• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Cooperative Compressive Spectrum Sensing in Cognitive Underwater Acoustic Communication Networks

    2015-08-07 10:54:14ZUOJiakuo左加闊DAOVanphuong陶文鳳BAOYongqiang包永強(qiáng)ZHAOLi趙力ZOUCairong鄒采榮

    ZUO Jia-kuo(左加闊),DAO Van-phuong(陶文鳳),BAO Yong-qiang(包永強(qiáng)),ZHAO Li(趙力),ZOU Cai-rong(鄒采榮)

    1 School of Internet of Things,Nanjing University of Posts and Telecommunications,Nanjing 210003,China

    2 Key Laboratory of Underwater Acoustic Signal Processing of Ministry of Education,Southeast University,Nanjing 210096,China

    3 School of Communication Engineering,Nanjing Institute of Technology,Nanjing 210096,China

    Cooperative Compressive Spectrum Sensing in Cognitive Underwater Acoustic Communication Networks

    ZUO Jia-kuo(左加闊)1*,DAO Van-phuong(陶文鳳)2,BAO Yong-qiang(包永強(qiáng))3,ZHAO Li(趙力)2,ZOU Cai-rong(鄒采榮)2

    1 School of Internet of Things,Nanjing University of Posts and Telecommunications,Nanjing 210003,China

    2 Key Laboratory of Underwater Acoustic Signal Processing of Ministry of Education,Southeast University,Nanjing 210096,China

    3 School of Communication Engineering,Nanjing Institute of Technology,Nanjing 210096,China

    Because of the specific of underwater acoustic channel,spectrum sensing entails many difficulties in cognitive underwater acoustic communication(CUAC)networks,such as severe frequency-dependent attenuation and low signal-to-noise ratios.To overcome these problems,two cooperative com pressive spectrum sensing(CCSS)schemes are proposed for different scenarios(with and without channel state information).To strengthen collaboration among secondary users(SUs),cognitive central node(CCN)is provided to collect data from SUs.Thus,the proposed schemes can obtain spatial diversity gains and exploit joint sparse structure to improve the performance of spectrum sensing.Since the channel occupancy is sparse,we formulate the spectrum sensing problems into sparse vector recovery problem s,and then present two CCSS algorithm s based on path-w ise coordinate optim ization(PCO)and multi-task Bayesian com pressive sensing(M T-BCS),respectively.Simulation results corroborate the effectiveness of the proposed methods in detecting the spectrum holes in underwater acoustic environment.

    cognitive underwater acoustic communication(CUAC); spectrum sensing;compressive sensing;path-wise coordinate optimization(PCO);multi-task Bayesian compressive sensing(MTBCS)

    Introduction

    Practical application of high-speed underwater acoustic communication(UAC)is impeded by typical underwater acoustic channel,including severe frequency-dependent attenuation,low speed of wave propagation,excessive multipath delay spread and noise[1].To realize a stable and high rate UAC system,cognitive underwater acoustic communication (CUAC)is proposed.Similar to terrestrial cognitive radio (CR),CUAC is an intelligentand high reliable communication system utilizing all available resourcesmore efficiently.

    Recently,many researches have been presented for CUAC.The application of software defined radio techniques to UAC and the definition of cognitive underwater communication system were first discussed in Ref.[2].Bandw idth management by utilizing dynam ic spectrum access and dynamic spectrum sharing were investigated for CUAC in Ref.[3]. Channel allocation schemeswere also proposed tomaximize the channel capacity in Refs.[4-5].An intelligent underwater communication system was proposed to accurately measure the underwater channel parameters and estimate underwater channel models in Ref.[6].Reference[7]studied cognitive access for underwater active sensor network where each cognitive node applied pattern analysis procedure to evaluating the presence of interference and its nature.In Refs.[8-9],a cognitive control architecture for automous marine vehicles was proposed to reduce overhead costs and level of operator intervention.

    While the research on CUAC is still in its infancy,the researches above have outlined the general framework. Spectrum sensing is a key step for CUAC.Because the underwater environment varies significantly,many spectrum sensing techniques in CR can not be simply transplanted to CUAC.So,there is a pressing requirement for efficientand low complexity spectrum sensing methods for CUAC.Analog to terrestrialw ireless communication,due to the low percentage of spectrum occupancy in UAC,the signals are very sparse in the frequency domain.For sparse signals,recent advances in compressed sensing(CS)[10-11]and multi-task Bayesian compressive sensing(MT-BCS)[12-13]have demonstrated the principle of reliable signal recovery via computationally feasible algorithms.Several schemes based on CS[14-26]and BCS[27-29]have been developed to detectwideband spectrum for CR.

    In CUAC networks,underwater propagation environments are highly complex and uncertain,and the signal transmitted in underwater channel usually experiences deep fading.In addition,nodes or users are battery operated and the computing resources are very limited.Spectrum sensing in CUAC entails severe challenges.To overcome these problems,inspired by Ref.[16],we present two new cooperative compressive spectrum sensing(CCSS)schemes for CUAC networks. Spectrum sensing algorithm in Ref.[16]is a single secondary user(SU)scheme which can not be used for CUAC.Different from Ref.[16],we first consider the frequency-dependent attenuation in spectrum sensing and explore amore complicated scenario thatmultiple SUs collaborate to sense spectrum in an underwater network instead of a single SU.Two new CCSS models for different scenarios,i.e.,with and without channel state information(CSI),are presented.The CCSS problems are first formulated as two sparse vector recovery problems,then path-w ise coordinate optimization(PCO)[30]and MTBCS[13]are used to solve the two problems,respectively.At last,CCSSwith CSIand CCSSwithout CSIare proposed.

    The rest of this paper is organized as follows.In section 1,a brief introduction of underwater acoustic channel model is given.In section 2,the signalmodel and problem statement is presented.The two new CCSS schemes are described in section 3.Simulation results are given in section 4 and conclusions are drawn in section 5.

