• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Simulation of the Equatorially Asymmetric Mode of the Hadley Circulation in CMIP5 Models

    2015-06-09 21:37:22FENGJuanLIJianpingZHUJianleiLIFeiandSUNCheng
    Advances in Atmospheric Sciences 2015年8期

    FENG Juan,LI Jianping,ZHU Jianlei,LI Fei,and SUN Cheng

    1College of Global Change and Earth System Science,Beijing Normal University,Beijing 100875

    2State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029

    3Joint Center for Global Change Studies,Beijing 100875

    4Department of Lower Atmosphere Observation Research,Institute of Atmospheric Physics, Chinese Academy of Sciences,Beijing 100029

    Simulation of the Equatorially Asymmetric Mode of the Hadley Circulation in CMIP5 Models

    FENG Juan1,2,3,LI Jianping?1,3,ZHU Jianlei2,LI Fei4,and SUN Cheng1,3

    1College of Global Change and Earth System Science,Beijing Normal University,Beijing 100875

    2State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029

    3Joint Center for Global Change Studies,Beijing 100875

    4Department of Lower Atmosphere Observation Research,Institute of Atmospheric Physics, Chinese Academy of Sciences,Beijing 100029

    The tropical Hadley circulation(HC)plays an important role in influencing the climate in the tropics and extra-tropics. The realism of the climatological characteristics,spatial structure,and temporal evolution of the long-term variation of the principal mode of the annual mean HC(i.e.,the equatorially asymmetric mode,EAM)was examined in model simulations from the Coupled Model Intercomparison Project Phase 5(CMIP5).The results showed that all the models are moderately successful in capturing the HC’s climatological features,including the spatial pattern,meridional extent,and intensity,but not the spatial or temporal variation of the EAM.The possible reasons for the poor simulation of the long-term variability of the EAM were explored.None of the models can successfully capture the differences in the warming rate between the tropical Southern Hemisphere(SH)and Northern Hemisphere(NH),which is considered to be an important driver for the variation of the AM.Most of the models produce a faster warming in the NH than in the SH,which is the reverse of the observed trend. This leads to a reversed trend in the meridional gradient between the SH and NH,and contributes to the poor simulation of EAM variability.Thus,this aspect of the models should be improved to provide better simulations of the variability of the HC.This study suggests a possible reason for the poor simulation of the HC,which may be helpful for improving the skill of the CMIP5 models in the future.

    tropical Hadley circulation,equatorially asymmetric mode,CMIP5,sea surface temperature

    1.Introduction

    The Hadley circulation(HC)is the largest atmospheric circulation system on the planet,and is defined as the zonalmean meridional mass circulation in the atmosphere bounded approximately by 30?S and 30?N.The HC is a thermally driven meridional circulation with poleward mass transport in the upper troposphere and equatorward mass transport in the lower troposphere(Quan et al.,2004).The HC plays an essential role in influencing the climate at low,mid,and high latitudes,and is thus of great importance to the global climate(e.g.,Lindzen,1994;Chang,1995;Hou,1998;Diaz and Bradley,2004;Feng et al.,2013).

    Recently,the long-term variability of the HC has been studied intensively,with the width and intensity of the HC being the key issues(Hu and Zhou,2009).Many studies,using a variety of observational and reanalysis data,have consistently shown that the width of the HC shows an obvious poleward expansion trend,and the rate of expansion has been quantified(Fu et al.,2006;Hudson et al.,2006;Frierson et al.,2007;Lu et al.,2007;Seidel et al.,2008;Johanson and Fu,2009;Hu et al.,2011).In terms of intensity,observations show enhanced average annual HC intensity in the 1990s(Chen et al.,2002;Wielicki et al.,2002).The significant increasing trend of the Northern Hemisphere(NH)winter HC can be traced back to the 1950s(Quan et al.,2004; Ma and Li,2008;Hu and Zhou,2009).However,the intensity of the boreal summer HC shows no obvious trend(Quan et al.,2004;Feng et al.,2011).Furthermore,the intensity of the HC since 1979 has been examined(Stachnik and Schumacher,2011;Nguyen et al.,2013),revealing inconsistent trends among different datasets.

    In addition to its intensity and width,the spatial struc-ture of the long-term variability is another important aspect of the HC,and has received considerable attention in recent years.The annual cycle of the HC consists of equatorially symmetric and asymmetric parts(Dima and Wallace,2003). More recently,the first principal mode of the long-term variability of the HC was found to be equatorially asymmetric in both boreal winter and summer,with variability that is considered to be closely related to the sea surface temperature (SST)over the Indo-Pacific warm pool(IPWP;Ma and Li, 2008;Feng et al.,2011).A further study by Li and Feng (2015)indicated that the faster warming of SST within the IPWP in the Southern Hemisphere(SH),as compared to the NH,is responsible for the variation of the equatorially asymmetric mode(EAM)in both boreal winter and summer.Feng et al.(2013)also studied the long-term variability of the boreal spring HC,and reported that the structure of the principal mode of the HC is also equatorially asymmetric.They found that the long-term strengthening trend in the AM contributes to frequent droughts in the extra-tropics during boreal spring. These studies raise the possibility that the spatial structure of the principal mode of the HC is independent of its climatological structure,and that the unequal warming in the tropical NH and SH may contribute to its long-term variability.This possibility is further supported by the findings of Feng and Li (2013),who investigated the influence of different types of El Ni?no–Southern Oscillation events on the HC,and revealed that the spatial structure of the SST meridional gradient is responsible for the spatial anomalies of the HC.

    The above review of the present status of HC research suggests that the variability of the HC is complex.Given that the variation of the HC is closely linked to changes in global atmospheric circulation,and has major impacts on weather and climate on the global scale,it is important to understand the long-term variability of the HC as well as its future changes.Of more practical importance,if numerical models can successfully simulate the variation of the HC, this would be of great interest for identifying and understanding the changes in the HC,and would also be important for predicting future climate change.Recent work by Hu et al.(2013)discussed Coupled Model Intercomparison Project Phase 5(CMIP5)simulations of the poleward expansion of the HC,and reported that the simulated poleward expansion in CMIP5 is much weaker than in observations.However, few studies evaluating model performance have focused on the spatial structure of the principal mode of long-term HC variability.Such an approach would not only improve understanding of the variability of the HC,but would also provide some reference points for improvements to climate models.

