),H(i,j)(f),S(i)(f),and W(j)(f)are the Fourier transformations of x(j)(t),s(i)(t),h(i,j)(t),and w(j)(t),respectively.

    Assume the amplitude of S(i)(f)is flat,which meansSince PUs occupy nonoverlapping channels,by replacing X(j)(f)in Eq.(6)from Eq. (5),after some algebraicmanipulation,yield

    To further facilitate the representation of Eq.(8),define:

    Then,Eq.(8)can be w ritten in a brief form as:

    As in Ref.[16],a random K×M matrixΦ(j)is provided by the j th SU.The matrix is used to generate K filters whose transfer functionis given by

    Sample signal x(j)(t)to get the time sequence vector x(tj), and then feedinto the filters.The output at the k th filter is

    Combining with Eq.(10),the above K equations for the j th SU can be briefly w ritten in the vector form as

    Because PUs occupy non-overlapping channels and the spectrum utilization is low,esis very sparse.The esis composed of which can be used to detect PU signal.Therefore, spectrum sensing boils down to recover esfromU(j).Usually,it is difficult to acquire CSI matrix Q(j)in CUAC.When the underwater acoustic channel impulsewith responses are unknown,Eq.(14)can be expressed as:

    In a summary,depending on whether CSI can be acquired by each SU,spectrum sensing boils down to estimate esor from y(j).Usually,SUs prefer to know which of the M subchannels are unoccupied rather than the values of signal energy in each subchannel.Thismeans that the aim of spectrum sensing is to determine the channel occupancy by an M×1 binary state vector d.When d[m]=1,the m th subchannel is occupied;when d[m]=0,the m th subchannel is idle.Hence,the elements of d can be defined as follows:

    (1)with CSI

    (2)absence of CSI

    d[m]=

    3 CCSS for CUAC

    Since underwater propagation environments are highly complex and uncertain,the signal transm itted in underwater acoustic channel usually experiences deep fading,and the performance of spectrum sensing by single SU will be very disappointing.To overcome the problem above,SUs must collaborate to sense the spectrum.Via obtaining spatial diversity gains and exploiting joint sparse structure,high spectrum sensing performance can be achieved.As shown in Fig.1,CCN is provided to strengthen collaboration among SUs.Each SU j transmits itsmeasurement vectors y(j)and U(j)or A(j)to CCN,then CCN performs spectrum sensing utilizing the collected data.

    In this section,we develop two CCSS algorithms for CUAC networks.Section 3.1 depicts the algorithm when SUs know CSI.The algorithm in absence of CSI is discussed in section 3.2.

    3.1 CCSSwith CSI

    Since esis sparse,recovery of escan be solved by minim izing the l1-regular formulation via convex optim ization as

    whereλis a positive scalar weighting coefficient.Optim ization of Eq.(16)can be solved using standard optimization routines. However,research in Ref.[30]has shown that PCO is well suited for solving the above problem,and yields the solution in much less time than standard convex optimizer.

    Introduce the iteration index t,and at each iteration index t,the elementsare updated iteratively by solving: where is the q th column of U(j).Since es[n]≥0,the closed form solution of Eq.(17)is

    es[n](t+1)=

    Now,we have presented a new CCSS algorithm based on PCO when CSI is known.We term thismethod as CCSS-CSI and tabulate it as Algorithm 1.The process of the proposed CCSS-CSIalgorithm is shown in Fig.2.

    Fig.2 The process of the proposed CCSS-CSIalgorithm

    3.2 CCSSwithout CSI

    As shown in Eq.(15),when CSI is unknown,spectrum sensing boils down to estimate e~(sj)from y(j).Recently,MTBCS[13]is proposed to solve this problem from Bayesian perspective.Simulation results show that MT-BCS is robust to noise and often outperforms the traditional CSmethods.Based onMT-BCS,we present a new CCSS scheme for CUAC network.

    Assuming p(y(j)|e~(j)s)to be Gaussian with noise variance α-1(precisionα),thus we have the Gaussian likelihood00model,

    According to Ref.[13],we have

    and the posterior covariance and mean are as follows,respectively,

    With Eqs.(20)and(21),we obtain the posterior density(precisionαm).SinceofwhereΓ=diag(α1,α2,…,αM).Since≥0 andμjis the expectation of it means thatμj≥0 has the same sparsestructure asand can be used to detect the spectrum holes. Letμj[m]denote the m th componentofμj.Whenμj[m]>0,the m-th subchannel is occupied by one of PU signals;when μj[m]=0,none of PU signals are em itted on the m th subchannel.

    In MT-BCS,is shifted to estimate a hyper parameter vectorαwith correct number and location of nonzero elements.To get the optimalαandα0,we can maxim ize the logarithm L(α,α0),which is defined as

    Skipping details can be found in Ref.[13],and by introducing iteration index t,the optimal solutions ofαandα0can be updated by

    According to Eqs.(23)and(24),the posterior covarianceΣjand meanμjcan be updated by:

    whereμj[m]is the m th component ofμj,Σj[m]is the m th diagonal element ofΣj,andΓ(t)=diag(α1(t),α2(t),…,αM(t)).

