• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Molecularly imprinted polymers combination with deep eutectic solvents for solid-phase extraction of caffeic acid from hawthorn

    2015-08-03 09:26:34LIGuizhenTANGWeiyangCAOWeiminWANGQianZHUTao
    色譜 2015年8期

    LI Guizhen,TANG Weiyang,CAO Weimin,WANG Qian,ZHU Tao*

    (1.Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion,School of Chemistry and Chemical Engineering,Tianjin University of Technology,Tianjin 300384,China;2.Shijiazhuang Yiling Pharmaceutical Co.,Ltd.,Shijiazhuang 050035,China)

    Hawthorn,a member of the Rosaceae family,has been used as food and medicine around the world[1-4].Hawthorn is known as a valuable medicinal plant which contains a large number of biological active substances (flavonoids [5],chlorogenic acid[6],caffeic acid (Fig.1)[7],and so on).Caffeic acid,as one of the ingredients of hawthorn,has been widely investigatedbecause of biological and pharmacological activities,such as antidiabetic[8],antioxidants[9,10],anti-inflammatory [11-13],and so on.Caffeic acid was extracted with many different methods,such as sonication/ethanol extraction[14,15],capillary zone electrophoresis [16],and so on.Because of the complexity of the plant extracts,asimpleand effectivepretreatment process is necessary to isolate and concentrate the caffeic acid before analysis[17].Until now,the pretreatment methods mainly include solidphase extraction (SPE)[18,19],dispersive liquid-liquid microextraction[20],solid-phase microextraction[21],and hollow fiber-based liquidliquid-liquid microextraction [22,23].Among these methods,SPE is the most widely applied pretreatment technique because of its high recovery,reproducibility,and simple operation,low cost and so on[24,25].

    Fig.1 Chemical structure of caffeic acid

    Molecularly imprinted polymers(MIPs)exhibiting high selectivity and affinity to the target molecule (template),are attracting a fast growing research[26-29].The special binding sites of MIPs are formed by the self-assembly of the template with functional group and the monomer in a co-polymerization process.So MIPs can selectively rebind the template in the presence of other closely related structures[30-34].Because of its features of high selectivity,low cost for preparation and workability under different conditions,SPE involving MIPs have been proved to be successful applications[35-39].Furthermore,elution solutions in the MIPs-SPE procedures are important in the elution capability[40].Deep eutectic solvents (DESs)are green designer solvents composed of quaternary ammonium salts,hydrogen donors and show some good properties,such as low volatility,low toxicity,low cost,and high biodegradability[41-43].DESs have attracted considerable attentions in the area of synthesis,electrochemistry,materials,biochemistry and separation [44-49] in recent years.DES with addition of methanol can have significant benefits in terms of a decrease in viscosity,stronger basicity and lower cost for extracting the target compounds[50].

    In this work,MIPs with caffeic acid as template molecule and non-imprinted polymers (NIPs)were prepared,and they were characterized using field emission scanning electron microscopy(FESEM)and adsorption capacity test.MIPs,NIPs and C18were used for rapid purification of caffeic acid from hawthorn using SPE.To optimize the MIPs-SPE procedures,methanol was mixed with the two kinds of DESs (glycerol-based DESs,urea-based DESs)in different ratios (0.5∶1,1∶1,2∶1,3∶1,4∶1,5∶1,v/v),and they were used as elution solutions in the MIPs-SPE procedures.

    1 Experimental

    1.1 Reagents and material

    Hawthorn was bought from a market in Tianjin,China.Caffeic acid was bought from Jinsui Bio-Technology Co.,Ltd.(Shanghai,China).Choline chloride (ChCl)was bought from Guangfu Chemical Reagent Co.,Ltd.(Tianjin,China).Glycerol and urea were bought from Beichen Chemical Reagent Co.,Ltd.(Tianjin,China).Ethylene glycoldimethacrylate (EDMA)was bought from Hengshan Sci-Tech Co.,Ltd (Tianjin,China).2-Methylpropionitrile(AIBN)was bought from Bodi Chemical Industry Co.,Ltd.(Tianjin,China).Acrylamide(AM)was bought from Guangfu Chemical Research Institute(Tianjin,China).Acetic acid was bought from Zhiyuan Chemical Reagent Co.,Ltd.(Tianjin,China).Methanol was bought from Jinke Chemical Research Institute (Tianjin,China).Empty SPE cartridges(with gaskets)were bought from Agilent Technologies Inc.(Tianjin,China).C18cartridges(with 200 mg packed materials)were bought from Agilent Technologies Inc.(Tianjin,China).All the other solvents used in the experiment were HPLC or analytical grade,and all the samples were filtered before injection into the HPLC system.

    1.2 Apparatus

    The chromatography system consisted of LC-10ATVP pump and SPD-10AVP UV-Vis detector(Shimadzu,Suzhou,China),with the injector(20-μL sample loop).The analysis was performed on an Optima Pak C18column(150 mm×4.6 mm,5 μm,RS tech Corporation,Daejeon,Korea).DF-101 heating magnetic agitator (Yuhua,Gongyi,China) and a Soxhlet extractor(Hengshan,Tianjin,China)were used for preparation of MIPs.Distilled water(18.2 MΩ·cm)was filtered with a vacuum pump (Yukang,Shanghai,China)and a filter before use.

