劉鵬等
摘要:針對建筑環(huán)境中的揮發(fā)性有機化合物甲醛,在原有管狀反應器內增設帶有工藝缺口的直肋片,并在密閉循環(huán)系統(tǒng)中對其凈化效果進行分析,又利用計算流體力學(CFD)的方法得到了反應器內部的流速和光強分布.同時,基于模型計算的方法,建立了污染物循環(huán)降解模型.結果表明: 改進后的管狀反應器,反應面積增加,氣體停留時間延長,平衡了傳質-反應能力,反應速率提高了約1倍;增設肋片后,內壁面光強有所減弱,反應器中間段光強與流速耦合較好,而兩端由于氣流擾動大且光強較弱,反應速率會受影響;另外,降解模型的預測值稍高于實測值,但兩者變化趨勢相同,該模型能較準確的預測甲醛的反應速率.
關鍵詞:光催化氧化; 降解模型; 管狀反應器; CFD模擬; 甲醛
中圖分類號:O643 文獻標識碼:A
Abstract: A new annular photocatalytic reactor was designed for the removal of indoor formaldehyde. Three fins were added to the reactor and each fin had a triangular gap at one end, making this type reactor continuous and singlepass. The influence of fins on formaldehyde removal was examined in an airtight environmental chamber. The radiation and velocity fields of the reactors were simulated by using computational fluid dynamics (CFD) methods. A theoretical model for the degradation of formaldehyde in a recirculating system was proposed. When adding fins in the annular reactor, the reaction area and residence time were greatly increased, and the degradation rate was, therefore, obviously enhanced. The CFD simulation results showed that the radiation intensity on the internal surfaces of the exterior cylinder was nearly uniform except for the two ends and it decreased slightly for the reactor with fins. The velocity distribution was uniform in the first tube pass and became actually higher near the elbows. The UV intensity was weak while the velocity was large near the elbows, which had a negative effect on degradation efficiency there. The results obtained from the kinetic model were in agreement with experimental data. So the degradation behavior of formaldehyde could be predicted by using this kinetic model.
Key words: photocatalytic oxidation; degradation model; annular reactor; CFD simulation; formaldehyde
甲醛是室內普遍存在的揮發(fā)性有機化合物(VOCs),是造成室內空氣品質下降的主要原因之一[1],會對人體健康造成危害,甚至具有致癌作用[2].光催化氧化(PCO)技術節(jié)能環(huán)保,催化活性高,降解無選擇性,是去除室內VOCs的有效手段[3-5].目前,隨著模型預測[6]以及計算流體力學(CFD)模擬[7]的廣泛應用,它們已成為研究PCO反應的重要工具.現(xiàn)有報道中,PCO技術常與空調系統(tǒng)結合,且多采用負載網[8]或蜂窩型媒介[9]作為光催化劑載體,此結構對提高氣固間的傳質作用有一定效果.但實際運行的空調系統(tǒng)中,流速一般為2~3 m/s,上述載體不僅增大流動阻力,而且傳質作用的提升也非常有限.因此,本研究設計改進了傳統(tǒng)的管狀反應器,通過增大反應面積和氣體停留時間來提高其在實際空調運行條件下的凈化效果.并在實驗分析的基礎上,建立了循環(huán)降解模型來預測反應器的降解性能,又利用CFD的方法對反應器內的流速和光強分布進行了模擬和可視化處理,以期為光催化反應器的實際應用提供幫助.
1材料與方法
1.1實驗系統(tǒng)
實驗過程的氣體流程如圖1(a)所示.干潔空氣(VN2/VO2×100=79∶21)分為兩條氣路,一條通入增濕瓶內加濕,另一條經流量計計量后流入甲醛發(fā)生器內.兩條氣路形成的濕空氣和甲醛氣體在緩沖瓶中充分混合,得到具有一定初始濃度和濕度的污染氣體.該氣體又在循環(huán)泵的作用下,反復流經反應器內發(fā)生光催化反應,直至降解結束.反應器的入口處設有采樣口,甲醛濃度由INTERSCAN 4160甲醛分析儀測得.反應溫度T和相對濕度RH由KANOMAX生產的CLIMOMASTER 6531測試儀測定, T精度±0.5 ℃, RH精度±5%.
