• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Differential Optical Absorption Spectroscopy Method for XCO2Retrieval from Ground-Based Fourier Transform Spectrometers Measurements of the Direct Solar Beam

    2015-06-09 21:37:22HUOYanfengDUANMinzhengTIANWenshouandMINQilong
    Advances in Atmospheric Sciences 2015年8期

    HUO Yanfeng,DUAN Minzheng,TIAN Wenshou,and MIN Qilong

    1Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences,Lanzhou University,Lanzhou 730000

    2Key Laboratory of Middle Atmosphere and Global Environment Observation, Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 10029

    3Wuhan University,Wuhan 430000

    4 Atmospheric Science Research Center,State University of New York,Albany,NY 12203,USA

    A Differential Optical Absorption Spectroscopy Method for XCO2Retrieval from Ground-Based Fourier Transform Spectrometers Measurements of the Direct Solar Beam

    HUO Yanfeng1,2,DUAN Minzheng?2,TIAN Wenshou1,and MIN Qilong3,4

    1Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences,Lanzhou University,Lanzhou 730000

    2Key Laboratory of Middle Atmosphere and Global Environment Observation, Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 10029

    3Wuhan University,Wuhan 430000

    4 Atmospheric Science Research Center,State University of New York,Albany,NY 12203,USA

    A differential optical absorption spectroscopy(DOAS)-like algorithm is developed to retrieve the column-averaged dryair mole fraction of carbon dioxide from ground-based hyper-spectral measurements of the direct solar beam.Different to the spectral fitting method,which minimizes the difference between the observed and simulated spectra,the ratios of multiple channel-pairs—one weak and one strong absorption channel—are used to retrieve XCO2from measurements of the shortwave infrared(SWIR)band.Based on sensitivity tests,a super channel-pair is carefully selected to reduce the effects of solarlines,water vapor,air temperature,pressure,instrument noise,and frequency shift on retrieval errors.The new algorithm reduces computational cost and the retrievals are less sensitive to temperature and H2O uncertainty than the spectral fitting method.Multi-day Total Carbon Column Observing Network(TCCON)measurements under clear-sky conditions at two sites(Tsukuba and Bremen)are used to derive XCO2for the algorithm evaluation and validation.The DOAS-like results agree very well with those of the TCCON algorithm after correction of an airmass-dependent bias.

    CO2Retrieval,ground-based measurement,hyper-spectrum,shortwave infrared band

    1.Introduction

    Carbon dioxide(CO2)is considered to be the main greenhouse gas causing current global warming(Solomon et al., 2007).However,Easterling and Wehner(2009)reported that records of surface air temperature show no warming trend or even a slight cooling trend,while greenhouse gas levels are still increasing.The disagreement about climate change is mostly due to the lack of long-term records of CO2measurements,especially for large area measurements and CO2sources and sinks(Stephens et al.,2007;Canadell et al., 2010).

    It is advantageous to use satellite remote sensing to monitor atmospheric CO2globally.However,at present,only the satellite datasets of column-averaged dry-air mole fraction of CO2(XCO2)from the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography(SCIAMACHY) on board the Environmental Satellite(ENVISAT)(Bovensmann et al.,1999)and the Thermal and Near-infrared Sensor for Carbon Observation–Fourier Transform Spectrometer (TANSO-FTS)on board the Greenhouse Gases Observing Satellite(GOSAT)(Kuze et al.,2009),are used to estimate regional CO2fluxes.Both instruments use the reflected solar radiation in the shortwave infrared(SWIR)spectral region, making them sensitive to the variation of near-surface CO2concentrations.Unfortunately,the low spectral resolution of SCIAMACHY limits the inversion accuracy,with a single retrieval precision of about 2.5 ppm,as compared to ground-based Fourier transform spectrometer(FTS)measurements(Buchwitz et al.,2005;Reuter et al.,2011).The biases and standard deviations of the column-averaged dryair mole fraction of carbon dioxide(XCO2)from the SWIR L2 V02.xx GOSAT retrieval algorithm reach-1.48 and 2.09ppm,respectively(Morino et al.,2011;Yoshida et al.,2011; Yoshida et al.,2013).

    Compared with satellite observations of reflected light, ground-based observations of the direct solar beam are less influenced by surface albedo,aerosolsetc.Therefore,groundbased observations can achieve higher accuracy and precision in determining the CO2total column amount.However,at present,the Total Carbon Column Observing Network(TCCON)is the only existing network that retrieves the total column concentration of CO2from ground-based FTS measurements for satellite validation.TCCON achieves a networkwide uncertainty of XCO2of better than 0.8 ppm,with 2σafter correcting for an airmass-dependent bias and calibrating to aircraft vertical profiles(Wunch et al.,2011a,b).

    A Chinese satellite for CO2monitoring is planned for launch in 2015(Liu et al.,2013).To validate the satellite retrievals,a surface observation network has been set up to measure the hyper-spectrum of the direct solar beam in the SWIR bands.To derive the total column amount of CO2from these spectral measurements,a retrieval algorithm is needed. In this paper,a new DOAS-like algorithm is developed,in which multiple pairs of CO2absorption ratios(one in the weak CO2absorption channel and one in the strong CO2absorption channel)are used to derive the column CO2.More importantly,both channels in the pair are carefully selected to reduce their sensitivity to the surface pressure,air temperature,water vapor,noise and frequency shift.Compared with the spectral fitting method,DOAS-like retrievals are less sensitive to temperature and H2O uncertainty.