    1.3 Preparation of DESs

    The glycerol-based DESs were formed by choline chloride (ChCl)-glycerol (1/2,n/n)in a conical flask,heating to 80℃ with constant stirring for 2 h until a homogeneous liquid formed.The urea-based DESs were prepared with choline chloride-urea (1/2,n/n)in the same procedure.

    1.4 Preparation of imprinted polymers

    Template molecule (caffeic acid,0.180 6 g)and AM functional monomers (0.280 4 g)were added to a clean,dry round bottom flask containing a magnetic stirring bar,and then dissolved in appropriate 4.0 mL methanol-water (90/10,v/v)solvents.The solution was ultrasonicated for 30 min and sparged with nitrogen for 5 min to remove oxygen.EDMA (3.79 mL)and AIBN (0.04 g)were then added into the solution,and they were kept in oil bath at 60℃ for 48 h.The synthesis diagram of MIPs is shown in Fig.2.After polymerization,polymers were ground into particles and sieved.A total of 200 mg MIP polymer was ground and washed with methanol-acetic acid(90/10,v/v)to remove the templates,porogenic solvents and other compounds.Finally,the obtained particles were purified with deionized water and methanol for 2 h by Soxhlet extraction,and dried at 60℃ under vacuum for 48 h.The NIPs(without template molecule)were prepared in the same procedure.

    Fig.2 Synthesis diagram of MIPs

    1.5 Characterization of MIPs and NIPs

    The morphological microstructures of the dried MIPs and NIPs particles were observed by FESEM (MERLIN Compact,ZEISS,Germany).

    1.6 Rebinding experiment

    For static adsorption experiment,20.0 mg each of MIPs and NIPs particles was mixed with 2.0 mL of caffeic acid solutions of mass concentrations of 5.0-200.0 mg/L in centrifuge tubes.After shaking for 10 h,the mixtures were centrifuged,and the upper solutions were determined to calculate the adsorption capacities.

    For dynamic adsorption experiment,2.0 mL of 50.0 mg/L caffeic acid aqueous solution was mixed with 20.0 mg each of MIPs and NIPs in 10 mL of centrifuge tubes,and they were shaken for 60-450 min.After centrifuging the mixture,the upper solution in each tube was determined to calculate the adsorption capacities.

    1.7 Preparation of standard solutions and chromatographic separation

    The standard caffeic acid was dissolved in methanol to give a mass concentration of 1 000.00 mg/L.For method development, a series of standard solutions containing caffeic acid were prepared at five mass concentration levels over the range of 5.00-100.00 mg/L.The standard curve of caffeic acid was linear by assaying five data points and each sample was determined for three times.

    The analysis was performed on an HPLC system with a C18column,and the mobile phase was methanol-water-acetic acid (18/82/0.5,v/v/v).The flow rate was 0.8 mL/min,and the chromatogram was monitored at a wavelength of 330 nm.

    1.8 SPE by MIPs,NIPs and C18

    Hawthorn was washed by water,dried in an oven at 50℃,and ground into powder.A portion of 0.5 mg hawthorn powder was added into 5.0 mL ethanol,and the mixture was ultrasonicated for 30 min.After centrifugation,the extract was filtered and collected as a stock sample solution.The corresponding MIPs and NIPs (200.0 mg)were packed in empty SPE cartridges,and two gaskets were put at both ends to avoid the loss of adsorbent.After each SPE cartridge was preconditioned sequentially by methanol(1.0 mL)and deionized water(3.0 mL),1.0 mL of the extract solution was loaded on the cartridge,followed by deionized water(1.0 mL)as the washing solution and methanol(2.0 mL)as the elution solution.The effluents at every step were collected by a 1.0 mL syringe,which was connected to the bottom of SPE cartridge to ensure a suitable and constant flow rate.The obtained effluents were transferred to reagent bottles for further HPLC analysis.

    1.9 DESs for optimization of MIPs-SPE procedure

    Methanol was mixed with two kinds of DESs(glycerol-based DESs,urea-based DESs)in different ratios (0.5∶1,1∶1,2∶1,3∶1,4∶1,5∶1,v/v),and they were used as elution solutions (2.0 mL)in the MIPs-SPE procedures.

    2 Results and discussion

    2.1 Morphological characteristics of imprinted polymers

    FE-SEM has successfully been used to observe the morphologies of the MIPs and NIPs (Fig.3),which were important parameters used to evaluate polymerization stability and reproducibility.According to the figure,there were no significant difference between the MIPs and NIPs.Moreover,many macropores and flow-through channels were inlaid in the network skeletons of these polymers.Additionally,the shapes of the two polymers were analogously globular with diameters ranging from 1 μm to 4 μm,which indicated their fine macropores structure and suitability as SPE adsorbents.

    Fig.3 FE-SEM images of the (a)MIPs and (b)NIPs

    2.2 Adsorption characteristics of the imprinted polymers

    The adsorption equilibrium showed the mass transfer rate of polymers.To evaluate the binding property of the polymers(MIPs and NIPs),static adsorption and dynamic adsorption experiments were performed at room temperature.The results of the static absorption and dynamic adsorption are shown in Fig.4.Fig.4a shows that caffeic acid adsorption increased with an increase in initial concentration,and the adsorption capacities gradually tended to be saturated when the caffeic acid mass concentration was more than 150.0 mg/L.Fig.4b showed that the adsorptions of MIPs and NIPs increased slightly but tended to balance at approximately 390-450 min.The results of dynamic equilibrium adsorption showed that the adsorptions of both MIPs and NIPs were the greatest at nearly 390 min,which indicatedthat the interaction time of aggregation and adhesion of NIPs was similar to that of MIPs.Compared with NIPs,MIPs revealed higher adsorption capacity owing to its specific imprinted recognition.

