• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Sensitivity of the Warm Core of Tropical Cyclones to Solar Radiation

    2015-06-09 21:37:22GEXuyangMAYueZHOUShunwuandTimLI
    Advances in Atmospheric Sciences 2015年8期
    關(guān)鍵詞:財經(jīng)類民辦教學(xué)管理

    GE Xuyang,MA Yue,ZHOU Shunwu,and Tim LI

    1Key Laboratory of Meteorological Disaster,Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters,Nanjing University of Information Science and Technology,Nanjing 210044

    2International Pacific Research Center,University of Hawaii,Hawaii 96822,USA

    Sensitivity of the Warm Core of Tropical Cyclones to Solar Radiation

    GE Xuyang?1,MA Yue1,ZHOU Shunwu1,and Tim LI2

    1Key Laboratory of Meteorological Disaster,Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters,Nanjing University of Information Science and Technology,Nanjing 210044

    2International Pacific Research Center,University of Hawaii,Hawaii 96822,USA

    To investigate the impacts of solar radiation on tropical cyclone(TC)warm-core structure(i.e.,the magnitude and height), a pair of idealized simulations are conducted by specifying different strengths of solar shortwave radiation.It is found that the TC warm core is highly sensitive to the shortwave radiative effect.For the nighttime storm,a tendency for a more intense warm core is found,with an elevated height compared to its daytime counterpart.As pointed out by previous studies,the radiative cooling during nighttime destabilizes the local and large-scale environment and thus promotes deep moist convection,which enhances the TC’s intensity.Due to the different inertial stabilities,the diabatic heating in the eyewall will force different secondary circulations.For a strong TC with a deeper vertical structure,this promotes a thin upper-level inflow layer.This inflow carries the lower stratospheric air with high potential temperature and descends adiabatically in the eye, resulting in significant upper-level warming.The Sawyer–Eliassen diagnosis further confirms that the height of the maximum temperature anomaly is likely attributable to the balance among the forced secondary circulations.

    tropical cyclone,warm core,structure,solar radiation

    1.Introduction

    It is well known that the warm core is a prominent feature of tropical cyclones(TCs).For a typical cyclone,its primary circulation(tangential wind)decreases with altitude.Hence, to satisfy the thermal wind balance relationship,it is required that the temperature weakens with the radius(Willoughby, 1990).The result is the so-called TC warm core.The characteristics of the warm core(i.e.,the magnitude and altitude) are closely linked to TC intensity and structure.For instance, the higher the altitude of the peak warming,the lower the surface pressure and thus the more intense the TC is.Previous studies(Hawkins and Rubsam,1968;Hawkins and Imbembo,1976;Emanuel,1986;Chen and Zhang,2013)have found that the height of the maximum warm core usually occurs in the upper levels,such as 200–300 hPa.Interestingly, Stern and Nolan(2012)examined the structure of simulated TCs,and found that the warm core generally maximized in the mid-troposphere(i.e.,z=5–6 km,z stands for height), which was in contrast to the widely held view that this occurs in the upper troposphere.The recent observational study by Durden(2013)revealed that the altitude of the warm core shows large variability.That is,the warm core may occur anywhere between 700 and 200 hPa,and in some cases may even have multiple centers.Hence,there is debate surrounding the characteristics of the TC warm core,which encourages us to investigate the possible processes responsible for the structure of the TC warm core.

    Numerous investigators(Webster and Stephens,1980; Tao et al.,1996;Dai,2001;Nesbitt and Zipser,2003)have examined the impacts of the diurnal variation of solar radiation on the tropical climate system.Possible mechanisms have been put forward regarding the roles of solar variation in modulating tropical convection.Recent numerical studies(Ge et al.,2014;Melhauser and Zhang,2014)point out that the environmental stability and deep moist convection are substantially modulated by the diurnal variation of radiation.The radiative cooling during nighttime destabilizes the local and large-scale environment and thus promotes deep moist convection,which enhances TC intensity.However, these studies mainly focused on the early stage of TC development,and the impacts of the diurnal variation of radiation on TC warm-core structure remain less clear.In the present study,the primary purpose is to demonstrate the potential impacts of solar radiation on the structure of the TC warm core.

    The remainder of the paper is organized as the follows. In section 2,the characteristics of the TC warm core(i.e.,the height and intensity)are discussed.Possible physical interpretations are presented in section 3.The results of sensitiv-ity tests using different model schemes are presented in section 4.And finally,a short summary and further discussion is given in section 5.