1.2管狀反應器
本實驗設計的管狀反應器共有兩種,結構示意圖如圖1(b)和圖1(c)所示,尺寸參數(shù)如表1所示.圖1(b)是傳統(tǒng)型管狀反應器,在圓管內壁涂敷光催化劑,它的反應表面紫外光輻射較強且均勻,但有限的反應面積制約了其進一步發(fā)展[10].圖1(c)是改進后的管狀反應器,通過在傳統(tǒng)管狀反應器內壁與燈管之間添加多個直肋片得到.肋片沿管軸方向布置,且每個肋片的一端帶有工藝缺口,在管內形成若干條連通的氣道,使氣體在進口和出口間呈多管程流動.該類型反應器的內壁面和直肋片正反表面均涂有光催化劑.所用光催化劑為Degussa P25型TiO2,負載量為1.2 mg/cm2.紫外光源選擇功率20 W,波長254 nm的紫外殺菌燈.
1:干潔空氣; 2:增濕瓶; 3: 甲醛發(fā)生器; 4: 恒溫水浴箱;
5: 緩沖瓶; 6: 流量計; 7: 采樣口; 8: 管狀反應器; 9: 密閉艙;
10:紫外燈; 11:工藝缺口; 12: 進氣口; 13:出氣口
從圖3中可以看出,反應器增設肋片后,各工況下t90%的值減少了約50%左右,反應速率基本提高1倍.對比工況1,工況3和工況4,工況4的相對濕度較高,t90%的值也明顯大于工況1和工況3.這與Assadi [11]等研究管狀反應器時的結論一致.過多的水分子會與甲醛分子在TiO2表面競爭吸附點位,且水分子會加速TiO2的電子空穴對復合,導致高相對濕度下單位時間內的降解效率降低.
2.2循環(huán)流速對反應速率的影響
為研究不同循環(huán)流速下反應速率的變化,選擇工況5和工況6進行分析,結果如圖4所示.其中, 20 m3/h和30 m3/h的循環(huán)流速分別對應2.1 m/s和3.2 m/s的面速度.
初始濃度C0/(mg·m-3)
從圖4中可以看出,在兩種反應器內,較高流速下的t90%值較大,反應速率較低.一般來說,提高流速會引起兩種不同的結果:提高表面?zhèn)髻|效果,對反應速率提升有利;減少氣體停留時間,對反應速率提升不利.一般的空調系統(tǒng)中,面速度通常為2~3 m/s,在這種較大的流速范圍內,傳質作用并無明顯變化[6],可以通過增加停留時間來提高氣體分子與TiO2表面的接觸概率,從而提高反應速率.因此,本實驗中20 m3/h的循環(huán)流速對應的氣體停留時間更長,反應速率更高.
為進一步分析流速對降解性能的影響,根據CFD的方法,利用Fluent 6.3軟件模擬了反應器內的流速分布.圖5為帶肋片的管狀反應器,在工況1時的徑向剖面及軸向剖面速度分布云圖.
從圖5中可以看出, 軸向剖面上的流速分布較為均勻, 在氣體通過三角形工藝缺口時出現(xiàn)明顯擾動,此擾動可使反應氣體充分混合.另外,各管程的中心區(qū)域流速相對較大,而內壁面和肋片表面附近由于阻力作用而流速較小,結合前面的分析,這種分布有利于提高反應速率.
2.3光強測定與模擬分析
表面光強在光催化反應之前測定,測試儀為UVC紫外輻照計.根據反應器內部空間的對稱性,取如圖6所示的單元體對反應表面光強I進行分析.圖7為單元體內光強沿管軸方向的測定結果.
圖8中的模擬分布與圖7中實測光強基本相同.經計算,增加肋片后,內壁面光強減少了約35%,但從圖3中得到的反應速率卻提升了1倍左右,紫外光的利用效率明顯提高.
當光強較強區(qū)域的流速較大時,該區(qū)域的傳質反應更加平衡,降解效率也會較高[13].對比圖5和圖8中的流速與光強分布,反應器的中間段光強與流速耦合較好,降解效率將會較高,而反應器的前后兩端由于氣流擾動大且光強較弱,降解效率會受影響.
2.4循環(huán)降解模型
假設催化劑表面只吸附目標污染物和水,且氧化時無副產物生成,則反應物遵循單一組分的LangmuirHinshelwood (LH)降解模型:
從圖9中可知,模型數(shù)據與實驗結果基本相符,該降解模型基本可以反映甲醛降解的實際情況. 另外,模型計算值均處于實測濃度值的上方,這可能是因為本模型涉及的單一組分LH方程沒考慮反應過程產生的副產物,導致光催化劑表面的實際與理論吸附量有所差別[16],從而產生一定誤差.
3結論
1)通過增設帶有工藝缺口的直肋片,使得管狀反應器內的反應面積增大且氣體停留時間延長,從而平衡了傳質反應能力,反應速率提高了約1倍.