    Fig.4 Adsorption capacity of MIPs and NIPs to caffeic acid (n=3)

    2.3 Optimization of the chromatographic conditions

    The chromatographic conditions were optimized in order to improve the separation efficiency.The chromatograms of the standard caffeic acid samples (50 mg/L)with different volume percentages of acetic acid in the mobile phase are shown in Fig.5.The methanol-water-acetic acid (18/82/0.5,v/v/v)system was tested as the solution to simplify the operation,and the volume percentages of acetic acid in the mobile phase were changed from 0.1% to 0.5%.At last,the optimum mobile phases were methanol-water-acetic acid (18/82/0.5,v/v/v)at a flow rate of 0.8 mL/min.

    2.4 Method validation

    Fig.5 Chromatograms of the standard caffeic acid samples(50 mg/L)with different volume percentages of acetic acid in the mobile phase

    The peak areas(Y)of the caffeic acid were measured and plotted against its mass concentrations (X)after HPLC analysis.The standard curve of caffeic acid was linear over the range of 5.00-100.00 mg/L by assaying seven data points and the two quality control samples in triplicate on three separate occasions,and the regression equations were Y=38 696.53X-47 002.27(R2=0.999 9,n=5).

    According to Table 1,the precision and accuracy of this method were expressed by performing five replicate analyses for the quality control samples at three different concentrations of caffeic acid on the same day and on consecutive days.The intra-and inter-day relative standard deviations(RSDs)of the proposed method were not more than 5.92%and 5.52%,respectively.

    Table 1 Intra-day and inter-day accuracies of caffeic acid by HPLC (n=5)

    2.5 Extraction of caffeic acid from hawthorn

    MIPs,NIPs,and C18were used for rapid purification of caffeic acid from hawthorn with SPE and the chromatograms are shown in Fig.6.With this established method,the extract yields for caffeic acid were 3.46 μg /g,1.01 μg /g and 1.17 μg/g, respectively. This indicated thatSPE process with the MIPs played an important role in this experiment,and the MIPs had good selectivityfor the caffeic acid.These results were conductive to the quantitative analysis of caffeic acid.

    Fig.6 Extraction chromatograms of caffeic acid in hawthorn samples with MIPs,NIPs,and C18SPE cartridge

    2.6 DES for optimization of MIPs-SPE procedures

    Methanol was mixed with two kinds of DESs(glycerol-based DESs,urea-based DESs)in different ratios (0.5∶1,1∶1,2∶1,3∶1,4∶1,5∶1,v/v),and they were used as elution solutions (2.0 mL)in the MIPs-SPE procedures.Elution capabilitiesofmethanol/glycerol-based DESs and methanol/urea-based DESs in the MIPs-SPE procedures are shown in Fig.7.As the decrease of addition ratio of the two kinds of DESs into methanol,the recoveries increased at first and then decreased. Methanol/glycerol-based DESsobtained better elution capability than methanol/urea-based DESs and pure methanol(72.18% )in the MIPs-SPE procedures,and methanol/glycerol-based DESs (3∶1,v/v)had the best elution capability with the recovery of 82.32%.

    The type of DESs is important for the elution capabilities in the MIPs-SPE procedures due to the following effects:diffusion,solubility,viscosity,surface tension,polarity and physicochemical interactions.The DESs with the addition of methanol have significant benefits in terms of a decrease in viscosity,and a lower viscosity solvent is preferred due to the better penetration of pores in the sample matrix.However,an excessive concentration of methanol can decrease the inter-

    Fig.7 Elution capabilities of methanol/glycerol-based DESs and methanol/urea-based DESs in the MIPs-SPE procedures (n =3)

    actions between the DESs and caffeic acid,and increase the polarity of the mixture.The examined viscosities of glycerol-based DESs were greater than the examined viscosities of urea-based DESs,so the elution capabilities of glycerol-based DESs were better than those of urea-based DESs.

    The target compounds were adsorbed on the sample matrix by physical adsorption and chemical interactions,such as van der Waals forces,hydrogen bonding,dipole moment and electrostatic interactions.According to the similar dissolve mutually theory,the target compounds can be dissolved easily by solvents with similar polarities,and the order of polarity of the DESs was glycerol-based DESs>urea-based DESs.In addition to the above mentioned factors,the effect of the positioning of the glycerol groups should be considered.The target compound caffeic acid can be considered as a type of hydrogen-bond donor(HBD).Therefore,the glycerol-based HBDs and caffeic acid interact competitively with a chloride anion.If one molecule of glycerol-based HBD has sufficient space between the hydrogen bond donor groups,it can combine the chloride anion so much that only one molecule can complex around it.Another consideration is that excess branches of glycerol-based HBD also resulted in considerable steric hindrance that prevented the interactions between the flavonoids and chloride anions.Therefore,suitable glycerol-based HBD should have proper space between the HBD groups and fewer branches.As a result,glycerol-based DESsshowed better elution capability than urea-based DESs and methanol in the MIPs-SPE procedures.

