• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Differential Optical Absorption Spectroscopy Method for XCO2Retrieval from Ground-Based Fourier Transform Spectrometers Measurements of the Direct Solar Beam

    2015-06-09 21:37:22HUOYanfengDUANMinzhengTIANWenshouandMINQilong
    Advances in Atmospheric Sciences 2015年8期

    HUO Yanfeng,DUAN Minzheng,TIAN Wenshou,and MIN Qilong

    1Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences,Lanzhou University,Lanzhou 730000

    2Key Laboratory of Middle Atmosphere and Global Environment Observation, Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 10029

    3Wuhan University,Wuhan 430000

    4 Atmospheric Science Research Center,State University of New York,Albany,NY 12203,USA

    A Differential Optical Absorption Spectroscopy Method for XCO2Retrieval from Ground-Based Fourier Transform Spectrometers Measurements of the Direct Solar Beam

    HUO Yanfeng1,2,DUAN Minzheng?2,TIAN Wenshou1,and MIN Qilong3,4

    1Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences,Lanzhou University,Lanzhou 730000

    2Key Laboratory of Middle Atmosphere and Global Environment Observation, Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 10029

    3Wuhan University,Wuhan 430000

    4 Atmospheric Science Research Center,State University of New York,Albany,NY 12203,USA

    A differential optical absorption spectroscopy(DOAS)-like algorithm is developed to retrieve the column-averaged dryair mole fraction of carbon dioxide from ground-based hyper-spectral measurements of the direct solar beam.Different to the spectral fitting method,which minimizes the difference between the observed and simulated spectra,the ratios of multiple channel-pairs—one weak and one strong absorption channel—are used to retrieve XCO2from measurements of the shortwave infrared(SWIR)band.Based on sensitivity tests,a super channel-pair is carefully selected to reduce the effects of solarlines,water vapor,air temperature,pressure,instrument noise,and frequency shift on retrieval errors.The new algorithm reduces computational cost and the retrievals are less sensitive to temperature and H2O uncertainty than the spectral fitting method.Multi-day Total Carbon Column Observing Network(TCCON)measurements under clear-sky conditions at two sites(Tsukuba and Bremen)are used to derive XCO2for the algorithm evaluation and validation.The DOAS-like results agree very well with those of the TCCON algorithm after correction of an airmass-dependent bias.

    CO2Retrieval,ground-based measurement,hyper-spectrum,shortwave infrared band

    1.Introduction

    Carbon dioxide(CO2)is considered to be the main greenhouse gas causing current global warming(Solomon et al., 2007).However,Easterling and Wehner(2009)reported that records of surface air temperature show no warming trend or even a slight cooling trend,while greenhouse gas levels are still increasing.The disagreement about climate change is mostly due to the lack of long-term records of CO2measurements,especially for large area measurements and CO2sources and sinks(Stephens et al.,2007;Canadell et al., 2010).

    It is advantageous to use satellite remote sensing to monitor atmospheric CO2globally.However,at present,only the satellite datasets of column-averaged dry-air mole fraction of CO2(XCO2)from the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography(SCIAMACHY) on board the Environmental Satellite(ENVISAT)(Bovensmann et al.,1999)and the Thermal and Near-infrared Sensor for Carbon Observation–Fourier Transform Spectrometer (TANSO-FTS)on board the Greenhouse Gases Observing Satellite(GOSAT)(Kuze et al.,2009),are used to estimate regional CO2fluxes.Both instruments use the reflected solar radiation in the shortwave infrared(SWIR)spectral region, making them sensitive to the variation of near-surface CO2concentrations.Unfortunately,the low spectral resolution of SCIAMACHY limits the inversion accuracy,with a single retrieval precision of about 2.5 ppm,as compared to ground-based Fourier transform spectrometer(FTS)measurements(Buchwitz et al.,2005;Reuter et al.,2011).The biases and standard deviations of the column-averaged dryair mole fraction of carbon dioxide(XCO2)from the SWIR L2 V02.xx GOSAT retrieval algorithm reach-1.48 and 2.09ppm,respectively(Morino et al.,2011;Yoshida et al.,2011; Yoshida et al.,2013).

    Compared with satellite observations of reflected light, ground-based observations of the direct solar beam are less influenced by surface albedo,aerosolsetc.Therefore,groundbased observations can achieve higher accuracy and precision in determining the CO2total column amount.However,at present,the Total Carbon Column Observing Network(TCCON)is the only existing network that retrieves the total column concentration of CO2from ground-based FTS measurements for satellite validation.TCCON achieves a networkwide uncertainty of XCO2of better than 0.8 ppm,with 2σafter correcting for an airmass-dependent bias and calibrating to aircraft vertical profiles(Wunch et al.,2011a,b).

    A Chinese satellite for CO2monitoring is planned for launch in 2015(Liu et al.,2013).To validate the satellite retrievals,a surface observation network has been set up to measure the hyper-spectrum of the direct solar beam in the SWIR bands.To derive the total column amount of CO2from these spectral measurements,a retrieval algorithm is needed. In this paper,a new DOAS-like algorithm is developed,in which multiple pairs of CO2absorption ratios(one in the weak CO2absorption channel and one in the strong CO2absorption channel)are used to derive the column CO2.More importantly,both channels in the pair are carefully selected to reduce their sensitivity to the surface pressure,air temperature,water vapor,noise and frequency shift.Compared with the spectral fitting method,DOAS-like retrievals are less sensitive to temperature and H2O uncertainty.

