吳天山,肖開提·伊布拉因Δ,阿爾帕提·買買提,李相成
(1.新疆醫(yī)科大學(xué)第一附屬醫(yī)院 急診外科,新疆 烏魯木齊 830054;2.南京醫(yī)科大學(xué) 臨床醫(yī)學(xué)系,江蘇 南京 210029)
?
GM-CSF分泌型肝癌疫苗對(duì)移植性肝癌小鼠CTL殺傷活性的作用機(jī)制
吳天山1,肖開提·伊布拉因1Δ,阿爾帕提·買買提1,李相成2
(1.新疆醫(yī)科大學(xué)第一附屬醫(yī)院 急診外科,新疆 烏魯木齊 830054;2.南京醫(yī)科大學(xué) 臨床醫(yī)學(xué)系,江蘇 南京 210029)
目的 研究粒細(xì)胞巨噬細(xì)胞集落刺激因子(granulocyte-macrophage colony stimulating factor,GM-CSF)分泌型肝癌疫苗對(duì)移植性肝癌小鼠細(xì)胞毒性T淋巴細(xì)胞殺傷活性的作用機(jī)制。方法 本實(shí)驗(yàn)建立3個(gè)組別:肝癌疫苗組(A組),肝癌組(B組)及PBS對(duì)照組(C組)。在小鼠體內(nèi)注入H 22肝癌細(xì)胞構(gòu)建移植性肝癌組,同時(shí)建立GM-CSF分泌型肝癌疫苗組及PBS對(duì)照組;采用流式細(xì)胞術(shù)檢測(cè)每組小鼠外周血中CD8+T細(xì)胞免疫效應(yīng)分子的表達(dá)水平;采用MTT方法檢測(cè)各組脾細(xì)胞細(xì)胞毒T淋巴細(xì)胞(CTL)的殺傷活性;采用Western blot方法檢測(cè)腫瘤壞死因子-α(tumor necrosis factor-α,TNF-α)和γ-干擾素(γ-interferon,γ-INF)的表達(dá)水平。結(jié)果 流式細(xì)胞術(shù)結(jié)果表明,與肝癌組相比,GM-CSF分泌型肝癌疫苗可顯著地增加小鼠外周血中CD8+T細(xì)胞的表達(dá)(P<0.01);MTT結(jié)果表明,與肝癌組相比,GM-CSF分泌型肝癌疫苗可顯著地增加脾細(xì)胞細(xì)胞毒T淋巴細(xì)胞的殺傷活性(P<0.01);Western blot結(jié)果表明,與肝癌組相比,GM-CSF分泌型肝癌疫苗組可顯著下調(diào)TNF-α和γ-INF蛋白的表達(dá)(P<0.01)。結(jié)論 GM-CSF分泌型肝癌細(xì)胞疫苗可顯著地抑制H22肝癌細(xì)胞H22的活性,其作用機(jī)制可能是通過活化CD8+T細(xì)胞的表達(dá)和提高脾細(xì)胞細(xì)胞毒T淋巴細(xì)胞的殺傷活性,降低TNF-α和γ-INF蛋白的表達(dá)。
粒細(xì)胞巨噬細(xì)胞集落刺激因子;移植型肝癌;分泌型肝癌疫苗;細(xì)胞毒性T淋巴細(xì)胞
腫瘤疫苗是腫瘤治療的模式之一,相關(guān)的治療方法包括體細(xì)胞療法、放射靶向治療法、細(xì)胞因子治療法等[1]。以往研究表明[1-2],腫瘤疫苗的抗腫瘤作用機(jī)制可能是通過激活體內(nèi)特異性細(xì)胞免疫和體液免疫反應(yīng),發(fā)揮其治療腫瘤的作用。佐劑在腫瘤疫苗中發(fā)揮著提高免疫原性的作用。在以腫瘤細(xì)胞為基礎(chǔ)的主動(dòng)免疫療法中,粒細(xì)胞-巨噬細(xì)胞集落刺激因子(granulocyte-macrophage colony stimulating factor,GM-CSF)佐劑的主動(dòng)免疫療法是當(dāng)前研究的熱門課題之一[2]。以往臨床試驗(yàn)研究表明,GM-CSF的疫苗免疫佐劑在前列腺癌、腎癌、惡性黑色素瘤等多種癌癥治療中也發(fā)揮一定的抗腫瘤療效[3-5]。因此,本文旨在研究GM-CSF分泌型肝癌疫苗對(duì)移植型肝癌小鼠的肝細(xì)胞細(xì)胞毒性T淋巴細(xì)胞殺傷活性作用的影響及其可能的作用機(jī)制。
1.1 材料
1.1.1 實(shí)驗(yàn)動(dòng)物:SPF級(jí)雌性ICR小鼠60只,5周齡,體質(zhì)量18~22 g,購(gòu)自安徽龍科馬生物制藥有限責(zé)任公司,許可證號(hào):SYXK(皖)2006-02。本試驗(yàn)遵循《實(shí)驗(yàn)動(dòng)物保護(hù)條例》。