    Now,we have presented another CCSS algorithm based on BCSwhen CSI is unknown.We term this method as CCSSUCSI and tabulate it as Algorithm 2.The process of the proposed CCSS-UCSIalgorithm is shown in Fig.3.

    Fig.3 The process of the proposed CCSS-UCSIalgorithm

    4 Performance Simulation

    For the purposes of evaluation,the true support is denoted by d0and the estimated support is denoted by d-.Performance metrics thatwe adopt are probabilities of detection Pdand false alarm Pf,which we average over all sub-channels as[15]

    where1 denotes the all-one vector.

    Define the compression ratiow hen CSI is known,andwhen CSI is unknown,respectively.Since our simulations is to evaluate the performance of spectrum detection algorithms,we assume that the underwater acoustic signals of transm itters can be accurately received by receivers.

    In this section,we analyze the spectrum sensing performances of the proposed schemes.The underwater acoustic channel and embedded noise are simulated according to the models Eqs.(1)and(3)with parameters in Table 1.SUs and PUs are random ly distributed in 500m×500m underwater area. We obtain the average performances of spectrum detection algorithms according to 200 times different distribution of SUs and PUs locations.The available bandw idth W is partitioned into M=20 equal-bandw idth subchannels.Asssum the total number of PUs is 3,and the CUAC network adopts frequency division multiple access(FDMA)modulation.Define thechannel occupancy ratio,i.e.,the sparsity ratio,as the ratio of total number of PUs and the total number of subchannles. Therefore,the occupancy ratio is 15%.

    Table 1 Parameters of the underwater acoustic channel

    4.1 Performance analysiswith CSI

    We compare the proposed CCSS-CSI scheme with the single scheme in Eq.(16)with J=1,which is denoted by SCSI.Figure 4 shows the average receiver operating characteristics(ROC)of the two schemeswith parameters:J= 5,v=75%,and rSNR=-5 dB(for S-CSI J=1),where rSNRdenotes the value of signal-to-noise ratio(SNR).The proposed CCSS-CSI scheme has a better performance than the single scheme S-CSI.

    Fig.4 ROC performances at J=5,v=75%,rSNR=-5 dB

    To show the gains from spatial diversity and joint sparsity structure,we compute the average probability of detection versus the number of cooperation SUs J in Fig.5.As shown in Fig.5,the baseline is the performance of S-CSI.Since there is no cooperation in the single scheme,the performance of S-CSI isworse and do not increasewith the number of cooperation SUs J increasing.By utilizing spatial diversity gains and exploiting joint sparsity,the performance of CCSS-CSI is improved. Figure 6 depicts the average probability of detection versus compression ratio v.We adjust the compressed ratio v grows from 60%to 100%,and find that the performance of all algorithms grows as v increases,but the complexity of the recovery algorithms also increases.So,there is a trade-off between performance and compressed ratio.Figure 7 shows the average probability of detection versus SNR.Apparently,the probability of detection improves as SNR increases.

    4.2 Performance analysiswithout CSI

    To corroborate the effectiveness of CCSS-UCSIalgorithm,we compared CCSS-UCSI algorithm with S-UCSI algorithm in Ref.[16].S-UCSI algorithm is the single user spectrum sensing algorithm which is used to solve problem(15)with J= 1.To exploit the effect of CSIon the algorithms,we compare the unknown CSI algorithms mentioned above with CCSS-CSI scheme which has evaluated in section 4.1.Figure 8 depicts the average ROC for different algorithms with parameters:J=5,

    Fig.5 Probability of detection versus the number of cooperation SUs at v=75%,rSNR=-5 dB,Pf=9%

    Fig.6 Probability of detection versus the compressionratio v at J=5,rSNR=-5 dB,Pf=9%

    Fig.7 Probability of detection versus rSNRat J=5,v=75%,Pf=9%

    v=75%,and rSNR=-5 dB(for S-UCSI in Ref.[16],J= 1).Since the channel state information helps to identify the operating scenarios,CCSS-CSIalgorithm can improve spectrum sensing performance than CCSS-UCSI.We also compare CCSSUCSI algorithm with S-UCSI algorithm in Fig.9.Via SUs cooperation,the CCSSI-UCSI algorithm can acquire spatial diversity gains and exploit joint sparsity of signals.However,there is only one SU to sense the spectrum.Therefore,the proposed CCSSI-UCSI scheme also has a better performance than S-UCSI.

    Fig.8 ROC performancesat J=5,v=75%,rSNR=-5 dB

    Fig.9 Probability of detection versus the number of cooperation SUs at v=75%,rSNR=-5 dB,Pf=9%

    Fig.10 Probability of detection versus the compressionJ=5,rSNR=-5 dB,Pf=9%

    The effects of the three quantities are respectively evaluated in Figs.9-11.These results depict similar properties corresponding to the results in section 4.1.