    CMIP5 has provided a comprehensive evaluation of stateof-the-art multi-model datasets of coupled general circulation models(CGCMs),and has proved to be a useful benchmark for model sensitivity and predictability experiments to SST forcing(Taylor et al.,2012).However,current climate models still possess clear deficiencies in simulating the variability of climatic modes(Guo et al.,2013;Zheng et al.,2013; Zhu et al.,2013).Although considerable advances have been made in improving the performance of CGCMs,relatively little effort has been directed toward obtaining a proper simulation of the long-term variation of climatic circulation.In the present study,the performance of CGCMs in simulating the complex long-term variation of the HC,in particular the primary mode of the annual mean HC,is examined with the aim of identifying the possible causes of unsatisfactory simulations,and thus contribute to the improvement of current CGCMs.

    The remainder of the paper is organized as follows.Section 2 describes the models,observational datasets,and methods used in the study.Section 3 outlines the performance of CMIP5 models in reproducing the spatial and temporal evolution of the EAM of the HC.Section 4 discusses the possible causes of unsatisfactory simulation of the EAM.And finally, conclusions and further discussion are provided in section 5.

    2.Models,observationaldatasets,and methodology

    2.1.Models

    CMIP5 has brought together more than 20 international climate modeling centers to conduct a comprehensive set of long-term simulations of 20th century climate and different climate change scenarios in the 21st century.CMIP5 is a standard experimental protocol for global CGCMs.It provides a community-based infrastructure in support of climate model diagnosis,intercomparison,validation,data access, and documentation.

    The simulations from 10 coupled models developed at different modeling centers(see Table 1)were used in the present study.Models were selected on the basis of data availability and model diversity.Considering that the simulation periods for each model are different,the model simulations of monthly meridional wind and surface temperature from January 1961 to December 2000 were chosen to provide a common study period.Multiple simulations are available from most models,with different realizations based on different initial conditions,but only the first standard simulations were used in this study.

    2.2.Observational datasets

    The reanalysis data used in this study were from the National Centers for Environmental Prediction/National Center for Atmospheric Research(NCEP/NCAR)dataset,from the late 1940s to the present day(Kalnay et al.,1996).The 40-year European Centre for Medium-Range Weather Forecasts Reanalysis(ERA40)from 1958 to mid-2002(Uppala et al., 2005)was also used to verify the long-term variation of the HC.Two SST datasets were extracted:one from the Met Office Hadley Centre Sea Ice and SST dataset version 1,on a 1?×1?latitude–longitude grid(HadISST;Rayner et al., 2003),and the other from the Improved Extended Reconstruction SST dataset(ERSST;Smith and Reynolds,2004) with 2?×2?horizontal resolution,to explore and con firm the impacts of tropical SST on the long-term variability of the HC.Based on the coverage and availability of the modelsimulations and reanalysis data,the period 1961–2000 was selected to examine the long-term variability of the principal mode of the annual mean HC,and to evaluate the simulation performance of the CMIP5 models.

    Table 1.List of the CMIP5 models used in this study.

    2.3.Methodology

    The HC was characterized by the mass stream function (MSF)of the mean meridional circulation(MMC).The MSF was obtained by vertically integrating the zonal-mean meridional winds in the conventional way(Li,2001),and was defined by

    where R is the mean radius of the earth,φis the latitude,[ˉv]is the zonal mean meridional wind,g is the gravitational acceleration,and p the pressure.The operatorsˉand[]represent temporal and zonal averaging,respectively.As the annual mean HC has a two-cell structure and tends to be symmetric about the equator(Figs.1 and 2),and to avoid one cell dominating the calculated intensity,the HC intensity(HCI)was calculated separately in the NH and SH,and defined as the maximum of the absolute value of the annual mean MSF in each hemisphere.The locations of the poleward edges and ascending branch of the HC were identified as the latitudes where the MSF reached zero at 500 hPa.These were obtained using linear interpolation,and then the width of the HC could be derived from the differences between the poleward edge locations in each hemisphere.

    EOF analysis was employed to determine the principal mode of year-to-year variability of the annual mean MMC. North’s rule was employed to determine whether the EOF modes could be significantly separated.That is,the adjacent significant separated modes of the EOF’s eigenvalues should satisfy the relation

    whereλis the eigenvalue,and N is the valid degrees of freedom.The relationship between the principal mode of the annual mean HC and SST was investigated by correlation analysis.Linear trends were computed using least-squares linear regression.The statistical significance of the values of the correlations and linear trends was assessed by means of the two-sided Student’s t-test.

    3.Performance of CMIP5 models in reproducing the EAM of the annual mean HC

    3.1.Climatological HC simulated by CMIP5 models

    The southern component of the HC based on ERA40 data is more intense than that based on NCEP/NCAR data,but nonetheless there is good agreement between the spatial patterns of the HC(Figs.1a and b).The northern and southern components of the HC have equivalent extent and magnitude, with descending branches around 30?latitude in each hemisphere and an ascending branch near the equator.

    Table 2.Locations of the southern and northern edges and the ascending branch of the climatological Hadley circulation(HC),together with its extent and intensity(HCI).The HCIs of both the Southern Hemisphere(SH)and Northern Hemisphere(NH)are shown.The numbers in parentheses are the corresponding standard deviations;R1 is the correlation of the PCs of the long-term variability of the annual mean HC between observations and models;R2 is the spatial correlation of SST trends between observations and models within the range (20?S–20?N,0?–358?E).

    3.2.Evaluation of the simulated EAM of long-term HC variability

    In this section,the spatial pattern of the principal mode of the annual mean HC is analyzed.The explained variance of the first leading mode of the long-term variability of the HC is close to 50%in boreal winter(Ma and Li,2008),spring (Feng et al.,2013),and summer(Feng et al.,2011),giving us confidence that the first leading mode captures the main variation of the HC.Large differences in the amplitude and structure of the second-and higher-order modes are found in different reanalyses(Feng et al.,2013;Li and Feng,2015).In addition,in the present study,large discrepancies are apparent in the second and third modes of the annual mean MSF calculated from ERA40 and NCEP/NCAR data,and the second and third modes in the NCEP/NCAR data are not fully separable according to North’s rule(not shown).Therefore, only the first leading mode,together with its variability,will be discussed.

