張 銳, 朱術(shù)云, 孫 強(qiáng), 武富強(qiáng)
(1.中國(guó)礦業(yè)大學(xué) 資源與地球科學(xué)學(xué)院,江蘇 徐州 221116; 2.河南省航空物探遙感中心,河南 鄭州 450053)
高溫后灰?guī)r單軸壓縮的分形特征研究①
張 銳1, 朱術(shù)云1, 孫 強(qiáng)1, 武富強(qiáng)2
(1.中國(guó)礦業(yè)大學(xué) 資源與地球科學(xué)學(xué)院,江蘇 徐州 221116; 2.河南省航空物探遙感中心,河南 鄭州 450053)
溫度是影響巖石物理力學(xué)性質(zhì)的重要因素,對(duì)不同溫度作用后灰?guī)r單軸壓縮的碎塊進(jìn)行統(tǒng)計(jì)分析,結(jié)果表明灰?guī)r的塊度分布是個(gè)分形,分形維數(shù)D是反映高溫后灰?guī)r破碎程度恰當(dāng)?shù)奶卣鹘y(tǒng)計(jì)量,同時(shí)D表現(xiàn)出隨溫度的增大而減小的性質(zhì)。在此基礎(chǔ)上,通過掃描電鏡分析,獲得溫度對(duì)巖石力學(xué)性質(zhì)的影響主要與組成巖石礦物性質(zhì)和內(nèi)部微觀結(jié)構(gòu)有關(guān),而不同溫度的作用會(huì)影響巖石礦物組成成分和巖石的晶格結(jié)構(gòu),在灰?guī)r的掃描電鏡結(jié)果對(duì)比中已發(fā)現(xiàn)微觀形貌特征的差異,這可從內(nèi)在機(jī)制方面解釋不同溫度下灰?guī)r分維值變化特征。
高溫; 單軸壓縮; 分形維數(shù); 掃描電鏡
巖石是一種結(jié)構(gòu)復(fù)雜的地質(zhì)材料,無論在爆破還是在機(jī)械作用下其損傷破壞的碎塊塊度都看似雜亂無章。1986 年D.L.Turcotte 曾對(duì)許多種地質(zhì)材料在不同破碎方式下的碎塊塊度分布進(jìn)行了統(tǒng)計(jì)分析,得出塊度分布是個(gè)分形[1]。國(guó)內(nèi)外不少學(xué)者對(duì)相關(guān)巖石破碎進(jìn)行了研究[2-7],但對(duì)不同溫度作用后灰?guī)r的破碎分形特征研究相對(duì)較少。為此,本文在對(duì)高溫后灰?guī)r在單軸壓縮破壞方式下的塊度進(jìn)行統(tǒng)計(jì)分析基礎(chǔ)上,結(jié)合微觀結(jié)構(gòu),采用分形方法對(duì)其進(jìn)行破壞特征探討,以期得到一些有益的結(jié)果。
將灰?guī)r加工成直徑和高度分別為50 mm和100 mm的標(biāo)準(zhǔn)圓柱體試樣,選用中國(guó)輕工業(yè)陶瓷研究所窯爐開發(fā)中心研制的GWD-02A型高溫爐進(jìn)行高溫加熱,溫度取值為25℃(常溫)、50 ℃、100 ℃、200 ℃、340 ℃、400 ℃、450 ℃、500 ℃、550 ℃和600 ℃。每個(gè)溫度下灰?guī)r試樣選取兩組在RMT-150B 型伺服試驗(yàn)機(jī)上進(jìn)行單軸壓縮試驗(yàn),為減小端部效應(yīng)在每組灰?guī)r試樣兩端添加剛性墊片。軸向加載時(shí)采用位移控制進(jìn)程,加載速率為0.002 mm/s。
灰?guī)r試樣的破壞是先從試樣內(nèi)部開始,主要是在外部軸向荷載作用下試樣發(fā)生變形,其黏聚力逐步喪失,并逐漸在試樣內(nèi)部產(chǎn)生新的微裂紋,同時(shí)也使試樣內(nèi)部的原生裂紋再擴(kuò)展,在不斷加荷載的過程中,這種狀況不斷發(fā)展,導(dǎo)致灰?guī)r試樣的最終破壞[8-9]。按照加熱的順序依次對(duì)灰?guī)r試樣進(jìn)行單軸壓碎試驗(yàn),試驗(yàn)中灰?guī)r試樣表現(xiàn)出差異現(xiàn)象。試樣受到軸向載荷發(fā)生破壞,溫度低時(shí)試樣多發(fā)生軸向劈裂,爆裂強(qiáng)度大。有時(shí)試樣呈現(xiàn)炸開狀態(tài)(圖1),但是高溫時(shí)壓裂爆開的強(qiáng)度明顯變小,出現(xiàn)劈理數(shù)量也變少。
試驗(yàn)結(jié)束后完整地收集每一組灰?guī)r碎塊,將灰?guī)r碎塊按質(zhì)量相近的原則分組,稱量每組碎塊的質(zhì)量及計(jì)算每組碎塊的塊數(shù)(圖2),稱量?jī)x器采用精度為0.1 g的電子秤。
圖1 不同溫度下灰?guī)r抗壓強(qiáng)度試驗(yàn)破壞特征Fig.1 Failure characteristics of the limestone in compressive strength test at different temperatures
巖石破碎過程與巖塊形狀具有自相似性,碎塊尺度分布具有冪函數(shù)特征,是統(tǒng)計(jì)意義上的分形。因此由分形的基本定義:
圖2 灰?guī)r分組示意圖Fig.2 Groups of the limestone fragments
(1)
式中,Ri是巖塊的特征尺度;Ni是特征尺度Ri的巖塊數(shù)目;C是比例常數(shù);D是分形維數(shù)。
令R為巖塊的特征尺度,N為特征尺度大于等于R的巖塊數(shù)目,分形定義被推廣到連續(xù)的情形:N=CR-D。假設(shè)塊度分布是分形分布,則按尺度-頻率關(guān)系有:
(2)