    1 Underwater Acoustic Channel Model and the Ambient Noise in Underwater

    Usually,the underwater acoustic channel transfer function is defined as:

    where P is the total number ofmultiple propagation path,Γpis the addition losses,d0is the distance between the transm itter and the receiver,dpis the length of the p-th path,τp=dp/c is the delay of the p-th path(c=1 500 m/s is the normal speed of sound underwater),j is the imaginary unit,and A(d,f)is the path losswhich is defined as

    where A0is a unit-normalizing constant,k0is the spreading factor,and a(f)is the absorption coefficient.

    The ambient noise in underwater depends on four sources: turbulence Nt(f),shipping Ns(f),waves Nw(f),and thermal noise Nth(f)(the details definitions of the four sources can be found in Ref.[1]).Therefore,the overall power spectrum density(p.s.d)can be w ritten as

    2 SignalModeland Problem Statement

    Consider a simplified schematic diagram of CUAC network with cognitive central node(CCN)as shown in Fig.1.Assume primary users(PUs)can be heard by all SUs,and during detection interval,higher-layer protocols can guarantee that all SUs stay silent when the PUs emit spectral power.The total bandw idth of the underwater acoustic channel of W(Hz)is shared by PUs and SUs.Assume that each user in CUAC network needs a bandw idth of B(Hz)for communication.The entire channel is divided into M(M=W/B)non-overlapping subchannels and the m th subchannel's center frequency is denoted by fm.

    Fig.1 Simplified schematic diagram of CUAC network

    Suppose that there are I active PUswhose transmitted signals are denoted by s(i)(t)(i=1,2,…,I)and J SUs in the CUAC network.The received signal at the j th SU is given by

    where*denotes the convolution operation,h(i,j)(t)is the underwater acoustic channel impulse response from i th PU to j th SU,and w(j)(t)is the underwater noise at j th SU.The equivalent expression of Eq.(4)in frequency domain is

    where X(j)(f),H(i,j)(f),S(i)(f),and W(j)(f)are the Fourier transformations of x(j)(t),s(i)(t),h(i,j)(t),and w(j)(t),respectively.

    Assume the amplitude of S(i)(f)is flat,which meansSince PUs occupy nonoverlapping channels,by replacing X(j)(f)in Eq.(6)from Eq. (5),after some algebraicmanipulation,yield

    To further facilitate the representation of Eq.(8),define:

    Then,Eq.(8)can be w ritten in a brief form as:

    As in Ref.[16],a random K×M matrixΦ(j)is provided by the j th SU.The matrix is used to generate K filters whose transfer functionis given by

    Sample signal x(j)(t)to get the time sequence vector x(tj), and then feedinto the filters.The output at the k th filter is

    Combining with Eq.(10),the above K equations for the j th SU can be briefly w ritten in the vector form as

    Because PUs occupy non-overlapping channels and the spectrum utilization is low,esis very sparse.The esis composed of which can be used to detect PU signal.Therefore, spectrum sensing boils down to recover esfromU(j).Usually,it is difficult to acquire CSI matrix Q(j)in CUAC.When the underwater acoustic channel impulsewith responses are unknown,Eq.(14)can be expressed as:

    In a summary,depending on whether CSI can be acquired by each SU,spectrum sensing boils down to estimate esor from y(j).Usually,SUs prefer to know which of the M subchannels are unoccupied rather than the values of signal energy in each subchannel.Thismeans that the aim of spectrum sensing is to determine the channel occupancy by an M×1 binary state vector d.When d[m]=1,the m th subchannel is occupied;when d[m]=0,the m th subchannel is idle.Hence,the elements of d can be defined as follows:

    (1)with CSI

    (2)absence of CSI

    d[m]=

    3 CCSS for CUAC

    Since underwater propagation environments are highly complex and uncertain,the signal transm itted in underwater acoustic channel usually experiences deep fading,and the performance of spectrum sensing by single SU will be very disappointing.To overcome the problem above,SUs must collaborate to sense the spectrum.Via obtaining spatial diversity gains and exploiting joint sparse structure,high spectrum sensing performance can be achieved.As shown in Fig.1,CCN is provided to strengthen collaboration among SUs.Each SU j transmits itsmeasurement vectors y(j)and U(j)or A(j)to CCN,then CCN performs spectrum sensing utilizing the collected data.

    In this section,we develop two CCSS algorithms for CUAC networks.Section 3.1 depicts the algorithm when SUs know CSI.The algorithm in absence of CSI is discussed in section 3.2.

    3.1 CCSSwith CSI

    Since esis sparse,recovery of escan be solved by minim izing the l1-regular formulation via convex optim ization as

    whereλis a positive scalar weighting coefficient.Optim ization of Eq.(16)can be solved using standard optimization routines. However,research in Ref.[30]has shown that PCO is well suited for solving the above problem,and yields the solution in much less time than standard convex optimizer.

    Introduce the iteration index t,and at each iteration index t,the elementsare updated iteratively by solving: where is the q th column of U(j).Since es[n]≥0,the closed form solution of Eq.(17)is

    es[n](t+1)=

    Now,we have presented a new CCSS algorithm based on PCO when CSI is known.We term thismethod as CCSS-CSI and tabulate it as Algorithm 1.The process of the proposed CCSS-CSIalgorithm is shown in Fig.2.

    Fig.2 The process of the proposed CCSS-CSIalgorithm

    3.2 CCSSwithout CSI

    As shown in Eq.(15),when CSI is unknown,spectrum sensing boils down to estimate e~(sj)from y(j).Recently,MTBCS[13]is proposed to solve this problem from Bayesian perspective.Simulation results show that MT-BCS is robust to noise and often outperforms the traditional CSmethods.Based onMT-BCS,we present a new CCSS scheme for CUAC network.