    2.Retrieval algorithm

    2.1.Physical basis

    Ourretrievalalgorithm isbased on the factthatthe photon path lengths within a narrow spectral range are equal.Therefore,the ratio of the channel pair is proportional to XCO2if the surface pressure,temperature profile and water vapor are known.Based on the Lambert–Beer law,a ground-based measurement of the direct solar beam for a fixed wavelength can be expressed as

    where Iλis the downward radiance measured at the bottom of the atmosphere for wavelengthλ,Isca,λis the forward scattering contribution in the incident direction,and I0is the incoming solar radiance at the top of the atmosphere.m is the air mass factor.τis the optical depth in the vertical optical path,which can be written as

    where the right-hand terms represent optical depth of CO2absorption,water vapor absorption,aerosol extinction,and Rayleigh scattering,respectively.The scattering term of Isca,λin Eq.(1)is negligible due to a very small field of view (FOV)(~2.4 mrad)ofthe spectrometer,particularly forsmall aerosol particles and small aerosol optical depths(Min et al., 2004;Min and Duan,2005;Wunch et al.,2011a).Therefore, the radiance can be simplified as

    In a very limited spectral range,the variation ofτaerandτRayacross the spectral range can be ignored.Therefore the ratio of the selected channel pair is insensitive to the loading of aerosol and Rayleigh scattering.Hence,we have

    Letting r=Iλ1/Iλ2and r0=I0,λ1/I0,λ2,Eq.(4)can be rewritten as

    By taking the logarithm of Eq.(5),we have

    The optical depthτCO2is proportional to the total number of molecules of CO2per surface area,which is positively correlated to XCO2if the surface pressure,air temperature and CO2volume mixing ratio(VMR)profile are assumed to be known.Furthermore,only channel pairs with weak H2O absorption interference are selected.Therefore,the difference associated with water vapor is small and can be treated as a correction coefficient.Then,Eq.(6)is simplified as

    Through the about pair selection procedure,the retrieval,i.e., Eq.(7),is weakly sensitive to the atmospheric state uncertainty(temperature and water vapor).Nonetheless,the coefficients of a and b are weakly dependent on temperature and water vapor in the atmosphere.To further reduce the error associated with the atmospheric state,we can calculate bothcoefficients with the surface pressure of in-situ measurements collected by automatic meteorological stations and reanalysis/forecasting atmospheric profiles.The profiles can be fixed for multiple measurements within some specific time period because only channels that are independent of temperature and water vapor are used in our retrieval algorithm.To illustrate the feasibility of fixed profiles,several inversions calculated by the different coefficients a and b at 0000,0600 and 1200 UTC are shown in Fig.1.All the errors are less than 0.15 ppm.The DOAS-like algorithm of Eq.(7)only has one unknown parameter.Hence,no iteration is needed.

    2.2.Forward model

    2.3.Channel selection

    The DOAS-like method could reduce computational cost, but the super channel-pair must be carefully selected to reduce the impacts of H2O absorption,the solar Fraunhofer lines,and other factors such as instrument noise,temperature, pressure,frequency shift etc.In our channel-pair,the mean of 430 channels with very weak CO2absorption is regarded as the weak absorption channel in the super channel-pair,which is applied to the following analyses,and the mean of some strong CO2absorption channels is regarded as the strong absorption channel in the super channel-pair,as shown in Fig. 2.The selection of the strong absorption channel in the super channel-pair is presented in the following paragraphs.

    The effects of random noise are also analyzed in the strong absorption channel selection to avoid large errors.Figure 3 illustrates the errors due to instrument noise in differently positioned strong CO2absorption channels if only one strong CO2absorption channel is used in XCO2retrieval.It is clearly shown that when the strong CO2absorption channel located at the far wing is used,large errors could be introduced due to the reduced information content of CO2(Fig. 3a);while in the line center,low signal-to-noise ratio(SNR) results in large uncertainty(Fig.3c).

    The line strength and absorption coefficients depend on pressure and temperature.For the ultra-high spectral resolution measurements,an inaccurate pressure and temperatureprofile will introduce extra errors in the retrieval of CO2.Figure 4 shows the XCO2errors of each channel for a+1 hPa bias of surface pressure,which is calculated by comparing inversions with and without a 1 hPa change,when the channel is regarded as the only strong CO2absorption channel.In the error calculations,the coefficients a and b are calculated under the surface pressure,while the“measurements”are given under the+1 hPa bias of the surface pressure.Similarly,Fig. 5 shows the XCO2errors for a+1 K shift of the temperature profile.As shown in Fig.4,inversion errors caused by the +1 hPa pressure bias of most channels are positive,except for some channels in the weak absorption area.To reduce theimpact of pressure,only channels with an inversion error of less than 1 ppm are selected to be the component of the strong absorption channels in the super channel-pair.Different from that of pressure,the errordue to the+1 K offset of the temperature profile could be either positive or negative,and it could be minimized by careful channel selection in real retrievals.