    3 Conclusions

    In this work,MIPs and NIPs were prepared in the same procedure,and the FE-SEM and adsorption capacity test were used to evaluate the characteristics of the polymers.The polymers were applied to the rapid purification of caffeic acid from hawthorn.With this established method,the extract yields of caffeic acid from hawthorn with the proposed MIPs,NIPs and C18SPE were 3.46,1.01 and 1.17 μg/g,respectively.To optimize the MIPs-SPE procedures,methanol was mixed with the two kinds of DESs(glycerol-based DESs,urea-based DESs)in different ratios (0.5∶1,1∶1,2∶1,3∶1,4∶1,5∶1,v/v)and they were used as elution solutions.The results showed that MIPs were potential SPE materials,and methanol/glycerol-based DESs (3∶1,v/v)had the best elution capability with the recovery of 82.32%.

    [1] Chang W T,Dao J,Shao Z H.Am J Chin Med,2005,33(1):1

    [2] Rigelsky J M,Sweet B V.Am J Health Syst Pharm,2002,59(5):417

    [3] Jurikova T,Sochor J,Rop O,et al.Molecules,2012,17(12):14490

    [4] Eaton L J,Kinkade S.J Fam Pract,2003,52(10):753

    [5] Fu J H,Zheng Y Q,Li P,et al.Chinese Journal of Integrative Medicine,2013,19(8):582

    [6] Geng C H,Lin M,Wang W Y,et al.Chinese Journal of Analytical Chemistry,2008,63(1):75

    [7] Gundogdu M,Ozrenk K,Ercisli S,et al.Biol Res,2014,47:21

    [8] Celik S,Erdogan S,Tuzcu M.Pharmacol Res,2009,60(4):270

    [9] Maurya D K,Devasagayam T P A.Food Chem Toxicol,2010,48(12):3369

    [10] Rajendra Prasad N,Karthikeyan A,Karthikeyan S,et al.Mol Cell Biochem,2011,349(1/2):11

    [11] Miles E A,Zoubouli P,Calder P C,et al.Nutrition,2005,21(3):389

    [12] Bose J S,Gangan V,Jain S K,et al.Clin Immuno,2009,29:90

    [13] Michaluart P,Masferrer J L,Carothers A M,et al.Cancer Res,1999,59:2347

    [14] Xing Y,Peng H Y,Zhang M X,et al.J Zhejiang Univ-Sci B:Biomed & Biotechnol,2012,13:487

    [15] Iranshahi M,Amanzadeh Y.Chem Nat Comp,2008,44(2):190

    [16] Zhao Y K,Cao Q E,Liu H T,et al.Chromatographia,2000,51:483

    [17] Zhang L,Lu Y Y,Jiang Y.West China Journal of Pharmaceutical Sciences,2013,28:92

    [18] Yan H,Wang F,Han D,et al.Analyst,2012,137:2884

    [19] Yan H Y,Wang F,Wang H,et al.J Chromatogr A,2012,1256:1

    [20] Gupta V,Kumar M,Brahmbhatt H,et al.Plant Physiol Bioch,2011,49:1259

    [21] Zhang Y,Li Y W,Hu Y L,et al.J Chromatogr A,2010,1217:7337

    [22] Wu L,Hu B.J Chromatogr A,2009,1216:7657

    [23] Wu Q,Wu D P,Duan C F,et al.J Chromatogr A,2012,1265:17

    [24] Yang J J,Li Y,Wang J C,ea al.Chinese Journal of Chromatography,2015,33(5):468

    [25] Jung S Y,Park J S,Chang M S,et al.Food Sci Biotechnol,2013,22:241

    [26] Chen L X,Liu Y X,He X W,et al.Chinese Journal of Chromatography,2015,33(5):481

    [27] Yue C Y,Ding G S,Tang A.Chinese Journal of Chromatography,2013,31(1):10

    [28] Zhang K G,Hu Y L,Hu Y F,et al Chinese Journal of Chromatography,2012,30(12):1220