    2.Retrieval algorithm

    2.1.Physical basis

    Ourretrievalalgorithm isbased on the factthatthe photon path lengths within a narrow spectral range are equal.Therefore,the ratio of the channel pair is proportional to XCO2if the surface pressure,temperature profile and water vapor are known.Based on the Lambert–Beer law,a ground-based measurement of the direct solar beam for a fixed wavelength can be expressed as

    where Iλis the downward radiance measured at the bottom of the atmosphere for wavelengthλ,Isca,λis the forward scattering contribution in the incident direction,and I0is the incoming solar radiance at the top of the atmosphere.m is the air mass factor.τis the optical depth in the vertical optical path,which can be written as

    where the right-hand terms represent optical depth of CO2absorption,water vapor absorption,aerosol extinction,and Rayleigh scattering,respectively.The scattering term of Isca,λin Eq.(1)is negligible due to a very small field of view (FOV)(~2.4 mrad)ofthe spectrometer,particularly forsmall aerosol particles and small aerosol optical depths(Min et al., 2004;Min and Duan,2005;Wunch et al.,2011a).Therefore, the radiance can be simplified as

    In a very limited spectral range,the variation ofτaerandτRayacross the spectral range can be ignored.Therefore the ratio of the selected channel pair is insensitive to the loading of aerosol and Rayleigh scattering.Hence,we have

    Letting r=Iλ1/Iλ2and r0=I0,λ1/I0,λ2,Eq.(4)can be rewritten as

    By taking the logarithm of Eq.(5),we have

    The optical depthτCO2is proportional to the total number of molecules of CO2per surface area,which is positively correlated to XCO2if the surface pressure,air temperature and CO2volume mixing ratio(VMR)profile are assumed to be known.Furthermore,only channel pairs with weak H2O absorption interference are selected.Therefore,the difference associated with water vapor is small and can be treated as a correction coefficient.Then,Eq.(6)is simplified as

    Through the about pair selection procedure,the retrieval,i.e., Eq.(7),is weakly sensitive to the atmospheric state uncertainty(temperature and water vapor).Nonetheless,the coefficients of a and b are weakly dependent on temperature and water vapor in the atmosphere.To further reduce the error associated with the atmospheric state,we can calculate bothcoefficients with the surface pressure of in-situ measurements collected by automatic meteorological stations and reanalysis/forecasting atmospheric profiles.The profiles can be fixed for multiple measurements within some specific time period because only channels that are independent of temperature and water vapor are used in our retrieval algorithm.To illustrate the feasibility of fixed profiles,several inversions calculated by the different coefficients a and b at 0000,0600 and 1200 UTC are shown in Fig.1.All the errors are less than 0.15 ppm.The DOAS-like algorithm of Eq.(7)only has one unknown parameter.Hence,no iteration is needed.

    2.2.Forward model

    2.3.Channel selection

    The DOAS-like method could reduce computational cost, but the super channel-pair must be carefully selected to reduce the impacts of H2O absorption,the solar Fraunhofer lines,and other factors such as instrument noise,temperature, pressure,frequency shift etc.In our channel-pair,the mean of 430 channels with very weak CO2absorption is regarded as the weak absorption channel in the super channel-pair,which is applied to the following analyses,and the mean of some strong CO2absorption channels is regarded as the strong absorption channel in the super channel-pair,as shown in Fig. 2.The selection of the strong absorption channel in the super channel-pair is presented in the following paragraphs.

    The effects of random noise are also analyzed in the strong absorption channel selection to avoid large errors.Figure 3 illustrates the errors due to instrument noise in differently positioned strong CO2absorption channels if only one strong CO2absorption channel is used in XCO2retrieval.It is clearly shown that when the strong CO2absorption channel located at the far wing is used,large errors could be introduced due to the reduced information content of CO2(Fig. 3a);while in the line center,low signal-to-noise ratio(SNR) results in large uncertainty(Fig.3c).

    The line strength and absorption coefficients depend on pressure and temperature.For the ultra-high spectral resolution measurements,an inaccurate pressure and temperatureprofile will introduce extra errors in the retrieval of CO2.Figure 4 shows the XCO2errors of each channel for a+1 hPa bias of surface pressure,which is calculated by comparing inversions with and without a 1 hPa change,when the channel is regarded as the only strong CO2absorption channel.In the error calculations,the coefficients a and b are calculated under the surface pressure,while the“measurements”are given under the+1 hPa bias of the surface pressure.Similarly,Fig. 5 shows the XCO2errors for a+1 K shift of the temperature profile.As shown in Fig.4,inversion errors caused by the +1 hPa pressure bias of most channels are positive,except for some channels in the weak absorption area.To reduce theimpact of pressure,only channels with an inversion error of less than 1 ppm are selected to be the component of the strong absorption channels in the super channel-pair.Different from that of pressure,the errordue to the+1 K offset of the temperature profile could be either positive or negative,and it could be minimized by careful channel selection in real retrievals.