1.1.2 實(shí)驗(yàn)細(xì)胞:GM-CSF 分泌型細(xì)胞(每支0.4 mL,含3×106個(gè)細(xì)胞)購(gòu)于康乃欣檢驗(yàn)試劑生物技術(shù)有限公司;H22小鼠肝癌細(xì)胞株(每支0.1 mL,含有3×106個(gè)細(xì)胞)購(gòu)于science cell公司。
1.1.3 主要試劑:MTT、原代腫瘤細(xì)胞處理試劑盒(美國(guó)Sigma公司);DMEM培養(yǎng)基(HyClone公司,批號(hào):NYA0598);胎牛血清(HyClone公司,批號(hào):NM0877);鼠抗β-actin、鼠抗TNF-α抗體、鼠抗γ-INF抗體(Santa Cruz,批號(hào):#L0610);辣根酶標(biāo)記山羊抗鼠IgG(中山金橋,批號(hào):107015)。
1.2 實(shí)驗(yàn)方法
1.2.1 細(xì)胞培養(yǎng):取對(duì)數(shù)生長(zhǎng)期的H 22肝癌細(xì)胞,調(diào)整成1×105個(gè)細(xì)胞接種于培養(yǎng)瓶中,采用含有10%胎牛血清的高糖DMEM培養(yǎng)H 22肝癌細(xì)胞,將其置于培養(yǎng)箱37 ℃、5%CO2的條件下培養(yǎng)。密切觀察,待細(xì)胞貼壁生長(zhǎng)后,采用0.25%胰蛋白酶消化傳代,每3~5 d傳代1次。
1.2.2 GM-CSF 分泌型肝癌疫苗的制備:首先將H22肝癌細(xì)胞株進(jìn)行高溫滅活處理,再將其和具有GM-CSF分泌功能的細(xì)胞混合(2者的比例為5:3),當(dāng)GM-CSF分泌量大于 2 μg/(106個(gè)細(xì)胞·24 h)時(shí),將其分裝凍存,溶化后每份取1 mL的105/ mL處理后的H22肝癌細(xì)胞接種于小鼠淋巴區(qū)。
1.2.3 肝癌細(xì)胞移植瘤動(dòng)物模型的建立:將小鼠肝癌細(xì)胞株H 22按照3×106個(gè)細(xì)胞/只注入小鼠腹腔內(nèi),在小鼠腹腔內(nèi)傳代8 d后取出腹水,PBS洗滌3遍,將細(xì)胞濃度調(diào)整為3×106/mL,取細(xì)胞混懸液1 mL接種于小鼠右前肢皮下。待接種7天后,進(jìn)行皮下免疫治療,接種主動(dòng)免疫制劑1支(每支0.1 mL)。將上述肝癌細(xì)胞移植瘤動(dòng)物模型隨機(jī)分為3組(每組8只):A組為H 22-GM-CSF組:接種GM-CSF分泌型H 22肝癌疫苗,0.1 mL的H22肝癌細(xì)胞與30 μL的GM-CSF分泌細(xì)胞的融合液混合后注射小鼠體內(nèi);B組為H22肝癌細(xì)胞組:接種H22肝癌細(xì)胞疫苗,每只小鼠注射H22肝癌細(xì)胞0.1 mL;C組為PBS陰性對(duì)照組:接種PBS,每只小鼠注射0.1 mL PBS。每周免疫注射1次,總共注射3次。
1.2.4 外周血中CD8+T細(xì)胞免疫效應(yīng)的檢測(cè):分別于每組免疫前和免疫后7 d處死小鼠,采取腹主動(dòng)脈法取荷瘤鼠外周血液,用流式細(xì)胞儀檢測(cè)CD8+T細(xì)胞免疫效應(yīng)分子的表達(dá)水平。
1.2.5 小鼠脾細(xì)胞細(xì)胞毒T淋巴細(xì)胞細(xì)胞殺傷活性的檢測(cè):將免疫前和免疫結(jié)束后的小鼠分別處死后,提取其相應(yīng)的脾細(xì)胞,制備成適當(dāng)?shù)男?yīng)細(xì)胞混懸液,將上述效應(yīng)細(xì)胞與H 22肝癌細(xì)胞(靶細(xì)胞)混合后,對(duì)靶細(xì)胞進(jìn)行重復(fù)刺激,觀察效應(yīng)細(xì)胞對(duì)靶細(xì)胞的殺傷作用。采用MTT方法進(jìn)行檢測(cè),將對(duì)數(shù)生長(zhǎng)期的小鼠H 22肝癌細(xì)胞配成(1×107個(gè)/mL)的混懸液接種于96孔板中,每孔加入100 μL的細(xì)胞混懸液,設(shè)立靶細(xì)胞對(duì)照組、效應(yīng)細(xì)胞組和空白對(duì)照組。