• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effects of Fe2+, Co2+and Ni2+Ions on Biological Methane Production from Residual Heavy Oil

    2015-06-22 14:38:29
    中國(guó)煉油與石油化工 2015年2期

    (College of Chemical Engineering, China University of Petroleum, Qingdao 266555)

    Effects of Fe2+, Co2+and Ni2+Ions on Biological Methane Production from Residual Heavy Oil

    Liu Chunshuang; Ma Wenjuan; Zhao Dongfeng; Jia Kuili; Zhao Chaocheng

    (College of Chemical Engineering, China University of Petroleum, Qingdao 266555)

    On the basis of single factor tests, the effect of trace elements—Fe2+, Co2+and Ni2+ions—on biological methane production from heavy oil was investigated by the response surface method. A three-level Box-Behnken design was employed to study the relationship between the independent variables and the dependent variable by applying initial Fe2+, Co2+and Ni2+concentration as the independent variables (factors) and using the methane production after 270 days of cultivation as the dependent variable (response). A prediction model of quadramatic polynomial regression equation was obtained. The results showed that the methane production could be as high as 240.69 μmol after optimization compared with 235.74 μmol obtained under un-optimized condition. Furthermore, the microbial communities before and after biodegradation were analyzed by PCR-DGGE method. The dominant bands were recovered and sequenced. Three strains were obtained; the strain T1 has 97% similarity with Bacillus thermoamylovorans, the strain H3 has 97% similarity with Bacillus thermoamylovorans and the strain H4 has 99% similarity with Bacillus vietnamensis.

    residual heavy oil; methane; PCR-DGGE; response surface method

    1 Introduction

    Greatly enhancing oil recovery rate and extending the life of the reservoir development have been the basic focus and the difficulty of petroleum industry[1]. Microbial conversion of residual oil to methane is a new technology to extend the life of the oil reservoir, which converts heavy residual oil to methane by bacteria under the anaerobic condition. Then the residual oil can be exploited in the form of methane or be reserved underground as a kind of strategic resources[2]. The process of methane production from petroleum hydrocarbons is feasible in theory and has been confirmed under the laboratory conditions[3-8].However, the rate is very low. Usually it takes several months for bacteria to convert petroleum hydrocarbons into methane.

    The microbial metabolism is usually influenced by trace elements, because trace elements play an important role in the microbial enzyme system[9-11]. In this study, the effect of elements—Fe2+, Co2+and Ni2+—on methane production from residual heavy oil was investigated for the first time. Then the microbial communities before and after biodegradation were analyzed by PCR-DGGE.

    2 Materials and Methods

    2.1 Tests

    In the single factor tests, 1 ml of produced water obtained from the Shengli Oilfield was fed into each of the serum bottles filled with 89 mL of sterilized medium which had the following composition: 1.0 g/L of KCl, 1.0 g/L of NaCl, 1.0 g/L of NH4Cl, 0.42 g/L of K2HPO4·3H2O, 0.3 g/L of KH2PO4, 0.6 g/L of MgCl2·6H2O, 0.12 g/L of CaCl2·2H2O, and 0.5 g/L of L-cysteine. One gram of heavy oil was added into the medium as carbon resources. Ten milliliter of vitamin solution was added for each liter of fed medium with the following composition: 2.0 mg/L of biotin, 2.0 mg/L of folate, 10.0 mg/L of pyridoxine hydrochloride, 5.0 mg/L of thiamine, 5.0 mg/L of riboflavin, 0.1 mg/L of vitamin B12, 5.0 mg/L of PABA and 5.0 mg/L of lipoic acid. The pH of the suspension was maintained at 7.5 by adding 5 mL of 1 M HCl.The concentration of trace elements—Fe2+, Co2+and Ni2+—was added as required (Table 1). The trace element-free control was pre-pared with 100 ml of sterilized medium. All serum bottles were purged by nitrogen gas to produce the required anaerobic conditions, were wrapped with aluminum foil to prevent possible effects of light, closed using a butyl rubber septum, and sealed with a metal cap. The seeded bottles were incubated at 55 ℃ for 270 days on a shaker vibrating at a rate of 130 rpm.Based on the single factor tests, the response surface methodology was used to determine the optimum trace element conditions of methane production from heave oil. The Box-Behnken design employed thereby had three independent variables, viz.: the concentration of Fe2+(A), Co2+(B) and Ni2+(C) ions. Each of the independent variables was studied at three levels (-1, 0, +1), with 17 experiments and one control. The methane production was chosen as the control variable. Coded and actual values of variables used in the study are presented in Table 2 and the experimental matrix for Box-Behnken design suitable for general optimization is presented in Table 3. The second-order polynomial coefficients were calculated and analyzed using the ‘Design Expert” software (Version 7.1.4.0, Stat-Ease Inc., Minneapolis, USA) statistical package. Statistical analysis of the model was performed to evaluate the analysis of variance (ANOVA).