    5 Conclusions

    This paper studied spectrum sensing in CUAC networks. We first established two sparse spectrum sensing models for different scenarios(with and without CSI),and then proposed two CCSS algorithms based on PCO and MT-BCS,respectively.In the proposed two schemes,via collaboration among multiple SUs,the algorithms can obtain spatial gains diversity against underwater channel fading,and enhance sparsity recovery ability by exploiting joint sparse structure.To corroborate the effectiveness of the proposed algorithms,we compared the algorithms with two single user spectrum sensing algorithms.Simulation results show that our proposed algorithms can improve the spectrum sensing performance via multiple SUs cooperation.In the experiment simulation,the underwater acoustic channel is non-time varying channel and shipping noise and w ind noise are neglected in the simulation. In our futurework,wewill investigate spectrum sensing in time varying underwater acoustic channel,and analyze the effection of time varying underwater acoustic channelmodel and the four noise sources(turbulence,shipping,waves,and thermal noise)to spectrum sensing.

    Fig.11 Probability of detection versus rSNRat ratio v atJ=5,v=75%,Pf=9%

    [1]Polprasert C,Ritcey J A,Stojanovic M.Capacity of OFDM Systems over Fading Underwater Acoustic Channels[J].IEEE Journal of Oceanic Engineering,2011,36(4):514-524.

    [2]Wang Y G,Tang JS,Pan Y,et al.Underwater Communication Goes Cognitive[C].OCEANS,Quebec,Canada,2008:15-18.

    [3]Tan H P,Seah W K G,Doyle L.Exploring Cognitive Techniques for Bandw idth Management in Integrated Underwater Acoustic Systems[C].OCEANS,Quebec,Canada,2008:1-7.

    [4]Torre D,Charbiwala Z,F(xiàn)riedman J,et al.Spectrum Signaling for Cognitive Underwater Acoustic Channel Allocation[C]. INFOCOM IEEE Conference on Computer Communications,San Diego,CA,USA,2010:1-6.

    [5]Bicen A O,Sahin A B,Akan O B.Spectrum-Aware Underwater Networks:Cognitive Acoustic Communications[J].IEEE Vehicle Technology Magazine,2012,7(2):34-40.

    [6]Ahmed S,Arslan H.Cognitive Intelligence in UAC Channel Parameter Identification,Measurement,Estimation,and Environment Mapping[C].OCEANS,Bremen,Germany,2009:1-14.

    [7]BiagiM,Rinauro S,Cusani R.UWA Interference Analysis for Cognitive Access[C].OCEANS-Europe,Begen,Norway,2013:1-5.

    [8]Insaurralde C C,Cartw right J J,Petillot Y R.Cognitive Control Architecture for Autonomous Marine Vehicles[C].IEEE International Systems Conference,Vancouver,BC,USA,2012: 1-8.

    [9]Insaurralde C C,Petillot Y R.Intelligent Autonomy for Collaborative Intervention M ission of Unmanned Maritime Vehicles[C].OCEAS,San Diego,CA,USA,2013:1-6.

    [10]Donoho D L.CompressedSensing[J].IEEE Transactions on Information Theory,2006,52(4):1289-1306.

    [11]Cotter S F,Rao B D,Engan K,et al.Sparse Solutions to Liner Inverse Problems with Multiple Measurement Vectors[J].IEEE Transactions on Signal Processing,2005,53(7):2477-2488.

    [12]Ji S H,Ya X,Carin L.Bayesian Compressive Sensing[J]. IEEE Transactions on Signal Processing,2008,56(6):2346-2356.

    [13]Ji S H,Dunson D,Carin L.Multitask Compressive Sensing[J].IEEE Transactions on Signal Processing,2009,57(1): 92-106.

    [14]Tian Z,Giannakis G B.Compressed Sensing for W ideband Cognitive Radios[C].International Conference on Acoustics,Speech,and Signal Processing,Honolulu,HI,USA,2007: 1357-1360.

    [15]Polo Y L,Wang Y,Pandharipande A,etal.CompressiveW ide-Band Spectrum Sensing[C].International Conference on Acoustics,Speech,and Signal Processing,Taipei,China,2009: 2337-2340.

    [16]Havary-Nassa V,Hassan S,Valaee S.Compressive Detection for W ide-Band Spectrum Sensing[C].International Conference on Acoustics,Speech,and Signal Processing,Dallas,TX,USA,2010:3094-3097.

    [17]Nasif A O,Tian Z.Collecting Fusion Gains for Detection of Spread Spectrum Signals Using Compressive W ideband Radio[C].IEEE International Conference on Communications,Budapest,Hungary,2013:2712-2716.

    [18]Tian Z,Blasch E,Li W H,et al.Performance Evaluation of Distributed Compressed Wideband Sensing for Cognitive Radio Networks[C].International Conference on Information Fusion,Cologne,Germany,2008:1-8.

