• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Pyrolysis Characteristics and Kinetics of Methyl Oleate Based on TG-FTIR Method

    2015-06-22 14:38:29
    中國煉油與石油化工 2015年2期
    關(guān)鍵詞:折線滑動暴雨

    (Department of Military Oil Application & Administration Engineering, Logistical Engineering University, Chongqing 401311)

    Pyrolysis Characteristics and Kinetics of Methyl Oleate Based on TG-FTIR Method

    Wang Xuechun; Fang Jianhua; Chen Boshui; Wang Jiu; Wu Jiang

    (Department of Military Oil Application & Administration Engineering, Logistical Engineering University, Chongqing 401311)

    The thermal decomposition characteristics of methyl oleate were preliminarily investigated under nitrogen atmosphere by a thermogravimetric analyzer when the ester was heated at a heating rate of 10 ℃/min from room temperature to 600 ℃. Furthermore, the pyrolytic and kinetic characteristics of methyl oleate were intensively studied at different heating rates. The gaseous species obtained during thermal decomposition were also identified by the TG-FTIR coupling analysis. The results showed that the pyrolysis of methyl oleate proceeded in three stages, viz. the drying stage, the main pyrolysis stage and the residual pyrolysis stage. The initial decomposition temperature, the maximum weight loss temperature, the peak decomposition temperature and the rate of maximum weight loss of methyl oleate increased with the increasing heating rates. Gaseous CO, CO2and H2O were the typical decomposition products from pyrolysis of methyl oleate. In addition, a kinetic model for thermal decomposition of methyl oleate was built up based on the experimental results using the Coats-Redfern integral method and the multiple-linear regression method. The activation energy, the pre-exponential factor, the reaction order and the kinetic equation for thermal decomposition of methyl oleate were obtained. Comparison of the experimental data with the calculated ones and analysis of statistical errors of pyrolysis ratios demonstrated that the kinetic model was reliable for studying the pyrolysis of methyl oleate. Finally, the kinetic compensation effect between the preexponential factors and the activation energy in the pyrolysis of methyl oleate was also confirmed.

    methyl oleate; pyrolysis; kinetics; thermogravimetric analysis; biodiesel

    1 Introduction

    With the continuous depletion of petroleum reserves and the increasing environmental pollution problems brought about by the extensive use of petroleum, the exploitation of alternative fuels and renewable resources has attracted increasing attention worldwide from the perspective of environmental protection and resource strategy[1-5]. Biodiesel, which is referred to as mixtures of fatty acid mono-alkyl esters with relatively high contents of the long-chain, mono- and poly-unsaturated compounds, is produced from vegetable oils and animal fats by transesterification with alcohols of low molecular weights in the presence of a catalyst[6-8]. Fatty acid methyl esters (FAME) such as the soybean methyl ester (SME) are typically mixtures of esters with 16—18 carbon atoms, in which 80%—85% of the total mixture are unsaturated compounds[9]. However, the presence of such mono- and poly-unsaturated compounds makes biodiesel extremely liable to thermal decomposition at elevated temperatures. As we know, during the operation of a biodiesel-powered engine, a small amount of biodiesel will leak into the crankcase by oil seepage flow or gas entrainment. The inleakage of biodiesel into the engine crankcase markedly impairs the quality of the engine oils due to thermal instability of biodiesel. At present, some studies have been made on biodiesel-induced deterioration of engine oil in order to facilitate the development and application of biodiesel as a clean and renewable petro-diesel substitute[10-12]. However, the thermal decomposition characteristics and kinetics of biodiesels, as well as their influence on deterioration of engine oils, have so far not been investigated intensively, partly because of the complexity of its pyrolytic chemical behaviors and mechanisms. In fact, thermal instability of biodiesel is governed by its chemi-cal nature, especially the structures and compositions of unsaturated fatty acid methyl esters. It is therefore essential to investigate the thermal decomposition behaviors of unsaturated FAME so as to better understand the nature of biodiesel-induced deterioration of engine oil. In this paper, the thermal decomposition characteristics and kinetics of unsaturated methyl oleate were preliminarily studied based on thermogravimetric analysis. The present investigation is of significance for further understanding the pyrolytic behaviors of biodiesel and, in the nature of things, its influence on engine oil deterioration.

    2 Experimental

    2.1 Materials and apparatus

    Methyl oleate (abbreviated as MOE): An analytically purified chemical supplied by the Xiya Reagent Research Center. Thermo-gravimetric analyzer: model SDT-Q600, made by the TA Instruments, USA.

    2.2 Thermogravimetric analysis

    The pyrolysis characteristics of MOE were tested on the thermogravimetric analyzer. In each test run, 7 mg of MOE were put uniformly on the bottom of an alumina crucible, which was placed at the same position of the beam platform of the analyzer. Subsequently, the sample was continuously heated from room temperature to 600 ℃ at different heating rates of 10, 15, 20 and 30 ℃/min, respectively, under a nitrogen carrier gas flowing at a rate of 50 mL/min. The weight loss and heat flow changes in response to temperature were recorded. Finally, the thermogravimetric (TG) curves, the derivative thermogravimetric (DTG) curves and the differential scanning calorimetric (DSC) curves were plotted and the pyrolysis kinetics were studied.