    Assuming p(y(j)|e~(j)s)to be Gaussian with noise variance α-1(precisionα),thus we have the Gaussian likelihood00model,

    According to Ref.[13],we have

    and the posterior covariance and mean are as follows,respectively,

    With Eqs.(20)and(21),we obtain the posterior density(precisionαm).SinceofwhereΓ=diag(α1,α2,…,αM).Since≥0 andμjis the expectation of it means thatμj≥0 has the same sparsestructure asand can be used to detect the spectrum holes. Letμj[m]denote the m th componentofμj.Whenμj[m]>0,the m-th subchannel is occupied by one of PU signals;when μj[m]=0,none of PU signals are em itted on the m th subchannel.

    In MT-BCS,is shifted to estimate a hyper parameter vectorαwith correct number and location of nonzero elements.To get the optimalαandα0,we can maxim ize the logarithm L(α,α0),which is defined as

    Skipping details can be found in Ref.[13],and by introducing iteration index t,the optimal solutions ofαandα0can be updated by

    According to Eqs.(23)and(24),the posterior covarianceΣjand meanμjcan be updated by:

    whereμj[m]is the m th component ofμj,Σj[m]is the m th diagonal element ofΣj,andΓ(t)=diag(α1(t),α2(t),…,αM(t)).

    Now,we have presented another CCSS algorithm based on BCSwhen CSI is unknown.We term this method as CCSSUCSI and tabulate it as Algorithm 2.The process of the proposed CCSS-UCSIalgorithm is shown in Fig.3.

    Fig.3 The process of the proposed CCSS-UCSIalgorithm

    4 Performance Simulation

    For the purposes of evaluation,the true support is denoted by d0and the estimated support is denoted by d-.Performance metrics thatwe adopt are probabilities of detection Pdand false alarm Pf,which we average over all sub-channels as[15]

    where1 denotes the all-one vector.

    Define the compression ratiow hen CSI is known,andwhen CSI is unknown,respectively.Since our simulations is to evaluate the performance of spectrum detection algorithms,we assume that the underwater acoustic signals of transm itters can be accurately received by receivers.

    In this section,we analyze the spectrum sensing performances of the proposed schemes.The underwater acoustic channel and embedded noise are simulated according to the models Eqs.(1)and(3)with parameters in Table 1.SUs and PUs are random ly distributed in 500m×500m underwater area. We obtain the average performances of spectrum detection algorithms according to 200 times different distribution of SUs and PUs locations.The available bandw idth W is partitioned into M=20 equal-bandw idth subchannels.Asssum the total number of PUs is 3,and the CUAC network adopts frequency division multiple access(FDMA)modulation.Define thechannel occupancy ratio,i.e.,the sparsity ratio,as the ratio of total number of PUs and the total number of subchannles. Therefore,the occupancy ratio is 15%.

    Table 1 Parameters of the underwater acoustic channel

    4.1 Performance analysiswith CSI

    We compare the proposed CCSS-CSI scheme with the single scheme in Eq.(16)with J=1,which is denoted by SCSI.Figure 4 shows the average receiver operating characteristics(ROC)of the two schemeswith parameters:J= 5,v=75%,and rSNR=-5 dB(for S-CSI J=1),where rSNRdenotes the value of signal-to-noise ratio(SNR).The proposed CCSS-CSI scheme has a better performance than the single scheme S-CSI.

    Fig.4 ROC performances at J=5,v=75%,rSNR=-5 dB

    To show the gains from spatial diversity and joint sparsity structure,we compute the average probability of detection versus the number of cooperation SUs J in Fig.5.As shown in Fig.5,the baseline is the performance of S-CSI.Since there is no cooperation in the single scheme,the performance of S-CSI isworse and do not increasewith the number of cooperation SUs J increasing.By utilizing spatial diversity gains and exploiting joint sparsity,the performance of CCSS-CSI is improved. Figure 6 depicts the average probability of detection versus compression ratio v.We adjust the compressed ratio v grows from 60%to 100%,and find that the performance of all algorithms grows as v increases,but the complexity of the recovery algorithms also increases.So,there is a trade-off between performance and compressed ratio.Figure 7 shows the average probability of detection versus SNR.Apparently,the probability of detection improves as SNR increases.

    4.2 Performance analysiswithout CSI

    To corroborate the effectiveness of CCSS-UCSIalgorithm,we compared CCSS-UCSI algorithm with S-UCSI algorithm in Ref.[16].S-UCSI algorithm is the single user spectrum sensing algorithm which is used to solve problem(15)with J= 1.To exploit the effect of CSIon the algorithms,we compare the unknown CSI algorithms mentioned above with CCSS-CSI scheme which has evaluated in section 4.1.Figure 8 depicts the average ROC for different algorithms with parameters:J=5,

    Fig.5 Probability of detection versus the number of cooperation SUs at v=75%,rSNR=-5 dB,Pf=9%

    Fig.6 Probability of detection versus the compressionratio v at J=5,rSNR=-5 dB,Pf=9%

    Fig.7 Probability of detection versus rSNRat J=5,v=75%,Pf=9%

    v=75%,and rSNR=-5 dB(for S-UCSI in Ref.[16],J= 1).Since the channel state information helps to identify the operating scenarios,CCSS-CSIalgorithm can improve spectrum sensing performance than CCSS-UCSI.We also compare CCSSUCSI algorithm with S-UCSI algorithm in Fig.9.Via SUs cooperation,the CCSSI-UCSI algorithm can acquire spatial diversity gains and exploit joint sparsity of signals.However,there is only one SU to sense the spectrum.Therefore,the proposed CCSSI-UCSI scheme also has a better performance than S-UCSI.