    Table 1 The concentration of trace elements for single factor tests

    Table 2 Coded and actual values of variables used in the response surface study

    Table 3 Experimental matrix and results for Box-Behnken design

    2.2 DNA extraction, PCR, DGGE, and sequence analysis

    The DNA of microorganisms in the samples was extracted using a bacteria DNA extraction mini kit (Watson Biotechnologies Co. Ltd., Shanghai, China) according to the manufacturer’s instructions. DNA extracts were used as the template for PCR amplification of the 16S rDNA. The 16S rDNA was amplified, both with a pair of universal primers (BSF101F-TGGCGGACGGGTGAGAA, and BSF534R-ATTACCGCGGCTGCTGG), and GC-clamp- CGCCCGCCGCGCGCGGCGGGGCGGGGGCACGGGGGG (Invitrogen, Co., Ltd., Shanghai, China) as described by Watanabe, et al12]. The reaction mixture (50 μL) contained 10×PCR buffer, 10 mmol/L of tri/HCl, 0.2 mmol/L of dNTP, 2.5 U of Tap DNA polymerase, 0.5 μmol/L of forward primer and 0.5 μmol/L of reverse primer, and 0.4 mg/L of template DNA. The samples were amplified using an 9700PCR meter (Bio-Rad Laboratories, Hercules, USA) with the following thermal profile: 95 ℃ for 4 min; 35 cycles of 40 s at 95 ℃, 40 s at 55 ℃, and 1 min at 72 ℃ with a 0.1 ℃ decrease in annealing temperature per cycle until the temperature reduced to 55 ℃. The DGGE test was performed using a DCode universal mutation detection system (Bio-Rad Laboratories, Hercules, USA) with a denaturing gradient ranging from 30% to 60%. The 100% denaturing agent corresponds to a mixture composed of a 7 M urea solution containing 40 % (v/v) of deionized formamide. Electrophoresis was run for 30 min at 20 V and for 11 h at 60 V at 60 ℃. The obtained gels were silver-stained[12]. Prominent DGGE bands were selected and used for excision. The re-amplified products were puri fied by the Gel Recovery Puri fication Kit (Watson Biotechnologies Inc., Shanghai, China) and cloned by the pMD19-T plasmid vector system (Takara Company, Dalian, China) according to the manufacturer’s instructions. The DNA sequences were determined with the chain-termination method on an ABI 3730 DNA sequencer by a commercial service (Sangon, China). All sequences were aligned in the GenBank database using the BLASTN program.

    2.3 Chemical analysis

    Methane was determined by a gas chromatograph (GC-3800, Varian) equipped with a FID detector and Al2O3column (50 m×0.53 mm×20 μm). The column temperature was increased from the initial value of 40 ℃ to 100 ℃ within 2 min, and then increased to 170 ℃ at a rate of 10 ℃/min. The inlet temperature was 100 ℃. The carrier gas was the high-purity helium.

    3 Results and Discussion

    3.1 Effect of Fe2+, Co2+and Ni2+ions on methane production from heavy oil

    Figure 1 Effect of Fe2+, Co2+and Ni2+ions on the methane production from heavy oil

    The methane production under different Fe2+, Co2+and Ni2+conditions is shown in Figure 1. Under different Fe2+addition conditions, the methane production increased slowly in the first 120 days and began to rapidly rise af-ter 150 days of cultivation (Figure 1(a)). The maximum methane production was 0.874 6 mmol/d upon adding a Fe2+ion concentration of 1.1 mg/L during 210 days of cultivation. However, the control test indicated that the methane production was equal to merely 0.102 μmol/d. The addition of Fe2+ions could significantly increase the methane production from heavy oil.

    Under different Co2+addition conditions, methane production increased slowly within the first 90 days and began to rapidly grow after 120 days of cultivation (Figure 1(b)). The maximum methane production was 0.941 2 μmol/d under the condition of adding 0.8 mg/L of Co2+ions during 180 days of cultivation. However, the control test indicated that the methane production was only equal to 0.102 μmol/d. The addition of Co2+ions could signif icantly increase the methane production from heavy oil.

    As shown in Figure 1(c), methane production increased slowly in the first 90 days and began to rapidly rise after 120 days of cultivation. The maximum methane production was 1.177 62 μmol/d upon adding a Fe2+ion concentration of 0.07 mg/L during 240 days of cultivation. The addition of Ni2+ions could significantly enhance the methane production from heavy oil.

    Trace elements — Fe2+, Co2+and Ni2+ions could promote the growth of methanogen and enhance the activities of several kinds of enzymes, and then accelerate the synthesis of methane. Fe2+and Co2+ions take part in the form of carbon monoxide dehydrogenase which plays an important role in the formation of acetic acid. Ni2+ion is an important component element of E430. So Ni2+ion is necessary for methanogenic bacteria which produce methane utilizing CO2and H2as substrates.