其中Rmax是碎塊的最大特征尺度;N0是具有最大特征尺度的碎塊數(shù)[10-12]。
單軸壓縮的碎塊具有很大的不規(guī)則性,為了方便在實(shí)驗(yàn)統(tǒng)計(jì)分析時(shí)采用巖石碎塊的質(zhì)量-頻率的分布的分形維數(shù),即:
(3)
式中,M為碎塊質(zhì)量;N為質(zhì)量大于等于M的碎塊數(shù);Mmax為最大碎塊質(zhì)量;N0為具有最大質(zhì)量Mmax的碎塊數(shù);b為質(zhì)量-頻率分布指數(shù)。近似化處理下碎塊的質(zhì)量與尺寸存在一定的相關(guān)性:M∞R3,所以D=3b[11]。
由實(shí)驗(yàn)統(tǒng)計(jì)數(shù)據(jù)繪制不同溫度下灰?guī)r分維值圖(圖3),可以發(fā)現(xiàn)灰?guī)r碎塊的分維數(shù)在1.2~2.5之間。同時(shí)還可以看出灰?guī)r碎塊的分維數(shù)和溫度分布大致呈線性反比關(guān)系,相關(guān)系數(shù)R2=0.921 3。實(shí)驗(yàn)統(tǒng)計(jì)數(shù)據(jù)和單軸壓縮實(shí)驗(yàn)灰?guī)r試樣表現(xiàn)出來的差異現(xiàn)象相符合。
表1 50 ℃灰?guī)r分維計(jì)算
圖3 不同溫度下灰?guī)r分維值分布Fig.3 Bistribution of limestone fractal dimension value at different temperatures
分析發(fā)現(xiàn)分形維數(shù)大的試樣,碎塊多,體積小,破碎程度高;分形維數(shù)小的試樣,碎塊少,體積大,破碎程度低。結(jié)合實(shí)驗(yàn)試樣壓碎的現(xiàn)象可得到灰?guī)r分形維數(shù)和溫度存在較好的負(fù)相關(guān)性。
溫度對(duì)巖石力學(xué)性質(zhì)的影響主要與組成巖石礦物性質(zhì)和內(nèi)部微觀結(jié)構(gòu)有關(guān),不同溫度的作用會(huì)影響巖石礦物組成成分和巖石的晶格。巖石受熱后,由于組成巖石的各種礦物熱膨脹不同,礦物顆粒邊界會(huì)出現(xiàn)裂紋,即巖石的熱開裂現(xiàn)象。研究結(jié)果發(fā)現(xiàn),巖石發(fā)生熱開裂后,其內(nèi)部形成新的裂隙網(wǎng)絡(luò)。熱開裂能改變巖石內(nèi)部的微結(jié)構(gòu),既增加裂隙的長(zhǎng)度,又增加裂隙的密度[14]。通過對(duì)巖石微結(jié)構(gòu)的分析,可以觀測(cè)到巖石微裂隙的變化。在同一放大倍數(shù)的情況下,采用掃描電鏡技術(shù)(SEM)對(duì)石灰?guī)r在不同溫度下微觀形貌特征進(jìn)行觀察研究(圖4)。
圖4 不同溫度下灰?guī)r內(nèi)部結(jié)構(gòu)變化對(duì)比圖Fig.4 Internal structural change of lirnestone at different temperatures
從圖4中可以看出,在常溫下巖石礦物表面比較平整,礦物顆粒整齊、緊密且呈塊狀。200 ℃時(shí)巖石礦物表面已經(jīng)發(fā)生變化,表面變得不平整,膠結(jié)物開始分解。570 ℃時(shí)出現(xiàn)了跨越顆粒的較長(zhǎng)、較寬裂隙,礦物表面更加粗糙,碎屑物質(zhì)增多。
試驗(yàn)還發(fā)現(xiàn)常溫下石灰?guī)r呈灰黑色,高溫后石灰?guī)r試樣變?yōu)闇\灰地,分析認(rèn)為隨著溫度的升高組成石灰?guī)r的碳酸鈣、碳酸鎂等礦物顆粒發(fā)生了氧化作用使得顏色變淺[15]。同時(shí)高溫對(duì)石灰?guī)r的強(qiáng)度有弱化作用,從而使灰?guī)r表現(xiàn)出由脆性向塑性的漸次演化。
(1) 高溫下單軸壓縮實(shí)驗(yàn)灰?guī)r試樣表現(xiàn)出差異性,即溫度低時(shí)試樣破碎程度高,碎塊多且體積小,高溫時(shí)試樣破碎程度低,碎塊少且體積大;
(2) 灰?guī)r碎塊的分維數(shù)和溫度的分布呈反比關(guān)系,根據(jù)散點(diǎn)圖采用線性回歸方法擬合曲線為:y=-0.001 9x+2.506 2,相關(guān)系數(shù)很高。
(3) 結(jié)合灰?guī)r在不同溫度下掃描電鏡對(duì)比結(jié)果,高溫會(huì)影響巖石的礦物成分和內(nèi)部微結(jié)構(gòu),使巖石的力學(xué)性質(zhì)降低,顏色變淺,導(dǎo)致分維值變化。
References)
[1] 高峰,趙鵬.巖石破碎程度的分形度量[J].力學(xué)與實(shí)踐,1994,16(2):16-17.GAO Feng,ZHAO Peng.Rock Crushing Degree of Fractal Measurement[J].Mechanics in Engineering,1994,16(2):16-17.(in Chinese)
[2] 李德,李守巨,于申,等.壓頭作用下巖石破碎過程分形特性研究[J].巖土工程學(xué)報(bào),2013,35(增2):314-319.LI De,LI Shou-ju,YU Shen,et al.Fractal Characteristics of Rock Fragmentation Process Induced by Indenters[J].Chinese Journal of Geotechnical Engineering,2013,35(Supp2):314-319.(in Chinese)