    Fig.8 ROC performancesat J=5,v=75%,rSNR=-5 dB

    Fig.9 Probability of detection versus the number of cooperation SUs at v=75%,rSNR=-5 dB,Pf=9%

    Fig.10 Probability of detection versus the compressionJ=5,rSNR=-5 dB,Pf=9%

    The effects of the three quantities are respectively evaluated in Figs.9-11.These results depict similar properties corresponding to the results in section 4.1.

    5 Conclusions

    This paper studied spectrum sensing in CUAC networks. We first established two sparse spectrum sensing models for different scenarios(with and without CSI),and then proposed two CCSS algorithms based on PCO and MT-BCS,respectively.In the proposed two schemes,via collaboration among multiple SUs,the algorithms can obtain spatial gains diversity against underwater channel fading,and enhance sparsity recovery ability by exploiting joint sparse structure.To corroborate the effectiveness of the proposed algorithms,we compared the algorithms with two single user spectrum sensing algorithms.Simulation results show that our proposed algorithms can improve the spectrum sensing performance via multiple SUs cooperation.In the experiment simulation,the underwater acoustic channel is non-time varying channel and shipping noise and w ind noise are neglected in the simulation. In our futurework,wewill investigate spectrum sensing in time varying underwater acoustic channel,and analyze the effection of time varying underwater acoustic channelmodel and the four noise sources(turbulence,shipping,waves,and thermal noise)to spectrum sensing.

    Fig.11 Probability of detection versus rSNRat ratio v atJ=5,v=75%,Pf=9%

    [1]Polprasert C,Ritcey J A,Stojanovic M.Capacity of OFDM Systems over Fading Underwater Acoustic Channels[J].IEEE Journal of Oceanic Engineering,2011,36(4):514-524.

    [2]Wang Y G,Tang JS,Pan Y,et al.Underwater Communication Goes Cognitive[C].OCEANS,Quebec,Canada,2008:15-18.

    [3]Tan H P,Seah W K G,Doyle L.Exploring Cognitive Techniques for Bandw idth Management in Integrated Underwater Acoustic Systems[C].OCEANS,Quebec,Canada,2008:1-7.

    [4]Torre D,Charbiwala Z,F(xiàn)riedman J,et al.Spectrum Signaling for Cognitive Underwater Acoustic Channel Allocation[C]. INFOCOM IEEE Conference on Computer Communications,San Diego,CA,USA,2010:1-6.

    [5]Bicen A O,Sahin A B,Akan O B.Spectrum-Aware Underwater Networks:Cognitive Acoustic Communications[J].IEEE Vehicle Technology Magazine,2012,7(2):34-40.

    [6]Ahmed S,Arslan H.Cognitive Intelligence in UAC Channel Parameter Identification,Measurement,Estimation,and Environment Mapping[C].OCEANS,Bremen,Germany,2009:1-14.

    [7]BiagiM,Rinauro S,Cusani R.UWA Interference Analysis for Cognitive Access[C].OCEANS-Europe,Begen,Norway,2013:1-5.

    [8]Insaurralde C C,Cartw right J J,Petillot Y R.Cognitive Control Architecture for Autonomous Marine Vehicles[C].IEEE International Systems Conference,Vancouver,BC,USA,2012: 1-8.

    [9]Insaurralde C C,Petillot Y R.Intelligent Autonomy for Collaborative Intervention M ission of Unmanned Maritime Vehicles[C].OCEAS,San Diego,CA,USA,2013:1-6.

    [10]Donoho D L.CompressedSensing[J].IEEE Transactions on Information Theory,2006,52(4):1289-1306.

    [11]Cotter S F,Rao B D,Engan K,et al.Sparse Solutions to Liner Inverse Problems with Multiple Measurement Vectors[J].IEEE Transactions on Signal Processing,2005,53(7):2477-2488.

    [12]Ji S H,Ya X,Carin L.Bayesian Compressive Sensing[J]. IEEE Transactions on Signal Processing,2008,56(6):2346-2356.

    [13]Ji S H,Dunson D,Carin L.Multitask Compressive Sensing[J].IEEE Transactions on Signal Processing,2009,57(1): 92-106.

    [14]Tian Z,Giannakis G B.Compressed Sensing for W ideband Cognitive Radios[C].International Conference on Acoustics,Speech,and Signal Processing,Honolulu,HI,USA,2007: 1357-1360.

    [15]Polo Y L,Wang Y,Pandharipande A,etal.CompressiveW ide-Band Spectrum Sensing[C].International Conference on Acoustics,Speech,and Signal Processing,Taipei,China,2009: 2337-2340.

    [16]Havary-Nassa V,Hassan S,Valaee S.Compressive Detection for W ide-Band Spectrum Sensing[C].International Conference on Acoustics,Speech,and Signal Processing,Dallas,TX,USA,2010:3094-3097.

    [17]Nasif A O,Tian Z.Collecting Fusion Gains for Detection of Spread Spectrum Signals Using Compressive W ideband Radio[C].IEEE International Conference on Communications,Budapest,Hungary,2013:2712-2716.

    [18]Tian Z,Blasch E,Li W H,et al.Performance Evaluation of Distributed Compressed Wideband Sensing for Cognitive Radio Networks[C].International Conference on Information Fusion,Cologne,Germany,2008:1-8.

    [19]Zeng F Z,Li C,Tian Z.Distributed Compressive Spectrum Sensing in Cooperative Multihop Cognitive Networks[J].IEEE Journal of Selected Topics Signal Process,2011,5(1):37-48.

    [20]Bazerque JA,Giannakis G B.Distributed Spectrum Sensing for Cognitive Radio Networks by Exploiting Sparsity[J].IEEE Transactions on Signal Processing,2010,58(3):1847-1862.

    [21]Bazerque J A,Giannakis G B.Group-Lasso on Splines for Spectrum Cartography[J].IEEE Transactions on Signal Processing,2011,59(10):4648-4663.