    Inaccurate wavelength registration is anothersource oferror in retrievals.As shown in Fig.6,the errors in XCO2retrieval due to a frequency shift of 0.003 cm-1could be up to 25 ppm if only one strong CO2absorption channel located on one side of the line center is used.But if strong CO2absorption channels located on both sides of the line center are used, the errors due to the frequency shift tend to be very small,or even zero.

    Based on the above sensitivity studies,and the additional removal of the channels with strong H2O absorption and Fraunhofer lines,the final 588 strong CO2absorption channels are used in our retrieval.In order to evaluate the dependence of the DOAS-like method on the atmospheric state uncertainty,one-year prior profiles in Tsukuba,as shown in Fig.7,are used in simulated inversions.The results for both the DOAS-like and spectral fitting methods are listed in Table 1,in which errors of 1 K for the temperature profile,+5%for water vapor,+1 hPa for surface pressure,and 0.001 cm-1for frequency offset are assumed for solar zenith angles(SZAs) at 20?and 70?.For specific atmospheric parameter analysis, both the spectral fitting and DOAS-like method have one unknown state vector.Relatively,the DOAS-like retrievals are less sensitive to the temperature and H2O uncertainties,especially for large SZAs and high H2O amounts.The effects of surface pressure and frequency shift to being slightly better in the spectral fitting method.

    3.Case studies and comparisons

    To validate the DOAS-like algorithm,TCCON data in Tsukuba,Japan(36.0513?N,140.1215?E)and Bremen,Germany(53.10?N,8.85?E)are used.The spectra at both stations are measured with an FTS(IFS 125HR,Bruker Optics GmbH,Germany).The absorption spectrum is calculated by a Fourier transform of the interferogram,which is formed by beams reflected from a moving mirror and a static mirror. The resolution and sample rate of the FTS are determined bythe maximum optical path differences(MOPDs)and speed of the moving mirror.The MOPDs of the FTS in Tsukuba and Germany are 45.01 and 64.29 cm,respectively.The retrieved XCO2using the DOAS-like method are illustrated in Fig.8 (left panels),and the results of the official TCCON algorithm are also included for comparison.At first sight,the XCO2of the DOAS-like method is smaller than that of the official TCCON algorithm.After comparing the difference between the TCCON and DOAS-like retrievals with the SZA(Fig.8, right panels),we find that the difference is linearly dependent on the SZA(Fig.9).Moreover,the linear relationship does not vary with time and place.For the TCCON results,a postretrieval algorithm is used to correct an airmass-dependent bias based on the assumption that any symmetric variability within a day should be an artifact(Deutscher et al.,2010; Wunch et al.,2011a).Through a simple correction process in which the linear dependency on the SZA is removed,the DOAS-like and TCCON results agree well with each other, as shown in Fig.10.The standard deviation of the difference between the TCCON and DOAS-like methods is less than 0.8 ppm,both in Tsukuba and Bremen(Fig.11).This suggests that the DOAS-like algorithm provides retrievals with similar precision to TCCON.However,the temporal variability of the atmospheric state in Fig.12 limits the possibility of a higher inversion accuracy.Certainly,there could be many other factors for the low values of DOAS-like retrievals.For example,the solar lines provided by Kurucz used in our algorithm are not so good(Yoshida et al.,2013),and the FTS only focuses on the center of the solar disk due to its very small FOV.This inaccurate extra-terrestrial solar spectrum may be a factor for our lower value of XCO2.

    Table 1.The XCO2errors due to temperature,water vapor,surface pressure and spectral shift.

    4.Conclusions and future directions

    A new algorithm using a channel-pair ratio to derive XCO2is presented in this paper.The algorithm is similar to that of the DOAS method.For the purpose of channel selection,the effects of solar lines,water vapor,air temperature,pressure, instrument noise and wavelength registration shift on the retrieval error are analyzed through a series of sensitivity tests. One super channel-pair is used in the retrieval algorithm. FTS measurements at the TCCON stations in Tsukuba and Bremen are used to validate the new algorithm by comparing our results with the official TCCON product.Our XCO2results are lower than those of TCCON with airmass correction.Taking the TCCON data as a reference,our results are further corrected using an SZA-dependent method.After the correction,our corrected results agree well with those of the TCCON products,suggesting that this new algorithm is useful.However,due to insufficient ground measurements, the new retrieval method is validated by observations at only two stations.Clearly,a thorough validation with extensiveobservation is warranted for our DOAS-like algorithm.

    Acknowledgements.We greatly appreciate the TCCON stations at Tsukuba and Bremen for providing FTS observation spectra and auxiliary data.We also thank Atmospheric and Environmental Research(AER)for providing the LBLRTM.The research described in this paper was supported by the Strategic Priority Research Program–Climate Change:Carbon Budget and Relevant Issues(Grant No.XDA05040300),and National Natural Science Foundation of China(Grant No.41175028).

    REFERENCES

    Bovensmann,H.,J.P.Burrows,M.Buchwitz,J.Frerick,S.No¨el, V.V.Rozanov,K.V.Chance,and A.P.H.Goede,1999: SCIAMACHY:Mission objectives and measurement modes. J.Atmos.Sci.,56,127–150.