[3] 杜晶,李夕兵,宮鳳強(qiáng),等.巖石沖擊實(shí)驗(yàn)碎屑分類及其分形特征[J].礦業(yè)研究與開發(fā),2010,30(5):20-22,84.DU Jing,LI Xi-bing,GONG Feng-qiang,et al.Classification and Fractal Characteristics of the Fragments from Impacting Experiment of Rock[J].Mining Research and Development,2010,30(5):20-22,84.(in Chinese)
[4] 謝長(zhǎng)進(jìn),王家來.結(jié)構(gòu)性巖體的爆破破碎分形[J].工程爆破,1998,4(3):1-3.XIE Chang-jin,WANG Jia-lai.Fractal Fragmentation of Structural Rockmass[J].Engineering Blasting,1998,4(3):1-3.(in Chinese)
[5] 李博,孫強(qiáng),王思源,等.單軸加載下砂巖聲發(fā)射特征的試驗(yàn)分析[J].地震工程學(xué)報(bào),2013,35(1):114-118.LI Bo,SUN Qiang,WANG Si-yuan,et al.Experimental Analysis of the Acoustic Emission Characteristics of Sandstone Specimens Under Uniaxial Loading Test[J].China Earthquake Engineering Journal,2013,35(1):114-118.(in Chinese)
[6] 柴肇云,康天合,陳維毅,等.泥巖壓剪破壞裂隙演化規(guī)律及其分形特征[J].巖石力學(xué)與工程學(xué)報(bào),2011,30(增2):3844-3850.CHAI Zhao-yun,KANG Tian-he,CHEN Wei-yi,et al.Fracture Evolutionary Rules of Mudstone under Coupled Compression and Shear and Its Fractal Characteristics[J].Chinese Journal of Rock Mechanics and Engineering,2011,30(Supp2):3844-3850.(in Chinese)
[7] 魏國(guó)安.閩南風(fēng)化凝灰?guī)r強(qiáng)度特征的試驗(yàn)研究[J].地震工程學(xué)報(bào),2013,35(3):625-630.WEI Guo-an.Experimental Analysis on the Strength Properties of Weathering Tufflava in the South Fujian Province[J].China Earthquake Engineering Journal,2013,35(3):625-630.(in Chinese)
[8] 宋衛(wèi)東,明世祥,王欣,等.巖石壓縮損傷破壞全過程試驗(yàn)研究[J].巖石力學(xué)與工程學(xué)報(bào),2010,29(增2):4180-4187.SONG Wei-dong,MING Shi-xiang,WANG Xin,et al.Experimental Study of Rock Compression-damage-failure Process[J].Chinese Journal of Rock Mechanics and Engineering,2010,29(Supp2):4180-4187.(in Chinese)
[9] 徐濤,唐春安,張哲,等.單軸壓縮條件下脆性巖石變形破壞的理論、試驗(yàn)與數(shù)值模擬[J].東北大學(xué)學(xué)報(bào):自然科學(xué)版,2003,24(1):87-90.XU Tao,TANG Chun-an,ZHANG Zhe,et al.Under the Conditions of Uniaxial Compression of Brittle Rock Deformation and Failure Theory Experiment and Numerical Simulation[J].Journal of Northeastern University:Natural Science,2003,24(1):87-90.(in Chinese)
[10] 高峰,謝和平,巫靜波.巖石損傷和破碎相關(guān)性的分形分析[J].巖石力學(xué)與工程學(xué)報(bào),1999,18(5):503-506.GAO Feng,XIE He-ping,WU Jing-bo.Fractal Analysis of Rock Damage and Breakage Correlation[J].Chinese Journal of Rock Mechanics and Engineering,1999,18(5):503-506.(in Chinese)