    The first principal mode of the annual mean HC,in both the NCEP/NCAR and EAR40 data,displays an EAM dominating the variability of the annual mean HC.Note that thismode is consistently observed in the two reanalysis datasets, and explains~50%of the variance of the annual mean HC, indicating that this mode can be reliably identified.In fact, this mode is consistently observed in four reanalyses[i.e., NCEP/NCAR,ERA,JRA25(Japanese 25-year Reanalysis) and the NCEP-DOE(Department of Energy)Reanalysis] within the period 1979–2000 with an explained variance of around 50%,further establishing the robustness of our results.The stronger component of this mode is centered to the north of the equator,extending from 10?S to 30?N.The ascending branch of this component is located to the south of the equator,with a descending branch in the NH.In contrast, the counterpart in the SH is weak in both extent and magnitude,and has its descending branch at~30?S.Note that the first principal mode here is similar to those observed during boreal winter(Ma and Li,2008)and spring(Feng et al., 2013).

    The principal components(PCs)of the EAM show similar significant upward trends in both the NCEP/NCAR and ERA40 dataset(Figs.1e and f),indicating a strengthening of the EAM during 1961–2000,which would intensify the northern component of the HC.The PCs determined fromthe two reanalysis datasets are highly correlated,with a correlation coefficient of 0.91.However,there are many uncertainties in the PCs from the CMIP5 model simulations(Fig. 5).Even those models that successfully simulate the spatial structure of the EAM have PCs with insignificant trends, and none of the correlation coefficients between their interannual variation and that in the reanalyses is significant(see R1 in Table 2).A similar result is seen when the low-latitude band is analyzed,except the significant downward trend in FGOALS-s2 vanishes(not shown).This result implies that none of the models can simulate the long-term trend or the interannual variation of the first leading mode of the annual mean HC variability.

    4.Possible causes of the poor simulation of the EAM of the HC

    The above results indicate that the CMIP5 models perform poorly in simulating the leading mode of the annual mean HC’s long-term variability.In this section,we explore the possible causes of this poor performance for the purposeof providing some reference points for improving the simulation skill of these models.The HC is a thermally driven meridional circulation,and its variation is closely linked to the underlying thermal structure(Lindzen and Nigam,1987; Hou and Lindzen,1992).Therefore,the potential contribution of tropical SST to the variation of the EAM is examined.

    First,the distribution of the correlation between the PCs of the EAM and SST is considered,as well as the warming trend of SST during 1961–2000,based on ERSST and HadISST data(Fig.6).Significant positive correlation over the south of the eastern tropical Pacific,tropical Atlantic,and in the IPWP is apparent(Figs.6a and b).The areas of significant correlation overlap the regions with a significant warming trend(Figs.6c and d),indicating that the interannual variation of the PCs is associated with the variation of tropical SST.Note that the warming of tropical SST is equatorially asymmetric(i.e.a stronger signal in the SH than in the NH),and to further explore this,we next consider the temporal evolution of SST averaged over the tropical region in each hemisphere(20?S–0?and 0?–20?N)(Fig.7).Based onERSST data,both the southern and northern components of averaged SST exhibit signi ficant warming trends,with coefficients of 1.23?C(100 yr)-1and 0.79?C(100 yr)-1respectively from 1961 to 2000.Similarly,based on HadISST,the results are 1.15 and 0.82?C(100 yr)-1.That is,the warming in the tropical SH is more rapid than in the NH in both reanalyses,and this is also clear in their difference(Figs.7e and f). Their difference[i.e.SST in(20?S–0?)minus SST in(0?–20?N)]shows an obvious upward trend,with a coefficient of 0.45?C(100 yr)-1and 0.34?C(100 yr)-1based on ERSST and HadISST data respectively,both statistically significant at the 0.05 confidence level,indicating that the meridional thermal gradient of the tropics in each hemisphere reduced during 1961–2000.As shown theoretically by Feng et al. (2013),the anomalous spatial pattern of HC is closely linked to the structure of the meridional thermal gradient.Furthermore,they also established that the location of the ascending branch of the anomalous HC corresponds exactly to the position where the SST meridional gradient passes through zero from positive to negative.The possible influence on the HC of the SST difference between the southern and northern tropics can be further seen from the composite difference in the HC MSF between the years of larger and smaller SST difference(Fig.8).The variation of the tropical hemisphere gradient is associated with an anomalous vertical circulation with anomalous ascent located in the SH,similar to the EAM of the HC.This implies that the difference between the tropical SH and NH SST contributes to the intensity of the EAM.

    Accordingly,we further explore the long-term trends of SST in the CMIP5 model results(Fig.9).The significant warming trends in the IPWP and tropical Atlantic are captured well by all the models,but not the warming in the south of the eastern tropical Pacific.In addition,the cooling in the north of the central Pacific is not reproduced in all the models.The quality of the simulation of the long-term trend of SST within the tropics(i.e.20?S–20?N,0?–360?E)is further seen in the spatial correlation coefficients between the observations(based on ERSST;R2 in Table 2)and the models.The correlation coefficients are all above 0.34, indicating a reasonable response of the model simulations to the underlying thermal forcing.

    The discussion above indicates that most of the simulations of the underlying thermal forcing in CMIP5 models are inconsistent with observations,which may explain the poor simulation of the spatial structure and temporal evolution of the EAM.

    5.Discussions and Conclusion

    This study did not identify why the models cannot reproduce the warming differences between the tropical SH and NH,since the variation of the underlying SST is a complex issue that is not only linked to atmospheric processes,but is also affected by processes in the interior ocean,as well as air–sea interaction.Nevertheless,a possible cause of the poor simulation by CMIP5 models of the long-term variability of the principal mode of the annual mean HC is highlighted in this paper,and we hope the resultwillbe helpfulin improving CMIP5 model simulations.