    [19]Zeng F Z,Li C,Tian Z.Distributed Compressive Spectrum Sensing in Cooperative Multihop Cognitive Networks[J].IEEE Journal of Selected Topics Signal Process,2011,5(1):37-48.

    [20]Bazerque JA,Giannakis G B.Distributed Spectrum Sensing for Cognitive Radio Networks by Exploiting Sparsity[J].IEEE Transactions on Signal Processing,2010,58(3):1847-1862.

    [21]Bazerque J A,Giannakis G B.Group-Lasso on Splines for Spectrum Cartography[J].IEEE Transactions on Signal Processing,2011,59(10):4648-4663.

    [22]Ling Q,Wen Z W,Yin W T.Decentralized Jointly Sparse Optim ization by Reweighted lqM inim ization[J].IEEE Transactions on Signal Processing,2013,61(5):1165-1170.

    [23]Tian Z,Tafesse Y,Sadler B M.CyclicFeature Detection with Sub-Nyquist Sampling for W ideband Spectrum Sensing[J]. IEEE Journal of Selected Topics Signal Processing,2012,6(1): 58-69.

    [24]Zhou L,Man H.W ide-Band Spectrum Sensing Using Neighbor Orthogonal Matching Pursuit[C].IEEE Sarnoff Symposium (SARNOFF),Newark,NJ,USA,2012:1-5.

    [25]Qi C H,Yue G S,Wu L N,et al.Pilot Design for Sparse Channel Estimation in OFDM-Based Cognitive Radio System[J].IEEE Transactions on Vehicular Technology,2014,63 (2):982-987.

    [26]Wang Y,Tian Z,F(xiàn)eng C Y.Sparsity Order Estimation and Its Application in Compressive Spectrum Sensing for Cognitive Radios[J].IEEE Transactions on Wireless Communications,2012,11(6):2116-2125.

    [27]Hong S.Direct Spectrum Sensing from Compressed Measurements[C].M ilitary Communications Conference,San Jose,CA,USA,2010:284-289.

    [28]Huang D T,Wu SH,Wang PH.Cooperative Spectrum Sensing and Locationing:a Sparse Bayesian Learning Approach[C]. Global Telecommunications Conference,M iam i,F(xiàn)L,USA,2010:1-5.

    [29]Li X,Hong S,Zhu H,et al.Bayesian Compressed Sensing Based Dynamic Joint Spectrum Sensing and Primary User Localization for Dynam ic Spectrum Access[C].Global Telecommunications Conference,Houston,TX,USA,2011:1-5.

    [30]Friedman J,Hastie T,H?fling H,et al.Pathwise Coordinate Optimization[J].Annals of Applied Statistics,2007,1(2): 302-332.

    TN929.3

    A

    1672-5220(2015)04-0523-07

    annel energy vector of the

    signal x(j)(t)at the j th SU,Eq. (7)can be w ritten in the vector form as:

    Received date:2014-03-04

    s:National Natural Science Foundations of China(Nos.60872073,51075068,60975017,61301219);Doctoral Fund of M inistry of Education,China(No.20110092130004)