    Inaccurate wavelength registration is anothersource oferror in retrievals.As shown in Fig.6,the errors in XCO2retrieval due to a frequency shift of 0.003 cm-1could be up to 25 ppm if only one strong CO2absorption channel located on one side of the line center is used.But if strong CO2absorption channels located on both sides of the line center are used, the errors due to the frequency shift tend to be very small,or even zero.

    Based on the above sensitivity studies,and the additional removal of the channels with strong H2O absorption and Fraunhofer lines,the final 588 strong CO2absorption channels are used in our retrieval.In order to evaluate the dependence of the DOAS-like method on the atmospheric state uncertainty,one-year prior profiles in Tsukuba,as shown in Fig.7,are used in simulated inversions.The results for both the DOAS-like and spectral fitting methods are listed in Table 1,in which errors of 1 K for the temperature profile,+5%for water vapor,+1 hPa for surface pressure,and 0.001 cm-1for frequency offset are assumed for solar zenith angles(SZAs) at 20?and 70?.For specific atmospheric parameter analysis, both the spectral fitting and DOAS-like method have one unknown state vector.Relatively,the DOAS-like retrievals are less sensitive to the temperature and H2O uncertainties,especially for large SZAs and high H2O amounts.The effects of surface pressure and frequency shift to being slightly better in the spectral fitting method.

    3.Case studies and comparisons

    To validate the DOAS-like algorithm,TCCON data in Tsukuba,Japan(36.0513?N,140.1215?E)and Bremen,Germany(53.10?N,8.85?E)are used.The spectra at both stations are measured with an FTS(IFS 125HR,Bruker Optics GmbH,Germany).The absorption spectrum is calculated by a Fourier transform of the interferogram,which is formed by beams reflected from a moving mirror and a static mirror. The resolution and sample rate of the FTS are determined bythe maximum optical path differences(MOPDs)and speed of the moving mirror.The MOPDs of the FTS in Tsukuba and Germany are 45.01 and 64.29 cm,respectively.The retrieved XCO2using the DOAS-like method are illustrated in Fig.8 (left panels),and the results of the official TCCON algorithm are also included for comparison.At first sight,the XCO2of the DOAS-like method is smaller than that of the official TCCON algorithm.After comparing the difference between the TCCON and DOAS-like retrievals with the SZA(Fig.8, right panels),we find that the difference is linearly dependent on the SZA(Fig.9).Moreover,the linear relationship does not vary with time and place.For the TCCON results,a postretrieval algorithm is used to correct an airmass-dependent bias based on the assumption that any symmetric variability within a day should be an artifact(Deutscher et al.,2010; Wunch et al.,2011a).Through a simple correction process in which the linear dependency on the SZA is removed,the DOAS-like and TCCON results agree well with each other, as shown in Fig.10.The standard deviation of the difference between the TCCON and DOAS-like methods is less than 0.8 ppm,both in Tsukuba and Bremen(Fig.11).This suggests that the DOAS-like algorithm provides retrievals with similar precision to TCCON.However,the temporal variability of the atmospheric state in Fig.12 limits the possibility of a higher inversion accuracy.Certainly,there could be many other factors for the low values of DOAS-like retrievals.For example,the solar lines provided by Kurucz used in our algorithm are not so good(Yoshida et al.,2013),and the FTS only focuses on the center of the solar disk due to its very small FOV.This inaccurate extra-terrestrial solar spectrum may be a factor for our lower value of XCO2.

    Table 1.The XCO2errors due to temperature,water vapor,surface pressure and spectral shift.

    4.Conclusions and future directions

    A new algorithm using a channel-pair ratio to derive XCO2is presented in this paper.The algorithm is similar to that of the DOAS method.For the purpose of channel selection,the effects of solar lines,water vapor,air temperature,pressure, instrument noise and wavelength registration shift on the retrieval error are analyzed through a series of sensitivity tests. One super channel-pair is used in the retrieval algorithm. FTS measurements at the TCCON stations in Tsukuba and Bremen are used to validate the new algorithm by comparing our results with the official TCCON product.Our XCO2results are lower than those of TCCON with airmass correction.Taking the TCCON data as a reference,our results are further corrected using an SZA-dependent method.After the correction,our corrected results agree well with those of the TCCON products,suggesting that this new algorithm is useful.However,due to insufficient ground measurements, the new retrieval method is validated by observations at only two stations.Clearly,a thorough validation with extensiveobservation is warranted for our DOAS-like algorithm.

    Acknowledgements.We greatly appreciate the TCCON stations at Tsukuba and Bremen for providing FTS observation spectra and auxiliary data.We also thank Atmospheric and Environmental Research(AER)for providing the LBLRTM.The research described in this paper was supported by the Strategic Priority Research Program–Climate Change:Carbon Budget and Relevant Issues(Grant No.XDA05040300),and National Natural Science Foundation of China(Grant No.41175028).

    REFERENCES

    Bovensmann,H.,J.P.Burrows,M.Buchwitz,J.Frerick,S.No¨el, V.V.Rozanov,K.V.Chance,and A.P.H.Goede,1999: SCIAMACHY:Mission objectives and measurement modes. J.Atmos.Sci.,56,127–150.