    Acknowledgements.This work was jointly supported by the National Natural Science Foundation of China(Grant Nos. 41205046 and 41475076),the 973 Program(Grant No.2013CB 430203).We thank the World Climate Research Programme’s Working Group on Coupled Modeling,which is responsible for CMIP,and the climate modeling groups(listed in Table 1 of this paper)for producing and making available their model output.

    REFERENCES

    Bao,Q.,and Coauthors,2013:The flexible global oceanatmosphere-land system model,version 2:FGOALS-s2.Adv. Atmos.Sci.,30,561–576,doi:10.1007/s00376-012-2113-9.

    Bentsen,M.,and Coauthors,2012:The Norwegian earth system model,NorESM1-M—part 1:Description and basic evaluation.Geosci.Model Dev.Discuss.,5,2843–2931.

    Chylek,P.J.,J.Li,M.K.Dubey,M.Wang,and G.Lesins,2011: Observed and model simulated 20th century Arctic temperature variability:Canadian Earth system model CanESM2. Atmos.Chem.Phys.Diss.,11,22 893–22 907.

    Chang,E.K.M.,1995:The influence of Hadley circulation intensity changes on extratropical climate in an idealized model.J. Atmos.Sci.,52,2006–2024.

    Chen,J.Y.,B.E.Carlson,and A.D.Del Genio,2002:Evidence for strengthening of the tropical general circulation in the 1990s.Science,295,838–841.

    Diaz,H.F.,and R.Bradley,2004:The Hadley Circulation: Present,Past and Future.Kluwer Academic Publishers,The Netherlands,511 pp.

    Dima,I.M.,and J.M.Wallace,2003:On the seasonality of the Hadley cell.J.Atmos.Sci.,60,1522–1527.

    Feng,J.,and J.P.Li,2013:Contrasting impacts of two types of ENSO on the boreal spring Hadley circulation.J.Climate,26,4773–4789.

    Feng,R.,J.P.Li,and J.C.Wang,2011:Regime change of the boreal summer Hadley circulation and its connection with the tropical SST.J.Climate,24,3867–3877.

    Feng,J.,J.P.Li,and F.Xie,2013:Long-term variation of the principal mode of boreal spring Hadley circulation linked to SST over the Indo-Pacific warm pool.J.Climate,26,532–544.

    Fu,Q.,C.M.Johanson,J.M.Wallace,and T.Reichler,2006:Enhanced mid-latitude tropospheric warming in satellite measurements.Science,312,1179.

    Frierson,D.M.W.,J.Lu,and G.Chen,2007:Width of the Hadley cell in simple and comprehensive general circulation models. Geophys.Res.Lett.,34(18),L18804,doi:10.1029/2007GL 031115.

    Guo,Y.,W.J.Dong,F.M.Ren,Z.C.Zhao,and J.B.Huang,2013: Assessment of CMIP5 simulations for China annual average surface temperature and its comparison with CMIP3 simulations.Progressus Inquisitiones De Mutatione Climatis,9(3), 181–186.(in Chinese)

    Hou,A.Y.,1998:Hadley circulation as a modulator of the extratropical climate.J.Atmos.Sci.,55,2437–2457.

    Hou,A.Y.,and R.S.Lindzen,1992:The influence of concentrated heating on the Hadley circulation.J.Atmos.Sci.,49(14),1233–1241.

    Hu,Y.Y.,and C.Zhou,2009:Decadal changes in the Hadley circulation.Adv.Geosci.,J.H.Oh,Ed.,World Scientific Publishing Company,Singapore,250 pp.

    Hu,Y.Y.,C.Zhou,and J.P.Liu,2011:Observational evidence for poleward expansion of the Hadley circulation.Adv.Atmos. Sci.,28(1),33–44.

    Hu,Y.Y.,L.J.Tao,and J.P.Liu,2013:Poleward expansion of the Hadley circulation in CMIP5simulations.Adv.Atmos.Sci.,30(3),790–795.

    Hudson,R.D.,M.F.Andrade,M.B.Follette,and A.D. Frolov,2006:The total ozone field separated into meteorological regimes-part II:Northern Hemisphere mid-latitude total ozone trends.Atmos.Chem.Phys.,6,5183–5191.

    Johanson,C.M.,and Q.Fu,2009:Hadley cell widening:Model simulations versus observations.J.Climate,22,2713–2725.

    Kalnay,E.,and Coauthors,1996:The NCEP/NCAR 40-year reanalysis project.Bull.Amer.Meteor.Soc.,77,437–472.

    Li,J.P.,2001:Atlas of Climate of Global Atmospheric Circulation I.Climatological Mean State.China Meteorological Press, Beijing,279 pp.(in Chinese)

    Li,J.P.,and J.Feng,2015:Tropical large-scale atmosphere-ocean interaction in association with subtropical aridity trend.On Aridity Trend in Northern China.C.B.Fu.,Ed.,World Scientific.(in press)

    Lindzen,R.S.,1994:Climate dynamics and global change.Annual Review of Fluid Mechanics,26,353–378.

    Lindzen,R.S.,and S.Nigam,1987:On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics.J.Atmos.Sci.,44,2418–2436.

    Lu,J.,G.A.Vecchi,and T.Reichler,2007:Expansion of the Hadley cell under global warming.Geophys.Res.Lett.,34, L06805,doi:10.1029/2006GL028443.

    Jiang,Y.,Y.Luo,and Z.C.Zhao,2010:Projection of wind speed changes in China in the 21st century by climate models.Chinese J.Atmos.Sci.,34,323–336.

    Ma,J.,and J.P.Li,2008:The principal modes of variability of the boreal winter Hadley cell.Geophys.Res.Lett.,35,L01808, doi:10.1029/2007GL031883.

    Nguyen,H.,A.Evans,C.Lucas,I.Smith,and B.Timbal,2013: The Hadley circulation in reanalyses:Climatology,variability,and change.J.Climate,26,3357–3376.