    [22]Ling Q,Wen Z W,Yin W T.Decentralized Jointly Sparse Optim ization by Reweighted lqM inim ization[J].IEEE Transactions on Signal Processing,2013,61(5):1165-1170.

    [23]Tian Z,Tafesse Y,Sadler B M.CyclicFeature Detection with Sub-Nyquist Sampling for W ideband Spectrum Sensing[J]. IEEE Journal of Selected Topics Signal Processing,2012,6(1): 58-69.

    [24]Zhou L,Man H.W ide-Band Spectrum Sensing Using Neighbor Orthogonal Matching Pursuit[C].IEEE Sarnoff Symposium (SARNOFF),Newark,NJ,USA,2012:1-5.

    [25]Qi C H,Yue G S,Wu L N,et al.Pilot Design for Sparse Channel Estimation in OFDM-Based Cognitive Radio System[J].IEEE Transactions on Vehicular Technology,2014,63 (2):982-987.

    [26]Wang Y,Tian Z,F(xiàn)eng C Y.Sparsity Order Estimation and Its Application in Compressive Spectrum Sensing for Cognitive Radios[J].IEEE Transactions on Wireless Communications,2012,11(6):2116-2125.

    [27]Hong S.Direct Spectrum Sensing from Compressed Measurements[C].M ilitary Communications Conference,San Jose,CA,USA,2010:284-289.

    [28]Huang D T,Wu SH,Wang PH.Cooperative Spectrum Sensing and Locationing:a Sparse Bayesian Learning Approach[C]. Global Telecommunications Conference,M iam i,F(xiàn)L,USA,2010:1-5.

    [29]Li X,Hong S,Zhu H,et al.Bayesian Compressed Sensing Based Dynamic Joint Spectrum Sensing and Primary User Localization for Dynam ic Spectrum Access[C].Global Telecommunications Conference,Houston,TX,USA,2011:1-5.

    [30]Friedman J,Hastie T,H?fling H,et al.Pathwise Coordinate Optimization[J].Annals of Applied Statistics,2007,1(2): 302-332.

    TN929.3

    A

    1672-5220(2015)04-0523-07

    annel energy vector of the

    signal x(j)(t)at the j th SU,Eq. (7)can be w ritten in the vector form as:

    Received date:2014-03-04

    s:National Natural Science Foundations of China(Nos.60872073,51075068,60975017,61301219);Doctoral Fund of M inistry of Education,China(No.20110092130004)