    Buchwitz,M.,and Coauthors,2005:Carbon monoxide,methane and carbon dioxide columns retrieved from SCIAMACHY by WFM-DOAS:Year 2003 initial data set.Atmospheric Chemistry and Physics,5,3313–3329.

    Canadell,J.G.,and Coauthors,2010:Interactions of the carbon cycle,human activity,and the climate system:A researchportfolio.Current Opinion in Environmental Sustainability, 2,301–311.

    Kurucz,R.L.,1995:The solar spectrum:Atlases and line identifications.Workshop on Laboratory and Astronomical High Resolution Spectra,ASP Comference Series,No.81,A.J. Sauval,R.Blomme and N.Grevesse,17–31.

    Deutscher,N.M.,and Coauthors,2010:Total column CO2measurements at Darwin,Australia—site description and calibration against in situ aircraft profiles.Atmospheric Measurement Techniques,3,947–958.

    Easterling,D.R.,and M.F.Wehner,2009:Is the climate warming or cooling?Geophys.Res.Lett.,36,L08706,doi:10.1029/ 2009GL037810.

    Kuze,A.,H.Suto,M.Nakajima,and T.Hamazaki,2009:Thermal and near infrared sensor for carbon observation Fouriertransform spectrometer on the Greenhouse Gases Observing Satellite for greenhouse gases monitoring.Appl.Opt.,48, 6716–6733.

    Liu,Y.,D.X.,Yang,and Z.N.,Cai,2013:A retrieval algorithm for TanSat XCO2observation:Retrieval experiments using GOSAT data.Chinese Science Bulletin,58,1520–1523.

    Min,Q.-L.,and M.Z.Duan,2005:Simultaneously retrieving cloud optical depth and effective radius for optically thin clouds.J.Geophys.Res.,110,D21201,doi:10.1029/2005JD 006136.

    Min,Q.L.,E.Joseph,and M.Z.Duan,2004:Retrievals of thin cloud optical depth from a multifilter rotating shadowband radiometer.J.Geophys.Res.,109,D02201,doi:10.1029/2003 JD003964.

    Morino,I.,and Coauthors,2011:Preliminary validation of column-averaged volume mixing ratios of carbon dioxide and methane retrieved from GOSAT short-wavelength infrared spectra.Atmospheric Measurement Techniques,4,1061–1076.

    Reuter,M.,and Coauthors,2011:Retrieval of atmospheric CO2with enhanced accuracy and precision from SCIAMACHY: Validation with FTS measurements and comparison with model results.J.Geophys.Res.,116,D04301,doi:10.1029/ 2010JD015047.

    Solomon S.,and Coauthors,2007:Climate Change 2007:The Physical Science Basis.Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change.Cambridge University Press,996 pp.

    Stephens,B.B.,and Coauthors,2007:Weak northern and strong tropical land carbon uptake from vertical profiles of atmospheric CO2.Science,316,1732–1735.

    Wunch,D.,and Coauthors,2011a:The total carbon column observing network.Philosophical Transactions of the Royal Society A Mathematical Physical and Engineering Sciences, 369,2087–2112.

    Wunch,D.,and Coauthors,2011b:A method for evaluating bias in global measurements of CO2total columns from space.Atmospheric Chemistry and Physics,11,12 317–12 337.

    Yoshida,Y.,Y.Ota,N.Eguchi,N.Kikuchi,K.Nobuta,H.Tran, I.Morino,and T.Yokota,2011:Retrieval algorithm for CO2and CH4column abundances from short-wavelength infrared spectral observations by the Greenhouse gases observing satellite.Atmospheric Measurement Techniques,4,717–734.

    Yoshida,Y.,and Coauthors,2013:Improvement of the retrieval algorithm for GOSAT SWIR XCO2and XCH4and their validation using TCCON data.Atmospheric Measurement Techniques,6,1533–1547.

    :Huo,Y.F.,M.Z.Duan,W.S.Tian,and Q.L.Min,2015:A differential optical absorption spectroscopy method for XCO2retrieval from ground-based fourier transform spectrometers measurements of the direct solar beam.Adv.Atmos. Sci.,32(8),1119–1128,

    10.1007/s00376-015-4213-9.