    3.2 Natural attenuation and Box-Behnken design results

    The optimal level of the trace elements (Fe2+, Co2+, Ni2+) and the effect of their interactions on methane production were further explored by the Box-Behnken design of RSM (Table 4). By applying multiple regression analysis on the experimental data, the following second-order polynomial equation was established to explain the oilremoval process:

    Table 4 Test design and test results

    Y=236.88+13.55A+1.52B+12.93C-2.13AB+7.34AC-1.46BC-18.70A2-10.41B2-27.91C2

    where, Y is the predicted methane production rate; A, B and C are the coded values of crude Fe2+, Co2+and Ni2+ions, respectively. The analysis of variance (ANOVA) was conducted to test the significance of the fit of the secondorder polynomial equation for the experimental data as shown in Table 5.

    The model F-value of 38.47 implies that the model is significant. There is only a 0.01% chance that a “model F-value” could occur due to noise. The P-values are used as a tool to check the significance of each variable, which also indicates the interaction strength between each independent variable[13]. The smaller the P-values are, the bigger the significance of the corresponding variable would be[14]. P-values in this study that are less than 0.05 indicate that the model terms are significant. In this case AC, C, A2, B2, C2 are signif icant model terms. The insignificant effects (factors and interactions) with P-values that are higher than 0.100 are ignored. Thus, statistical analysis of all the experimental data showed that Fe2+, Co2+and Ni2+ions had a significant effect on methane production during the study. Here the R2value was 98.06%, which could explain a 98.06% variability of the response. It indicates a good agreement between experimental and predicted values and implies that the mathematical model is very reliable for determining the methane production in the present study.

    The graphical representation of the response shown in Figure 2 (a-c) can help to visualize the effect of Fe2+, Co2+and Ni2+ions on removal of crude oil. The effect of interaction of Fe2+and Co2+ions on methane production is illustrated in Figure 2 (a). The most production yield was observed at the concentration of Fe2+and Ni2+ions equating to 1.1 mg/L and 0.09 mg/L, respectively. Figure 2(b) shows the 3D surface plot of the effect of interaction between Co2+ions and Ni2+ions. It can be seen that higher yield of methane production was obtained at a Co2+ion concentration of 0.8 mg/L, and Co2+ions had strong interaction with Ni2+ions. Finally, Figure 2(c) shows the response surface 3D plot of the effect of interaction between Co2+and Fe2+concentrations. This plot demonstrates that both Co2+and Fe2+have the best performance at optimum concentrations. It was also observed that excessive Co2+concentration does not have much effect on increasing the bioremediation yield.

    Table 5 ANOVA for response surface quadratic model terms

    Figure 2 Response surface 3D plots indicating interaction effects of (a) Fe2+and Co2+, (b) Co2+and Ni2+and (c) Fe2+and Co2+

    3.3 Validation of the models

    It can be seen from Table 6 that under the un-optimized condition the highest methane production was 236.88 μmol. While uder the optimized condition the highest methane production was 241.57 μmol. The experimental results show that the predicted values are very close to the experimental values. In a word, the model is appropriate and effective.

    3.4 DGGE analysis

    Total bacterial DNA in tests of samples containing 1.1 mg/L of Fe2+(A), 0.8 mg/L of Co2+(B), 0.09 mg/L of Ni2+(C) and a mixture comprised of 1.1 mg/L of Fe2+, 0.8 mg/L of Co2+and 0.09 mg/L of Ni2+, respectively, were extracted. Based on DGGE bands under different trace element conditions, it can be seen that microbial diversity appeared dramatically different from each other (Figure 3). Total bands increased obviously from 12 in the original solution to 15 after addition of trace elements. Upon analyzing the sample containing Fe2+ions, the band T1 appeared. Upon analyzing the sample containing a mixture of Fe2+, Co2+and Ni2+ions, the bands H1 and H2 appeared. The bands H3 and H4 were dominant in all samples. A part of dominant bands in Figure 3 was cut out for DNA sequencing analysis. The sequences with similarity greater than 97% were considered as the same operational taxonomic unit (OTU). Bands T1, H3 and H4 correspond to Bacillus spp. (Table 7), one of members of which was isolated and indentified as a crude oil-degrader[15].

    Figure 3 DGGE analysis of patterns

    Table 6 Methane production after optimization based on Box-Behnken design

    Table 7 Results of recycling sequencing analyses

    4 Conclusions

    Trace elements — Fe2+, Co2+and Ni2+have significant effect on biological methane gas production from heavy oil. The response surface method is a reliable and powerful tool for modeling and optimizing the methane production. The proposed model equation illustrated the quantitative effect of variables and also the interactions among the variables on methane production. Under the optimum conditions, the methane production was 240.69 μmol compared to 18.74 μmol obtained under the control test. The strains Bacillus spp. likely played an important role in methane production from heavy oil.

    Acknowledgements: This research was supported by the National Natural Science Foundation of China under Grant No. 21307160, the Natural Science Foundation of Shandong Province under Grant No. ZR2013EEQ030, and the Fundamental Research Funds for the Central Universities under Grant No. R1404005A.