    Qiao,F.L.,Z.Y.Song,Y.Bao,Y.J.Song,S.Qi,C.J.Huang, and W.Zhao,2013:Development and evaluation of an earth system model with surface gravity waves.J.Geophys.Res.,118,4514–4524.

    Quan,X.W.,H.F.Diaz,and M.P.Hoerling,2004:Change in the tropical Hadley cell since 1950.The Hadley Circulation: Present,Past and Future,H.F.Diaz and R.S.Bradley,Eds., Springer,85–120.

    Rayner,N.A.,D.E.Parker,E.B.Horton,C.K.Folland,L. V.Alexander,D.P.Rowell,E.C.Kent,and A.Kaplanand, 2003:Global analyses of sea surface temperature,sea ice, and nightmarine airtemperature since the late nineteenth century.J.Geophys.Res.,104(D14),4407,doi:10.1029/2002JD 002670.

    Seidel,D.J.,Q.Fu,W.J.Randel,and T.J.Reichler,2008:Widening of the tropical belt in a changing climate.Nature Geoscience,1,21–24.

    Smith,T.M.,and R.W.Reynolds,2004:Improved extended reconstruction of SST(1854–1997).J.Climate,17,2466–2477.

    Stachnik,J.P.,and C.Schumacher,2011:A comparison of the Hadley circulation in modern reanalyses.J.Geophys.Res., 116,D22102,doi:10.1029/2011JD016677.

    Stevens,B.,and Coauthors,2013:The atmospheric component of the MPI-M Earth system model:ECHAM6.J.Adv.Model Earth Syst.,5,146–172.

    Taylor,K.E.,R.J.Stouffer,and G.A.Meehl,2012:An overview of CMIP5 and the experiment design.Bull.Amer.Meteor. Soc.,93,485–498.

    Uppala,S.M.,and Coauthors,2005:The ERA-40 re-analysis. Quart.J.Roy.Meteor.Soc.,131,2961–3012.

    Voldoire,A.,and Coauthors,2013:The CNRM-CM5.1 global climate model:Description and basic evaluation.Climate Dyn., 40,2091–2121.

    Volodin,E.M.,N.A.Dianskii,A.V.Gusev,2010:Simulating present-day climate with the INMCM4.0 coupled model of the atmospheric and oceanic general circulations.Atmos. Ocean.Phy.,46(4),414–431.

    Wielicki,B.A.,and Coauthors,2002:Evidence for large decadal variability in the tropical mean radiative energy budget.Science,295,841–844.

    Zheng,F.,J.P.Li,R.T.Clark,and H.C.Nnamchi,2013:Simulation and projection of the Southern Hemisphere Annular Mode in CMIP5 models.J.Climate,26,9860–9879.

    Zhu,X.,W.J.Dong,and Y.Guo,2013:Comparison of simulated winter and spring Arctic oscillation variability by CMIP5 and CMIP3 coupled models.Progressus Inquisitiones De Mutatione Climatis,9(3),165–172.(in Chinese)

    :Feng,J.,J.P.Li,J.L.Zhu,F.Li,and C.Sun,2015:Simulation of the equatorially asymmetric mode of the Hadley circulation in CMIP5 models.Adv.Atmos.Sci.,32(8),1129–1142,

    10.1007/s00376-015-4157-0.