    3 Results and Discussion

    3.1 Pyrolysis characteristics of MOE

    3.1.1 Pyrolysis of MOE at different heating rates

    Shown in Figure 1 are the TG-DTG and DSC curves of MOE at a heating rate of 10 ℃/min. Table 1 shows the pyrolysis parameters of MOE. It can be clearly observed from Figure 1 and Table 1 that, with an increasing temperature, the pyrolysis process of MOE in TG curves can be divided into three stages, viz.: the drying stage (<Ts), the main pyrolysis stage (Ts—Tf), and the residual pyrolysis stage (>Tf). The first stage occurred as the temperature increased from room temperature to the initial decomposition temperature Ts. The second stage occurred as the temperature increased from Tsto the maximum weight loss temperature Tf, while the third stage exhibited a further slow loss of weight as the temperature increased from Tfto 600 ℃. To further understand the pyrolysis characteristics of MOE, thermogravimetric tests at different heating rates (β), i.e.: 10 ℃/min, 15 ℃/min, 20 ℃/min and 30 ℃/min, respectively, were also conducted. The pyrolysis curves of MOE at different heating rates are shown in Figure 2. Also shown in Table 2 are the main pyrolysis characteristic parameters of MOE. It can be seen from the TG curves in Figure 2(a) that the decomposition temperatures at different heating rates were slightly different. When the heating rate increased from 10 ℃/min to 30 ℃/min, the initial temperature for main decomposition shifted to a higher one. In the DSC curves shown in Figure 2(b), strong peaks occurring between 213.79 ℃ and 326.03 ℃can be found for each heating rate. Higher heating rate shifted the DSC curve to a higher range of temperatures. The DTG profiles given in Figure 2(c) indicated that the maximum weight loss rate increased and the corresponding peak temperature at maximum rate shifted to higher temperatures with an increasing heating rate. The increase in the initial decomposition temperature, the maximum weight loss temperature, the peak decomposition temperature and the rate of maximum weight loss with increasing heating rates could be attributed to the reduction of the activated energy, as well as to the delay of heat transfer during thermal decomposition of MOE[13-16].

    Figure 1 TG/DTG and DSC curves of MOE under N2atmosphere

    Table 1 Pyrolysis parameters

    Figure 2 TG/DTG and DSC curves of MOE at different hating rates

    3.1.2 TG-FTIR analysis of gaseous products

    The gaseous products evolved during pyrolysis of MOE at different thermal decomposition durations at a heating rate of 10 ℃/min were investigated on a three-dimensional TG-FTIR coupling analyzer. A typical 3D plot of FTIR spectrum is shown in Figure 3. Also shown in Figure 4 are the FTIR spectra of the gases evolved at the duration of 9.387 min, 25.554 min, 32.333 min and 48.500 min, respectively. The main gaseous species obtained during thermal decomposition and identified from the spectra cover CO and CO2(2 250—2 375 cm-1, 700 cm-1) and H2O (3 500—3 800 cm-1, 1 200—1 700 cm-1). The peaks at 1 600—1 850 cm-1and 1 250—1 500 cm-1are associated with the stretching vibration of C=O, the bending vibration of C—H and the stretching vibration of C—O and C—C. Besides, very weak peaks of C—H at 2 650—3 000 cm-1correspond to alkanes, aldehydes, ketones, carboxylic acids, alcohols and other macromolecular substances[17-19]. This implies that the thermal reactions of MOE covered dehydration, cracking and polymerization.

    Table 2 Pyrolysis parameters of MOE at different heating rat

    Figure 3 The 3D FT-IR spectra of MOE pyrolysis gaseous products

    Figure 4 FT-IR spectra of the evolved gases from MOE pyrolysis at different durations

    3.2 Kinetics of thermal decomposition of MOE

    3.2.1 Kinetics modeling

    The kinetic parameters obtained from TG and DTG analyses are extremely crucial for efficient evaluation and calculation of the thermal decomposition process of MOE. Assuming that the thermal decomposition of MOE is a non-isothermal process, the decomposition rate equation can be given as follows:

    where α is the conversion rate and is defined as: α=(m0-mt)/(m0-m∞); m0is the initial weight of the test sample; mtis the weight after a specified decomposition duration t; while m∞is the weight of the indecomposable residue; n-reaction order; and k-reaction rate constant. Generally, the Arrhenius equation is suitable for the thermal decomposition reaction. Based on the Arrhenius equation, the reaction rate constant k for thermal decomposition of MOE is given below:

    where, A—pre-exponential factor, min-1; E—activation energy, kJ/mol; T—reaction temperature, K; R—ideal gas constant, 8.314 J/(mol·K).

    Since the mechanism function f(α) in Equation (1) is dependent on the reaction model and the reaction mechanism during pyrolysis process, therefore for a simple reaction, f(α) is suggested as:

    Then, Equations (1), (2) and (3) can be combined to give:

    Furthermore, substituting the heating rate, β, into Equation (4) gives

    where β=dT/dt.

    3.2.2 Determination of kinetic parameters

    According to the kinetic model given above, the kinetic parameters such as the pre-exponential factor, the activation energy and reaction order, and the most probable mechanism function for thermal decomposition of MOE were determined based on the Coats-Redfern integral method and the multiple-linear regression method, respectively.