    Buchwitz,M.,and Coauthors,2005:Carbon monoxide,methane and carbon dioxide columns retrieved from SCIAMACHY by WFM-DOAS:Year 2003 initial data set.Atmospheric Chemistry and Physics,5,3313–3329.

    Canadell,J.G.,and Coauthors,2010:Interactions of the carbon cycle,human activity,and the climate system:A researchportfolio.Current Opinion in Environmental Sustainability, 2,301–311.

    Kurucz,R.L.,1995:The solar spectrum:Atlases and line identifications.Workshop on Laboratory and Astronomical High Resolution Spectra,ASP Comference Series,No.81,A.J. Sauval,R.Blomme and N.Grevesse,17–31.

    Deutscher,N.M.,and Coauthors,2010:Total column CO2measurements at Darwin,Australia—site description and calibration against in situ aircraft profiles.Atmospheric Measurement Techniques,3,947–958.

    Easterling,D.R.,and M.F.Wehner,2009:Is the climate warming or cooling?Geophys.Res.Lett.,36,L08706,doi:10.1029/ 2009GL037810.

    Kuze,A.,H.Suto,M.Nakajima,and T.Hamazaki,2009:Thermal and near infrared sensor for carbon observation Fouriertransform spectrometer on the Greenhouse Gases Observing Satellite for greenhouse gases monitoring.Appl.Opt.,48, 6716–6733.

    Liu,Y.,D.X.,Yang,and Z.N.,Cai,2013:A retrieval algorithm for TanSat XCO2observation:Retrieval experiments using GOSAT data.Chinese Science Bulletin,58,1520–1523.

    Min,Q.-L.,and M.Z.Duan,2005:Simultaneously retrieving cloud optical depth and effective radius for optically thin clouds.J.Geophys.Res.,110,D21201,doi:10.1029/2005JD 006136.

    Min,Q.L.,E.Joseph,and M.Z.Duan,2004:Retrievals of thin cloud optical depth from a multifilter rotating shadowband radiometer.J.Geophys.Res.,109,D02201,doi:10.1029/2003 JD003964.

    Morino,I.,and Coauthors,2011:Preliminary validation of column-averaged volume mixing ratios of carbon dioxide and methane retrieved from GOSAT short-wavelength infrared spectra.Atmospheric Measurement Techniques,4,1061–1076.

    Reuter,M.,and Coauthors,2011:Retrieval of atmospheric CO2with enhanced accuracy and precision from SCIAMACHY: Validation with FTS measurements and comparison with model results.J.Geophys.Res.,116,D04301,doi:10.1029/ 2010JD015047.

    Solomon S.,and Coauthors,2007:Climate Change 2007:The Physical Science Basis.Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change.Cambridge University Press,996 pp.

    Stephens,B.B.,and Coauthors,2007:Weak northern and strong tropical land carbon uptake from vertical profiles of atmospheric CO2.Science,316,1732–1735.

    Wunch,D.,and Coauthors,2011a:The total carbon column observing network.Philosophical Transactions of the Royal Society A Mathematical Physical and Engineering Sciences, 369,2087–2112.

    Wunch,D.,and Coauthors,2011b:A method for evaluating bias in global measurements of CO2total columns from space.Atmospheric Chemistry and Physics,11,12 317–12 337.

    Yoshida,Y.,Y.Ota,N.Eguchi,N.Kikuchi,K.Nobuta,H.Tran, I.Morino,and T.Yokota,2011:Retrieval algorithm for CO2and CH4column abundances from short-wavelength infrared spectral observations by the Greenhouse gases observing satellite.Atmospheric Measurement Techniques,4,717–734.

    Yoshida,Y.,and Coauthors,2013:Improvement of the retrieval algorithm for GOSAT SWIR XCO2and XCH4and their validation using TCCON data.Atmospheric Measurement Techniques,6,1533–1547.

    :Huo,Y.F.,M.Z.Duan,W.S.Tian,and Q.L.Min,2015:A differential optical absorption spectroscopy method for XCO2retrieval from ground-based fourier transform spectrometers measurements of the direct solar beam.Adv.Atmos. Sci.,32(8),1119–1128,

    10.1007/s00376-015-4213-9.