加藥結(jié)束后將其置于培養(yǎng)箱孵育5 h。作用結(jié)束后,每孔加入MTT溶液后置于37 ℃的培養(yǎng)箱中孵育4 h,用針頭吸出培養(yǎng)上清液,每孔加入100 μL二甲基亞砜震蕩溶解甲瓚,采用酶標(biāo)儀測(cè)定各孔吸光度490 nm(absorbance,A)值,計(jì)算脾細(xì)胞細(xì)胞毒T淋巴細(xì)胞的殺傷活性,計(jì)算公式:殺傷活性(%)=[1-(效/靶混合細(xì)胞的平均A值-效應(yīng)細(xì)胞的平均A值)/對(duì)照孔的平均A值]×100%。
1.2.6 Western blot檢測(cè)TNF-α和γ-INF蛋白的表達(dá):分別于免疫前和免疫后7 d處死小鼠,采取腹主動(dòng)脈法收集荷瘤鼠外周血液,收集外周血中CD8+T細(xì)胞后,加入含PMSF的蛋白裂解液150 μL,吹打后置于冰上裂解。離心(5 000 r/min)取上清液即為細(xì)胞總蛋白。采用DAB試劑盒(Sigma)檢測(cè)蛋白含量。采用5% SDS-PAGE 電泳分離蛋白樣品;利用PVDF膜進(jìn)行轉(zhuǎn)膜;轉(zhuǎn)膜完畢后,取出 PVDF 膜,采用PBST清洗3次,每次10 min;加入5%BSA封閉液室溫封閉1 h;加入一抗(1:1000)4 ℃冰箱孵育過夜;再用PBST洗膜3次,每次10 min;加入相應(yīng)的二抗(1:2000),室溫孵育1 h;PBST漂洗3次,每次10 min,采用ECL發(fā)光試劑盒(Bioword)檢測(cè)蛋白表達(dá),曝光,顯影,定影。經(jīng)Adobe Photoshop 6.0(Adobe Systems,San Jose,CA)分析蛋白表達(dá)。
2.1 小鼠外周血中CD8+T細(xì)胞免疫效應(yīng)的檢測(cè) 采用流式細(xì)胞術(shù)檢測(cè)小鼠外周血中CD8+T細(xì)胞免疫效應(yīng)分子的表達(dá)水平(熒光抗體CD8-FITC標(biāo)記細(xì)胞表面抗體),每組CD8+T細(xì)胞亞群所占比例結(jié)果表明,免疫后,A組外周血中的CD8+T細(xì)胞的含量明顯高于B組、C組(均P<0.01),見表1。
表1 免疫前后各組小鼠外周血中CD8+T細(xì)胞免疫效應(yīng)的檢測(cè)±s)Tab.1 Detection of CD8+T cell immunity of mice in peripheral blood before and after ±s)
**P<0.01,與B組相比,compared with B group;##P<0.01,與C組相比,compared with C group
2.2 MTT法檢測(cè)小鼠脾細(xì)胞細(xì)胞毒T淋巴細(xì)胞細(xì)胞殺傷活性 每組小鼠分別于免疫前及免疫后7 d處死,收集各組小鼠的脾細(xì)胞制備效應(yīng)細(xì)胞的混懸液,以小鼠肝細(xì)胞H22(靶細(xì)胞)重復(fù)刺激后,觀察各組效應(yīng)細(xì)胞的殺傷活性。如圖所示,與B和C組相比,A組效應(yīng)細(xì)胞的殺傷活性顯著性增加(P<0.01);而B組與C組相比無統(tǒng)計(jì)學(xué)差異。
圖1 MTT法檢測(cè)小鼠的CTL的殺傷活性(n=3)A組:H 22-GM-CSF組;B組:H 22肝癌細(xì)胞組;C組:PBS組**P<0.01,與B組相比;##P<0.01,與C組相比Fig.1 The cytotoxicity of CTL examined by MTT assay in each group(n=3)A group:H 22-GM-CSF group; B group:H 22 hematoma cells group; C group:PBS group**P<0.01,compared with B group;##P<0.01,compared with C group