    22 September 2014;revised 8 January 2015;accepted 22 January 2015)

    ?Corresponding author:DUAN Minzheng

    Email:dmz@mail.iap.ac.cn

    亚洲七黄色美女视频| 欧美日韩福利视频一区二区| 日韩视频一区二区在线观看| 天堂动漫精品| 亚洲男人天堂网一区| 亚洲视频免费观看视频| 久久婷婷人人爽人人干人人爱 | 岛国视频午夜一区免费看| 欧美激情 高清一区二区三区| 日韩欧美国产一区二区入口| 美女国产高潮福利片在线看| 一卡2卡三卡四卡精品乱码亚洲| 在线观看免费午夜福利视频| 99精品久久久久人妻精品| 国产国语露脸激情在线看| 欧美日韩一级在线毛片| 亚洲欧美精品综合久久99| 波多野结衣巨乳人妻| 成人永久免费在线观看视频| 国产av一区在线观看免费| 深夜精品福利| 日韩欧美一区视频在线观看| 美女午夜性视频免费| 亚洲,欧美精品.| 欧美日韩乱码在线| 成年人黄色毛片网站| 亚洲人成伊人成综合网2020| 性少妇av在线| 亚洲欧美激情综合另类| 亚洲第一电影网av| 精品国产国语对白av| 咕卡用的链子| 好男人在线观看高清免费视频 | 精品国产美女av久久久久小说| 久久婷婷成人综合色麻豆| 一区福利在线观看| 老汉色av国产亚洲站长工具| 欧美日韩亚洲综合一区二区三区_| 精品久久久久久久毛片微露脸| 久久香蕉国产精品| 免费高清视频大片| 19禁男女啪啪无遮挡网站| 91精品三级在线观看| 国产不卡一卡二| 无遮挡黄片免费观看| 国产欧美日韩一区二区三区在线| 色哟哟哟哟哟哟| 成人国产一区最新在线观看| av在线播放免费不卡| 亚洲精品久久成人aⅴ小说| 久久人妻熟女aⅴ| aaaaa片日本免费| 国产成人精品久久二区二区免费| 97碰自拍视频| 欧美激情极品国产一区二区三区| 99久久精品国产亚洲精品| 热re99久久国产66热| 亚洲全国av大片| 女性生殖器流出的白浆| av福利片在线| 中文字幕高清在线视频| 亚洲国产精品sss在线观看| 亚洲九九香蕉| 精品久久蜜臀av无| 亚洲欧美精品综合一区二区三区| 免费在线观看完整版高清| 又大又爽又粗| 中文字幕av电影在线播放| 亚洲成人久久性| 亚洲激情在线av| 久久中文看片网| 成人18禁高潮啪啪吃奶动态图| 国产激情欧美一区二区| 欧美一级a爱片免费观看看 | 一a级毛片在线观看| 久久久水蜜桃国产精品网| 俄罗斯特黄特色一大片| 性欧美人与动物交配| 日韩国内少妇激情av| 国产在线观看jvid| 男女下面插进去视频免费观看| 欧美成人免费av一区二区三区| 欧美日韩瑟瑟在线播放| 亚洲第一青青草原| 欧美日韩福利视频一区二区| 两性午夜刺激爽爽歪歪视频在线观看 | 午夜免费激情av| 非洲黑人性xxxx精品又粗又长| 黄片大片在线免费观看| 亚洲人成77777在线视频| 亚洲,欧美精品.| 村上凉子中文字幕在线| 三级毛片av免费| 免费看美女性在线毛片视频| 色哟哟哟哟哟哟| or卡值多少钱| 999久久久精品免费观看国产| 精品久久久久久久人妻蜜臀av | АⅤ资源中文在线天堂| 黄色成人免费大全| 欧美中文综合在线视频| 色播亚洲综合网| 国产精品一区二区三区四区久久 | 99在线人妻在线中文字幕| 成人国产一区最新在线观看| 精品久久久精品久久久| 又黄又粗又硬又大视频| 黑人巨大精品欧美一区二区mp4| 午夜影院日韩av| 一进一出好大好爽视频| 久久久久久久午夜电影| 亚洲五月天丁香| 在线观看日韩欧美| 99在线视频只有这里精品首页| 精品熟女少妇八av免费久了| 亚洲精品国产一区二区精华液| 精品高清国产在线一区| 亚洲午夜理论影院| 九色亚洲精品在线播放| 日本免费一区二区三区高清不卡 | 国产亚洲av嫩草精品影院| 如日韩欧美国产精品一区二区三区| 欧美日韩福利视频一区二区| 正在播放国产对白刺激| 日日爽夜夜爽网站| 一级作爱视频免费观看| 日韩欧美在线二视频| 在线十欧美十亚洲十日本专区| 国产av在哪里看| 亚洲精品美女久久av网站| 久久亚洲真实| 欧美丝袜亚洲另类 | 咕卡用的链子| 少妇 在线观看| 亚洲精品在线观看二区| 亚洲成人国产一区在线观看| 亚洲aⅴ乱码一区二区在线播放 | 国产成+人综合+亚洲专区| 成人永久免费在线观看视频| 91九色精品人成在线观看| 亚洲av第一区精品v没综合| av视频在线观看入口| 国产一区二区激情短视频| 久久人妻熟女aⅴ| 69精品国产乱码久久久| 国产av一区在线观看免费| 99国产精品一区二区三区| 国产欧美日韩一区二区三区在线| 人人澡人人妻人| 极品人妻少妇av视频| 级片在线观看| 国产亚洲精品综合一区在线观看 | av超薄肉色丝袜交足视频| 国产不卡一卡二| 色在线成人网| 一区二区三区高清视频在线| 中文字幕久久专区| www国产在线视频色| 久久精品成人免费网站| 亚洲,欧美精品.