    [1] Li Xia, Chen Lei, Deng Yu. Progress in anaerobic biodegradation of petroleum hydrocarbons [J]. Applied and Environmental Biology, 2008, 14(2): 283-289

    [2] Wang Weidong, Wang Jing, Geng Xueli, et al. Status of residual oil reservoir and prospect of bio-gasification technology[J]. Petroleum Geo-Engineering, 2012, 26(1): 78-81

    [3] Zengler K, Richnow H H, Rossello-Mora R, et al. Methane formation from long-chain alkanes by anaerobic microorganisms[J]. Nature, 1999, 401(6750): 266-269

    [4] Anderson R T, Lovley D R. Hexadecane decay by methanogenesis[J]. Nature, 2000, 404(13): 722-723

    [5] Jones D M, HeadiM, Gray N D, et al. Crude oil biodegradation via methanogenesis in subsurface petroleum reservoirs[J]. Nature, 2008, 451(7175): 176-180

    [6] GieglM, Duncan K E, Suflita J M. Bioenergy production via microbial conversion of residual oil to natural gas[J]. Applied and Environmental Microbiology, 2008, 74(10): 3022-3029

    [7] Townsend G T, Prince R C, Suflita J M. Anaerobic oxidation of crude oil hydrocarbons by the resident microorganisms of a contaminated anoxic aquifer[J]. Environmental Science & Technology, 2003, 37(22): 5213-5218

    [8] Liu Chunshuang, Zhao Dongfeng, Zhang Yunbo. Effects of temperature, acetate and nitrate on methane generation from petroleum hydrocarbons[J]. China Petroleum Processing and Petrochemical Technology, 2014, 16(4): 24-31

    [9] Zandvoort M H, Hullebusch E D, Fermoso F G, et al. Trace metals in anaerobic granular sludge reactors: Bioavailability and dosing strateries[J]. Eng Life Sci, 2006, 6(3): 293-301

    [10] Scherer P, Lippert H, Wolff G. Composition of the major elements and trace elements of 10 methanogenic bacteria determined by inductively coupled plasma emission spectrometry[J]. Biol Trac Elem Res, 1983, 5: 149-163

    [11] William D M, Lvanden B. Effects of Nickel, Cobalt and Molybdenum on Performance of Methanogenic Fixed-Film Reactors[J]. Appl Environ Microbio, 1981, 42(3): 502-505

    [12] Watanabe K, Kodama Y, Harayama S. Design and evaluation of PCR primers to amplify bacterial 16S ribosomal DNA fragments used for community fingerprinting[J]. Journal of Microbiological Methods, 2001, 44: 253-262

    [13] Liu J Z, WenglP, Zhang Q L. Optimization of glucose oxidase production by Aspergillus niger in a benchtop bioreactor using response surface methodology[J]. World Journal of Microbiology and Biotechnology, 2003, 19: 317-323

    [14] Muralidhar R V, Chirumamila R R, Marchant R. A response surface approach for the comparison of lipase production by Candida cylindracea using two different carbon sources[J]. Biochemical Engineering Journal, 2001, 9(1): 17-23

    [15] Schippers A, Bosecker K, Spr?er C, et al. Microbacterium oleivorans sp. nov. and Microbacterium hydrocarbonoxydans sp. nov., novel crude-oil-degrading Gram-positive bacteria[J]. International Journal of Systematic & Evolutionary Microbiology, 2005, 55: 655-660

    date: 2014-11-28; Accepted date: 2015-02-05.

    Zhao Dongfeng, Telephone: +86-532-86981576; E-mail: zhaodf@vip.sina.com.