2.3 Western blot檢測(cè)TNF-α和γ-INF蛋白的表達(dá) 實(shí)驗(yàn)結(jié)果顯示,與B組和C組相比,A組的TNF-α和γ-INF蛋白的表達(dá)均有顯著性下調(diào),見圖2。
圖2 Western blot法檢測(cè)小鼠的CTL中TNF-α,γ-INF的蛋白表達(dá)水平(n=3)A組:H 22-GM-CSF組;B組:H 22肝癌細(xì)胞組;C組:PBS組**P<0.01,與B組相比;##P<0.01,與C組相比Fig.2 The expression of TNF-α,γ-INF in CTL examined by Western blot assay in each group(n=3)A group:H 22-GM-CSF group; B group:H 22 hematoma cells group;C group:PBS group**P<0.01,compared with B group;##P<0.01,compared with C group
腫瘤疫苗是目前腫瘤治療的較為新穎的方法之一。以往研究發(fā)現(xiàn)腫瘤疫苗的缺點(diǎn)是由于腫瘤抗原的免疫原性表達(dá)較弱,因此機(jī)體免疫系統(tǒng)不能識(shí)別腫瘤細(xì)胞竟而針對(duì)性的殺死腫瘤組織[6]。目前,由于免疫輔助劑和藥物緩蝕劑的聯(lián)合應(yīng)用,免疫抗原的表達(dá)水平和主動(dòng)免疫反應(yīng)明顯提高。GM-CSF作為腫瘤疫苗免疫佐劑,具有刺激造血系統(tǒng)和免疫系統(tǒng)細(xì)胞抗原呈遞細(xì)胞分化和成熟的功能,此外,GM-CSF還具有增強(qiáng)中性粒細(xì)胞和巨噬細(xì)胞的抗體依賴性細(xì)胞介導(dǎo)的細(xì)胞毒作用,對(duì)粒細(xì)胞和巨噬細(xì)胞具有趨化作用,誘導(dǎo)樹突狀細(xì)胞的分化和成熟[7-9]。因此,GM-CSF已在黑色素瘤、腎癌、非小細(xì)胞肺癌等多種癌癥的臨床試驗(yàn)中發(fā)揮顯著的療效[10-12]。肝癌的治療方法較多,目前公認(rèn)的最有效方法是外科切除,但其具有潛在的復(fù)發(fā)率,因此尋找更為安全的治療方法顯得尤為重要。因此,本文在此探究GM-CSF為免疫佐劑治療肝癌,為肝癌的治療提供更多的理論支持。
以往研究表明,腫瘤的發(fā)生過程與機(jī)體免疫有著緊密的關(guān)系,細(xì)胞免疫是抗腫瘤免疫的主要免疫應(yīng)答之一,其中T細(xì)胞介導(dǎo)的細(xì)胞免疫應(yīng)答尤為重要。在T細(xì)胞抗原應(yīng)答反應(yīng)中,組織相容性復(fù)合體(MHC I)類限制性的CD8+T細(xì)胞的CTL是抗腫瘤免疫反應(yīng)的主要效應(yīng)細(xì)胞之一[13]。相關(guān)研究表明,CD8+T細(xì)胞通過多種細(xì)胞因子發(fā)揮溶細(xì)胞作用,進(jìn)而殺傷腫瘤細(xì)胞的效應(yīng)。目前的研究表明,IL-6、INF-γ、TNF-α、穿孔素、溶細(xì)胞素、脂酶等多種細(xì)胞因子和酶在溶解靶細(xì)胞中發(fā)揮著重要的調(diào)控作用[14-15]。因此,本實(shí)驗(yàn)在此選擇檢測(cè)CD8+T細(xì)胞的表達(dá)和相關(guān)細(xì)胞因子蛋白的表達(dá),探究GM-CSF分泌型肝癌細(xì)胞疫苗對(duì)移植型肝癌的作用及其可能的作用機(jī)制。
本次實(shí)驗(yàn)的結(jié)果表明:與H 22肝癌細(xì)胞組和PBS對(duì)照組相比,GM-CSF分泌型肝癌疫苗免疫小鼠后,可顯著地提高其外周血中CD8+T細(xì)胞亞群的表達(dá)水平。同時(shí),MTT法檢測(cè)GM-CSF分泌型肝癌疫苗對(duì)CTL的殺傷作用,結(jié)果表明,與H 22肝癌細(xì)胞組和PBS對(duì)照組相比,GM-CSF分泌型肝癌疫苗可顯著地增強(qiáng)效應(yīng)細(xì)胞的殺傷作用。