    *Correspondence should be addressed to ZUO Jia-kuo,E-mail:zuojiakuo85418@163.com

    久久久久久久久久久丰满| 人妻一区二区av| 亚洲精品乱码久久久v下载方式| 一区二区三区免费毛片| 69av精品久久久久久| 乱人视频在线观看| 一级a做视频免费观看| 精品久久国产蜜桃| 午夜亚洲福利在线播放| 六月丁香七月| 毛片一级片免费看久久久久| 少妇猛男粗大的猛烈进出视频 | 成人美女网站在线观看视频| 丝袜喷水一区| 国产淫语在线视频| 久久久久久久久久久丰满| 嘟嘟电影网在线观看| 18禁在线无遮挡免费观看视频| 日韩不卡一区二区三区视频在线| 精品熟女少妇av免费看| 国产午夜精品一二区理论片| 中文字幕免费在线视频6| 韩国av在线不卡| 一级av片app| 麻豆乱淫一区二区| 国产老妇伦熟女老妇高清| 中文乱码字字幕精品一区二区三区 | 最近最新中文字幕免费大全7| xxx大片免费视频| 又粗又硬又长又爽又黄的视频| 久久久久久久久久黄片| 少妇丰满av| 又大又黄又爽视频免费| 又大又黄又爽视频免费| 日韩不卡一区二区三区视频在线| 汤姆久久久久久久影院中文字幕 | 3wmmmm亚洲av在线观看| 亚洲av国产av综合av卡| ponron亚洲| 神马国产精品三级电影在线观看| 一区二区三区高清视频在线| 亚洲精品自拍成人| 国产探花在线观看一区二区| 日韩不卡一区二区三区视频在线| 国产精品无大码| 日韩伦理黄色片| av又黄又爽大尺度在线免费看| 欧美zozozo另类| 久99久视频精品免费| 亚洲精品乱码久久久久久按摩| a级一级毛片免费在线观看| 午夜免费观看性视频| 国产成人a区在线观看| av专区在线播放| 丝瓜视频免费看黄片| 国产精品一区www在线观看| 国产成人a∨麻豆精品| 欧美性感艳星| 久久人人爽人人爽人人片va| 麻豆国产97在线/欧美| 亚洲av.av天堂| 国产伦精品一区二区三区视频9| 我的女老师完整版在线观看| 久久精品夜夜夜夜夜久久蜜豆| 亚洲欧美日韩无卡精品| 97人妻精品一区二区三区麻豆| 国产精品福利在线免费观看| 国产午夜精品久久久久久一区二区三区| 国产爱豆传媒在线观看| 午夜福利在线在线| ponron亚洲| 日本一本二区三区精品| 亚洲人成网站高清观看| 色播亚洲综合网| 久久久久久久久大av| 搡女人真爽免费视频火全软件| 内射极品少妇av片p| 亚洲久久久久久中文字幕| 欧美3d第一页| 一级黄片播放器| 国产精品嫩草影院av在线观看| 亚洲av免费高清在线观看| 舔av片在线| 综合色av麻豆| 欧美另类一区| 少妇裸体淫交视频免费看高清| 69av精品久久久久久| 一区二区三区乱码不卡18| 嫩草影院精品99| 色哟哟·www| 久久久国产一区二区| 日韩制服骚丝袜av| 久久这里只有精品中国| 久久久午夜欧美精品| 国产伦一二天堂av在线观看| 国产探花极品一区二区| 日韩电影二区| 三级国产精品片| 午夜老司机福利剧场| 日本免费a在线| 亚洲av成人av| 精品久久久久久电影网| 国产三级在线视频| 亚洲精品自拍成人| 亚洲av国产av综合av卡| 三级国产精品欧美在线观看| 国产高潮美女av| 亚洲av日韩在线播放| .国产精品久久| 欧美日本视频| 啦啦啦韩国在线观看视频| 高清毛片免费看| 高清在线视频一区二区三区| 国产 一区 欧美 日韩| 黄色欧美视频在线观看| 亚洲在线观看片| 欧美高清性xxxxhd video| 蜜桃亚洲精品一区二区三区| 男人和女人高潮做爰伦理| 久久久色成人| 日本一二三区视频观看| 99久国产av精品国产电影| 91精品伊人久久大香线蕉| 色哟哟·www| 亚洲最大成人av| 青春草亚洲视频在线观看| 69人妻影院| 最近视频中文字幕2019在线8| 最近视频中文字幕2019在线8| 欧美性感艳星| 欧美激情在线99| 91在线精品国自产拍蜜月| 国产午夜精品久久久久久一区二区三区| 午夜福利网站1000一区二区三区| 欧美高清成人免费视频www| 日韩一区二区三区影片| 午夜福利在线观看吧| 国产成人福利小说| 91久久精品国产一区二区三区| 久久久久久久久久黄片| 菩萨蛮人人尽说江南好唐韦庄| 搡女人真爽免费视频火全软件| av免费在线看不卡| 男女国产视频网站| 美女xxoo啪啪120秒动态图| 久久6这里有精品| 丰满少妇做爰视频| 日日啪夜夜撸| h日本视频在线播放| 国产激情偷乱视频一区二区| 成人一区二区视频在线观看| 精品99又大又爽又粗少妇毛片| 水蜜桃什么品种好| 亚洲国产色片| 成人av在线播放网站| 亚洲国产精品成人久久小说| 一本一本综合久久| 精品人妻熟女av久视频| 男插女下体视频免费在线播放| 欧美成人一区二区免费高清观看| 亚洲欧美中文字幕日韩二区| 国产中年淑女户外野战色| 狠狠精品人妻久久久久久综合| 久久午夜福利片| 国产成人a∨麻豆精品| 男人和女人高潮做爰伦理| 欧美3d第一页| 极品教师在线视频| 18禁动态无遮挡网站| 丝瓜视频免费看黄片| 一级爰片在线观看| 久久久久免费精品人妻一区二区| 白带黄色成豆腐渣| 精品国内亚洲2022精品成人| 国产伦在线观看视频一区| 亚洲最大成人中文| av在线蜜桃| 亚洲成人av在线免费| .国产精品久久| 亚洲第一区二区三区不卡| 国产极品天堂在线| www.色视频.com| 国产成人精品久久久久久| 欧美区成人在线视频| av天堂中文字幕网| 国产精品1区2区在线观看.