    国产成人系列免费观看| 国产精品 国内视频| 麻豆国产av国片精品| 校园春色视频在线观看| 少妇熟女aⅴ在线视频| 神马国产精品三级电影在线观看| 一区福利在线观看| 51午夜福利影视在线观看| 很黄的视频免费| 亚洲在线自拍视频| 成人av一区二区三区在线看| 日韩欧美三级三区| 欧美黑人巨大hd| 狂野欧美激情性xxxx| 国产av麻豆久久久久久久| 国产99白浆流出| 国产精品,欧美在线| 国产成人精品无人区| 欧美中文日本在线观看视频| 国产亚洲精品一区二区www| 日韩精品青青久久久久久| 国产av不卡久久| 国产精华一区二区三区| 天堂网av新在线| 国产视频一区二区在线看| 亚洲美女视频黄频| 99国产精品一区二区蜜桃av| 精品99又大又爽又粗少妇毛片 | 一级a爱片免费观看的视频| 一个人免费在线观看的高清视频| 亚洲成a人片在线一区二区| 国产1区2区3区精品| 国产精品国产高清国产av| 天天躁狠狠躁夜夜躁狠狠躁| 成人午夜高清在线视频| 一卡2卡三卡四卡精品乱码亚洲| 夜夜躁狠狠躁天天躁| 无限看片的www在线观看| 三级男女做爰猛烈吃奶摸视频| avwww免费| 日日干狠狠操夜夜爽| 久久久国产成人精品二区| 91在线观看av| 夜夜看夜夜爽夜夜摸| 久久久久久九九精品二区国产| 亚洲av成人av| 国产成人av教育| 一级毛片精品| 欧美日本亚洲视频在线播放| 日韩av在线大香蕉| 欧美另类亚洲清纯唯美| 亚洲午夜精品一区,二区,三区| 精华霜和精华液先用哪个| 免费观看人在逋| 欧美3d第一页| 韩国av一区二区三区四区| 波多野结衣高清无吗| 久久久国产精品麻豆| bbb黄色大片| 少妇的逼水好多| 亚洲 国产 在线| 欧美日韩中文字幕国产精品一区二区三区| 亚洲人与动物交配视频| 国产午夜精品论理片| 亚洲美女黄片视频| 色播亚洲综合网| 精品99又大又爽又粗少妇毛片 | 真人一进一出gif抽搐免费| 精品一区二区三区av网在线观看| 亚洲一区二区三区色噜噜| 五月玫瑰六月丁香| tocl精华| 国产伦精品一区二区三区四那| 午夜福利在线观看免费完整高清在 | 美女cb高潮喷水在线观看 | or卡值多少钱| 成人鲁丝片一二三区免费| 国产伦在线观看视频一区| 精品久久久久久,| 18禁美女被吸乳视频| 99久国产av精品| 成人国产综合亚洲| 国产私拍福利视频在线观看| 久久九九热精品免费| 性欧美人与动物交配| svipshipincom国产片| 草草在线视频免费看| avwww免费| 男女床上黄色一级片免费看| 国产伦人伦偷精品视频| 制服丝袜大香蕉在线| 听说在线观看完整版免费高清| cao死你这个sao货| 国内揄拍国产精品人妻在线| 国产一区二区在线观看日韩 | 亚洲在线观看片| 亚洲人成网站高清观看| 看片在线看免费视频| 男女那种视频在线观看| 一本精品99久久精品77| 久久午夜综合久久蜜桃| 特级一级黄色大片| 国产高清视频在线播放一区| 国产一区在线观看成人免费| 19禁男女啪啪无遮挡网站| 日本精品一区二区三区蜜桃| 嫩草影院精品99| 三级毛片av免费| 又黄又粗又硬又大视频| 国产91精品成人一区二区三区| 午夜福利视频1000在线观看| 9191精品国产免费久久| 美女免费视频网站| 亚洲五月婷婷丁香| 在线观看舔阴道视频| 少妇人妻一区二区三区视频| 丝袜人妻中文字幕| 美女被艹到高潮喷水动态| 久久久久亚洲av毛片大全| 视频区欧美日本亚洲| 国产一区二区在线av高清观看| 国产一区二区三区在线臀色熟女| 99久久久亚洲精品蜜臀av| 午夜福利在线在线| 搡老岳熟女国产| 欧美一区二区国产精品久久精品| 亚洲aⅴ乱码一区二区在线播放| 18禁裸乳无遮挡免费网站照片| 在线看三级毛片| www.熟女人妻精品国产| 丁香六月欧美| 两性午夜刺激爽爽歪歪视频在线观看| 好看av亚洲va欧美ⅴa在| 好看av亚洲va欧美ⅴa在| 免费在线观看视频国产中文字幕亚洲| 一级黄色大片毛片| 久久香蕉精品热| 此物有八面人人有两片| 午夜福利18| 精品国产美女av久久久久小说| 国产高清视频在线观看网站| 叶爱在线成人免费视频播放| 俺也久久电影网| 久久这里只有精品19| 成年免费大片在线观看| 国产人伦9x9x在线观看| 欧美绝顶高潮抽搐喷水| 三级国产精品欧美在线观看 | 99国产精品一区二区蜜桃av| 久久这里只有精品19| 亚洲精品一区av在线观看| 最近最新中文字幕大全免费视频| 99精品在免费线老司机午夜| 一a级毛片在线观看| 一本久久中文字幕| 