    (1) Coats-Redfern integral method

    Based on the Coats-Redfern method[20-21], which is suited to different reaction orders, Equation (5) can be rearranged by taking the natural logarithm as given in Equation (6):

    通過采用折線滑動法分別計算滑坡各剖面的穩(wěn)定系數(shù)及剩余下滑力,可以得出如下結(jié)論:滑坡在自重工況下,處于穩(wěn)定-基本穩(wěn)定狀態(tài),與宏觀分析結(jié)果一致;在暴雨工況下,滑坡處于基本穩(wěn)定-不穩(wěn)定狀態(tài)。

    (2) Multiple linear regression method

    Taking the natural logarithm of Equation (5) gives:

    where dα/dT is the ratio of weight changes with temperature. Equation (8) may be further expressed in the linear form as given below:

    where Y=ln(dα/dT), X=1/T, Z=ln(1-α), B=ln(A/β), C=-E/R, and D=n.

    The constants B, C and D were estimated by the multiple linear regression with the TG-DTG data for pyrolysis of MOE using the Origin 8.0 software. The kinetic parameters, viz.: the pre-exponential factor, the activation energy and the reaction order for each test run, are presented in Table 4.

    Figure 5 The plot of ln[-ln(1-α)/T2] and ln[-(1-(1-α)1-n)/(1-n)T2] vs 1/T

    3.2.3 Kinetic reliability analysis

    The relationship and the numerical statistical errors of conversion rate between the experimental data and the calculated data by the Coats-Redfern integral method and by the multiple linear regression method at different heating rates are shown in Figure 6, Figure 7 and Table 5, respectively. The numerical statistical errors including the root mean square error (RMSE) and the mean absolute percentage (MAPE) were calculated by the following equations:

    Table 3 Pyrolysis kinetic parameters of MOE measured at different heating rate

    Table 4 Pyrolysis kinetic parameters of MOE by multiple linear regression method

    3.2.4 Kinetic compensation effect in pyrolysis of MOE

    It has been found that for thermal decomposition reactions, the kinetic parameters such as the pre-exponential factor A and the activation energy E have the following relationship[22-23]:

    in which a and b are constant coefficients. This relationship is referred to as the kinetic compensation effect, meaning that the pre-exponential factor of a thermal decomposition reaction is not a constant but changes with the variation of activation energy. Therefore, based on the kinetic parameters listed in Table 3 and Table 4, the relationship between lnA and E for pyrolysis of MOE was plotted, as shown in Figure 8. It can be observed clearly from Figure 8 that, with the correlation coefficients ranging from 0.982 7 to 0.995 4, the good linear relationship between lnA and E demonstrated thatthe pre-exponential factor for thermal decomposition of MOE was kinetically well compensated by the activation energy.

    Figure 6 Experimental data and the calculation data obtained by the Coats-Redfern integral method

    Figure 7 Experimental data and the calculation data obtained by the multiple linear regression method

    Table 5 Numerical statistical errors for different methods

    Figure 8 Natural logarithm of pre-exponential factor versus activation energy by different calculating methods

    4 Conclusions

    During the thermal decomposition of methyl oleate under nitrogen atmosphere, the initial decomposition temperatures, the maximum weight loss temperatures and the peak decomposition temperatures increased with an increasing heating rate due to the increase of the activated energy and the delay in heat transfer. Furthermore, CO, CO2and H2O were the typical gaseous decomposition species. In addition, a kinetic model for thermal decomposition of methyl oleate was built up, and the kinetic parameters such as the activation energy, the pre-exponential factor and the reaction order were obtained. The kinetic model was reliable in predicting the pyrolysis characteristics of methyl oleate. Finally, the kinetic compensation effect between the pre-exponential factor and the activation energy for the pyrolysis of methyl oleate was confirmed.

    Acknowledgements: The authors gratefully acknowledge the financial support provided by the National Natural Science Foundation of China (Project No. 51375491) and the Natural Science Foundation of Chongqing (No. CSTC, 2014 JCYAA 50021).

    [1] Lin L, Cunshan Z, Vittayapadung S, et al. Opportunities and challenges for biodiesel fuel[J]. Applied Energy, 2011, 88 (4): 1020-1031

    [2] Demirbas A. Progress and recent trends in biodiesel fuels[J]. Energy Conversion and Management, 2009, 50(1): 14-34

    [3] Chen Wuhua, Chen Jian, Jiang Jinxing, et al. Crystal precipitation law of biodiesel at low temperatures[J]. Petroleum Processing and Petrochemicals, 2014, 45(3): 14-17 (in Chinese)

    [4] Wang Yunpu, Liu Yuhuan, Ruan Rongsheng, et al. Microwave-assisted decarboxylation of sodium oleate and renewable hydrocarbon fuel production[J]. China Petroleum Processing and Petrochemical Technology, 2013, 15(3): 19-27

    [5] Nigam P S, Singh A. Production of liquid biofuels from re-newable resources[J]. Progress in Energy and Combustion Science, 2011, 37(1): 52-68

    [6] Candeia R A, Silva M C D, Carvalho Filho J R, et al. Influence of soybean biodiesel content on basic properties of biodiesel-diesel blends[J]. Fuel, 2009, 88(4): 738-743