    22 September 2014;revised 8 January 2015;accepted 22 January 2015)

    ?Corresponding author:DUAN Minzheng

    Email:dmz@mail.iap.ac.cn

    精品人妻一区二区三区麻豆| 哪个播放器可以免费观看大片| 日韩大片免费观看网站| av卡一久久| 久久人人爽人人片av| 一个人免费看片子| 欧美xxⅹ黑人| 2018国产大陆天天弄谢| 亚洲欧美中文字幕日韩二区| 亚洲第一av免费看| 高清黄色对白视频在线免费看| 亚洲av男天堂| 亚洲精品国产av成人精品| 伊人久久大香线蕉亚洲五| 亚洲,欧美精品.| 交换朋友夫妻互换小说| 又粗又硬又长又爽又黄的视频| 一级毛片我不卡| 三上悠亚av全集在线观看| 午夜免费男女啪啪视频观看| 美女大奶头黄色视频| 中文字幕色久视频| 欧美人与性动交α欧美软件| 一个人免费看片子| 欧美在线一区亚洲| 欧美少妇被猛烈插入视频| 美女国产高潮福利片在线看| 久久国产精品男人的天堂亚洲| 最近中文字幕2019免费版| 日本一区二区免费在线视频| 亚洲欧美一区二区三区久久| 丝袜喷水一区| 满18在线观看网站| 一级毛片电影观看| 国产亚洲一区二区精品| 欧美日本中文国产一区发布| 午夜老司机福利片| 人妻人人澡人人爽人人| 日本欧美视频一区| 久久久久久久久久久久大奶| 丰满迷人的少妇在线观看| 欧美成人午夜精品| 日本黄色日本黄色录像| 亚洲欧洲国产日韩| 无限看片的www在线观看| 精品人妻一区二区三区麻豆| 久久99一区二区三区| 精品午夜福利在线看| 一本久久精品| 精品视频人人做人人爽| 国产极品天堂在线| 久久热在线av| 久久久久久人人人人人| 国产av精品麻豆| 国产麻豆69| 热re99久久国产66热| 久久久久久人妻| 欧美激情极品国产一区二区三区| 观看av在线不卡| 色视频在线一区二区三区| 韩国高清视频一区二区三区| 亚洲成av片中文字幕在线观看| 亚洲人成电影观看| 卡戴珊不雅视频在线播放| 狠狠精品人妻久久久久久综合| 九草在线视频观看| 女人精品久久久久毛片| av女优亚洲男人天堂| 男女无遮挡免费网站观看| 在线看a的网站| 亚洲av福利一区| 免费日韩欧美在线观看| 少妇被粗大的猛进出69影院| 国产又色又爽无遮挡免| 交换朋友夫妻互换小说| 操美女的视频在线观看| 啦啦啦视频在线资源免费观看| 国产精品久久久久久精品古装| 99re6热这里在线精品视频| 亚洲美女黄色视频免费看| 黄片播放在线免费| 老熟女久久久| 国产有黄有色有爽视频| 欧美国产精品一级二级三级| 婷婷成人精品国产| 国产高清不卡午夜福利| 一边亲一边摸免费视频| 国产无遮挡羞羞视频在线观看| 亚洲成av片中文字幕在线观看| 日本色播在线视频| 人妻人人澡人人爽人人| 另类亚洲欧美激情| 69精品国产乱码久久久| 亚洲精品久久午夜乱码| 伊人久久国产一区二区| 天堂中文最新版在线下载| 亚洲免费av在线视频| 高清欧美精品videossex| 国产日韩欧美在线精品| 交换朋友夫妻互换小说| xxxhd国产人妻xxx| av在线老鸭窝| 日韩大码丰满熟妇| 国产1区2区3区精品| 久久精品国产a三级三级三级| 99国产综合亚洲精品| 国产精品亚洲av一区麻豆 | 最近最新中文字幕大全免费视频 | a 毛片基地| 80岁老熟妇乱子伦牲交| 中文字幕人妻熟女乱码| 不卡av一区二区三区| 日韩 欧美 亚洲 中文字幕| 母亲3免费完整高清在线观看| 男女国产视频网站| 久久久久久人人人人人| 亚洲国产精品一区二区三区在线| 久久人人爽av亚洲精品天堂| 亚洲少妇的诱惑av| 欧美在线一区亚洲| 久久97久久精品| 日日啪夜夜爽| 国产黄色免费在线视频| 久久国产亚洲av麻豆专区| 十八禁高潮呻吟视频| 亚洲第一区二区三区不卡| 又粗又硬又长又爽又黄的视频| 最近的中文字幕免费完整| 亚洲国产精品999| 一区在线观看完整版| 卡戴珊不雅视频在线播放| 久久久国产欧美日韩av| 一区二区三区精品91| 一区二区三区四区激情视频| 日韩视频在线欧美| 国产精品一国产av| 欧美国产精品va在线观看不卡| 两个人免费观看高清视频| 久久性视频一级片| 天天躁日日躁夜夜躁夜夜| 欧美精品高潮呻吟av久久| 美女大奶头黄色视频| 人人澡人人妻人| 纯流量卡能插随身wifi吗| 天天添夜夜摸| 青春草亚洲视频在线观看| 亚洲精品国产av成人精品| 伊人久久国产一区二区| 90打野战视频偷拍视频| 