[11] 馬新,郭忠印,楊群.基于分形方法的瀝青混合料抗剪性能研究[J].重慶交通大學(xué)學(xué)報(bào):自然科學(xué)版,2009,28(5):873-876.MA Xin,GUO Zhong-yin,YANG Qun.Shear Performance of Asphalt Mixtures Baded on Fractal Method[J].Journal of Chongqing Jiaotong University:Natural Science,2009,28(5):873-876.(in Chinese)
[12] 謝和平.高峰,周宏偉,等.巖石斷裂和破碎的分形研究[J].防震減災(zāi)工程學(xué)報(bào),2003,23(4):1-9.XIE He-ping,GAO Feng,ZHOU Hong-wei,et al.Fractal Study of Rock Fracture and Broken[J].Journal of Disaster Prevention and Mitigation Engineering,2003,23(4):1-9.(in Chinese)
[13] 高峰,謝和平,趙鵬.巖石塊度分布的分形性質(zhì)及細(xì)觀結(jié)構(gòu)效應(yīng)[J].巖石力學(xué)與工程學(xué)報(bào),1994,13(3):240-246.GAO Feng,XIE He-ping,ZHAO Peng.Fractal Nature and Microscopic Structure Effect of Rock Fragmentation Distribution[J].Chinese Journal of Rock Mechanics and Engineering,1994,13(3):240-246.(in Chinese)
[14] 秦本東,羅運(yùn)軍,門玉明,等.高溫下石灰?guī)r和砂巖膨脹特性的試驗(yàn)研究[J].巖土力學(xué),2011,32(2):417-422,473.QIN Ben-dong,LUO Yun-jun,MEN Yu-ming,et al.Experimental Research on Swelling Properties of Limestone and Sandstone at High Temperature[J].Rock and Soil Mechanics,2011,32(2):417-422,473.(in Chinese)
[15] 謝衛(wèi)紅,李順才,肖永紅.溫度對(duì)巖石損傷和變形破壞的影響[C]//第十三屆全國(guó)結(jié)構(gòu)工程學(xué)術(shù)會(huì)議論文集.2004:412-415.XIE Wei-hong,LI Shun-cai,XIAO Yong-hong.Effects of Temperature on Damage and Fracture of Rock[C]//The Thirteenth National Conference on Structural Engineering.2004:412-415.(in Chinese)
Fractal Characteristics of Limestone after High Temperature under Uniaxial Compression
ZHANG Rui1, ZHU Shu-yun1, SUN Qiang1, WU Fu-qiang2
(1.SchoolofResourcesandEarthScience,ChinaUniversityofMiningandTechnology,Xuzhou,Jiangsu221116,China;2.HenanAeroGeophysicalSurveyandRemoteSensingCenter,Zhengzhou,Henan450053,China)
Temperature is an important factor that influences the physical and mechanical properties of rocks.Many scholars have studied various types of rock crushing, but few have examined the characteristics of crushed limestone previously exposed to different temperatures.This study involved a heating limestone specimen, 50 mm in diameter and 100 mm in height, in a high temperature furnace heating cylinder before performing a uniaxial crushing experiment.Various phenomena were observed including axial splitting and bursting strength at low temperature.However, the strength of fracturing and splitting at high temperature