    [7] Leung D Y C, Wu X, Leung M K H. A review on biodiesel production using catalyzed transesterification[J]. Applied Energy, 2010, 87(4): 1083-1095

    [8] Moser B R, Vaughn S F. Coriander seed oil methyl esters as biodiesel fuel: unique fatty acid composition and excellent oxidative stability[J]. Biomass Bioenergy, 2010, 34(4): 550-558

    [9] Knothe G, Van Gerpen J, Krahl J. The Biodiesel Handbook[M]. Champaign, IL: AOCS Press, 2005

    [10] Gili F, Igartua A, Luther R, et al. The impact of biofuels on engine oil’s performance[J]. Lubrication Science, 2011, 23(7): 313-330

    [11] Watson S A G, Wong V W. The Effects of Fuel Dilution With Biodiesel and Low Sulfur Diesel on Lubricant Acidity, Oxidation and Corrosion: A Bench Scale Study With CJ-4 and CI-4+ Lubricants[C]//STLE/ASME 2008 International Joint Tribology Conference. American Society of Mechanical Engineers, 2008: 233-235

    [12] Wang Z, Xu G, Huang H, et al. Reliability test of diesel engine fueled with biodiesel[J]. Transactions of the Chinese Society of Agricultural Engineering, 2009, 25(11): 169-172

    [13] Park Y H, Kim J, Kim S S, et al. Pyrolysis characteristics and kinetics of oak trees using thermogravimetric analyzer and micro-tubing reactor[J]. Bioresource Technology, 2009, 100(1): 400-405

    [14] Chen M, Qi X, Wang J, et al. Catalytic pyrolysis characteristic and kinetic of cotton stalk [J]. Journal of Fuel Chemistry and Technology, 2011, 39(8): 585-589 (in Chinese)

    [15] Li D, Chen L, Zhang X, et al. Pyrolytic characteristics and kinetic studies of three kinds of red algae[J]. Biomass and Bioenergy, 2011, 35(5): 1765-1772

    [16] Liang Y, Cheng B, Si Y, et al. Thermal decomposition kinetics and characteristics of Spartina alterniflora via thermogravimetric analysis[J]. Renewable Energy, 2014, 68: 111-117

    [17] Li S, Lyons-Hart J, Banyasz J, et al. Real-time evolved gas analysis by FTIR method: An experimental study of cellulose pyrolysis[J]. Fuel, 2001, 80(12): 1809-1817

    [18] S. Li, J. L. Hart, J. Banyasz, et al. TG-FTIR analysis of biomass pyrolysis[J]. Fuel, 2001, 80(12): 1765-1786

    [19] Duan J, Cai G, Shuai C. The relationship between IR characteristic peak and microstructure of the glass used as optical fiber[J]. Journal of Central South University of Technology, 2006, 13(3): 238-241 (in Chinese)

    [20] Guo X, Wang S, Guo Z, et al. Pyrolysis characteristics of bio-oil fractions separated by molecular distillation[J]. Applied Energy, 2010, 87(9): 2892-2898

    [21] Zou S P, Wu Y L, Yang M D, et al. Pyrolysis characteristics and kinetics of the marine microalgae Dunaliella tertiolecta using thermogravimetric analyzer[J]. Bioresource Technology, 2010, 101(1): 359-365

    [22] Cai J M, BilS. Kinetic analysis of wheat straw pyrolysis using isoconversional methods[J]. Journal of Thermal Analysis and Calorimetry, 2009, 98(1): 325-330

    [23] Li D, Chen L, Zhang X, et al. Pyrolytic characteristics and kinetic studies of three kinds of red algae[J]. Biomass and Bioenergy, 2011, 35(5): 1765-1772

    date: 2014-09-21; Accepted date: 2014-12-11.

    Prof. Fang Jianhua, Telephone: +86-23-86731410; E-mail: fangjianhua71225@sina.com.