    [29] Wang C L,Ma F,Zheng H Y,et al.Fine Chemicals,2007,24(8):730

    [30] Zheng N,Li Y Z,Chang W B,et al.Anal Chim Acta,2002,452:277

    [31] Nicholls I A,Ramstrom O,Mosbach K.J Chromatogr A,1995,691:349

    [32] Zhou J,He X,Li Y.Anal Chim Acta,1999,394:353

    [33] Takeuchi T,Sunayama H. Encyclopedia of Polymeric Nanomaterials,2014,1:5

    [34] Owens P K,Karlsson L,Lutz E S M,et al.TrAC-Trends Anal Chem,1999,18:146

    [35] Zhu T,Yoon C H,Row K H.Chin J Chem,2011,29:1246

    [36] Blomgre A,Berggren C,Holmberg A,et al.J Chromatogr A,2002,975:157

    [37] Li J H,Wen Y Y,Chen L X.Chinese Journal of Chromatography,2013,31(3):181

    [38] Sun L,Du F Y,Ruan G H.Chinese Journal of Chromatography,2013,31(4):392

    [39] Jodlbauer J,Maier N M,Lindner W.J Chromatogr A,2002,945:45

    [40] Wang L H,Wang M Y,Yan H Y,et al.J Chromatogr A,2014,1368:37

    [41] Gupta S,Manohar C S.Struct Saf,2004,26:123

    [42] Lobo H R,Singh B S,Shankarling G S.Green Chem Lett Rev,2012,5:487

    [43] Maugeri Z,Domínguez de María P.RSC Adv,2012,2:421

    [44] Durand E,Lecomte J,Villeneuve P.Eur J Lipid Sci Technol,2013,115:379

    [45] Tang B,Row K H.Mon Chem,2013,144:1427

    [46] Qi L,Zhang J,Zhang Z Q.Chinese Journal of Chromatography,2013,31(3):249

    [47] Baldelli S.Acc Chem Res,2008,41:421

    [48] Bonhote P,Dias A P,Papageorgiou N,et al.Inorg Chem,1996,35(5):1168

    [49] Li J H,Shen Y F,Zhang Y J,et al.Chem Commun,2005,3:360

    [50] Bi W T,Tian M L,Row K H.J Chromatogr A,2012,1232:37

    av在线老鸭窝| 亚洲内射少妇av| 高清日韩中文字幕在线| 成人亚洲欧美一区二区av| a级一级毛片免费在线观看| av黄色大香蕉| 在线观看午夜福利视频| 香蕉av资源在线| 一级a爱片免费观看的视频| 久久热精品热| 看免费成人av毛片| 联通29元200g的流量卡| 蜜桃亚洲精品一区二区三区| 国产麻豆成人av免费视频| 最近手机中文字幕大全| 最近手机中文字幕大全| 国产av麻豆久久久久久久| 久久久久国内视频| 波多野结衣高清作品| 色综合亚洲欧美另类图片| 欧美日本亚洲视频在线播放| 亚洲成人久久性| 国产一级毛片七仙女欲春2| 伦精品一区二区三区| 特级一级黄色大片| 国产精品亚洲美女久久久| 亚洲欧美日韩高清在线视频| 成年免费大片在线观看| 51国产日韩欧美| 免费在线观看成人毛片| 久久精品夜色国产| 精品欧美国产一区二区三| 俺也久久电影网| 欧美日韩乱码在线| 综合色丁香网| а√天堂www在线а√下载| 欧美一区二区国产精品久久精品| 国产黄a三级三级三级人| 精品久久久久久久久av| 亚洲熟妇中文字幕五十中出| 国产精品av视频在线免费观看| 久久99热这里只有精品18| 18禁黄网站禁片免费观看直播| 精品久久久久久久久亚洲| 搡老岳熟女国产| 22中文网久久字幕| 亚洲av五月六月丁香网| 亚洲欧美日韩东京热| 国产亚洲精品av在线| 欧美最黄视频在线播放免费| 日本一本二区三区精品| 欧美最黄视频在线播放免费| 国产在线精品亚洲第一网站| 亚洲在线观看片| 午夜精品一区二区三区免费看| 亚洲在线自拍视频| 亚洲人成网站在线观看播放| 免费人成在线观看视频色| 在线国产一区二区在线| 免费av观看视频| 欧美+日韩+精品| 欧美+日韩+精品| 久久精品国产亚洲av涩爱 | 在线观看美女被高潮喷水网站| 俄罗斯特黄特色一大片| 日韩欧美免费精品| 变态另类丝袜制服| 色综合亚洲欧美另类图片| 3wmmmm亚洲av在线观看| 久久热精品热| 悠悠久久av| 精品人妻偷拍中文字幕| 99久久久亚洲精品蜜臀av| 国产一级毛片七仙女欲春2| 亚洲中文字幕一区二区三区有码在线看| 波野结衣二区三区在线| 免费av不卡在线播放| 黄色日韩在线| 国产精品乱码一区二三区的特点| 国产精品不卡视频一区二区| 熟妇人妻久久中文字幕3abv| 欧美+日韩+精品| 欧美高清成人免费视频www| 亚洲av不卡在线观看| 午夜福利成人在线免费观看| 免费黄网站久久成人精品| 在线播放国产精品三级| 亚洲美女搞黄在线观看 | 天天躁夜夜躁狠狠久久av| 日本黄大片高清| 国产高潮美女av| 国产视频一区二区在线看| 欧美一区二区精品小视频在线| 亚洲中文字幕一区二区三区有码在线看| 国内精品美女久久久久久| 2021天堂中文幕一二区在线观| 精品熟女少妇av免费看| 欧美日韩综合久久久久久| 免费在线观看影片大全网站| 成人特级黄色片久久久久久久| 色哟哟哟哟哟哟| 97碰自拍视频| 男人舔奶头视频| 欧美又色又爽又黄视频| 又粗又爽又猛毛片免费看| 美女大奶头视频| 婷婷六月久久综合丁香| 热99在线观看视频| 国产精品免费一区二区三区在线| 国产亚洲91精品色在线| 哪里可以看免费的av片| 中文在线观看免费www的网站| 非洲黑人性xxxx精品又粗又长| 在线看三级毛片| 麻豆精品久久久久久蜜桃| 极品教师在线视频| 国产精品一区二区免费欧美| 青春草视频在线免费观看| av专区在线播放| 欧美日本视频| 国产午夜精品论理片| av在线亚洲专区| 黄色日韩在线| 我的老师免费观看完整版| 蜜臀久久99精品久久宅男| 日韩中字成人| 久久亚洲精品不卡| 我的女老师完整版在线观看| 亚洲av成人av| 长腿黑丝高跟| 激情 狠狠 欧美| 欧美zozozo另类| 国产淫片久久久久久久久| 51国产日韩欧美| 午夜精品国产一区二区电影 | 又黄又爽又免费观看的视频| av在线蜜桃| 婷婷精品国产亚洲av在线| 少妇被粗大猛烈的视频| 亚洲av.av天堂| 综合色av麻豆| 免费观看人在逋| av视频在线观看入口| 国产成人影院久久av| 国产成人aa在线观看| 欧美成人精品欧美一级黄| 国内精品久久久久精免费| 熟妇人妻久久中文字幕3abv| 插逼视频在线观看| 婷婷精品国产亚洲av在线| 免费电影在线观看免费观看| 丰满乱子伦码专区| 亚洲精品国产成人久久av| 最近中文字幕高清免费大全6| 在线观看午夜福利视频| 非洲黑人性xxxx精品又粗又长| 午夜精品国产一区二区电影 | 欧美绝顶高潮抽搐喷水| 黄色配什么色好看| 亚洲第一区二区三区不卡| 最好的美女福利视频网| 丰满人妻一区二区三区视频av| 日韩成人av中文字幕在线观看 | 成人美女网站在线观看视频| 欧美日韩国产亚洲二区| 网址你懂的国产日韩在线| 成人毛片a级毛片在线播放| 3wmmmm亚洲av在线观看| 深夜精品福利| 女人十人毛片免费观看3o分钟| 在线观看午夜福利视频| 国产黄色视频一区二区在线观看 | 国产精品久久久久久亚洲av鲁大| 色噜噜av男人的天堂激情| 国产精品日韩av在线免费观看| 亚洲av第一区精品v没综合| 在现免费观看毛片| 国产69精品久久久久777片| 国产精品一区二区免费欧美| 中国美白少妇内射xxxbb| 国产午夜福利久久久久久| 亚洲国产精品sss在线观看| 一进一出好大好爽视频| 成人漫画全彩无遮挡| 插阴视频在线观看视频| 色播亚洲综合网| 欧美在线一区亚洲| 亚洲人与动物交配视频| 久久精品国产亚洲网站| 国产精品久久久久久久久免| 天堂影院成人在线观看| 中文资源天堂在线| 国产极品精品免费视频能看的| 国产精品无大码| 色哟哟·www| av免费在线看不卡| 97热精品久久久久久| 精品日产1卡2卡| 女人十人毛片免费观看3o分钟| 国产精品不卡视频一区二区| 国产伦在线观看视频一区| 免费av不卡在线播放| 精品久久久久久久久亚洲| 日本免费a在线| 免费在线观看成人毛片| 日韩在线高清观看一区二区三区| 嫩草影视91久久| 丰满乱子伦码专区| 欧美xxxx性猛交bbbb| 99久久精品一区二区三区| 日本免费一区二区三区高清不卡| АⅤ资源中文在线天堂| 亚洲国产色片| 国产精品电影一区二区三区| 成人av一区二区三区在线看| 久久久久久久午夜电影| 最近2019中文字幕mv第一页| 亚洲av中文av极速乱| 亚洲熟妇中文字幕五十中出| 蜜桃久久精品国产亚洲av| 精品一区二区三区人妻视频| 国产精品久久久久久av不卡| 在线国产一区二区在线| 97超视频在线观看视频| 亚洲国产精品久久男人天堂| 村上凉子中文字幕在线| 成人性生交大片免费视频hd| 日本成人三级电影网站| 69人妻影院| 日韩大尺度精品在线看网址| 久久精品国产亚洲av香蕉五月| 国产中年淑女户外野战色| 亚洲经典国产精华液单| 日本爱情动作片www.