国产成+人综合+亚洲专区| 热99在线观看视频| 在线观看免费午夜福利视频| 熟妇人妻久久中文字幕3abv| 日本精品一区二区三区蜜桃| 成人三级做爰电影| 久久久久久人人人人人| 国产高清有码在线观看视频| 99精品在免费线老司机午夜| 国产精品av视频在线免费观看| 国产成人影院久久av| 亚洲中文日韩欧美视频| 久久中文看片网| 国产美女午夜福利| 在线观看免费视频日本深夜| 国产精品av久久久久免费| 色综合欧美亚洲国产小说| av天堂中文字幕网| 久久中文字幕一级| 91老司机精品| 在线观看一区二区三区| 午夜激情欧美在线| 久久香蕉精品热| 淫秽高清视频在线观看| 国产aⅴ精品一区二区三区波| 亚洲专区中文字幕在线| a在线观看视频网站| 看黄色毛片网站| 午夜福利欧美成人| bbb黄色大片| 老熟妇乱子伦视频在线观看| 90打野战视频偷拍视频| 真实男女啪啪啪动态图| 国产真人三级小视频在线观看| 桃红色精品国产亚洲av| 久久久久国产精品人妻aⅴ院| 国产成年人精品一区二区| 桃色一区二区三区在线观看| 国产一区二区三区视频了| 在线观看美女被高潮喷水网站 | 99久久无色码亚洲精品果冻| 国产探花在线观看一区二区| 97人妻精品一区二区三区麻豆| 日韩高清综合在线| 久久久久国产精品人妻aⅴ院| 国产欧美日韩精品亚洲av| 欧美黄色淫秽网站| 男人舔女人的私密视频| 日本一二三区视频观看| 国产精品一区二区三区四区免费观看 | 久久精品影院6| 亚洲成a人片在线一区二区| 国产视频一区二区在线看| 天天添夜夜摸| 日日夜夜操网爽| 中文字幕人成人乱码亚洲影| 非洲黑人性xxxx精品又粗又长| 国产乱人伦免费视频| 国产一区二区在线av高清观看| 亚洲avbb在线观看| 亚洲真实伦在线观看| 日韩高清综合在线| 欧美日韩国产亚洲二区| 97超视频在线观看视频| 精品午夜福利视频在线观看一区| 国产三级中文精品| 这个男人来自地球电影免费观看| 99国产精品一区二区三区| www.999成人在线观看| 精品午夜福利视频在线观看一区| 悠悠久久av| 亚洲黑人精品在线| 看片在线看免费视频| 国产蜜桃级精品一区二区三区| 中文字幕精品亚洲无线码一区| 亚洲欧美精品综合一区二区三区| 亚洲精品中文字幕一二三四区| 欧美最黄视频在线播放免费| 丰满的人妻完整版| 一卡2卡三卡四卡精品乱码亚洲| 18禁观看日本| 亚洲欧美一区二区三区黑人| 欧美3d第一页| 欧美最黄视频在线播放免费| 97超视频在线观看视频| 亚洲九九香蕉| 高清毛片免费观看视频网站| 成人性生交大片免费视频hd| 天天添夜夜摸| 国产真实乱freesex| 国产精品 欧美亚洲| 中文字幕高清在线视频| 亚洲真实伦在线观看| 亚洲欧美一区二区三区黑人| 色av中文字幕| 色综合欧美亚洲国产小说| 国内久久婷婷六月综合欲色啪| 在线国产一区二区在线| 亚洲美女黄片视频| 91av网一区二区| 网址你懂的国产日韩在线| 少妇丰满av| 制服丝袜大香蕉在线| 可以在线观看的亚洲视频| 夜夜躁狠狠躁天天躁| 国产精品亚洲一级av第二区| 在线观看一区二区三区| 久久久久久久精品吃奶| 中文字幕最新亚洲高清| 一区二区三区激情视频| 久久中文字幕人妻熟女| 非洲黑人性xxxx精品又粗又长| 国产亚洲精品久久久久久毛片| 在线观看美女被高潮喷水网站 | 少妇裸体淫交视频免费看高清| 99热精品在线国产| 亚洲熟妇中文字幕五十中出| 中文在线观看免费www的网站| 国产精品久久久av美女十八| 97超级碰碰碰精品色视频在线观看| 999精品在线视频| 搡老妇女老女人老熟妇| 中文字幕av在线有码专区| 免费电影在线观看免费观看| 亚洲精品乱码久久久v下载方式 | 男女之事视频高清在线观看| 国产激情偷乱视频一区二区| 99re在线观看精品视频| 十八禁人妻一区二区| 亚洲自偷自拍图片 自拍| 国产不卡一卡二| 久久天躁狠狠躁夜夜2o2o| 91九色精品人成在线观看| 国产av不卡久久| 午夜久久久久精精品| 亚洲国产看品久久| 色av中文字幕| 村上凉子中文字幕在线| 国产成人一区二区三区免费视频网站| 久久久久久九九精品二区国产| 一本久久中文字幕| 三级男女做爰猛烈吃奶摸视频| 91在线精品国自产拍蜜月 | 成人国产一区最新在线观看| 欧美乱妇无乱码| 亚洲精品一卡2卡三卡4卡5卡| 男女之事视频高清在线观看| 亚洲自偷自拍图片 自拍| a级毛片a级免费在线| 两个人看的免费小视频| 久久精品国产清高在天天线| av黄色大香蕉| 国产主播在线观看一区二区| 婷婷丁香在线五月| 欧美在线黄色| 在线看三级毛片| 精品电影一区二区在线| 女警被强在线播放| 欧美+亚洲+日韩+国产| 成年人黄色毛片网站| 在线观看66精品国产| 狠狠狠狠99中文字幕| 香蕉久久夜色| 观看美女的网站| 欧美乱码精品一区二区三区| 亚洲中文av在线| 精品一区二区三区av网在线观看| 在线免费观看的www视频| www.