    猜你喜歡
    折線滑動暴雨
    折線統(tǒng)計圖
    “80年未遇暴雨”襲首爾
    暴雨
    當暴雨突臨
    一種新型滑動叉拉花鍵夾具
    折線的舞臺——談含絕對值的一次函數(shù)的圖象
    Big Little lies: No One Is Perfect
    暴雨襲擊
    支點(2017年8期)2017-08-22 17:18:27
    折線
    滑動供電系統(tǒng)在城市軌道交通中的應用
    netflix在线观看网站| 91麻豆精品激情在线观看国产| 免费高清在线观看日韩| 免费在线观看黄色视频的| www.熟女人妻精品国产| 精品不卡国产一区二区三区| 欧美黑人精品巨大| 满18在线观看网站| 国产精品亚洲av一区麻豆| 波多野结衣巨乳人妻| 久久久久久免费高清国产稀缺| 精品国产一区二区三区四区第35| 久久久久久久精品吃奶| 国产亚洲av嫩草精品影院| av网站免费在线观看视频| av电影中文网址| 中文字幕高清在线视频| 国产1区2区3区精品| 国产精品野战在线观看| 91九色精品人成在线观看| 激情在线观看视频在线高清| 亚洲中文字幕日韩| 夜夜看夜夜爽夜夜摸| 每晚都被弄得嗷嗷叫到高潮| 大型黄色视频在线免费观看| 亚洲成人精品中文字幕电影| 国产免费av片在线观看野外av| 满18在线观看网站| 伦理电影免费视频| 免费无遮挡裸体视频| 国产一区在线观看成人免费| 久久精品91无色码中文字幕| 人人澡人人妻人| 在线观看免费视频日本深夜| 国产男靠女视频免费网站| 久久天堂一区二区三区四区| 午夜福利免费观看在线| 免费人成视频x8x8入口观看| 亚洲黑人精品在线| 真人一进一出gif抽搐免费| 日韩一卡2卡3卡4卡2021年| 亚洲av电影不卡..在线观看| 最近最新中文字幕大全电影3 | 亚洲精品粉嫩美女一区| 叶爱在线成人免费视频播放| 黄片大片在线免费观看| 午夜老司机福利片| 国产激情久久老熟女| 中文字幕av电影在线播放| 老汉色∧v一级毛片| www.999成人在线观看| 成年人黄色毛片网站| 黑人欧美特级aaaaaa片| 久久香蕉精品热| 国产精品免费一区二区三区在线| www.www免费av| 高清黄色对白视频在线免费看| 亚洲成国产人片在线观看| 国产成+人综合+亚洲专区| 亚洲精品一区av在线观看| 露出奶头的视频| 国产国语露脸激情在线看| 国产成人免费无遮挡视频| 老司机靠b影院| 中文字幕人妻丝袜一区二区| 黄色片一级片一级黄色片| 国产激情欧美一区二区| 欧美日本亚洲视频在线播放| 欧美在线一区亚洲| 老司机午夜福利在线观看视频| 一级毛片女人18水好多| 少妇 在线观看| 91成人精品电影| 国产一卡二卡三卡精品| 国产黄a三级三级三级人| 最近最新中文字幕大全免费视频| 国产亚洲av嫩草精品影院| 久久久国产成人免费| 中出人妻视频一区二区| 精品国产乱子伦一区二区三区| 久久精品亚洲精品国产色婷小说| 国产99白浆流出| 欧美在线黄色| 日韩三级视频一区二区三区| 两个人视频免费观看高清| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美成人免费av一区二区三区| 亚洲在线自拍视频| 国产免费男女视频| 黑人巨大精品欧美一区二区蜜桃| 搡老妇女老女人老熟妇| 欧美大码av| 在线观看www视频免费| 国产一区二区三区综合在线观看| 一进一出抽搐动态| 亚洲国产欧美网| 国产三级在线视频| 中亚洲国语对白在线视频| 最近最新中文字幕大全电影3 | 日本五十路高清| 黄色视频,在线免费观看| 国产成人欧美在线观看| 欧美成人午夜精品| 老汉色av国产亚洲站长工具| 十分钟在线观看高清视频www| 香蕉久久夜色| 国产午夜福利久久久久久| 国产欧美日韩一区二区三区在线| 国产又色又爽无遮挡免费看| 欧美激情极品国产一区二区三区| 国产精品久久久久久人妻精品电影| 18禁黄网站禁片午夜丰满| 亚洲欧洲精品一区二区精品久久久| 色播在线永久视频| 亚洲五月色婷婷综合| 女人高潮潮喷娇喘18禁视频| 欧美激情 高清一区二区三区| 免费女性裸体啪啪无遮挡网站| 麻豆国产av国片精品| 亚洲第一电影网av| 亚洲欧美日韩另类电影网站| 国产精品日韩av在线免费观看 | 国产主播在线观看一区二区| 欧美日韩福利视频一区二区| 韩国av一区二区三区四区| 国产精品久久久av美女十八| 又大又爽又粗| 国产亚洲精品综合一区在线观看 | 大型黄色视频在线免费观看| 人成视频在线观看免费观看| 亚洲色图综合在线观看| 97人妻精品一区二区三区麻豆 | 别揉我奶头~嗯~啊~动态视频| 国产成人精品久久二区二区免费| 村上凉子中文字幕在线| 国产精品 国内视频| 