在线观看 | 变态另类丝袜制服| 又爽又黄a免费视频| 国产男靠女视频免费网站| 亚洲精品国产av成人精品 | 午夜免费激情av| 欧美激情国产日韩精品一区| 丰满乱子伦码专区| 青春草视频在线免费观看| 国产不卡一卡二| 热99re8久久精品国产| 一级黄色大片毛片| 日本a在线网址| 天堂av国产一区二区熟女人妻| 久久精品国产自在天天线| 亚洲国产精品成人久久小说 | 亚洲欧美成人综合另类久久久 | 春色校园在线视频观看| 美女被艹到高潮喷水动态| 日韩,欧美,国产一区二区三区 | 国产精品99久久久久久久久| 亚洲人成网站在线播放欧美日韩| 精品人妻视频免费看| 在线观看美女被高潮喷水网站| 亚洲av电影不卡..在线观看| 日本成人三级电影网站| 久久精品综合一区二区三区| 欧美3d第一页| 欧美区成人在线视频| 国产成年人精品一区二区| 国产美女午夜福利| 国产成人一区二区在线| 亚洲综合色惰| 乱系列少妇在线播放| 国产成人一区二区在线| 国内揄拍国产精品人妻在线| 国内精品宾馆在线| 看片在线看免费视频| 亚洲国产精品sss在线观看| 亚洲婷婷狠狠爱综合网| 日本一本二区三区精品| 亚洲激情五月婷婷啪啪| 观看美女的网站| 又爽又黄a免费视频| 两个人的视频大全免费| 久久综合国产亚洲精品| 尤物成人国产欧美一区二区三区| 老熟妇仑乱视频hdxx| 国产黄色小视频在线观看| 欧美3d第一页| 免费在线观看影片大全网站| 精品欧美国产一区二区三| av福利片在线观看| 免费搜索国产男女视频| 熟妇人妻久久中文字幕3abv| 丰满乱子伦码专区| 麻豆一二三区av精品| 亚洲自偷自拍三级| 观看免费一级毛片| avwww免费| 成人欧美大片| 日本-黄色视频高清免费观看| 久久久久久国产a免费观看| 嫩草影院新地址| 免费看美女性在线毛片视频| 国产久久久一区二区三区| 人人妻,人人澡人人爽秒播| 色播亚洲综合网| 亚洲人成网站高清观看| 久久欧美精品欧美久久欧美| 性插视频无遮挡在线免费观看| 国产探花在线观看一区二区| 此物有八面人人有两片| 嫩草影院新地址| 国产精品久久电影中文字幕| 国产精品亚洲一级av第二区| 国产av不卡久久| 色视频www国产| 成人亚洲欧美一区二区av| 有码 亚洲区| 成年女人毛片免费观看观看9| 插逼视频在线观看| 综合色av麻豆| 欧洲精品卡2卡3卡4卡5卡区| 悠悠久久av| 搡老妇女老女人老熟妇| 观看免费一级毛片| 久久久午夜欧美精品| 国产精品久久久久久av不卡| 国产激情偷乱视频一区二区| 在线观看一区二区三区| 国产真实乱freesex| 国产精品99久久久久久久久| 黑人高潮一二区| 国产精品永久免费网站| 99国产极品粉嫩在线观看| 校园人妻丝袜中文字幕| 最近在线观看免费完整版| 男人狂女人下面高潮的视频| 国产精品久久久久久久电影| 美女xxoo啪啪120秒动态图| 精品一区二区三区av网在线观看| 99国产极品粉嫩在线观看| 日韩亚洲欧美综合| 日本 av在线| 91在线精品国自产拍蜜月| 国产 一区 欧美 日韩| 身体一侧抽搐| 男女之事视频高清在线观看| 男女那种视频在线观看| 无遮挡黄片免费观看| 18禁裸乳无遮挡免费网站照片| 国产亚洲精品av在线| 日本精品一区二区三区蜜桃| 最新在线观看一区二区三区| 亚洲经典国产精华液单| 天堂√8在线中文| 精品99又大又爽又粗少妇毛片| 不卡一级毛片| 少妇裸体淫交视频免费看高清| 亚洲国产精品国产精品| 成人av一区二区三区在线看| 国产av不卡久久| 天堂√8在线中文| 久久久国产成人精品二区| 久久精品人妻少妇| 亚洲高清免费不卡视频| 国产aⅴ精品一区二区三区波| 美女免费视频网站| 在现免费观看毛片| 三级经典国产精品| 中文字幕熟女人妻在线| 天堂网av新在线| 欧美日韩精品成人综合77777| 美女cb高潮喷水在线观看| 亚洲性久久影院| 国产精品一及| 人妻久久中文字幕网| 日韩欧美 国产精品| 嫩草影院精品99| 中文在线观看免费www的网站| 日日啪夜夜撸| 六月丁香七月| 久久亚洲国产成人精品v| 久久99热这里只有精品18| 欧美在线一区亚洲| 国内久久婷婷六月综合欲色啪| 免费在线观看影片大全网站| 久久人人爽人人爽人人片va| 国产亚洲欧美98| 日本黄大片高清| 国产高清有码在线观看视频| 美女被艹到高潮喷水动态| www.色视频.com| 日本撒尿小便嘘嘘汇集6| 熟女电影av网| 免费观看人在逋| 一级毛片aaaaaa免费看小| 亚洲自拍偷在线| 久久精品综合一区二区三区| 熟女电影av网| 亚洲精品国产成人久久av| 在线播放国产精品三级| 99国产极品粉嫩在线观看| 插阴视频在线观看视频| 尾随美女入室| 国产一区亚洲一区在线观看| 亚洲成a人片在线一区二区| 中文亚洲av片在线观看爽| av在线天堂中文字幕| 国产色婷婷99| 精品人妻视频免费看| 国产精品美女特级片免费视频播放器| 婷婷精品国产亚洲av| 亚洲av一区综合| 99热精品在线国产| 日本 av在线| 久久草成人影院| 亚洲精品亚洲一区二区| 亚洲四区av| 免费无遮挡裸体视频| 18禁在线播放成人免费| 丝袜喷水一区| 久久精品久久久久久噜噜老黄 | 一个人看视频在线观看www免费| 五月伊人婷婷丁香| 99热6这里只有精品| 欧美三级亚洲精品| 天美传媒精品一区二区| 国产伦精品一区二区三区四那| 黑人高潮一二区| 午夜福利成人在线免费观看| 一区二区三区高清视频在线| 97热精品久久久久久| 黄色一级大片看看| 舔av片在线| 黄色欧美视频在线观看| 国产不卡一卡二| 国产精品一二三区在线看| 