    2.Preliminary results

    In our previous study(Ge et al.,2014),the impacts of the diurnal cycle of radiation on TC development and size were examined.Three idealized experiments were conducted by specifying different levels of solar radiation.In the control experiment(CTL),the TC developed with a full diurnal cycle of solar radiation.In the sensitivity experiments,the solar radiation was either excluded or artificially extreme.Specifically,shortwave solar radiation was excluded in the NIGHT experiment,whereas it was strongest in the DAY experiment. Further details,including a description of the model and the design of the experiments can be found in the paper(Ge et al.,2014).In the present companion study,the primary goal is to understand the possible mechanisms accounting for the structure of the TC warm core.

    The simulations showed salient differences in TC development and size,especially between NIGHT and DAY.The storm in CTL bore many similarities as that in NIGHT.To emphasize the discrepancies,the NIGHT and DAY results in particular are further compared in the present study.Figure 1 displays the evolution of the intensity(represented by the central minimum sea level pressure,MSLP)in NIGHT and DAY,respectively.The weak vortices eventually develop into stronger TCs in both experiments,although there are marked differences in terms of the intensification rate.The NIGHT (DAY)simulation exhibits a faster(slower)intensification rate.For instance,in NIGHT,the MSLP starts to fall rapidly shortly after t=36 h,which is nearly 24 hours earlier than in DAY.This suggests that,under the identical initial environmental conditions,the timing of rapid intensification(RI) varies with different radiative effects.Specifically,the TC is likely to develop quicker during nighttime than daytime.The possible mechanisms involved in the influence of solar radiation on TC intensification have been discussed in previous studies(Ge et al.,2014;Melhauser and Zhang,2014).

    Figure 2 compares the azimuthally averaged radial circulations and temperature perturbations during the mature stage.In this study,the temperature averaged within a particular annulus(i.e.,the radius between 600 and 700 km) is taken as the environmental value,and thus the deviation from this value reflects the characteristics of the TC warm core.Importantly,when the potential temperature is used to calculate the perturbation,the features of the warm core are qualitatively similar.Hence,the perturbation temperature is selected to represent the behavior of the warm core in the following sections.Generally,in the upper outflow layer, the warming spreads outward more radially.Obviously,there are pronounced differences in the warm-core areas between NIGHT and DAY.In NIGHT,the peak of the warm core is located at the same level as the outflow layer.However,in DAY,the height of peak warming is much lower than the outflow layer.More specifically,the height of the warm core in NIGHT is z=12–14 km,which is much higher than that in the DAY storm(i.e.,z=6–8 km).Furthermore,the magnitude is approximately 16?C in NIGHT,which is also greater than its counterpart(12?C).

    The structural difference of the warm core is dynamically consistent with the intensity changes.According to thehydrostatic balance relationship,the surface pressure deficit can be derived as follows:

    here ΔPsis the pressure difference between the TC center and the environment,Tvis the virtual temperature,PTis the pressure at the top of the troposphere,and other symbols are traditional meteorological variables.It can be inferred from Eq. (1),due to the“d P/P”effect,the surface pressure will be lower if the warming anomaly is highly elevated.This agrees with the fact that the NIGHT storm has a much lower MSLP compared with the DAY storm.

    Besides the differences in the magnitude and height of maximum perturbation temperature,the areal coverage of the warm core shows remarkable dissimilarities.For instance, the radial extension of the warm core in NIGHT is much wider than that in DAY,which is consistent with the fact that the former is large in size,as shown in Ge et al.(2014).For a typical TC,there is a lower(upper)-level radial inflow(outflow),and the updraft arises in the eyewall region.The maximum speed of the upper-level out flow jet exceeds 25 m s-1in NIGHT,which is much faster than in DAY(~20 m s-1). Consequently,the boundary inflow layer is slightly deeper in NIGHT,indicating a robust inward mass flux convergence, and thus helps the TC spin up.Accompanied by the strong in-up-out secondary circulation,the diabatic heating in the TC inner-core area is greatly enhanced in NIGHT.

    To gain perspective on the variation ofthe warm core,Fig. 3 presents the time–vertical cross sections of the perturbation temperature averaged within the eye region(i.e.,within a radius of 30 km).In both NIGHT and DAY,during the initially slow intensification period(prior to t=48 h),there are very few temperature perturbations.Accompanied by the period of rapid intensification,pronounced warm temperature deviations are established in the middle levels(z=6–8 km).For the NIGHT storm,after t=72 h,a second warm core occurs in the upper troposphere(i.e.,z=12–16 km).During the following short period(t=72–84 h),two discrete warming centers appear at z=6–8 and 12–16 km,respectively.The upper-level one further intensifies and becomes the dominant one.Eventually,it exhibits a single upper warm-core structure.Note that thisupper-levelentity showsa slow downward displacement with time.In DAY,the peak warming center remains at an essentially constant height(about z=8 km),and does not elevate very much during the whole integration.