2)內壁面光強分布較均勻,而肋片表面分布極不均勻,且增加肋片后內壁面光強有所衰減. 反應器中間段光強與流速耦合較好,兩端的氣流擾動大且光強較弱,反應速率會受影響;
3)循環(huán)降解模型的預測值要稍高于實測結果,但兩者變化趨勢相同,該模型能較準確的預測甲醛的反應速率.
參考文獻
[1]PASSALA C, ALFANO O M, BRANDI R J. A methodology for modeling photocatalytic reactors for indoor pollution control using previously estimated kinetic parameters[J]. Journal of Hazardous Materials, 2012, 211/212:357-365.
[2]BARAN T, MACYK W. Photocatalytic oxidation of volatile pollutants of air driven by visible light[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2012, 241:8-12.
[3]DERICHTER R K, MING T, CAILLOL S. Fighting global warming by photocatalytic reduction of CO2 using giant photocatalytic reactors[J]. Renewable and Sustainable Energy Reviews, 2013, 19:82-106.
[4]WU Yiting, YU Yihui, NGUYEN V H, et al. Enhanced xylene removal by photocatalytic oxidation using fiberilluminated honeycomb reactor at ppb level[J]. Journal of Hazardous Materials, 2013, 262:717-725.
[5]FARHANIAN D, HAGHIGHAT F, LEE C S, et al. Impact of design parameters on the performance of ultraviolet photocatalytic oxidation air cleaner[J]. Building and Environment, 2013, 66: 148-157.
[6]ZHONG Lexuan, HAGHIGHAT F, BLONDEAU P, et al. Modeling and physical interpretation of photocatalytic oxidation efficiency in indoor air applications[J]. Building and Environment, 2010, 45(12): 2689-2697.
[7]余健, 王宏濤, 廖永浩,等. 氣液兩相在多孔介質內同向向上流動的CFD研究[J]. 湖南大學學報: 自然科學版, 2012, 39(8): 67-72.
YU Jian, WANG Hongtao, LIAO Yonghao, et al. CFD simulation of gasliquid two phase cocurrent upflow through porous media[J]. Journal of Hunan University: Natural Sciences, 2012, 39(8): 67-72.(In Chinese)
[8]DESTAILLATS H, SLEIMAN M, SULLIVAN D P, et al. Key parameters influencing the performance of photocatalytic oxidation (PCO) air purification under realistic indoor conditions[J]. Applied Catalysis B: Environmental, 2012, 128: 159-170.
[9]TARANTO J, FROCHOT D, PICHAT P. Photocatalytic air purification: Comparative efficacy and pressure drop of a TiO2coated thin mesh and a honeycomb monolith at high air velocities using a 0.4 m3 closeloop reactor[J]. Separation and Purification Technology, 2009, 67(2): 187-193.
[10]MO Jinhan, ZHANG Yinping, XU Qiujian, et al. Photocatalytic purification of volatile organic compounds in indoor air: A literature review [J]. Atmospheric Environment, 2009, 43(14):2229-2246.
[11]ASSADI A A, BOUZAZA A, WOLBERT D. Photocatalytic oxidation of trimethylamine and isovaleraldehyde in an annular reactor: Influence of the mass transfer and the relative humidity[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2012, 236: 61-69.
[12]MO Jinhan, ZHANG Yinping, YANG Rui, et al. Influence of fins on formaldehyde removal in annular photocatalytic reactors[J]. Building and Environment, 2008, 43(3):238-245.
[13]ZHONG Lexuan, HAGHIGHAT F, LEE C, et al. Performance of ultraviolet photocatalytic oxidation for indoor air applications: Systematic experimental evaluation[J]. Journal of Hazardous Materials, 2013, 261:130-138.
[14]HOSSAIN M M, RAUPP G B, HAY S O, et al. Threedimensional developing flow model for photocatalytic monolith reactors[J]. AICHE Journal, 1999, 45(6):1309-1321.
[15]OBEE T N, BROWN R T. TiO2 photocatalysis for indoor air applications: effects of humidity and trace contaminant levels on the oxidation rates of formaldehyde, toluene, and 1,3butadiene[J]. Environ Sci Technol, 1995, 29(5): 1223-1231.
[16]MO Jinhan, ZHANG Yinping, XU Qiujian. Effect of water vapor on the byproducts and decomposition rate of ppblevel toluene by photocatalytic oxidation[J]. Applied Catalysis B: Environmental, 2013, 132/133:212-218.