| 国产主播在线观看一区二区| 一级a爱视频在线免费观看| 久久久久久人人人人人| 国产精品久久视频播放| 国产精品精品国产色婷婷| 女性生殖器流出的白浆| 一级片免费观看大全| 国产成人欧美在线观看| 窝窝影院91人妻| 欧美精品啪啪一区二区三区| 在线观看www视频免费| 搡老岳熟女国产| 欧美午夜高清在线| 一夜夜www| 久久香蕉激情| 国产精品影院久久| 亚洲自拍偷在线| 亚洲无线在线观看| 国产精华一区二区三区| 免费搜索国产男女视频| 欧美成人免费av一区二区三区| 韩国av一区二区三区四区| 午夜两性在线视频| av欧美777| 人成视频在线观看免费观看| 人人妻人人澡人人看| 九色国产91popny在线| 好看av亚洲va欧美ⅴa在| 欧美亚洲日本最大视频资源| 国产一卡二卡三卡精品| cao死你这个sao货| 精品欧美一区二区三区在线| 精品高清国产在线一区| 大型黄色视频在线免费观看| 啦啦啦 在线观看视频| 亚洲第一欧美日韩一区二区三区| 亚洲中文字幕一区二区三区有码在线看 | 国产精品久久久久久人妻精品电影| 精品国产乱子伦一区二区三区| 国产av在哪里看| 欧美成人一区二区免费高清观看 | 久久久久久久精品吃奶| 精品卡一卡二卡四卡免费| 午夜福利一区二区在线看| av福利片在线| 成年版毛片免费区| 日韩三级视频一区二区三区| 97超级碰碰碰精品色视频在线观看| 成人永久免费在线观看视频| 亚洲精品美女久久久久99蜜臀| 久久精品国产99精品国产亚洲性色 | 国产成人欧美| 欧美一区二区精品小视频在线| av电影中文网址| 97碰自拍视频| 91麻豆精品激情在线观看国产| 精品免费久久久久久久清纯| 欧美人与性动交α欧美精品济南到| 狂野欧美激情性xxxx| 一级毛片高清免费大全| 亚洲五月色婷婷综合| 身体一侧抽搐| 日韩精品青青久久久久久| 久久中文看片网| 日韩大码丰满熟妇| 中文字幕精品免费在线观看视频| 中文字幕人妻丝袜一区二区| 多毛熟女@视频| 好男人电影高清在线观看| 母亲3免费完整高清在线观看| 精品高清国产在线一区| 亚洲精品美女久久久久99蜜臀| 色av中文字幕| 人人妻人人澡欧美一区二区 | 国产精品国产高清国产av| 在线天堂中文资源库| 校园春色视频在线观看| 亚洲 国产 在线| 一级片免费观看大全| 亚洲av成人一区二区三| 亚洲av美国av| 美女扒开内裤让男人捅视频| 日本免费一区二区三区高清不卡 | 久久香蕉精品热| 午夜福利免费观看在线| 国产精品久久电影中文字幕| 日韩成人在线观看一区二区三区| 日本一区二区免费在线视频| 动漫黄色视频在线观看| a级毛片在线看网站| 91在线观看av| 视频区欧美日本亚洲| 欧美日韩亚洲国产一区二区在线观看| 午夜影院日韩av| 久久久国产成人免费| 欧美精品亚洲一区二区| 午夜亚洲福利在线播放| 久久久久久久久中文| 亚洲第一青青草原| 在线播放国产精品三级| 亚洲国产看品久久| 亚洲欧美激情综合另类| 久久人人97超碰香蕉20202| 一边摸一边抽搐一进一小说| 又黄又爽又免费观看的视频| 91av网站免费观看| 中文字幕高清在线视频| 美女高潮喷水抽搐中文字幕| 日本在线视频免费播放| av欧美777| 国产区一区二久久| www.自偷自拍.com| 午夜精品久久久久久毛片777| 午夜激情av网站| 欧美激情高清一区二区三区| 男男h啪啪无遮挡| 精品乱码久久久久久99久播| 亚洲国产精品久久男人天堂| 午夜a级毛片| 国产精品秋霞免费鲁丝片| 亚洲国产高清在线一区二区三 | 精品电影一区二区在线| 亚洲精品美女久久久久99蜜臀| 国产麻豆69| 熟妇人妻久久中文字幕3abv| 精品人妻1区二区| 国产免费av片在线观看野外av| 一个人免费在线观看的高清视频| 国产成人一区二区三区免费视频网站| 制服人妻中文乱码| 黄网站色视频无遮挡免费观看| 婷婷六月久久综合丁香| 亚洲国产精品成人综合色| 男人操女人黄网站| 色综合欧美亚洲国产小说| 日韩国内少妇激情av| 亚洲 国产 在线| 欧美日韩中文字幕国产精品一区二区三区 | 一个人免费在线观看的高清视频| 99riav亚洲国产免费| 欧美最黄视频在线播放免费| 一进一出抽搐gif免费好疼| 19禁男女啪啪无遮挡网站| 