根據(jù)以上結(jié)果,由此推測(cè),GM-CSF分泌型肝癌疫苗通過可誘導(dǎo)自體T細(xì)胞向CTL增值和分化,發(fā)揮特異性抗腫瘤免疫應(yīng)答功能,而這種功能的發(fā)揮與直接活化效應(yīng)細(xì)胞CD8+T細(xì)胞有著密切的關(guān)系。Western blot檢測(cè)了CD8+T細(xì)胞表達(dá)的INF-γ、TNF-α細(xì)胞因子,結(jié)果表明,與H 22肝癌細(xì)胞組和PBS對(duì)照組相比,GM-CSF分泌型肝癌疫苗組可顯著地提高INF-γ、TNF-α蛋白的表達(dá)。此結(jié)果表明,GM-CSF分泌型肝癌疫苗治療肝癌的作用機(jī)制可能與下調(diào)INF-γ、TNF-α蛋白的表達(dá)有關(guān)。
綜上所述,GM-CSF分泌型肝癌疫苗對(duì)移植型肝癌具有顯著抑制作用;其抑制作用可能與提高細(xì)胞免疫功能有關(guān),作用機(jī)制為提高外周血中CD8+T細(xì)胞的表達(dá)水平、提高效應(yīng)細(xì)胞的殺傷作用以及降低細(xì)胞因子INF-γ、TNF-α蛋白的表達(dá)有關(guān)。
[1] Yang JM,Peng ZH,Si SH,et al.KAI1 gene suppresses invasion and metastasis of hepatocellular carcinoma MHCC97-H cells in vitro and in animal models[J].Liver Int,2010,28(1):132-139.
[2] Tani K,Azuma M,Nakazaki Y,et al.Phase I study of autologous tumor vaccines transduced with the GM-CSF gene in four patients with stage IV renal cell cancer in Japan:clinical and immunological findings[J].Mol Ther,2014,10(4):799-816.
[3] Soiffer R,Hodi FS,Haluska F,et al.Vaccination with irradiated, autologous melanoma cells engineered to secrete granulocyte macrophage colony-stimulating factor by adenoviral mediated gene transfer augments antitumor immunity in patients with metastatic melanoma[J].Clin Oncol,2013,21(17):3343-3350.
[4] Nemunaitis J,Jahan T,Ross H,et al.Phase 1/2 trial of autologous tumor mixed with an allogeneic GVAX vaccine in advanced-stage non-small-cell lung cancer[J].Cancer Gene Ther,2009,13(6):555-562.
[5] Bruix J,Llovet JM.Prognostic prediction and treatment strategy in hepatocellular carcinoma[J].Hepatology,2012,35 (3):519-524.
參考文獻(xiàn)
[6] Patya M,Zahalka MA,Vaniehkin A,et a1.Allicin stimulates lymphocytes and elicits an antitumor effect:a possible role of p2l ras[J].Int lmmunol,2014,16(2):275-281.
[7] 唐小龍,江振友,蔡淑玉.通過腫瘤致敏的DCs活化的CD8+T細(xì)胞可有效地殺死腫瘤細(xì)胞[J].中國(guó)病理生理雜志, 2008,24 (4):645-649.