    *Correspondence should be addressed to ZUO Jia-kuo,E-mail:zuojiakuo85418@163.com

    日本vs欧美在线观看视频| 天堂俺去俺来也www色官网| 无遮挡黄片免费观看| 19禁男女啪啪无遮挡网站| 又大又爽又粗| 性欧美人与动物交配| 中文字幕av电影在线播放| 女同久久另类99精品国产91| 亚洲第一青青草原| 欧美在线一区亚洲| www.www免费av| 女警被强在线播放| 国产成人免费无遮挡视频| 黑人巨大精品欧美一区二区mp4| 亚洲第一av免费看| 精品福利永久在线观看| √禁漫天堂资源中文www| 女人爽到高潮嗷嗷叫在线视频| 亚洲国产欧美日韩在线播放| 精品乱码久久久久久99久播| 国产精品久久久久久人妻精品电影| 夜夜夜夜夜久久久久| 一级毛片高清免费大全| 女人高潮潮喷娇喘18禁视频| 亚洲人成77777在线视频| 精品熟女少妇八av免费久了| 国产1区2区3区精品| 老司机靠b影院| 日本欧美视频一区| 在线天堂中文资源库| 免费女性裸体啪啪无遮挡网站| 精品一区二区三区四区五区乱码| 国产成+人综合+亚洲专区| 99久久人妻综合| 国产一区二区激情短视频| 久久午夜亚洲精品久久| 久久 成人 亚洲| 12—13女人毛片做爰片一| 男女床上黄色一级片免费看| 香蕉国产在线看| 黑人欧美特级aaaaaa片| 欧美日韩亚洲高清精品| 欧美激情极品国产一区二区三区| 老司机午夜十八禁免费视频| 国产精品久久久久成人av| 新久久久久国产一级毛片| 90打野战视频偷拍视频| 性欧美人与动物交配| 又黄又粗又硬又大视频| 国产又色又爽无遮挡免费看| 在线观看午夜福利视频| 91老司机精品| 欧美+亚洲+日韩+国产| 色综合站精品国产| 十分钟在线观看高清视频www| 99久久99久久久精品蜜桃| 欧美+亚洲+日韩+国产| 久久久久久久午夜电影 | 日韩免费av在线播放| 国产欧美日韩精品亚洲av| tocl精华| 久久 成人 亚洲| 欧美+亚洲+日韩+国产| 露出奶头的视频| 国产成人一区二区三区免费视频网站| 成人永久免费在线观看视频| 久久亚洲精品不卡| 久久九九热精品免费| 最新美女视频免费是黄的| 一二三四在线观看免费中文在| 国产精品香港三级国产av潘金莲| 免费看十八禁软件| 国产aⅴ精品一区二区三区波| 午夜激情av网站| 一区福利在线观看| 桃红色精品国产亚洲av| 久久久国产成人免费| 9色porny在线观看| 精品一区二区三区视频在线观看免费 | 国产一区二区激情短视频| 久9热在线精品视频| 国产在线精品亚洲第一网站| 欧美一区二区精品小视频在线| 免费在线观看完整版高清| 大香蕉久久成人网| 日日爽夜夜爽网站| 亚洲精品一区av在线观看| 国产一区二区三区在线臀色熟女 | 国产一区在线观看成人免费| 麻豆av在线久日| 亚洲欧洲精品一区二区精品久久久| 亚洲精品成人av观看孕妇| 国产欧美日韩一区二区三| 这个男人来自地球电影免费观看| 亚洲精品久久午夜乱码| 波多野结衣高清无吗| 五月开心婷婷网| 日本一区二区免费在线视频| 中文字幕精品免费在线观看视频| 亚洲国产看品久久| 久久久久国内视频| 久久草成人影院| 真人做人爱边吃奶动态| 又紧又爽又黄一区二区| 亚洲av成人不卡在线观看播放网| 亚洲精品中文字幕一二三四区| 国产亚洲欧美精品永久| 丰满饥渴人妻一区二区三| 亚洲熟妇中文字幕五十中出 | 无遮挡黄片免费观看| 亚洲av第一区精品v没综合| 大码成人一级视频| 亚洲欧美激情在线| 中文字幕人妻丝袜一区二区| 日本wwww免费看| 一区二区三区国产精品乱码| 国产一区在线观看成人免费| 国产精华一区二区三区| 亚洲国产欧美网| 91字幕亚洲| 亚洲成av片中文字幕在线观看| 啪啪无遮挡十八禁网站| 国产精品一区二区在线不卡| 亚洲三区欧美一区| 亚洲人成77777在线视频| 首页视频小说图片口味搜索| 一级黄色大片毛片| 黄色视频不卡| 亚洲第一欧美日韩一区二区三区| 亚洲人成网站在线播放欧美日韩| 欧美日韩中文字幕国产精品一区二区三区 | 久久久精品欧美日韩精品| 免费看十八禁软件| 丁香六月欧美| 国产精品香港三级国产av潘金莲| 欧美精品一区二区免费开放| 亚洲自偷自拍图片 自拍| 久久国产精品男人的天堂亚洲| 亚洲精华国产精华精| 亚洲在线自拍视频| 亚洲第一av免费看| 欧美日韩福利视频一区二区| 亚洲自偷自拍图片 自拍| 午夜福利一区二区在线看| 国产欧美日韩一区二区精品| 中文字幕最新亚洲高清| 