国产免费福利视频在线观看| 亚洲国产精品一区三区| 涩涩av久久男人的天堂| 这个男人来自地球电影免费观看 | 国产伦人伦偷精品视频| 9色porny在线观看| 国产一区有黄有色的免费视频| 亚洲国产欧美一区二区综合| 毛片一级片免费看久久久久| 国产精品国产av在线观看| 日本色播在线视频| 我要看黄色一级片免费的| 在线观看免费视频网站a站| 国产黄频视频在线观看| 日韩免费高清中文字幕av| 一区二区日韩欧美中文字幕| 又大又黄又爽视频免费| 最近2019中文字幕mv第一页| 国产成人精品在线电影| 欧美国产精品一级二级三级| 99久久人妻综合| 男女下面插进去视频免费观看| av天堂久久9| 国产欧美日韩一区二区三区在线| 国产精品 国内视频| 午夜免费鲁丝| 日韩 欧美 亚洲 中文字幕| 在线观看免费日韩欧美大片| 无限看片的www在线观看| 另类亚洲欧美激情| 十分钟在线观看高清视频www| 欧美日韩av久久| 老汉色av国产亚洲站长工具| 亚洲精品国产一区二区精华液| 亚洲精品在线美女| 亚洲一码二码三码区别大吗| 日韩成人av中文字幕在线观看| 国产野战对白在线观看| 街头女战士在线观看网站| 亚洲婷婷狠狠爱综合网| 18禁国产床啪视频网站| 国产成人欧美在线观看 | 热99久久久久精品小说推荐| 精品一区二区三区四区五区乱码 | 亚洲五月色婷婷综合| 黄色一级大片看看| 激情五月婷婷亚洲| 国产野战对白在线观看| 99精品久久久久人妻精品| 国产精品熟女久久久久浪| 欧美老熟妇乱子伦牲交| av又黄又爽大尺度在线免费看| 国产精品一二三区在线看| 久久女婷五月综合色啪小说| svipshipincom国产片| 纯流量卡能插随身wifi吗| 国产成人精品久久二区二区91 | 侵犯人妻中文字幕一二三四区| 十八禁网站网址无遮挡| www.熟女人妻精品国产| 无遮挡黄片免费观看| 汤姆久久久久久久影院中文字幕| 99久国产av精品国产电影| 中文字幕人妻丝袜一区二区 | 亚洲精华国产精华液的使用体验| 国产成人欧美在线观看 | 欧美黄色片欧美黄色片| 国产精品免费大片| 久久久久久久大尺度免费视频| 成人毛片60女人毛片免费| 最近中文字幕高清免费大全6| 丁香六月天网| 91aial.com中文字幕在线观看| 不卡av一区二区三区| 十八禁网站网址无遮挡| av一本久久久久| 乱人伦中国视频| 亚洲精品久久久久久婷婷小说| 最近中文字幕高清免费大全6| 在线观看人妻少妇| 国产极品粉嫩免费观看在线| 狂野欧美激情性bbbbbb| 国产伦人伦偷精品视频| 亚洲成人手机| 久久鲁丝午夜福利片| 大片电影免费在线观看免费| 精品亚洲乱码少妇综合久久| 99香蕉大伊视频| 亚洲精品日本国产第一区| kizo精华| 一级片'在线观看视频| 婷婷成人精品国产| 最新的欧美精品一区二区| 天天躁日日躁夜夜躁夜夜| 人人妻人人爽人人添夜夜欢视频| 国产成人啪精品午夜网站| 18禁观看日本| 91aial.com中文字幕在线观看| 国产精品熟女久久久久浪| 黄色视频不卡| 成人18禁高潮啪啪吃奶动态图| 国产亚洲av片在线观看秒播厂| 国产精品无大码| 免费日韩欧美在线观看| 久久久国产精品麻豆| 男女国产视频网站| avwww免费| 国产精品秋霞免费鲁丝片| 亚洲欧美日韩另类电影网站| 中文天堂在线官网| 热99国产精品久久久久久7| 成年人免费黄色播放视频| 男女边吃奶边做爰视频| 亚洲欧美色中文字幕在线| 日韩精品有码人妻一区| 亚洲五月色婷婷综合| 免费观看人在逋| 国精品久久久久久国模美| 秋霞伦理黄片| 国产精品人妻久久久影院| 午夜精品国产一区二区电影| 这个男人来自地球电影免费观看 | 一区二区三区精品91| 国产精品嫩草影院av在线观看| av有码第一页| 亚洲欧洲精品一区二区精品久久久 | 一本一本久久a久久精品综合妖精| 中文字幕色久视频| 国产亚洲av片在线观看秒播厂| 婷婷色综合大香蕉| 777久久人妻少妇嫩草av网站| 亚洲成色77777| 99久久精品国产亚洲精品| www日本在线高清视频| 黄色视频不卡| 中文精品一卡2卡3卡4更新| 亚洲精品成人av观看孕妇| 香蕉丝袜av| 国产免费视频播放在线视频| 欧美日本中文国产一区发布| 午夜免费鲁丝| 男女床上黄色一级片免费看| 久久影院123| 美女中出高潮动态图| 精品一区二区三区四区五区乱码 | videos熟女内射| 美女主播在线视频| 另类精品久久| 久久99精品国语久久久| 亚洲五月色婷婷综合| 男女免费视频国产| 免费在线观看视频国产中文字幕亚洲 | 亚洲精品国产区一区二| 