日韩一卡2卡3卡4卡2021年| 国产亚洲精品av在线| 男人舔女人下体高潮全视频| 亚洲精品久久成人aⅴ小说| 人成视频在线观看免费观看| xxx96com| 国产亚洲精品第一综合不卡| 久久精品成人免费网站| 成人精品一区二区免费| 搡老岳熟女国产| 亚洲国产精品成人综合色| 亚洲精品国产色婷婷电影| 少妇 在线观看| 欧美日本中文国产一区发布| 日本vs欧美在线观看视频| 亚洲av五月六月丁香网| 两个人免费观看高清视频| 1024视频免费在线观看| 日日摸夜夜添夜夜添小说| 国产三级在线视频| 中国美女看黄片| 一本大道久久a久久精品| 中文字幕人妻丝袜一区二区| 久久久久国产一级毛片高清牌| 女性被躁到高潮视频| 国产精品一区二区三区四区久久 | 久久精品人人爽人人爽视色| 亚洲国产中文字幕在线视频| 中文亚洲av片在线观看爽| 丰满的人妻完整版| 制服诱惑二区| 欧美日韩瑟瑟在线播放| videosex国产| 精品久久久久久久久久免费视频| 男人舔女人的私密视频| 一夜夜www| 热re99久久国产66热| 男女做爰动态图高潮gif福利片 | 脱女人内裤的视频| 国产精品香港三级国产av潘金莲| 日韩有码中文字幕| 日韩精品中文字幕看吧| 国产精品免费一区二区三区在线| 日韩一卡2卡3卡4卡2021年| 久久国产精品影院| 成人亚洲精品一区在线观看| 免费久久久久久久精品成人欧美视频| 国产亚洲精品第一综合不卡| 一本久久中文字幕| 欧美日韩瑟瑟在线播放| 久久精品人人爽人人爽视色| 国产人伦9x9x在线观看| 12—13女人毛片做爰片一| 这个男人来自地球电影免费观看| 咕卡用的链子| 丁香欧美五月| 黄频高清免费视频| 热re99久久国产66热| 国产免费av片在线观看野外av| 久9热在线精品视频| 咕卡用的链子| 在线观看免费视频网站a站| 免费在线观看黄色视频的| 一二三四在线观看免费中文在| 男女之事视频高清在线观看| 色婷婷久久久亚洲欧美| 一区福利在线观看| 久久久久久亚洲精品国产蜜桃av| 动漫黄色视频在线观看| 国产精品久久久久久人妻精品电影| 中文字幕最新亚洲高清| 亚洲专区国产一区二区| 久久中文字幕人妻熟女| 国产成人啪精品午夜网站| 午夜免费成人在线视频| 亚洲五月婷婷丁香| 搡老熟女国产l中国老女人| 色在线成人网| 久久精品成人免费网站| 中文字幕高清在线视频| 两个人免费观看高清视频| 精品欧美国产一区二区三| 亚洲自偷自拍图片 自拍| 深夜精品福利| 亚洲人成伊人成综合网2020| 精品国内亚洲2022精品成人| 亚洲激情在线av| 最新美女视频免费是黄的| 日韩欧美三级三区| 日日夜夜操网爽| 欧美激情极品国产一区二区三区| 色综合婷婷激情| 黄色视频,在线免费观看| 一本综合久久免费| 日韩av在线大香蕉| 在线观看免费视频日本深夜| 国产精华一区二区三区| 日本免费一区二区三区高清不卡 | 女同久久另类99精品国产91| 禁无遮挡网站| 日本免费一区二区三区高清不卡 | 国产主播在线观看一区二区| 九色国产91popny在线| 亚洲熟妇中文字幕五十中出| 可以在线观看毛片的网站| 90打野战视频偷拍视频| 国产精品亚洲美女久久久| 亚洲熟妇中文字幕五十中出| 国产精品 欧美亚洲| 亚洲成人久久性| 亚洲黑人精品在线| 亚洲国产日韩欧美精品在线观看 | 一区二区三区高清视频在线| 91成年电影在线观看| 色综合欧美亚洲国产小说| 亚洲三区欧美一区| 琪琪午夜伦伦电影理论片6080| 亚洲免费av在线视频| 不卡一级毛片| 69av精品久久久久久| 日日摸夜夜添夜夜添小说| 黄片小视频在线播放| 欧美一级毛片孕妇| 一级a爱视频在线免费观看| 99热只有精品国产| 色综合欧美亚洲国产小说| 久久欧美精品欧美久久欧美| 一本久久中文字幕| 亚洲国产高清在线一区二区三 | 两个人视频免费观看高清| 国产成人精品久久二区二区免费| 国产一区二区三区综合在线观看| 亚洲 欧美一区二区三区| e午夜精品久久久久久久| 一进一出抽搐gif免费好疼| 国产av精品麻豆| 欧美大码av| 在线视频色国产色| 精品欧美国产一区二区三| 色老头精品视频在线观看| 久久人妻福利社区极品人妻图片| 真人做人爱边吃奶动态| 亚洲av成人av| 9色porny在线观看| 日韩欧美一区视频在线观看| 精品欧美国产一区二区三| 久99久视频精品免费| 久久久久国产精品人妻aⅴ院| 国产精品,欧美在线| 亚洲成国产人片在线观看| 大型黄色视频在线免费观看| 欧美在线一区亚洲| 在线国产一区二区在线| 国产私拍福利视频在线观看| 免费不卡黄色视频| 