亚洲成人免费av在线播放| 久久久久久久精品吃奶| 怎么达到女性高潮| 久久国产精品男人的天堂亚洲| 久久亚洲真实| 夜夜躁狠狠躁天天躁| 亚洲全国av大片| 免费观看人在逋| 色尼玛亚洲综合影院| 精品国产超薄肉色丝袜足j| 少妇被粗大的猛进出69影院| 国产麻豆69| 不卡av一区二区三区| 他把我摸到了高潮在线观看| 国产精品美女特级片免费视频播放器 | 99国产精品一区二区三区| 日韩欧美一区视频在线观看| 三级毛片av免费| 国产精品乱码一区二三区的特点 | 后天国语完整版免费观看| 午夜日韩欧美国产| 日韩欧美三级三区| 婷婷丁香在线五月| 成人国产一区最新在线观看| 天堂中文最新版在线下载| 久久午夜综合久久蜜桃| 丁香欧美五月| 国产成人av教育| 免费日韩欧美在线观看| 国产午夜精品久久久久久| www国产在线视频色| 女同久久另类99精品国产91| 国产有黄有色有爽视频| xxxhd国产人妻xxx| 精品一品国产午夜福利视频| 麻豆国产av国片精品| 久久精品亚洲精品国产色婷小说| 国产免费av片在线观看野外av| 欧美日韩一级在线毛片| 美国免费a级毛片| 精品人妻在线不人妻| 中文字幕人妻熟女乱码| 午夜91福利影院| 国产高清激情床上av| 99精品久久久久人妻精品| 超碰成人久久| 欧美日本中文国产一区发布| 亚洲avbb在线观看| 亚洲伊人色综图| 电影成人av| 啦啦啦在线免费观看视频4| 亚洲欧美日韩无卡精品| 69精品国产乱码久久久| 欧美 亚洲 国产 日韩一| 黄片小视频在线播放| 免费在线观看亚洲国产| 999久久久精品免费观看国产| 丝袜美腿诱惑在线| 久久午夜综合久久蜜桃| 午夜福利欧美成人| 精品久久久久久电影网| 超碰97精品在线观看| 性色av乱码一区二区三区2| 欧美大码av| 日本五十路高清| 在线观看午夜福利视频| 又黄又爽又免费观看的视频| 亚洲人成77777在线视频| 黄色丝袜av网址大全| 99久久人妻综合| 又大又爽又粗| 国产成人欧美在线观看| 免费在线观看视频国产中文字幕亚洲| 19禁男女啪啪无遮挡网站| 一级片'在线观看视频| 每晚都被弄得嗷嗷叫到高潮| 久久久久九九精品影院| 女性被躁到高潮视频| 长腿黑丝高跟| 成人影院久久| 日本欧美视频一区| av片东京热男人的天堂| 纯流量卡能插随身wifi吗| 啪啪无遮挡十八禁网站| 91九色精品人成在线观看| 欧美黄色片欧美黄色片| 多毛熟女@视频| 久久人人97超碰香蕉20202| 国产精品久久视频播放| 久久精品亚洲熟妇少妇任你| 女性生殖器流出的白浆| 精品久久久久久久久久免费视频 | 一区在线观看完整版| 国产精品国产高清国产av| 亚洲熟妇中文字幕五十中出 | 99精品欧美一区二区三区四区| e午夜精品久久久久久久| 丰满饥渴人妻一区二区三| 亚洲av第一区精品v没综合| 啦啦啦在线免费观看视频4| 久久精品国产亚洲av香蕉五月| 日本撒尿小便嘘嘘汇集6| 热99国产精品久久久久久7| 黄色女人牲交| 免费不卡黄色视频| 欧美一区二区精品小视频在线| 人成视频在线观看免费观看| 超碰成人久久| 国内毛片毛片毛片毛片毛片| 美女福利国产在线| 国产一卡二卡三卡精品| 久久久国产成人精品二区 | 女人精品久久久久毛片| 老熟妇仑乱视频hdxx| 国产黄色免费在线视频| 色老头精品视频在线观看| 91成年电影在线观看| 久久国产精品人妻蜜桃| 免费av毛片视频| e午夜精品久久久久久久| 超碰97精品在线观看| 亚洲成av片中文字幕在线观看| 免费在线观看黄色视频的| a级毛片黄视频| 欧美在线黄色| 在线观看免费午夜福利视频| 精品少妇一区二区三区视频日本电影| 亚洲aⅴ乱码一区二区在线播放 | av网站免费在线观看视频| 久久精品国产综合久久久| a级片在线免费高清观看视频| 桃色一区二区三区在线观看| 亚洲精品在线观看二区| 青草久久国产| 亚洲精品久久午夜乱码| 色在线成人网| 欧美日韩视频精品一区| 在线观看66精品国产| av在线天堂中文字幕 | 在线观看一区二区三区| 中出人妻视频一区二区| 国产成人系列免费观看| 操美女的视频在线观看| 国产精品综合久久久久久久免费 | 欧美日本中文国产一区发布| 欧美久久黑人一区二区| 久热这里只有精品99| 十分钟在线观看高清视频www| 欧美日韩亚洲高清精品| 别揉我奶头~嗯~啊~动态视频| 日韩国内少妇激情av| 丰满的人妻完整版| 国产成人精品无人区| 少妇的丰满在线观看| 色老头精品视频在线观看| 精品一区二区三卡| 人成视频在线观看免费观看| 