久久热在线av| 久久人人精品亚洲av| cao死你这个sao货| 制服人妻中文乱码| 午夜免费成人在线视频| 国产成人影院久久av| 啦啦啦观看免费观看视频高清 | √禁漫天堂资源中文www| 亚洲人成网站在线播放欧美日韩| 嫩草影院精品99| 国产亚洲欧美精品永久| ponron亚洲| 国产精品自产拍在线观看55亚洲| av天堂久久9| 午夜视频精品福利| 69av精品久久久久久| 国产精品一区二区免费欧美| 国产野战对白在线观看| 1024视频免费在线观看| 国产亚洲精品综合一区在线观看 | 91成人精品电影| a级毛片在线看网站| 国产在线精品亚洲第一网站| 日本五十路高清| 老鸭窝网址在线观看| 啦啦啦观看免费观看视频高清 | 国产人伦9x9x在线观看| 99国产极品粉嫩在线观看| 国产精品久久久久久人妻精品电影| 黄片播放在线免费| 美女免费视频网站| 国产熟女午夜一区二区三区| 欧美 亚洲 国产 日韩一| 亚洲激情在线av| 国产欧美日韩综合在线一区二区| 少妇 在线观看| 成人免费观看视频高清| 久久影院123| 亚洲伊人色综图| 啪啪无遮挡十八禁网站| 日日摸夜夜添夜夜添小说| 免费少妇av软件| 国产成人影院久久av| 国产成人精品久久二区二区免费| 国产精品免费一区二区三区在线| 日本撒尿小便嘘嘘汇集6| 欧美精品亚洲一区二区| 亚洲人成77777在线视频| 色av中文字幕| 亚洲伊人色综图| 亚洲精华国产精华精| 深夜精品福利| 自拍欧美九色日韩亚洲蝌蚪91| 日本黄色视频三级网站网址| 欧美日韩亚洲综合一区二区三区_| 国产av一区在线观看免费| 身体一侧抽搐| 国产精品久久久久久人妻精品电影| 久久青草综合色| 久久久国产欧美日韩av| 国产熟女午夜一区二区三区| 久热爱精品视频在线9| 亚洲精品粉嫩美女一区| 亚洲天堂国产精品一区在线| 国产真人三级小视频在线观看| tocl精华| 亚洲精品一卡2卡三卡4卡5卡| 啦啦啦 在线观看视频| 国产成人av教育| 老司机在亚洲福利影院| 国产一区二区激情短视频| 欧美成人免费av一区二区三区| 国产一级毛片七仙女欲春2 | 国产亚洲欧美98| 欧美成人午夜精品| 99国产精品一区二区蜜桃av| 91九色精品人成在线观看| 国产欧美日韩一区二区三| 久久香蕉激情| 久久香蕉精品热| 国内毛片毛片毛片毛片毛片| 窝窝影院91人妻| av欧美777| 99久久国产精品久久久| 在线观看免费视频日本深夜| 最新美女视频免费是黄的| 欧洲精品卡2卡3卡4卡5卡区| 淫妇啪啪啪对白视频| 一区二区三区激情视频| 91精品国产国语对白视频| av免费在线观看网站| 亚洲av成人不卡在线观看播放网| 男女下面插进去视频免费观看| 桃色一区二区三区在线观看| 国产精品1区2区在线观看.| 国产成人系列免费观看| 日韩欧美免费精品| 九色国产91popny在线| 一边摸一边抽搐一进一出视频| 亚洲熟妇中文字幕五十中出| 精品日产1卡2卡| 亚洲午夜精品一区,二区,三区| 久久精品91蜜桃| 高潮久久久久久久久久久不卡| 成年人黄色毛片网站| 18禁裸乳无遮挡免费网站照片 | 欧美一区二区精品小视频在线| 亚洲男人天堂网一区| 欧美成人一区二区免费高清观看 | 女性被躁到高潮视频| 久久中文看片网| 亚洲五月婷婷丁香| 久久久久国产精品人妻aⅴ院| 99热只有精品国产| 欧美中文综合在线视频| 精品人妻1区二区| 一本久久中文字幕| netflix在线观看网站| 神马国产精品三级电影在线观看 | 身体一侧抽搐| 午夜精品国产一区二区电影| 国产野战对白在线观看| 51午夜福利影视在线观看| 精品久久久久久成人av| 国产伦一二天堂av在线观看| 人人妻,人人澡人人爽秒播| 黄色视频,在线免费观看| 成人三级做爰电影| 一二三四在线观看免费中文在| 国产精品香港三级国产av潘金莲| 国产精品久久久久久人妻精品电影| 青草久久国产| 熟女少妇亚洲综合色aaa.| 久久精品国产综合久久久| 国产高清视频在线播放一区| 国产三级黄色录像| 无人区码免费观看不卡| 亚洲国产欧美网| 欧美av亚洲av综合av国产av| 性色av乱码一区二区三区2| 国产极品粉嫩免费观看在线| 成人国产综合亚洲| 亚洲第一欧美日韩一区二区三区| 成人特级黄色片久久久久久久| 国产亚洲精品久久久久5区| 九色国产91popny在线| 欧美在线黄色| 国产精品亚洲av一区麻豆| 国产99白浆流出| 999久久久精品免费观看国产| 90打野战视频偷拍视频| 亚洲avbb在线观看| 精品不卡国产一区二区三区| 国产精品久久久久久精品电影 | 亚洲第一电影网av| 少妇粗大呻吟视频| 91精品三级在线观看| 啪啪无遮挡十八禁网站| 国产成人av激情在线播放| 亚洲av成人不卡在线观看播放网| 