熟女人妻精品国产| 亚洲激情在线av| 美女扒开内裤让男人捅视频| 国内揄拍国产精品人妻在线| 国产精品 欧美亚洲| 日韩 欧美 亚洲 中文字幕| 国产单亲对白刺激| 巨乳人妻的诱惑在线观看| 日本撒尿小便嘘嘘汇集6| 大型黄色视频在线免费观看| 国产成人av教育| 午夜福利高清视频| 亚洲成人久久爱视频| 国产高清视频在线播放一区| 一进一出抽搐动态| 午夜福利在线在线| 久久久久性生活片| 好男人电影高清在线观看| 好男人在线观看高清免费视频| 一区二区三区激情视频| 成年人黄色毛片网站| 欧美三级亚洲精品| 欧美成狂野欧美在线观看| 亚洲人成网站在线播放欧美日韩| 国产成人影院久久av| 久久久久国产精品人妻aⅴ院| 日韩三级视频一区二区三区| 午夜精品在线福利| 国产精品女同一区二区软件 | 国产伦精品一区二区三区四那| avwww免费| 国产成人av教育| 在线观看免费视频日本深夜| 一个人免费在线观看电影 | 亚洲av免费在线观看| 免费看日本二区| 黄色 视频免费看| 国产成人精品久久二区二区91| 夜夜夜夜夜久久久久| 国产视频一区二区在线看| 极品教师在线免费播放| 国产视频内射| 熟女电影av网| 欧美成狂野欧美在线观看| 午夜福利在线观看免费完整高清在 | 免费看a级黄色片| av片东京热男人的天堂| 亚洲成人中文字幕在线播放| 国产成人啪精品午夜网站| 国产主播在线观看一区二区| 亚洲天堂国产精品一区在线| 亚洲熟妇中文字幕五十中出| 精品久久久久久久人妻蜜臀av| 亚洲精品国产精品久久久不卡| 欧美最黄视频在线播放免费| 亚洲av电影在线进入| 欧美高清成人免费视频www| 国产精品爽爽va在线观看网站| 色综合婷婷激情| 欧美性猛交╳xxx乱大交人| 韩国av一区二区三区四区| 国内毛片毛片毛片毛片毛片| 天天一区二区日本电影三级| 最近最新免费中文字幕在线| 国产精品久久久久久久电影 | 亚洲av成人精品一区久久| 亚洲18禁久久av| 欧美大码av| av中文乱码字幕在线| a级毛片在线看网站| 法律面前人人平等表现在哪些方面| 久久九九热精品免费| www日本在线高清视频| 听说在线观看完整版免费高清| 美女高潮的动态| 麻豆久久精品国产亚洲av| 久久精品综合一区二区三区| 日本三级黄在线观看| 每晚都被弄得嗷嗷叫到高潮| 啪啪无遮挡十八禁网站| 亚洲人成网站高清观看| 欧美在线黄色| 色视频www国产| 午夜视频精品福利| 精品久久久久久久末码| 一本综合久久免费| 哪里可以看免费的av片| 级片在线观看| 丁香欧美五月| 中文字幕精品亚洲无线码一区| 在线a可以看的网站| 亚洲性夜色夜夜综合| 蜜桃久久精品国产亚洲av| 国产精品影院久久| 精品午夜福利视频在线观看一区| 免费av毛片视频| 亚洲人成网站高清观看| 90打野战视频偷拍视频| 熟妇人妻久久中文字幕3abv| 91久久精品国产一区二区成人 | 久久精品亚洲精品国产色婷小说| 男女之事视频高清在线观看| 曰老女人黄片| 给我免费播放毛片高清在线观看| 又粗又爽又猛毛片免费看| 最新在线观看一区二区三区| 男人舔女人下体高潮全视频| 国产精品 欧美亚洲| 日韩欧美三级三区| 中文字幕av在线有码专区| 免费观看人在逋| 欧美日韩精品网址| 真人一进一出gif抽搐免费| www.自偷自拍.com| 老司机午夜福利在线观看视频| 国内揄拍国产精品人妻在线| 精品一区二区三区av网在线观看| 国产精品爽爽va在线观看网站| 一个人看视频在线观看www免费 | 久久午夜综合久久蜜桃| 亚洲中文av在线| 欧美乱色亚洲激情| 国产成人精品久久二区二区91| 老熟妇乱子伦视频在线观看| 男人的好看免费观看在线视频| 亚洲成人久久性| 亚洲,欧美精品.| 亚洲国产精品久久男人天堂| 午夜免费观看网址| 午夜精品一区二区三区免费看| 视频区欧美日本亚洲| 又黄又粗又硬又大视频| 在线观看午夜福利视频| 男人舔女人的私密视频| 97超级碰碰碰精品色视频在线观看| 美女午夜性视频免费| 久久久久精品国产欧美久久久| 国产高清视频在线观看网站| 搡老熟女国产l中国老女人| 日韩av在线大香蕉| 国产亚洲精品久久久久久毛片| 成人无遮挡网站| 成人国产综合亚洲| 最近最新中文字幕大全免费视频| 在线国产一区二区在线| 亚洲精品色激情综合| 级片在线观看| 午夜a级毛片| 熟女少妇亚洲综合色aaa.