精品第一国产精品| 亚洲国产毛片av蜜桃av| 久久性视频一级片| 成人精品一区二区免费| 伊人久久大香线蕉亚洲五| 国产亚洲欧美在线一区二区| 99久久国产精品久久久| 免费av中文字幕在线| 久久香蕉精品热| 午夜福利在线免费观看网站| 精品欧美一区二区三区在线| 黑人巨大精品欧美一区二区mp4| 国产一区二区激情短视频| 一级片'在线观看视频| 19禁男女啪啪无遮挡网站| 欧美日本中文国产一区发布| 又紧又爽又黄一区二区| 亚洲精品国产区一区二| 大型黄色视频在线免费观看| 嫩草影视91久久| 波多野结衣av一区二区av| 91麻豆精品激情在线观看国产 | 香蕉久久夜色| 男人舔女人的私密视频| 成人免费观看视频高清| 麻豆国产av国片精品| 可以在线观看毛片的网站| 久久久久久免费高清国产稀缺| 一进一出好大好爽视频| 欧美乱妇无乱码| 美女扒开内裤让男人捅视频| 国产熟女午夜一区二区三区| 亚洲国产中文字幕在线视频| a级毛片黄视频| 99久久久亚洲精品蜜臀av| av在线播放免费不卡| 亚洲国产欧美一区二区综合| 亚洲国产精品合色在线| 欧美成人性av电影在线观看| 91九色精品人成在线观看| 女生性感内裤真人,穿戴方法视频| 精品久久久久久久久久免费视频 | 一边摸一边抽搐一进一小说| 国产乱人伦免费视频| 久久99一区二区三区| av电影中文网址| 午夜福利在线免费观看网站| 男男h啪啪无遮挡| 天堂动漫精品| 国产aⅴ精品一区二区三区波| 日韩欧美一区视频在线观看| 欧美日韩亚洲国产一区二区在线观看| 在线观看一区二区三区激情| 亚洲欧美精品综合久久99| 久久人人精品亚洲av| x7x7x7水蜜桃| 最好的美女福利视频网| 亚洲一区高清亚洲精品| 精品久久久久久,| aaaaa片日本免费| 18禁观看日本| 国产成人一区二区三区免费视频网站| www.自偷自拍.com| 99热国产这里只有精品6| 悠悠久久av| 制服诱惑二区| 少妇粗大呻吟视频| 国产极品粉嫩免费观看在线| 日韩精品青青久久久久久| 免费在线观看黄色视频的| 老司机靠b影院| 欧美成狂野欧美在线观看| 精品国产亚洲在线| 久久久久九九精品影院| 999久久久精品免费观看国产| 中文欧美无线码| 夜夜看夜夜爽夜夜摸 | 欧美国产精品va在线观看不卡| 国产有黄有色有爽视频| 免费日韩欧美在线观看| 老鸭窝网址在线观看| 激情在线观看视频在线高清| 亚洲五月天丁香| 久久国产精品影院| 超色免费av| 亚洲五月色婷婷综合| 18美女黄网站色大片免费观看| 亚洲欧美精品综合一区二区三区| 国产精品 国内视频| 中文字幕高清在线视频| 精品国产一区二区三区四区第35| 91国产中文字幕| 黄色毛片三级朝国网站| 久久欧美精品欧美久久欧美| 免费女性裸体啪啪无遮挡网站| 精品久久久久久电影网| 一本综合久久免费| 国产一区在线观看成人免费| 男人的好看免费观看在线视频 | 国产一区二区三区视频了| 国产有黄有色有爽视频| 丰满迷人的少妇在线观看| 黑人巨大精品欧美一区二区蜜桃| 久久久久久久精品吃奶| 亚洲情色 制服丝袜| av中文乱码字幕在线| 久久久久九九精品影院| 美女福利国产在线| 国产一卡二卡三卡精品| 国产成人欧美在线观看| 久久久久久人人人人人| 免费搜索国产男女视频| 一本大道久久a久久精品| 欧美激情极品国产一区二区三区| 欧美成人免费av一区二区三区| 欧美日韩黄片免| 99精国产麻豆久久婷婷| 一级片'在线观看视频| 午夜视频精品福利| 国产成人一区二区三区免费视频网站| 亚洲国产毛片av蜜桃av| 国产精品久久电影中文字幕| 国产精品国产av在线观看| 久久午夜综合久久蜜桃| 国产精品二区激情视频| 国产激情欧美一区二区| 日韩视频一区二区在线观看| 色老头精品视频在线观看| 夜夜爽天天搞| 精品一区二区三区视频在线观看免费 | 麻豆av在线久日| 九色亚洲精品在线播放| 中文欧美无线码| 亚洲全国av大片| 桃色一区二区三区在线观看| avwww免费| 中文字幕最新亚洲高清| 亚洲熟妇熟女久久| 韩国av一区二区三区四区| 男女之事视频高清在线观看| 9热在线视频观看99| 国产黄色免费在线视频| 一进一出抽搐gif免费好疼 | 欧美黑人精品巨大| 亚洲欧洲精品一区二区精品久久久| 在线永久观看黄色视频| 日韩大尺度精品在线看网址 | 色婷婷av一区二区三区视频| 久久狼人影院| 人人澡人人妻人| 美女高潮到喷水免费观看| 午夜福利影视在线免费观看| 亚洲国产欧美一区二区综合| 身体一侧抽搐| av片东京热男人的天堂| 