亚洲av熟女| 最近最新中文字幕大全电影3 | 久久伊人香网站| 久久精品91蜜桃| 久久精品国产亚洲av高清一级| 久久久久久久久免费视频了| 国产成人系列免费观看| 高清毛片免费观看视频网站| 怎么达到女性高潮| 97碰自拍视频| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲第一青青草原| 好男人在线观看高清免费视频 | 免费少妇av软件| 国产欧美日韩综合在线一区二区| 欧美亚洲日本最大视频资源| 国产亚洲av嫩草精品影院| 搡老熟女国产l中国老女人| 日韩成人在线观看一区二区三区| 国产私拍福利视频在线观看| 变态另类成人亚洲欧美熟女 | 高清黄色对白视频在线免费看| 午夜久久久在线观看| 亚洲熟女毛片儿| 女性生殖器流出的白浆| 夜夜夜夜夜久久久久| 老熟妇乱子伦视频在线观看| 久久中文看片网| 热99re8久久精品国产| 亚洲专区字幕在线| 中文字幕最新亚洲高清| 美女国产高潮福利片在线看| 国产成人系列免费观看| 久久九九热精品免费| 男男h啪啪无遮挡| 亚洲国产毛片av蜜桃av| 亚洲五月天丁香| 免费观看精品视频网站| 国产男靠女视频免费网站| 日韩av在线大香蕉| 欧美久久黑人一区二区| 亚洲伊人色综图| 久久久久久久精品吃奶| 国产片内射在线| 美女午夜性视频免费| 日韩一卡2卡3卡4卡2021年| 好男人电影高清在线观看| 大香蕉久久成人网| 亚洲 欧美 日韩 在线 免费| 亚洲五月婷婷丁香| 身体一侧抽搐| 别揉我奶头~嗯~啊~动态视频| 亚洲中文字幕日韩| 亚洲色图 男人天堂 中文字幕| 动漫黄色视频在线观看| 麻豆国产av国片精品| 亚洲中文字幕一区二区三区有码在线看 | 国产极品粉嫩免费观看在线| 日韩欧美国产一区二区入口| 国产麻豆69| 99久久久亚洲精品蜜臀av| 午夜福利视频1000在线观看 | 18禁黄网站禁片午夜丰满| 国产精品综合久久久久久久免费 | 九色亚洲精品在线播放| 69av精品久久久久久| 欧美 亚洲 国产 日韩一| or卡值多少钱| 精品国产国语对白av| 嫩草影院精品99| 亚洲av成人一区二区三| 国产成人精品在线电影| av电影中文网址| 亚洲av日韩精品久久久久久密| 日日爽夜夜爽网站| 亚洲av日韩精品久久久久久密| 久久国产亚洲av麻豆专区| 亚洲精品美女久久av网站| 人人澡人人妻人| 免费在线观看完整版高清| 国产精品一区二区在线不卡| 精品人妻在线不人妻| 欧美另类亚洲清纯唯美| 久久亚洲精品不卡| 高清在线国产一区| 国产精品一区二区在线不卡| 免费在线观看亚洲国产| 精品国产亚洲在线| 1024视频免费在线观看| 狂野欧美激情性xxxx| 麻豆久久精品国产亚洲av| www.999成人在线观看| 国产成人啪精品午夜网站| 婷婷精品国产亚洲av在线| 老鸭窝网址在线观看| 黄片播放在线免费| 久久亚洲精品不卡| 少妇的丰满在线观看| 一区二区三区高清视频在线| 最近最新免费中文字幕在线| 丝袜美足系列| 人人妻人人爽人人添夜夜欢视频| 少妇的丰满在线观看| 国产高清视频在线播放一区| 男女下面插进去视频免费观看| 国产精品电影一区二区三区| 欧美+亚洲+日韩+国产| 老鸭窝网址在线观看| 女人爽到高潮嗷嗷叫在线视频| 亚洲视频免费观看视频| 操美女的视频在线观看| av免费在线观看网站| 极品教师在线免费播放| 久久精品亚洲精品国产色婷小说| 欧美成人性av电影在线观看| 欧美精品亚洲一区二区| 久久久久九九精品影院| 欧美精品亚洲一区二区| 欧美激情高清一区二区三区| 啦啦啦韩国在线观看视频| 精品人妻1区二区| 一进一出抽搐动态| 成人av一区二区三区在线看| 精品国产乱码久久久久久男人| 国产1区2区3区精品| 男女做爰动态图高潮gif福利片 | 午夜久久久久精精品| 欧美+亚洲+日韩+国产| 亚洲一卡2卡3卡4卡5卡精品中文| 成人国产一区最新在线观看| 欧美丝袜亚洲另类 | 老熟妇仑乱视频hdxx| 欧美不卡视频在线免费观看 | 久热这里只有精品99| 日本在线视频免费播放| 国产成年人精品一区二区| 高潮久久久久久久久久久不卡| 国产精品日韩av在线免费观看 | 中国美女看黄片| 欧美成人午夜精品| 国产欧美日韩一区二区精品| av天堂在线播放| 午夜老司机福利片| 999久久久精品免费观看国产| 一级,二级,三级黄色视频| 热99re8久久精品国产| 精品一区二区三区av网在线观看| 一a级毛片在线观看| 国产亚洲欧美98| 动漫黄色视频在线观看| 久久久久久久精品吃奶| 女人爽到高潮嗷嗷叫在线视频| 国产黄a三级三级三级人| 级片在线观看| 国产真人三级小视频在线观看| 精品一区二区三区四区五区乱码| 亚洲精品中文字幕在线视频| 1024视频免费在线观看| 在线观看免费视频日本深夜| 