    14 July 2014;revised 26 December 2014;accepted 5 January 2015)

    ?Corresponding author:LI Jianping

    Email:ljp@bnu.edu.cn

    午夜福利成人在线免费观看| 国产亚洲av高清不卡| 2021天堂中文幕一二区在线观| 88av欧美| www.www免费av| 成人亚洲精品av一区二区| 韩国av一区二区三区四区| 人妻夜夜爽99麻豆av| 三级国产精品欧美在线观看 | 亚洲性夜色夜夜综合| 亚洲九九香蕉| 亚洲性夜色夜夜综合| 精品欧美国产一区二区三| 色综合欧美亚洲国产小说| 国产1区2区3区精品| 老司机深夜福利视频在线观看| 手机成人av网站| 日本黄大片高清| 午夜影院日韩av| 在线观看一区二区三区| 欧美黑人精品巨大| 村上凉子中文字幕在线| 搡老熟女国产l中国老女人| 婷婷亚洲欧美| 亚洲精品在线美女| 久久久久久免费高清国产稀缺| 在线观看www视频免费| 在线观看66精品国产| 国内精品一区二区在线观看| 国产成+人综合+亚洲专区| 成人18禁在线播放| 在线国产一区二区在线| 色哟哟哟哟哟哟| 亚洲av美国av| 午夜精品在线福利| 50天的宝宝边吃奶边哭怎么回事| 欧美三级亚洲精品| 国产av不卡久久| 成年人黄色毛片网站| 中文在线观看免费www的网站 | 毛片女人毛片| 成人欧美大片| 又粗又爽又猛毛片免费看| 久久精品综合一区二区三区| 精品熟女少妇八av免费久了| 色综合婷婷激情| 国产三级中文精品| 免费看美女性在线毛片视频| 老司机午夜福利在线观看视频| 成人永久免费在线观看视频| 亚洲国产精品sss在线观看| 少妇裸体淫交视频免费看高清 | 亚洲中文字幕一区二区三区有码在线看 | 午夜a级毛片| 69av精品久久久久久| 校园春色视频在线观看| www日本在线高清视频| 一级a爱片免费观看的视频| 一个人免费在线观看电影 | 少妇熟女aⅴ在线视频| 国产在线观看jvid| 一个人观看的视频www高清免费观看 | x7x7x7水蜜桃| 久久精品国产综合久久久| 午夜免费成人在线视频| 欧美性猛交╳xxx乱大交人| 免费在线观看成人毛片| 亚洲一区二区三区不卡视频| 国产一区在线观看成人免费| 18美女黄网站色大片免费观看| 在线播放国产精品三级| 国产一级毛片七仙女欲春2| 日本精品一区二区三区蜜桃| 免费在线观看黄色视频的| 看片在线看免费视频| 欧美又色又爽又黄视频| а√天堂www在线а√下载| 国模一区二区三区四区视频 | 丝袜美腿诱惑在线| 国产亚洲精品久久久久5区| 精品欧美国产一区二区三| 久久伊人香网站| 国产伦在线观看视频一区| 欧美不卡视频在线免费观看 | 国产精品九九99| а√天堂www在线а√下载| 亚洲一码二码三码区别大吗| 久久精品91无色码中文字幕| av片东京热男人的天堂| 黑人欧美特级aaaaaa片| 亚洲色图av天堂| 亚洲精品一区av在线观看| 国产1区2区3区精品| 国产亚洲精品av在线| 一区二区三区高清视频在线| 两个人免费观看高清视频| 欧美性猛交黑人性爽| 亚洲av熟女| 18禁美女被吸乳视频| 日本a在线网址| av视频在线观看入口| 色精品久久人妻99蜜桃| 久久亚洲真实| 狠狠狠狠99中文字幕| 午夜福利视频1000在线观看| 久久香蕉激情| 非洲黑人性xxxx精品又粗又长| 蜜桃久久精品国产亚洲av| 亚洲中文日韩欧美视频| 欧美av亚洲av综合av国产av| a在线观看视频网站| 精品一区二区三区av网在线观看| 国内少妇人妻偷人精品xxx网站 | 在线观看午夜福利视频| 亚洲精品av麻豆狂野| 97碰自拍视频| 老鸭窝网址在线观看| 欧美久久黑人一区二区| 欧美又色又爽又黄视频| 母亲3免费完整高清在线观看| 亚洲欧洲精品一区二区精品久久久| 久久久久久免费高清国产稀缺| 亚洲精品国产精品久久久不卡| 亚洲人成伊人成综合网2020| 日本熟妇午夜| 99热只有精品国产| 美女 人体艺术 gogo| 一本综合久久免费| 精品国产美女av久久久久小说| 一本一本综合久久| 一本大道久久a久久精品| 美女午夜性视频免费| 这个男人来自地球电影免费观看| 怎么达到女性高潮| 一级a爱片免费观看的视频| 亚洲精华国产精华精| 久久热在线av| 人人妻人人澡欧美一区二区| 日韩av在线大香蕉| 人妻丰满熟妇av一区二区三区| 日韩精品青青久久久久久| 午夜亚洲福利在线播放| 国产在线精品亚洲第一网站| 午夜影院日韩av| 国产精品 国内视频| 高潮久久久久久久久久久不卡| 97碰自拍视频| 精品久久久久久久末码| 免费在线观看日本一区| 中文字幕人成人乱码亚洲影| 最近在线观看免费完整版| 亚洲av成人一区二区三| 国产免费av片在线观看野外av| 亚洲成av人片免费观看| 亚洲专区字幕在线| 日韩欧美三级三区| 欧美黄色淫秽网站| 久久久久久免费高清国产稀缺| 露出奶头的视频| 精品欧美一区二区三区在线| 色哟哟哟哟哟哟| 久久中文字幕一级| 国产人伦9x9x在线观看| 一进一出抽搐gif免费好疼| 日韩欧美免费精品| xxx96com| av中文乱码字幕在线| 禁无遮挡网站| 国产激情欧美一区二区| 久久精品aⅴ一区二区三区四区| 禁无遮挡网站| 亚洲国产精品合色在线| 亚洲熟妇熟女久久| 美女扒开内裤让男人捅视频| 久久婷婷成人综合色麻豆| 亚洲九九香蕉| 精品国产乱子伦一区二区三区| 最好的美女福利视频网| 亚洲五月婷婷丁香| 又黄又粗又硬又大视频| 亚洲熟妇中文字幕五十中出| 亚洲男人的天堂狠狠| 亚洲精品在线美女| 成人午夜高清在线视频| 看黄色毛片网站| 国产精品香港三级国产av潘金莲| 亚洲成人久久爱视频| 欧美激情久久久久久爽电影| 一二三四社区在线视频社区8| 无人区码免费观看不卡| 麻豆成人av在线观看| 久久精品综合一区二区三区| 日韩欧美国产在线观看| 丁香欧美五月| av福利片在线| 又紧又爽又黄一区二区| 日韩欧美免费精品| 日日爽夜夜爽网站| 两个人免费观看高清视频| 