亚洲成人免费电影在线观看| 淫秽高清视频在线观看| 久久热在线av| 一区福利在线观看| 免费在线观看黄色视频的| 精品少妇一区二区三区视频日本电影| 啦啦啦 在线观看视频| 精品午夜福利视频在线观看一区| 天天躁夜夜躁狠狠躁躁| 一边摸一边抽搐一进一小说| 午夜日韩欧美国产| 欧美午夜高清在线| 成人18禁在线播放| 国产主播在线观看一区二区| 精品午夜福利视频在线观看一区| 日韩成人在线观看一区二区三区| 久久久久久亚洲精品国产蜜桃av| 国产av在哪里看| 热99re8久久精品国产| 大型黄色视频在线免费观看| 亚洲成av人片免费观看| 激情在线观看视频在线高清| 国产伦人伦偷精品视频| 50天的宝宝边吃奶边哭怎么回事| 国产精品一区二区三区四区久久 | 51午夜福利影视在线观看| 亚洲av片天天在线观看| 国产欧美日韩一区二区三| 成年女人毛片免费观看观看9| 天天躁夜夜躁狠狠躁躁| 午夜福利在线观看吧| 久久精品亚洲精品国产色婷小说| 久久中文字幕人妻熟女| 国产亚洲精品av在线| 欧美日韩亚洲综合一区二区三区_| 丝袜美足系列| 国产精品日韩av在线免费观看 | 久久精品国产清高在天天线| 亚洲第一欧美日韩一区二区三区| 久久欧美精品欧美久久欧美| 后天国语完整版免费观看| 不卡av一区二区三区| or卡值多少钱| 日日夜夜操网爽| 悠悠久久av| 波多野结衣一区麻豆| 亚洲熟女毛片儿| 一进一出抽搐动态| 国产xxxxx性猛交| 国产日韩一区二区三区精品不卡| 精品久久久久久久毛片微露脸| 美女国产高潮福利片在线看| 69精品国产乱码久久久| 免费少妇av软件| 久久热在线av| 精品国产乱码久久久久久男人| 女同久久另类99精品国产91| aaaaa片日本免费| 精品人妻在线不人妻| 丁香六月欧美| 大型av网站在线播放| 麻豆久久精品国产亚洲av| 国产av又大| 激情视频va一区二区三区| 性色av乱码一区二区三区2| 这个男人来自地球电影免费观看| 亚洲情色 制服丝袜| 国产精品一区二区三区四区久久 | 最近最新免费中文字幕在线| 岛国在线观看网站| 一级,二级,三级黄色视频| 欧美精品亚洲一区二区| 亚洲国产欧美一区二区综合| 男人的好看免费观看在线视频 | 国产免费男女视频| 成人亚洲精品一区在线观看| 久久久久久久久中文| 久久久精品欧美日韩精品| 美国免费a级毛片| 日日干狠狠操夜夜爽| 日韩精品中文字幕看吧| 电影成人av| 一区二区三区激情视频| 久久九九热精品免费| 亚洲成人久久性| 国产国语露脸激情在线看| 精品人妻1区二区| 狂野欧美激情性xxxx| avwww免费| 国产av一区在线观看免费| 在线免费观看的www视频| 国产99久久九九免费精品| 国产午夜精品久久久久久| 午夜日韩欧美国产| 丝袜美腿诱惑在线| 女性被躁到高潮视频| 精品一区二区三区视频在线观看免费| 亚洲av日韩精品久久久久久密| 在线国产一区二区在线| 国产欧美日韩精品亚洲av| 国产99久久九九免费精品| 色综合站精品国产| 免费在线观看视频国产中文字幕亚洲| 日本a在线网址| 91九色精品人成在线观看| 亚洲狠狠婷婷综合久久图片| 国产激情欧美一区二区| 免费高清视频大片| 50天的宝宝边吃奶边哭怎么回事| 两个人免费观看高清视频| 在线av久久热| 涩涩av久久男人的天堂| 成人三级做爰电影| 亚洲视频免费观看视频| 精品久久久久久久久久免费视频| 国产成年人精品一区二区| 免费在线观看日本一区| 国产一区二区激情短视频| 精品国产乱子伦一区二区三区| 欧美激情 高清一区二区三区| 国产aⅴ精品一区二区三区波| 在线免费观看的www视频| 精品久久久久久久久久免费视频| 岛国视频午夜一区免费看| xxx96com| 亚洲久久久国产精品| 波多野结衣巨乳人妻| 精品国产乱码久久久久久男人| 欧美日韩精品网址| 制服诱惑二区| 日本五十路高清| 精品午夜福利视频在线观看一区| 国产免费av片在线观看野外av| 怎么达到女性高潮| 国产精品av久久久久免费| 日韩精品中文字幕看吧| www.www免费av| 亚洲成人久久性| 国产97色在线日韩免费| 日韩欧美一区视频在线观看| 淫妇啪啪啪对白视频| 欧美激情极品国产一区二区三区| 亚洲中文日韩欧美视频| 亚洲狠狠婷婷综合久久图片| 久久久久国产精品人妻aⅴ院| 亚洲人成电影观看| 在线观看免费视频日本深夜| 欧美乱妇无乱码| 黄色 视频免费看| 美女 人体艺术 gogo| 久久久久亚洲av毛片大全| 国产单亲对白刺激| 免费av毛片视频| 国产1区2区3区精品| 亚洲一码二码三码区别大吗| 欧美亚洲日本最大视频资源| 国产单亲对白刺激|