国产极品天堂在线| 秋霞在线观看毛片| 麻豆av在线久日| 我要看黄色一级片免费的| 90打野战视频偷拍视频| 久久韩国三级中文字幕| 精品人妻熟女毛片av久久网站| 搡老乐熟女国产| 久久国产精品男人的天堂亚洲| 日本vs欧美在线观看视频| 18禁观看日本| 国产国语露脸激情在线看| 性色av一级| 久久久亚洲精品成人影院| 一本大道久久a久久精品| 久久女婷五月综合色啪小说| 色播在线永久视频| 久久久国产精品麻豆| 久久99热这里只频精品6学生| 久久毛片免费看一区二区三区| 精品午夜福利在线看| 精品亚洲成国产av| 一区二区av电影网| 国产深夜福利视频在线观看| 久久精品久久久久久噜噜老黄| 啦啦啦啦在线视频资源| 婷婷色麻豆天堂久久| 9热在线视频观看99| 免费女性裸体啪啪无遮挡网站| 99九九在线精品视频| 19禁男女啪啪无遮挡网站| 观看美女的网站| 亚洲第一青青草原| 精品第一国产精品| 在线精品无人区一区二区三| 校园人妻丝袜中文字幕| 不卡视频在线观看欧美| 午夜免费鲁丝| 19禁男女啪啪无遮挡网站| 日韩成人av中文字幕在线观看| 黄片小视频在线播放| svipshipincom国产片| avwww免费| 大片电影免费在线观看免费| 欧美在线黄色| 午夜激情久久久久久久| 美女中出高潮动态图| 大码成人一级视频| 巨乳人妻的诱惑在线观看| 亚洲精品乱久久久久久| 欧美av亚洲av综合av国产av | 亚洲人成网站在线观看播放| 国产视频首页在线观看| 免费在线观看完整版高清| 久久久久精品国产欧美久久久 | 国产精品免费视频内射| 久久天躁狠狠躁夜夜2o2o | 青春草视频在线免费观看| xxx大片免费视频| av在线老鸭窝| 高清av免费在线| 国产xxxxx性猛交| 爱豆传媒免费全集在线观看| 国产免费又黄又爽又色| 国产精品三级大全| 亚洲人成网站在线观看播放| 亚洲av电影在线观看一区二区三区| 欧美变态另类bdsm刘玥| 久久ye,这里只有精品| 久久久欧美国产精品| svipshipincom国产片| 两个人免费观看高清视频| 精品一区在线观看国产| 成人午夜精彩视频在线观看| 久久影院123| 亚洲国产精品999| 亚洲情色 制服丝袜| 免费在线观看完整版高清| 亚洲av电影在线观看一区二区三区| 亚洲成人国产一区在线观看 | 麻豆精品久久久久久蜜桃| 欧美日韩成人在线一区二区| 老汉色∧v一级毛片| 亚洲一卡2卡3卡4卡5卡精品中文| 黑人巨大精品欧美一区二区蜜桃| 性少妇av在线| 亚洲欧美色中文字幕在线| 国产男人的电影天堂91| 久热这里只有精品99| 国产亚洲午夜精品一区二区久久| 日韩欧美一区视频在线观看| 成人18禁高潮啪啪吃奶动态图| 欧美黄色片欧美黄色片| 亚洲,一卡二卡三卡| 国产一区二区激情短视频 | 91老司机精品| 日韩,欧美,国产一区二区三区| 亚洲精品av麻豆狂野| 国产一区二区激情短视频 | 国产一区二区 视频在线| 亚洲欧美成人精品一区二区| 亚洲情色 制服丝袜| 亚洲在久久综合| 国产一区二区 视频在线| 亚洲,欧美,日韩| xxxhd国产人妻xxx| 久久女婷五月综合色啪小说| 高清欧美精品videossex| 久久99一区二区三区| 欧美精品亚洲一区二区| 大香蕉久久成人网| 飞空精品影院首页| 99久久精品国产亚洲精品| 欧美av亚洲av综合av国产av | 老汉色av国产亚洲站长工具| 好男人视频免费观看在线| 免费观看人在逋| 成年人午夜在线观看视频| 交换朋友夫妻互换小说| 韩国高清视频一区二区三区| 日本一区二区免费在线视频| 丝袜喷水一区| svipshipincom国产片| 国产一卡二卡三卡精品 | 午夜免费观看性视频| 欧美另类一区| 欧美人与善性xxx| 日日爽夜夜爽网站| 丝袜美腿诱惑在线| 亚洲国产精品成人久久小说| 亚洲精品,欧美精品| 女人被躁到高潮嗷嗷叫费观| 免费不卡黄色视频| 精品一区二区三卡| av天堂久久9| 国产探花极品一区二区| 9191精品国产免费久久| 亚洲精品aⅴ在线观看| 一二三四在线观看免费中文在| 欧美亚洲 丝袜 人妻 在线| 亚洲国产欧美日韩在线播放| 桃花免费在线播放| 久久久精品免费免费高清| 黑人欧美特级aaaaaa片| 国产成人精品在线电影| 久久久久网色| 免费av中文字幕在线| 秋霞伦理黄片| 黄色怎么调成土黄色| 国产成人精品福利久久| 91精品国产国语对白视频| 欧美激情高清一区二区三区 | 免费观看a级毛片全部| 亚洲av在线观看美女高潮| 中国三级夫妇交换| av视频免费观看在线观看| 日本av手机在线免费观看| 午夜福利免费观看在线| 老司机影院成人| 亚洲激情五月婷婷啪啪| 丝袜在线中文字幕| 18禁裸乳无遮挡动漫免费视频| 日韩精品免费视频一区二区三区| 国产成人av激情在线播放| 国产精品.