decreased significantly as cleavage was simultaneously reduced.Sample pieces were completely reassembled and similarly sized fragments grouped together.Fractal mathematical theory applied to the analysis of rock fragments indicated that limestone block distribution is a fractal.Therefore, the fractal dimensionDwas considered an appropriate statistic to represent the characteristics of limestone crushed after exposure to high temperatures.The fractal dimensionDhas a negative correlation with temperature where it decreases with increasing temperature.The experimental data was represented in the rectangular coordinate system by plotting temperature on theXaxis and fractal dimension on theYaxis in a scatter plot.Linear regression used for curve fitting the data resulted iny=0.001 9+2.506 2xand a very large correlation coefficient.The observed influence of temperature on limestone mechanical properties mainly involved mineral physical properties and changes in microstructure.Mineral composition and crystal lattice structure may change when a rock is exposed to different temperatures.Fragment comparison with scanning electron microscope (SEM) revealed that limestone subjected to high temperature had different microstructural characteristics than untreated limestone.Room temperature limestone had a smooth surface.Limestone subjected to high temperatures had an uneven surface and partially broken cement.The rock surface appeared to contain long, wide fissures across grains, rough mineral grain surfaces, and increased detrital material.These characteristics reduced the mechanical properties and caused the change in fractal dimension.This internal mechanism in the limestone explains why fractal dimension decreases with increased temperature.In addition, limestone samples were gray-black at room temperature and light gray when heated to high temperatures.High-temperature exposure caused calcium carbonate formation and magnesium carbonate oxidation that led to the observed color change.
high temperature; uniaxial compression; fractal dimension; scanning electron microscopy (SEM)
2014-12-27
國(guó)家重點(diǎn)基礎(chǔ)研究發(fā)展計(jì)劃(973)項(xiàng)目(2013CB036003);中國(guó)博士后科學(xué)基金(2014T70669)
張 銳(1990-),男,山東滕州人,碩士研究生,主要從事煤礦工程地質(zhì)和巖土工程方面的學(xué)習(xí)工作.E-mail:541530487@qq.com
TU452; TD315
A
1000-0844(2015)02-0541-05
10.3969/j.issn.1000-0844.2015.02.0541