日本一区二区免费在线视频| www日本在线高清视频| 十八禁网站免费在线| aaaaa片日本免费| 在线观看66精品国产| 亚洲av日韩精品久久久久久密| 亚洲avbb在线观看| 日本五十路高清| 久久精品91无色码中文字幕| 熟妇人妻久久中文字幕3abv| 亚洲精品色激情综合| 国产区一区二久久| 老司机靠b影院| 搡老妇女老女人老熟妇| 国内精品久久久久精免费| 无遮挡黄片免费观看| 99riav亚洲国产免费| 久久精品国产综合久久久| 国产精品一及| 成年免费大片在线观看| 三级国产精品欧美在线观看 | 欧美中文日本在线观看视频| 老司机靠b影院| 99国产精品一区二区蜜桃av| 啦啦啦观看免费观看视频高清| 巨乳人妻的诱惑在线观看| 午夜精品久久久久久毛片777| 无限看片的www在线观看| 少妇被粗大的猛进出69影院| 狂野欧美激情性xxxx| 久久精品91蜜桃| 18禁美女被吸乳视频| 看免费av毛片| 99久久精品热视频| 狂野欧美激情性xxxx| 少妇粗大呻吟视频| 日本一二三区视频观看| 成年版毛片免费区| 18禁美女被吸乳视频| 窝窝影院91人妻| 国产在线观看jvid| aaaaa片日本免费| 妹子高潮喷水视频| 国产精品自产拍在线观看55亚洲| 一级毛片女人18水好多| 国产精品免费一区二区三区在线| 99热这里只有精品一区 | 在线视频色国产色| 无人区码免费观看不卡| 我的老师免费观看完整版| 国产成人精品无人区| 男男h啪啪无遮挡| 久久精品国产清高在天天线| 亚洲精品国产一区二区精华液| 男人舔女人的私密视频| 国产欧美日韩一区二区精品| 动漫黄色视频在线观看| 欧美成人性av电影在线观看| 国产熟女xx| 88av欧美| 国产又黄又爽又无遮挡在线| 搡老岳熟女国产| 国产精品美女特级片免费视频播放器 | 精品不卡国产一区二区三区| 亚洲av熟女| 亚洲午夜理论影院| 国产精品日韩av在线免费观看| 精品久久久久久久久久久久久| 2021天堂中文幕一二区在线观| 最近在线观看免费完整版| 久热爱精品视频在线9| 国产精品精品国产色婷婷| 国产成人av激情在线播放| 国产主播在线观看一区二区| 一卡2卡三卡四卡精品乱码亚洲| 国产精品影院久久| 黄色片一级片一级黄色片| 熟女电影av网| 午夜福利在线观看吧| 国产精品亚洲美女久久久| 亚洲精品美女久久av网站| 国产片内射在线| 美女大奶头视频| 国内精品久久久久久久电影| 国内少妇人妻偷人精品xxx网站 | 精品高清国产在线一区| 美女免费视频网站| 这个男人来自地球电影免费观看| 国产97色在线日韩免费| 中亚洲国语对白在线视频| 又爽又黄无遮挡网站| 两性午夜刺激爽爽歪歪视频在线观看 | av国产免费在线观看| 91av网站免费观看| 非洲黑人性xxxx精品又粗又长| 制服人妻中文乱码| 在线观看www视频免费| 男女床上黄色一级片免费看| 国产成人影院久久av| 黑人欧美特级aaaaaa片| 天天躁夜夜躁狠狠躁躁| 国产av不卡久久| 成人手机av| 日日摸夜夜添夜夜添小说| 18禁观看日本| 久久精品综合一区二区三区| 欧美色欧美亚洲另类二区| 亚洲欧美日韩东京热| 国产真人三级小视频在线观看| 给我免费播放毛片高清在线观看| 久久精品亚洲精品国产色婷小说| 国产精品自产拍在线观看55亚洲| 久久精品国产综合久久久| 国产亚洲欧美在线一区二区| 国产精品野战在线观看| 久久久久久国产a免费观看| 淫妇啪啪啪对白视频| 91麻豆精品激情在线观看国产| 蜜桃久久精品国产亚洲av| 搡老岳熟女国产| 国产69精品久久久久777片 | 一夜夜www| 欧美日本视频| 叶爱在线成人免费视频播放| aaaaa片日本免费| 午夜福利高清视频| 三级毛片av免费| 国产精品综合久久久久久久免费| 久久香蕉激情| 亚洲专区中文字幕在线| 一进一出抽搐动态| 亚洲全国av大片| 亚洲一卡2卡3卡4卡5卡精品中文| 成人av一区二区三区在线看| 99精品久久久久人妻精品| 亚洲精品中文字幕在线视频| 18美女黄网站色大片免费观看| 手机成人av网站| av视频在线观看入口| 不卡av一区二区三区| 俄罗斯特黄特色一大片| 欧美日韩国产亚洲二区| 免费观看人在逋| 国产亚洲精品一区二区www| 久久久国产精品麻豆| 国产av麻豆久久久久久久| 国产精品一区二区三区四区久久| 国产成人av激情在线播放| 黄片小视频在线播放| 国产高清videossex| 亚洲精品久久成人aⅴ小说| 校园春色视频在线观看| 久久99热这里只有精品18| 99热这里只有精品一区 | 老汉色av国产亚洲站长工具| 中文字幕久久专区| 免费高清视频大片| 人妻丰满熟妇av一区二区三区| 99精品欧美一区二区三区四区| 久久久久精品国产欧美久久久| 国产免费av片在线观看野外av| 日本三级黄在线观看| 国内揄拍国产精品人妻在线| 久久伊人香网站| 国产蜜桃级精品一区二区三区| 国产精品永久免费网站| 国产精品,欧美在线| 久久国产精品人妻蜜桃| 亚洲18禁久久av| 午夜精品一区二区三区免费看| 亚洲熟妇中文字幕五十中出| 免费一级毛片在线播放高清视频| 舔av片在线| 91在线观看av| 国产伦人伦偷精品视频| 亚洲av五月六月丁香网| 在线观看午夜福利视频| 身体一侧抽搐| 午夜激情福利司机影院| 免费看a级黄色片| 国产69精品久久久久777片 | 国产精品久久视频播放| 夜夜看夜夜爽夜夜摸| 亚洲成av人片免费观看| 亚洲全国av大片| 久久久精品国产亚洲av高清涩受| 久久久国产欧美日韩av| 成熟少妇高潮喷水视频| 久久精品国产亚洲av香蕉五月| 伦理电影免费视频| 美女高潮喷水抽搐中文字幕| 国产精品野战在线观看| 久久中文字幕人妻熟女| 亚洲午夜精品一区,二区,三区| 久久久久久久精品吃奶| 午夜两性在线视频| av福利片在线| 国产亚洲精品第一综合不卡| 欧美极品一区二区三区四区| 91麻豆精品激情在线观看国产| 日本一本二区三区精品| 麻豆国产97在线/欧美 | videosex国产| 亚洲专区字幕在线| 一级片免费观看大全| 欧美成人午夜精品| 