久久久| 2021少妇久久久久久久久久久| 久久免费观看电影| 亚洲国产成人一精品久久久| 久久久精品国产亚洲av高清涩受| 国产xxxxx性猛交| 青春草亚洲视频在线观看| 亚洲av日韩精品久久久久久密 | 欧美成人午夜精品| 少妇人妻 视频| 天天躁狠狠躁夜夜躁狠狠躁| 国产亚洲最大av| 亚洲中文av在线| 一本大道久久a久久精品| 亚洲精品自拍成人| 欧美日韩亚洲高清精品| 久久久久国产一级毛片高清牌| 国产又色又爽无遮挡免| 中文字幕高清在线视频| 久久久久久久久久久久大奶| 中文字幕亚洲精品专区| 国产一区亚洲一区在线观看| 国产精品国产av在线观看| 啦啦啦视频在线资源免费观看| 夫妻性生交免费视频一级片| 一本久久精品| 国产精品国产三级专区第一集| 伊人久久大香线蕉亚洲五| 大片电影免费在线观看免费| 久久精品国产亚洲av涩爱| 国语对白做爰xxxⅹ性视频网站| 一级片免费观看大全| 18禁动态无遮挡网站| 亚洲精品乱久久久久久| 一本一本久久a久久精品综合妖精| 9191精品国产免费久久| 日韩av在线免费看完整版不卡| 午夜精品国产一区二区电影| 久久久国产一区二区| 久久精品国产亚洲av涩爱| 亚洲欧美清纯卡通| 十八禁人妻一区二区| 丝瓜视频免费看黄片| av网站在线播放免费| 久久精品国产亚洲av涩爱| 午夜福利影视在线免费观看| 免费人妻精品一区二区三区视频| 日日啪夜夜爽| av天堂久久9| 天天添夜夜摸| 韩国av在线不卡| 亚洲伊人久久精品综合| 另类亚洲欧美激情| 精品卡一卡二卡四卡免费| 亚洲av欧美aⅴ国产| 欧美亚洲日本最大视频资源| 国产一区亚洲一区在线观看| 亚洲在久久综合| 亚洲四区av| 午夜av观看不卡| 搡老岳熟女国产| 两个人看的免费小视频| 国产熟女欧美一区二区| 丝袜脚勾引网站| 别揉我奶头~嗯~啊~动态视频 | 成年av动漫网址| www.精华液| 伦理电影大哥的女人| a级毛片黄视频| 一区在线观看完整版| 巨乳人妻的诱惑在线观看| xxxhd国产人妻xxx| 亚洲精品aⅴ在线观看| 久久久久久人人人人人| 欧美中文综合在线视频| 午夜福利,免费看| 午夜日韩欧美国产| 天堂中文最新版在线下载| 蜜桃国产av成人99| 亚洲综合色网址| 成年人免费黄色播放视频| 一边摸一边抽搐一进一出视频| 成人黄色视频免费在线看| 亚洲欧美色中文字幕在线| 人人妻人人添人人爽欧美一区卜| 免费女性裸体啪啪无遮挡网站| 亚洲精品中文字幕在线视频| 午夜激情久久久久久久| 女人久久www免费人成看片| 黄色 视频免费看| 国产国语露脸激情在线看| 人妻 亚洲 视频| 9191精品国产免费久久| 亚洲精品,欧美精品| 天天躁狠狠躁夜夜躁狠狠躁| 精品少妇久久久久久888优播| 亚洲欧美一区二区三区黑人| 婷婷成人精品国产| 2018国产大陆天天弄谢| 色94色欧美一区二区| 国产日韩欧美视频二区| 亚洲精品乱久久久久久| 在线天堂中文资源库| 水蜜桃什么品种好| 菩萨蛮人人尽说江南好唐韦庄| 久久亚洲国产成人精品v| 亚洲欧美清纯卡通| 日本午夜av视频| 男女无遮挡免费网站观看| 国产免费视频播放在线视频| 国产黄色免费在线视频| 欧美av亚洲av综合av国产av | 免费女性裸体啪啪无遮挡网站| 国产精品久久久久久精品古装| 大片电影免费在线观看免费| 午夜福利免费观看在线| 国产精品一二三区在线看| 大码成人一级视频| 国产精品.久久久| 一边摸一边做爽爽视频免费| 亚洲一级一片aⅴ在线观看| 国产在线视频一区二区| 日韩 亚洲 欧美在线| 日本vs欧美在线观看视频| 国产男人的电影天堂91| 久久精品人人爽人人爽视色| 国产乱来视频区| 亚洲av福利一区| 成人亚洲精品一区在线观看| 建设人人有责人人尽责人人享有的| av又黄又爽大尺度在线免费看| 亚洲中文av在线| 麻豆乱淫一区二区| av又黄又爽大尺度在线免费看| 国产精品.久久久| 日韩中文字幕欧美一区二区 | 在现免费观看毛片| 人人妻人人澡人人看| 欧美老熟妇乱子伦牲交| 国产老妇伦熟女老妇高清| 精品一区二区三区四区五区乱码 | 99精国产麻豆久久婷婷| 欧美亚洲日本最大视频资源| 欧美另类一区| 男女之事视频高清在线观看 | 日韩 欧美 亚洲 中文字幕| 亚洲婷婷狠狠爱综合网| 如日韩欧美国产精品一区二区三区| 久久精品aⅴ一区二区三区四区|