[8] Van den Eynde BJ,van der Bruggen P.T.Cell defined tumor antigens[J].Curr Opin Immunol,2013,9(5):684-693.
[9] Kaufman HL, Ruby CE, Hughes T, et al.Current status of granulocyte-macrophage colony-stimulating factor in the immunotherapy of melanoma [J].J Immunother Cancer,2014,13(2):11-14.
[10] D?britz J.Granulocyte macrophage colony-stimulating factor and the intestinal innate immune cell homeostasis in Crohn's disease[J].Am J Physiol Gastrointest Liver Physiol,2014,306(6):G455-465.
[11] Berois N, Osinaga E.Glycobiology of neuroblastoma: impact on tumor behavior, prognosis, and therapeutic strategies [J].See comment in PubMed Commons below Front Oncol,2014, 23(4):114-116.
[12] Haan JM,Bevan MJ.A novel helper role for CD4 Tcells [J].Proc Natl Acad Sci USA,2013,97(24):12950-12952.
[13] Gasson JC.Molecular physiology of granulocyte-macrophage colony-stimulating factor[J].Blood,2013,77(6):1131-1142.
[14] Broughton SE, Hercus TR, Hardy MP,et al.Dual mechanism of interleukin-3 receptor blockade by an anti-cancer antibody [J].Cell Rep,2014, 8(2):410-419.
[15] Paoliello-Paschoalato AB, Azzolini AE, Cruz MF,et al.Isolation of healthy individuals‘ and rheumatoid arthritis patients’ peripheral blood neutrophils by the gelatin and Ficoll-Hypaque methods: Comparative efficiency and impact on the neutrophil oxidative metabolism and Fcγ receptor expression [J].J Immunol Methods,2014 ,11(5):13-15.
(編校:王儼儼 吳茜)
Research on mechanism of GM-CSF secreting liver cancer vaccine on CTL killing activity of transplanted liver cancer mice
WU Tian-shan1,XIAOKAITI·Yibulayin1Δ,AERPATI·Maimaiti1,LI Xiang-cheng2
(1.Department of Emergency Surgery, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China; 2.Department of Clinical Medicine, Nanjing Medical University, Nanjing 210029, China)
ObjectiveTo study the effect of granulocyte-macrophage colony-stimulating factor (GM-CSF) secreting liver cancer vaccine on killing activity of cytotoxic T lymphocytes (CTL) of transplanted liver cancer mice and its mechanism.MethodsThere were three groups: liver cancer vaccine group (A group), liver cancer group (B group) and PBS group (C group).The transplanted liver cancer model was builded with injection of H 22 hepatoma cells, while the GM-CSF secreting liver cancer vaccine group and PBS group was builded. GM-CSF secreting liver cancer vaccine group and PBS group were establised.The levels of CD8+T cell in peripheral blood were detected by flow cytometry.The killing activity of cytotoxic T lymphocytes (CTL) of spleen cells was detected by MTT method.The expression levels of tumor necrosis factor-α (TNF-α) and interferon-γ (γ-INF) were detected by Western blot.ResultsThe flow cytometry results showed that, compared with B group, the levels of CD8+T cell of A group significantly increased (P<0.01).MTT results showed that, compared with B group, the killing activity of cytotoxic T lymphocytes (CTL) in A group significantly increased (P<0.01).Western blot results showed that, compared with B group, the expression levels of tumor necrosis factor-α (TNF-α) and interferon-γ (γ-INF) in A group significantly decreased (P<0.01). ConclusionGM-CSF secreting liver cancer vaccine can significantly inhibit the activity of H22 cell, and its possible mechanism of action may be to activated CD8+T expression, improve cytotoxic activity of CTL of spleen cells, and reduce TNF-α and γ-INF protein expression.
GM-CSF; transplanted liver cancer; secreting liver cancer vaccine; cytotoxic T lymphocytes
國(guó)家自然科學(xué)基金(81170415)
吳天山,男,學(xué)士,主治醫(yī)師,研究方向:創(chuàng)傷、急腹癥,E-mail:qch1821460053@163.com;肖開提·伊布拉因,通訊作者,男,碩士,主治醫(yī)師,研究方向:創(chuàng)傷、急腹癥,E-mail:qch1821460054@163.com。
R735.7
A
1005-1678(2015)03-0062-03