国产爱豆传媒在线观看| videossex国产| 久久久久国产网址| 亚洲最大成人av| 日日摸夜夜添夜夜添小说| 国产高清视频在线观看网站| 蜜桃久久精品国产亚洲av| 精品久久久久久久久亚洲| 久久99热6这里只有精品| 午夜福利高清视频| 一级毛片我不卡| 婷婷精品国产亚洲av| 91在线精品国自产拍蜜月| 亚洲中文日韩欧美视频| 亚洲国产欧洲综合997久久,| 午夜久久久久精精品| 看非洲黑人一级黄片| 99热全是精品| 色哟哟哟哟哟哟| 别揉我奶头~嗯~啊~动态视频| 欧美三级亚洲精品| 成人午夜高清在线视频| 久久久欧美国产精品| 亚洲精品粉嫩美女一区| 啦啦啦观看免费观看视频高清| 免费看a级黄色片| 日韩精品有码人妻一区| 少妇熟女欧美另类| 日本免费一区二区三区高清不卡| 久久午夜福利片| 国产午夜精品论理片| 国国产精品蜜臀av免费| 久久精品国产鲁丝片午夜精品| 国产一区二区在线观看日韩| 麻豆av噜噜一区二区三区| 22中文网久久字幕| 国产精品嫩草影院av在线观看| 高清午夜精品一区二区三区 | 禁无遮挡网站| 日韩精品中文字幕看吧| 欧美性猛交╳xxx乱大交人| 欧美最黄视频在线播放免费| 国产伦精品一区二区三区视频9| 性欧美人与动物交配| 欧美+亚洲+日韩+国产| 国产人妻一区二区三区在| 精品一区二区三区视频在线观看免费| 性插视频无遮挡在线免费观看| 亚洲国产精品合色在线| 日本爱情动作片www.在线观看 | 九九热线精品视视频播放| 日韩一区二区视频免费看| 变态另类丝袜制服| 精品一区二区三区av网在线观看| 99热网站在线观看| 九九爱精品视频在线观看| 成人国产麻豆网| 色视频www国产| 蜜臀久久99精品久久宅男| 51国产日韩欧美| 国产一级毛片七仙女欲春2| 丰满乱子伦码专区| 久久久久久久久久久丰满| 久久精品久久久久久噜噜老黄 | 日韩人妻高清精品专区| 欧美在线一区亚洲| 少妇高潮的动态图| 一个人观看的视频www高清免费观看| 免费看光身美女| 亚洲av一区综合| 亚洲性久久影院| 日韩欧美免费精品| 18+在线观看网站| 国产精品精品国产色婷婷| 18+在线观看网站| 欧美一区二区亚洲| 日日摸夜夜添夜夜添av毛片| 国产精品女同一区二区软件| 麻豆一二三区av精品| 亚洲av成人av| 中文字幕人妻熟人妻熟丝袜美| 久久精品夜夜夜夜夜久久蜜豆| 99热6这里只有精品| 精品熟女少妇av免费看| 亚洲四区av| 亚洲第一区二区三区不卡| 午夜福利视频1000在线观看| 九九在线视频观看精品| 最近手机中文字幕大全| 成人特级黄色片久久久久久久| 97热精品久久久久久| 国产高清不卡午夜福利| 亚洲婷婷狠狠爱综合网| 亚洲专区国产一区二区| av卡一久久| 人人妻人人澡人人爽人人夜夜 | 国产高清有码在线观看视频| 国产成人一区二区在线| 少妇裸体淫交视频免费看高清| 日本熟妇午夜| 日韩av在线大香蕉| 亚洲专区国产一区二区| 欧美成人一区二区免费高清观看| 国产视频一区二区在线看| 亚洲婷婷狠狠爱综合网| 精品不卡国产一区二区三区| 午夜精品在线福利| 成人av一区二区三区在线看| 简卡轻食公司| 亚洲性久久影院| 男人舔奶头视频| 免费看a级黄色片| 中文字幕熟女人妻在线| 最近在线观看免费完整版| 黄色配什么色好看| 美女内射精品一级片tv| 色哟哟哟哟哟哟| 非洲黑人性xxxx精品又粗又长| 欧美一区二区精品小视频在线| 国产v大片淫在线免费观看| 国产高清视频在线观看网站| 精品少妇黑人巨大在线播放 | 国产精品精品国产色婷婷| 精品不卡国产一区二区三区| 麻豆精品久久久久久蜜桃| 久久久成人免费电影| 国产探花在线观看一区二区| 日本免费a在线| 永久网站在线| 啦啦啦啦在线视频资源| 久久精品国产清高在天天线| 日韩欧美在线乱码| 国产黄色小视频在线观看| 伦精品一区二区三区| 国产男人的电影天堂91| 欧美激情在线99| 欧美激情国产日韩精品一区| 成人漫画全彩无遮挡| av在线亚洲专区| 欧美性猛交╳xxx乱大交人| 日日摸夜夜添夜夜添av毛片| 午夜亚洲福利在线播放| 黄色一级大片看看| 97热精品久久久久久| 成年女人看的毛片在线观看| av女优亚洲男人天堂| 亚洲精品亚洲一区二区| 最新在线观看一区二区三区| 国产高清激情床上av| 午夜日韩欧美国产| 日本一二三区视频观看| 亚洲精品成人久久久久久| 一级毛片aaaaaa免费看小| 男女视频在线观看网站免费| 欧美+亚洲+日韩+国产| 午夜久久久久精精品| 听说在线观看完整版免费高清| 少妇熟女aⅴ在线视频| videossex国产| 亚洲欧美精品自产自拍| 亚洲人与动物交配视频| 国产精品久久久久久亚洲av鲁大| 在线免费观看不下载黄p国产| 国产精品久久久久久亚洲av鲁大| 国产精品伦人一区二区| 热99在线观看视频| 又黄又爽又刺激的免费视频.| 亚洲精品粉嫩美女一区| 搡老熟女国产l中国老女人| 岛国在线免费视频观看| 国产精品亚洲一级av第二区| 久久久国产成人免费| 午夜a级毛片| 中国美白少妇内射xxxbb| 一本一本综合久久| 午夜a级毛片| 亚洲丝袜综合中文字幕| 欧美性猛交╳xxx乱大交人| 国产人妻一区二区三区在| 精品一区二区三区人妻视频| 桃色一区二区三区在线观看| 99久久精品热视频| 真人做人爱边吃奶动态|