| 黄色一级大片看看| 亚洲经典国产精华液单| 黄色配什么色好看| 搞女人的毛片| 熟女电影av网| 天天躁夜夜躁狠狠久久av| 国产不卡一卡二| 国产一区二区亚洲精品在线观看| 国精品久久久久久国模美| 亚洲aⅴ乱码一区二区在线播放| videossex国产| 六月丁香七月| 国产精品一区www在线观看| 久久精品夜色国产| 99热这里只有精品一区| 国产 一区 欧美 日韩| 成人美女网站在线观看视频| 国产午夜精品论理片| 黄色一级大片看看| 日本-黄色视频高清免费观看| 精品人妻视频免费看| 免费电影在线观看免费观看| 亚洲内射少妇av| 国产免费视频播放在线视频 | 日本一本二区三区精品| av黄色大香蕉| 久热久热在线精品观看| 在线免费观看不下载黄p国产| 亚洲人与动物交配视频| 国产在视频线精品| 卡戴珊不雅视频在线播放| 亚洲高清免费不卡视频| 最近2019中文字幕mv第一页| 水蜜桃什么品种好| 97精品久久久久久久久久精品| 女的被弄到高潮叫床怎么办| 成年女人在线观看亚洲视频 | 日韩电影二区| 看十八女毛片水多多多| ponron亚洲| www.色视频.com| 久久精品夜夜夜夜夜久久蜜豆| 亚洲av成人精品一二三区| 九九久久精品国产亚洲av麻豆| 亚洲国产精品专区欧美| 日本wwww免费看| 久久久久久久久大av| 日韩av免费高清视频| 欧美日韩视频高清一区二区三区二| 69av精品久久久久久| 国产精品嫩草影院av在线观看| 免费在线观看成人毛片| 欧美高清性xxxxhd video| 欧美高清性xxxxhd video| 国产午夜精品一二区理论片| 三级经典国产精品| 亚洲激情五月婷婷啪啪| 国产伦精品一区二区三区视频9| 久久精品综合一区二区三区| 欧美激情在线99| 亚洲欧美清纯卡通| 亚洲精品456在线播放app| 最近最新中文字幕大全电影3| 伊人久久精品亚洲午夜| 日韩av在线免费看完整版不卡| 日韩大片免费观看网站| 久久精品久久精品一区二区三区| 又爽又黄无遮挡网站| 高清毛片免费看| 国产免费又黄又爽又色| 在线播放无遮挡| 在线天堂最新版资源| 只有这里有精品99| 丰满乱子伦码专区| 午夜激情欧美在线| 伊人久久国产一区二区| 免费看不卡的av| 成人亚洲精品一区在线观看 | 久久人人爽人人爽人人片va| 成人无遮挡网站| 女的被弄到高潮叫床怎么办| 啦啦啦韩国在线观看视频| 丝袜喷水一区| 中国美白少妇内射xxxbb| 久久久亚洲精品成人影院| 亚洲国产高清在线一区二区三| 91午夜精品亚洲一区二区三区| 午夜福利在线在线| 亚洲精品成人久久久久久| 日韩伦理黄色片| 日本午夜av视频| 亚洲精品乱久久久久久| 丝袜美腿在线中文| 国产麻豆成人av免费视频| 久久精品国产亚洲av天美| 亚洲欧美日韩东京热| av免费观看日本| 亚洲av一区综合| 韩国av在线不卡| 午夜免费男女啪啪视频观看| 亚洲欧美精品自产自拍| 久久久久久伊人网av| 精品久久久久久久末码| 免费看av在线观看网站| 亚洲在线观看片| 在线天堂最新版资源| 国产 一区精品| 菩萨蛮人人尽说江南好唐韦庄| 丰满乱子伦码专区| 国产精品久久久久久精品电影小说 | 欧美xxxx性猛交bbbb| 亚洲国产精品国产精品| 日韩成人伦理影院| 国产免费一级a男人的天堂| 热99在线观看视频| 亚洲av一区综合| 免费黄色在线免费观看| 国产成人a区在线观看| 国产白丝娇喘喷水9色精品| 哪个播放器可以免费观看大片| 亚洲av一区综合| 婷婷色av中文字幕| 伊人久久精品亚洲午夜| 久久精品国产自在天天线| 亚洲精品久久午夜乱码| 99久国产av精品| 波野结衣二区三区在线| 国产一区亚洲一区在线观看| 丝袜美腿在线中文| 国产精品蜜桃在线观看| 高清视频免费观看一区二区 | 成人性生交大片免费视频hd| 99久久精品一区二区三区| 色网站视频免费| 精品人妻视频免费看| 乱人视频在线观看| 色视频www国产| 亚洲欧美成人精品一区二区| 国产黄色免费在线视频| av在线天堂中文字幕| 精品一区二区三区视频在线| 国产精品麻豆人妻色哟哟久久 | 日本av手机在线免费观看| 秋霞在线观看毛片| 亚洲精华国产精华液的使用体验| 国产精品1区2区在线观看.| 亚洲精品久久久久久婷婷小说| 欧美精品国产亚洲| 大片免费播放器 马上看| 乱系列少妇在线播放| 国产亚洲一区二区精品| 乱码一卡2卡4卡精品| 插逼视频在线观看| 黄片无遮挡物在线观看| 欧美zozozo另类| 午夜精品国产一区二区电影 | 好男人在线观看高清免费视频| 丝袜喷水一区| 免费看光身美女| 国产精品福利在线免费观看| 国产精品日韩av在线免费观看| 国产黄色视频一区二区在线观看| 国产伦理片在线播放av一区| 国产黄频视频在线观看| 久久久精品94久久精品| 亚洲欧美一区二区三区国产| 少妇的逼水好多| 国产一区二区三区av在线| 少妇裸体淫交视频免费看高清| 中文字幕制服av| 在线a可以看的网站| 国产精品一区二区三区四区久久| 人妻少妇偷人精品九色| 18+在线观看网站| 久久国产乱子免费精品| 一个人观看的视频www高清免费观看| 亚洲久久久久久中文字幕| 国产精品1区2区在线观看.| 天天躁夜夜躁狠狠久久av| 欧美精品国产亚洲| 91精品伊人久久大香线蕉| 久热久热在线精品观看| 秋霞伦理黄片| 一区二区三区高清视频在线| 久久这里只有精品中国| av卡一久久| 美女高潮的动态| 岛国毛片在线播放| 国产伦精品一区二区三区视频9| 国产在视频线精品| 成年女人在线观看亚洲视频 | 美女脱内裤让男人舔精品视频| 一级片'在线观看视频| 国产中年淑女户外野战色| 一个人看视频在线观看www免费| 日韩伦理黄色片| 丰满少妇做爰视频| 又黄又爽又刺激的免费视频.