久久久国产成人免费| 大型黄色视频在线免费观看| 又爽又黄无遮挡网站| 色噜噜av男人的天堂激情| 国产久久久一区二区三区| 18禁国产床啪视频网站| 日日夜夜操网爽| 亚洲av电影在线进入| 国产熟女xx| av视频在线观看入口| 黄色成人免费大全| 欧美乱妇无乱码| 悠悠久久av| 中文字幕精品亚洲无线码一区| 女人高潮潮喷娇喘18禁视频| 99久久综合精品五月天人人| 黄色女人牲交| 国产99久久九九免费精品| videosex国产| 国内精品一区二区在线观看| 十八禁人妻一区二区| 免费在线观看影片大全网站| 三级毛片av免费| 久久国产乱子伦精品免费另类| 精品欧美一区二区三区在线| 免费电影在线观看免费观看| 一级毛片高清免费大全| 免费观看人在逋| 777久久人妻少妇嫩草av网站| 黄片大片在线免费观看| 欧美+亚洲+日韩+国产| 久久久国产成人精品二区| 国内揄拍国产精品人妻在线| 午夜精品一区二区三区免费看| 欧美一区二区国产精品久久精品 | 久久久久久国产a免费观看| 久久久久免费精品人妻一区二区| 亚洲国产精品成人综合色| 在线观看66精品国产| 真人一进一出gif抽搐免费| 欧美最黄视频在线播放免费| 女生性感内裤真人,穿戴方法视频| 国产熟女xx| 亚洲国产精品成人综合色| 夜夜看夜夜爽夜夜摸| 可以在线观看的亚洲视频| 亚洲真实伦在线观看| 首页视频小说图片口味搜索| 欧美午夜高清在线| 可以在线观看毛片的网站| 免费看美女性在线毛片视频| 久久国产精品影院| 久久香蕉激情| 国产精品久久久av美女十八| 国产高清videossex| 变态另类丝袜制服| 99国产精品一区二区三区| 日本 欧美在线| 久久婷婷成人综合色麻豆| xxxwww97欧美| 亚洲精品久久成人aⅴ小说| 亚洲人成网站高清观看| av在线天堂中文字幕| 国产黄片美女视频| av福利片在线| 美女午夜性视频免费| xxx96com| 国产精品精品国产色婷婷| 免费无遮挡裸体视频| 午夜精品在线福利| 亚洲成人精品中文字幕电影| 制服人妻中文乱码| 国产精品爽爽va在线观看网站| 色老头精品视频在线观看| 91国产中文字幕| 欧美+亚洲+日韩+国产| 色av中文字幕| 哪里可以看免费的av片| 亚洲va日本ⅴa欧美va伊人久久| 18禁裸乳无遮挡免费网站照片| 18禁观看日本| 精品久久久久久成人av| 波多野结衣高清作品| 9191精品国产免费久久| 中国美女看黄片| 天天躁夜夜躁狠狠躁躁| 国产激情久久老熟女| 亚洲精品色激情综合| 91九色精品人成在线观看| 中亚洲国语对白在线视频| 欧美一区二区精品小视频在线| 精品久久蜜臀av无| 波多野结衣高清作品| 久久精品亚洲精品国产色婷小说| 高清毛片免费观看视频网站| 婷婷精品国产亚洲av在线| 国产精品 欧美亚洲| 国产午夜精品久久久久久| 99国产精品一区二区三区| 午夜福利视频1000在线观看| 亚洲乱码一区二区免费版| 正在播放国产对白刺激| 中文字幕熟女人妻在线| 在线a可以看的网站| 操出白浆在线播放| 国产主播在线观看一区二区| 精品久久久久久久人妻蜜臀av| 两个人视频免费观看高清| 精品国产亚洲在线| 性欧美人与动物交配| 免费在线观看完整版高清| 久久久久免费精品人妻一区二区| 俺也久久电影网| 女人高潮潮喷娇喘18禁视频| 最新美女视频免费是黄的| 黄色视频,在线免费观看| 精品少妇一区二区三区视频日本电影| 亚洲人成伊人成综合网2020| 久久精品国产清高在天天线| 韩国av一区二区三区四区| a在线观看视频网站| 女人高潮潮喷娇喘18禁视频| 久久人妻av系列| 精品国产乱码久久久久久男人| 麻豆成人av在线观看| 在线看三级毛片| 国产91精品成人一区二区三区| 99久久99久久久精品蜜桃| 久久精品成人免费网站| 午夜免费成人在线视频| 黄色片一级片一级黄色片| 草草在线视频免费看| 中文字幕av在线有码专区| 午夜福利在线观看吧| 久久久久亚洲av毛片大全| 日本在线视频免费播放| 嫩草影院精品99| 黑人巨大精品欧美一区二区mp4| 久9热在线精品视频| 日韩 欧美 亚洲 中文字幕| 可以在线观看毛片的网站| 国产精品久久久久久人妻精品电影| 妹子高潮喷水视频| 色综合欧美亚洲国产小说| 床上黄色一级片| 欧美精品亚洲一区二区| 午夜老司机福利片| 国产精品久久久久久精品电影| 91九色精品人成在线观看| 国产亚洲av嫩草精品影院| 美女大奶头视频| 日日夜夜操网爽| 母亲3免费完整高清在线观看| 此物有八面人人有两片| 91大片在线观看| 免费观看人在逋| 免费在线观看影片大全网站| 国产激情久久老熟女| 91成年电影在线观看| 国产黄片美女视频| xxxwww97欧美| 一二三四社区在线视频社区8| 激情在线观看视频在线高清| 三级毛片av免费| 久久中文看片网| 日本熟妇午夜| bbb黄色大片| 18禁国产床啪视频网站| 99国产精品一区二区三区| 在线观看免费午夜福利视频| 黄色女人牲交| 亚洲专区字幕在线| 99精品久久久久人妻精品| 婷婷六月久久综合丁香| 香蕉久久夜色| 欧美色视频一区免费| 一a级毛片在线观看| 亚洲中文日韩欧美视频| 91国产中文字幕| 日韩精品免费视频一区二区三区| 麻豆一二三区av精品| 嫁个100分男人电影在线观看| 18禁黄网站禁片免费观看直播| 亚洲av中文字字幕乱码综合| 十八禁人妻一区二区| av国产免费在线观看| 中文字幕av在线有码专区| 国产精华一区二区三区| av在线播放免费不卡| 亚洲成av人片在线播放无| 毛片女人毛片| 日本 av在线| 黑人操中国人逼视频| 好男人在线观看高清免费视频| 婷婷六月久久综合丁香| 成人永久免费在线观看视频| 欧美日韩福利视频一区二区| 久久天堂一区二区三区四区| 在线十欧美十亚洲十日本专区| bbb黄色大片| 亚洲精品色激情综合| 午夜激情av网站| 最新在线观看一区二区三区| 哪里可以看免费的av片| 小说图片视频综合网站| 性欧美人与动物交配| 久久精品综合一区二区三区| 久久精品91蜜桃| 午夜成年电影在线免费观看| 少妇裸体淫交视频免费看高清 |