| 一级a爱片免费观看的视频| 非洲黑人性xxxx精品又粗又长| 欧美三级亚洲精品| 黄片大片在线免费观看| 黑人巨大精品欧美一区二区mp4| cao死你这个sao货| 熟妇人妻久久中文字幕3abv| 观看美女的网站| 久久精品国产综合久久久| 亚洲精品国产精品久久久不卡| 一级毛片女人18水好多| 男女床上黄色一级片免费看| 男女那种视频在线观看| 午夜免费观看网址| 天堂影院成人在线观看| 黄色女人牲交| www国产在线视频色| 搡老岳熟女国产| 婷婷丁香在线五月| 美女午夜性视频免费| 成熟少妇高潮喷水视频| 男女下面进入的视频免费午夜| 亚洲av电影不卡..在线观看| 亚洲国产精品999在线| 国产单亲对白刺激| 亚洲成人中文字幕在线播放| 精品午夜福利视频在线观看一区| 精华霜和精华液先用哪个| 精品日产1卡2卡| 在线观看一区二区三区| 伦理电影免费视频| 欧美午夜高清在线| 亚洲天堂国产精品一区在线| 色吧在线观看| 精品一区二区三区av网在线观看| 亚洲av美国av| 久久精品国产综合久久久| 最近最新免费中文字幕在线| 成人国产一区最新在线观看| 欧美国产日韩亚洲一区| 亚洲无线在线观看| 网址你懂的国产日韩在线| 欧美日韩一级在线毛片| 婷婷精品国产亚洲av在线| 欧美色欧美亚洲另类二区| 一区二区三区高清视频在线| 桃红色精品国产亚洲av| 午夜福利在线观看免费完整高清在 | 99国产精品一区二区蜜桃av| 国产精品国产高清国产av| 99久久无色码亚洲精品果冻| 亚洲欧美精品综合一区二区三区| 欧美xxxx黑人xx丫x性爽| 女同久久另类99精品国产91| 久久久久九九精品影院| 亚洲中文字幕一区二区三区有码在线看 | 九色国产91popny在线| 岛国视频午夜一区免费看| 高潮久久久久久久久久久不卡| 国产黄a三级三级三级人| 亚洲av中文字字幕乱码综合| 噜噜噜噜噜久久久久久91| 亚洲国产日韩欧美精品在线观看 | 嫩草影院入口| 欧美日韩综合久久久久久 | 欧美性猛交黑人性爽| 国产亚洲精品一区二区www| 偷拍熟女少妇极品色| 婷婷亚洲欧美| 亚洲五月婷婷丁香| www.自偷自拍.com| 欧美成人免费av一区二区三区| 99久久精品热视频| 制服人妻中文乱码| 岛国视频午夜一区免费看| 日日摸夜夜添夜夜添小说| 最近视频中文字幕2019在线8| 韩国av一区二区三区四区| 亚洲九九香蕉| 国产精品99久久久久久久久| 一个人免费在线观看电影 | 久久天躁狠狠躁夜夜2o2o| 一区二区三区激情视频| 国产淫片久久久久久久久 | 精品久久久久久成人av| 精品乱码久久久久久99久播| 可以在线观看毛片的网站| 欧美日韩乱码在线| 黄色日韩在线| 99在线视频只有这里精品首页| 女人高潮潮喷娇喘18禁视频| 人妻久久中文字幕网| 久久久成人免费电影| 国产精品亚洲av一区麻豆| 久久精品夜夜夜夜夜久久蜜豆| 真实男女啪啪啪动态图| 女生性感内裤真人,穿戴方法视频| 黑人操中国人逼视频| 亚洲七黄色美女视频| 欧美日韩精品网址| 国产亚洲精品久久久com| 久久欧美精品欧美久久欧美| 特大巨黑吊av在线直播| 欧美午夜高清在线| 99精品在免费线老司机午夜| 婷婷六月久久综合丁香| 久久久久久久久免费视频了| 久久久久久大精品| 日韩欧美在线二视频| 久久精品国产清高在天天线| 国产1区2区3区精品| 午夜亚洲福利在线播放| 免费无遮挡裸体视频| 午夜福利视频1000在线观看| 999久久久国产精品视频| 国产97色在线日韩免费| 亚洲成人中文字幕在线播放| 中文字幕最新亚洲高清| 床上黄色一级片| 99久久99久久久精品蜜桃| 午夜亚洲福利在线播放| 国产毛片a区久久久久| 国产成人影院久久av| 两个人的视频大全免费| 欧美中文日本在线观看视频| 草草在线视频免费看| 99精品在免费线老司机午夜| 亚洲av第一区精品v没综合| 在线观看免费视频日本深夜| 在线观看免费午夜福利视频| 亚洲真实伦在线观看| 99热这里只有精品一区 | 99精品久久久久人妻精品| h日本视频在线播放| 巨乳人妻的诱惑在线观看| 99热这里只有精品一区 | 久久中文字幕人妻熟女| 国产精品国产高清国产av| 亚洲成av人片免费观看| 精品久久久久久,| 天堂网av新在线| 两个人视频免费观看高清| 1000部很黄的大片|