| 亚洲欧美一区二区三区黑人 | 亚洲精华国产精华液的使用体验| 久久久久久九九精品二区国产| 一级a做视频免费观看| 国产黄色视频一区二区在线观看| 小蜜桃在线观看免费完整版高清| 亚洲精品自拍成人| 乱人视频在线观看| 免费看av在线观看网站| 少妇熟女aⅴ在线视频| 国产伦精品一区二区三区视频9| 99久久精品国产国产毛片| 国产探花在线观看一区二区| 国内少妇人妻偷人精品xxx网站| 一个人免费在线观看电影| 中文字幕免费在线视频6| 日本黄大片高清| 免费看美女性在线毛片视频| 伊人久久国产一区二区| 天天躁夜夜躁狠狠久久av| 69人妻影院| 欧美一级a爱片免费观看看| 国产精品福利在线免费观看| 日本av手机在线免费观看| 久久草成人影院| 欧美最新免费一区二区三区| 激情五月婷婷亚洲| 成人亚洲精品av一区二区| 午夜福利在线观看免费完整高清在| 日韩av免费高清视频| 婷婷色av中文字幕| 你懂的网址亚洲精品在线观看| or卡值多少钱| 欧美成人精品欧美一级黄| 97超碰精品成人国产| 男女下面进入的视频免费午夜| 美女cb高潮喷水在线观看| 午夜免费男女啪啪视频观看| 日韩精品有码人妻一区| av女优亚洲男人天堂| 赤兔流量卡办理| 国产精品国产三级专区第一集| 69人妻影院| 亚洲三级黄色毛片| 婷婷色综合大香蕉| 好男人在线观看高清免费视频| 搞女人的毛片| 亚洲熟妇中文字幕五十中出| 免费观看的影片在线观看| 欧美变态另类bdsm刘玥| 国产真实伦视频高清在线观看| 亚洲综合精品二区| 亚洲三级黄色毛片| 亚洲精品,欧美精品| 国精品久久久久久国模美| 99久久人妻综合| 精品一区二区三区人妻视频| 淫秽高清视频在线观看| 久久久久久久国产电影| 两个人的视频大全免费| 18禁在线播放成人免费| 真实男女啪啪啪动态图| 亚洲精品,欧美精品| 一本久久精品| 久久这里有精品视频免费| 国产黄频视频在线观看| 一区二区三区四区激情视频| av在线老鸭窝| 人人妻人人澡欧美一区二区| 一级毛片我不卡| 人妻一区二区av| 国产精品国产三级国产av玫瑰| 97精品久久久久久久久久精品| 伦理电影大哥的女人| 一级a做视频免费观看| 亚洲久久久久久中文字幕| 男女啪啪激烈高潮av片| 只有这里有精品99| 国产av国产精品国产| 欧美一级a爱片免费观看看| 黄片无遮挡物在线观看| 大香蕉97超碰在线| 久久久久国产网址| 国产成人精品婷婷| 99久国产av精品| 国产乱人视频| 精品久久久久久久末码| 亚洲,欧美,日韩| 国产国拍精品亚洲av在线观看| 久久久久久久国产电影| 日日啪夜夜撸| 午夜免费激情av| 看免费成人av毛片| 男女边吃奶边做爰视频| 久久精品国产鲁丝片午夜精品| ponron亚洲| 午夜福利视频精品| 亚洲精华国产精华液的使用体验| 免费电影在线观看免费观看| 最近2019中文字幕mv第一页| 免费av不卡在线播放| 色综合站精品国产| 亚洲精品一区蜜桃| 国产精品国产三级专区第一集| 欧美成人一区二区免费高清观看| 亚洲人成网站在线观看播放| 成人国产麻豆网| 国产中年淑女户外野战色| 三级男女做爰猛烈吃奶摸视频| 综合色av麻豆| 老女人水多毛片| 97人妻精品一区二区三区麻豆| 久久久久网色| 国产成人精品福利久久| 精品一区在线观看国产| 高清毛片免费看| 自拍偷自拍亚洲精品老妇| 亚洲av免费高清在线观看| 大香蕉久久网| 91久久精品国产一区二区三区| 亚洲精品一区蜜桃| 国产精品无大码| 秋霞在线观看毛片| 夜夜看夜夜爽夜夜摸| 舔av片在线| 天堂av国产一区二区熟女人妻| 99久久精品热视频| 一级av片app| 成人毛片a级毛片在线播放| 亚洲欧洲日产国产| 亚洲av在线观看美女高潮| 国产成人精品婷婷| 色尼玛亚洲综合影院| av免费观看日本| 久久久久性生活片| 久久热精品热| 在现免费观看毛片| 九九在线视频观看精品| 亚洲欧美日韩卡通动漫| 久久久久免费精品人妻一区二区| 亚洲av免费在线观看| 高清毛片免费看| 日韩欧美精品v在线| 亚洲成人久久爱视频| 大陆偷拍与自拍| 久久精品久久精品一区二区三区| 欧美日本视频| 一级毛片电影观看| 日韩视频在线欧美| 少妇被粗大猛烈的视频| 欧美丝袜亚洲另类| 中文天堂在线官网| 高清欧美精品videossex| 国产精品一区二区在线观看99 | 18禁在线无遮挡免费观看视频| 一个人看视频在线观看www免费| a级毛片免费高清观看在线播放| 精品一区二区三卡| 国产精品国产三级国产av玫瑰| 精品亚洲乱码少妇综合久久| 美女主播在线视频| 美女高潮的动态| 国产亚洲5aaaaa淫片| 午夜激情欧美在线| 汤姆久久久久久久影院中文字幕 | 亚洲天堂国产精品一区在线| 久久国产乱子免费精品| 麻豆精品久久久久久蜜桃| 永久免费av网站大全| 美女内射精品一级片tv| 亚洲性久久影院| 丰满乱子伦码专区| 国产精品麻豆人妻色哟哟久久 | 五月天丁香电影| h日本视频在线播放| 日日干狠狠操夜夜爽| 中文字幕av在线有码专区| 亚洲av免费在线观看| 亚洲国产精品国产精品| 国产一区二区三区av在线| 婷婷色av中文字幕| 久久99蜜桃精品久久| 三级国产精品片| 久久久亚洲精品成人影院| 日韩 亚洲 欧美在线| 久久久久久九九精品二区国产| 男人爽女人下面视频在线观看| 成年女人看的毛片在线观看| 性色avwww在线观看| 国产av码专区亚洲av| 插阴视频在线观看视频| 九九在线视频观看精品| 能在线免费看毛片的网站| 黄色日韩在线| 女人十人毛片免费观看3o分钟| 九草在线视频观看| 丝袜美腿在线中文| 国产成人精品福利久久| 精品久久久久久久末码| 日日摸夜夜添夜夜添av毛片| 激情 狠狠 欧美| 午夜视频国产福利| 噜噜噜噜噜久久久久久91| 国产精品人妻久久久久久| 搡老乐熟女国产| 波多野结衣巨乳人妻| 国产视频首页在线观看| 小蜜桃在线观看免费完整版高清| 国产精品日韩av在线免费观看| 国产伦精品一区二区三区四那| 日本猛色少妇xxxxx猛交久久| 成人一区二区视频在线观看| 高清av免费在线| 日韩一区二区视频免费看| 夫妻午夜视频| 久久久欧美国产精品| 嫩草影院精品99| 国产伦在线观看视频一区| 综合色丁香网| 免费大片黄手机在线观看| 在线观看免费高清a一片| av福利片在线观看| 亚洲欧美清纯卡通| 国产精品一区二区性色av| 国产老妇伦熟女老妇高清| 国内少妇人妻偷人精品xxx网站| 97精品久久久久久久久久精品| 国产三级在线视频| 欧美成人精品欧美一级黄| 少妇丰满av| 久久精品国产鲁丝片午夜精品|