久9热在线精品视频| 999久久久国产精品视频| 首页视频小说图片口味搜索| 精品国产一区二区三区四区第35| 久久久久久久久免费视频了| 亚洲性夜色夜夜综合| 天天一区二区日本电影三级 | 日韩国内少妇激情av| 大型av网站在线播放| av免费在线观看网站| 亚洲成av人片免费观看| 自线自在国产av| 久久久久久亚洲精品国产蜜桃av| 日韩精品免费视频一区二区三区| av天堂久久9| 亚洲精品国产精品久久久不卡| 搡老熟女国产l中国老女人| cao死你这个sao货| 国产一级毛片七仙女欲春2 | 看黄色毛片网站| 久久中文字幕一级| 成年版毛片免费区| av网站免费在线观看视频| 亚洲人成网站在线播放欧美日韩| 久久久国产成人免费| 人人妻人人澡欧美一区二区 | 亚洲久久久国产精品| 亚洲精品av麻豆狂野| 免费高清在线观看日韩| 色老头精品视频在线观看| 桃红色精品国产亚洲av| 成人国产一区最新在线观看| 国产亚洲欧美精品永久| 欧美激情 高清一区二区三区| 国产精品野战在线观看| 国产高清有码在线观看视频 | 成人三级做爰电影| 欧美黑人欧美精品刺激| 99久久99久久久精品蜜桃| 亚洲一码二码三码区别大吗| 在线观看www视频免费| 精品国产一区二区久久| 午夜福利欧美成人| 免费在线观看日本一区| 少妇裸体淫交视频免费看高清 | 91老司机精品| 日韩视频一区二区在线观看| 国产精品国产高清国产av| 国产成人影院久久av| 18禁观看日本| 法律面前人人平等表现在哪些方面| 岛国视频午夜一区免费看| 久久精品国产综合久久久| 免费搜索国产男女视频| 精品电影一区二区在线| 成人三级做爰电影| 变态另类丝袜制服| 亚洲一区中文字幕在线| 欧美色视频一区免费| 神马国产精品三级电影在线观看 | 国产精品秋霞免费鲁丝片| 美女午夜性视频免费| 人妻丰满熟妇av一区二区三区| 国产亚洲精品久久久久5区| 夜夜看夜夜爽夜夜摸| 97超级碰碰碰精品色视频在线观看| 在线永久观看黄色视频| 成人精品一区二区免费| 免费人成视频x8x8入口观看| 国产一卡二卡三卡精品| 精品久久久久久久人妻蜜臀av | 国产亚洲精品av在线| 夜夜爽天天搞| 纯流量卡能插随身wifi吗| 精品欧美一区二区三区在线| 欧美黑人欧美精品刺激| 日韩国内少妇激情av| tocl精华| 97人妻精品一区二区三区麻豆 | 精品久久久精品久久久| 这个男人来自地球电影免费观看| 欧美一区二区精品小视频在线| 成熟少妇高潮喷水视频| 亚洲精品国产精品久久久不卡| 亚洲午夜精品一区,二区,三区| 99香蕉大伊视频| 97人妻精品一区二区三区麻豆 | 国产伦一二天堂av在线观看| 国产亚洲av嫩草精品影院| 天天躁狠狠躁夜夜躁狠狠躁| 国产日韩一区二区三区精品不卡| 国产精品精品国产色婷婷| 中文亚洲av片在线观看爽| 极品人妻少妇av视频| 久热这里只有精品99| 色综合婷婷激情| 日本 欧美在线| 国产精品影院久久| 伦理电影免费视频| 免费高清在线观看日韩| 日韩中文字幕欧美一区二区| 操美女的视频在线观看| 男女床上黄色一级片免费看| 岛国在线观看网站| av福利片在线| 国产精品久久久人人做人人爽| 99国产精品99久久久久| 这个男人来自地球电影免费观看| 久久人人精品亚洲av| 久久人妻av系列| 丝袜美腿诱惑在线| 麻豆久久精品国产亚洲av| 亚洲avbb在线观看| 精品久久久久久久毛片微露脸| 欧美成人午夜精品| 国产单亲对白刺激| 一二三四社区在线视频社区8| 久久精品亚洲熟妇少妇任你| 制服诱惑二区| 啦啦啦免费观看视频1| 国产99久久九九免费精品| 母亲3免费完整高清在线观看| 99国产极品粉嫩在线观看| 两个人看的免费小视频| 黄频高清免费视频| ponron亚洲| 国产成人啪精品午夜网站| 日韩视频一区二区在线观看| 欧美日韩黄片免| 自拍欧美九色日韩亚洲蝌蚪91| 在线天堂中文资源库| 亚洲av五月六月丁香网| 精品国产一区二区久久| 在线免费观看的www视频| 女性被躁到高潮视频| 久久久精品国产亚洲av高清涩受| 精品乱码久久久久久99久播| 又黄又粗又硬又大视频| 国产欧美日韩一区二区精品| 久久精品国产亚洲av香蕉五月| 国产亚洲精品综合一区在线观看 | 夜夜爽天天搞| 亚洲精品一区av在线观看| 久久影院123| 性色av乱码一区二区三区2| 老司机靠b影院| 欧美成人免费av一区二区三区| 亚洲精品国产精品久久久不卡| 国产亚洲av高清不卡| 久久久国产成人精品二区| 久久香蕉国产精品| 中文亚洲av片在线观看爽| 精品日产1卡2卡| 免费高清在线观看日韩| 身体一侧抽搐| 丰满人妻熟妇乱又伦精品不卡| 日本免费a在线| 丝袜在线中文字幕| 亚洲精品国产色婷婷电影| 国产精品av久久久久免费|