男女下面进入的视频免费午夜 | 国产精华一区二区三区| 大型黄色视频在线免费观看| 老司机福利观看| 国产欧美日韩一区二区三| 一级毛片女人18水好多| 国产精品av久久久久免费| 亚洲国产精品合色在线| 午夜精品在线福利| 欧美日本亚洲视频在线播放| 在线播放国产精品三级| 亚洲精品美女久久久久99蜜臀| 麻豆一二三区av精品| 91av网站免费观看| 久久香蕉精品热| av福利片在线| 精品久久久久久,| 国产av一区在线观看免费| 午夜福利,免费看| 男男h啪啪无遮挡| 一二三四在线观看免费中文在| 99精品欧美一区二区三区四区| 成人国语在线视频| 纯流量卡能插随身wifi吗| 日韩人妻精品一区2区三区| 久久精品国产综合久久久| 亚洲熟妇熟女久久| 精品一区二区三区av网在线观看| 午夜福利一区二区在线看| 精品日产1卡2卡| 搡老岳熟女国产| 性欧美人与动物交配| 免费看a级黄色片| 性少妇av在线| 亚洲 国产 在线| 在线观看日韩欧美| 免费在线观看影片大全网站| 午夜免费激情av| 变态另类成人亚洲欧美熟女 | 久久九九热精品免费| 国产亚洲av高清不卡| 免费看十八禁软件| 精品电影一区二区在线| 中文字幕色久视频| 99热只有精品国产| netflix在线观看网站| 日韩av在线大香蕉| 国产成人欧美| 少妇的丰满在线观看| 欧美黄色片欧美黄色片| 亚洲一区二区三区不卡视频| 免费看十八禁软件| 婷婷精品国产亚洲av在线| 国产精品 欧美亚洲| 亚洲精品美女久久av网站| 日韩国内少妇激情av| 久久久久九九精品影院| 欧美日本亚洲视频在线播放| 久久人妻av系列| 久久中文字幕人妻熟女| 国产亚洲av高清不卡| 精品久久久久久电影网| 亚洲激情在线av| 久久久久久久久中文| 色精品久久人妻99蜜桃| 精品久久久久久久毛片微露脸| 成人精品一区二区免费| 美国免费a级毛片| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲自拍偷在线| 亚洲欧美激情综合另类| 乱人伦中国视频| 精品一区二区三区四区五区乱码| 欧美一区二区精品小视频在线| 欧美日韩福利视频一区二区| ponron亚洲| 久久这里只有精品19| 国产av在哪里看| 免费不卡黄色视频| 精品人妻1区二区| 日本撒尿小便嘘嘘汇集6| 午夜影院日韩av| 国产成人欧美在线观看| 国产真人三级小视频在线观看| 精品久久蜜臀av无| 男人舔女人下体高潮全视频| 午夜成年电影在线免费观看| 日韩欧美三级三区| 又黄又粗又硬又大视频| 两性夫妻黄色片| 国产又爽黄色视频| 一级毛片女人18水好多| 精品福利永久在线观看| 嫩草影视91久久| 级片在线观看| 少妇裸体淫交视频免费看高清 | 国产黄色免费在线视频| 午夜影院日韩av| 国产成人av激情在线播放| 久久精品国产亚洲av高清一级| 99久久久亚洲精品蜜臀av| 精品久久久久久成人av| 女生性感内裤真人,穿戴方法视频| 午夜激情av网站| 日本wwww免费看| 国产精品国产av在线观看| 欧美乱码精品一区二区三区| 午夜免费激情av| 国产精品久久久av美女十八| 可以在线观看毛片的网站| 中亚洲国语对白在线视频| 97碰自拍视频| 丰满迷人的少妇在线观看| 亚洲av第一区精品v没综合| 日韩中文字幕欧美一区二区| 久久久国产成人免费| 亚洲全国av大片| 亚洲欧美激情综合另类| 美女大奶头视频| 美女扒开内裤让男人捅视频| 1024香蕉在线观看| 国产成人av激情在线播放| 午夜福利,免费看| xxxhd国产人妻xxx| 视频区欧美日本亚洲| 精品国产国语对白av| 俄罗斯特黄特色一大片| 国产精品国产高清国产av| 麻豆av在线久日| 每晚都被弄得嗷嗷叫到高潮| 人人妻人人澡人人看| 欧美日本亚洲视频在线播放| 欧美日韩亚洲国产一区二区在线观看| 欧美激情 高清一区二区三区| 亚洲av成人一区二区三| 国产精品 国内视频| 国产欧美日韩一区二区三区在线| 首页视频小说图片口味搜索| avwww免费| 精品久久久久久久久久免费视频 | 日韩一卡2卡3卡4卡2021年| 国产又爽黄色视频| 久久影院123| 亚洲精品国产精品久久久不卡| 91九色精品人成在线观看| 免费人成视频x8x8入口观看| 亚洲人成网站在线播放欧美日韩| 欧美日韩视频精品一区| 乱人伦中国视频| 亚洲精品国产一区二区精华液| 亚洲男人天堂网一区| 国产亚洲精品综合一区在线观看 | ponron亚洲| 制服人妻中文乱码| 精品免费久久久久久久清纯| 嫩草影视91久久| 午夜免费鲁丝|