    Numerous studies(Emanuel,1986;Holland,1997; Braun,2002;Knaff et al.,2004;Halverson et al.,2006; Powell et al.,2009;Chen and Zhang,2013)have suggested that the upper-tropospheric warm core is a common characteristic of TCs.In the present study,the NIGHT storm has an upper-tropospheric warm core(z=14 km),which is consistent with this widely believed viewpoint.However,in DAY,the maximum warm core occurs in the mid-troposphere (z=8 km),which is similar to the findings of Stern and Nolan(2012).Given the different structure of the warm core between NIGHT and DAY,the question arises as to what causes such discrepancies.In the following section,closer examination is made to disclose the possible mechanisms involved.

    3.Physical interpretations

    Numerous studies(Schubert and Hack,1982;Hack and Schubert,1986;Nolan et al.,2007)have suggested that the diabatic heating in the eyewall will force a secondary circulation.That is,the updraft coincides with the heating,and compensating subsidence appears on either side of the heating. These studies may explain the formation of mid-tropospheric warm cores.However,it is difficult to apply this explanation to upper-level warming via the aforementioned mechanisms, since there is little diabatic heating in the upper troposphere (i.e.,above z=14 km).The results here suggest that upperlevelhorizontaladvection likely playsan importantrole in the formation of upper level warm cores,and thus further studies are needed.

    Chen and Zhang(2013)proposed that the formation of the upper-level warm core is attributable to deep convective cells,such as vortical hot towers(“VHTs”).This motivates us to investigate the convective activity in the TC inner region.Previous studies(Ge et al.,2014;Melhauser and Zhang,2014)have suggested that TC convective activity is highly sensitive to solar radiative effects.That is,the diurnal solar radiation can considerably modulate the pregenesis environmental conditions and thus the behavior of moist convection.In general,nighttime destabilization of the local and large-scale environment through radiative cooling may promote deep moist convection and increase the genesis potential.On the contrary,daytime solar radiation will enhance the static stability and thus suppress convection.To this end,the statistics of convective activity in the inner area are compared.Figure 5 displays the temporal evolution of the vertical distribution of grid points of deep convection. The numbers of strong updrafts within a radius of 100 km at each level are calculated.Here,vertical velocity greater than 2 m s-1is considered as a strong updraft.Although the threshold of 2 m s-1is somewhat arbitrary,it is true that the areal percentage of updrafts greater than this value is quiet small,and the conclusion is qualitatively similar as long as the threshold is larger than 1.5 m s-1.Obviously,deep convection is much stronger in NIGHT during the whole model integration.Specifically,in NIGHT,the number is generallylarger than 250 after t=96 h,whereas it seldom reaches 250 in DAY.This indicates that the convective activity is more active in NIGHT.Along with the increase of the updrafts,the warm core becomes more prominent.

    To also gain insight into the relationship between the warm core and the inner-core convection,Figs.6–7 compare snapshots of 200 hPa vertical motion and temperature tendency in NIGHT and DAY,respectively.Following Chen and Zhang(2013),the temperature tendency is defined as the temperature difference:ΔT=Ti+1-Ti,where i indicates the modeloutputatthe i th time step(time interval:15 min).Convective bursts(CBs)occur frequently in the inner core(i.e., within radius=100 km).Generally,the CB band is conducive to cyclonic movement as the storm intensifies,and becomes more symmetric over time.Note that the areal coverage of the updraft is significant larger in NIGHT,which also coincides with pronounced positive temperature tendencies. The updraft core coincides with the maximum temperature tendency,suggesting that the CB plays an important role in the formation of the warm core.This result agrees well with Chen and Zhang(2013).Furthermore,the significant warming is likely attributable to the subsidence associated with the updrafts that penetrate into the upper troposphere(Holland et al.,1984;Heymsfield et al.,2001;Chen and Zhang,2013). Since there is little diabatic heating within the eye,the collective effect of intense downdrafts should play an essential role.Chen and Zhang(2013)revealed that an upper inflow layer,residing just above the upper out flow channel,plays a substantial role in the establishment of the upper warm core. This in flow layer,located above the out flow layˉer,will effectively carry the higher potential temperature(θ)air into the TC eye,where it descends adiabatically and isentropically to induce signi ficant warming.To test this hypothesis,Fig.8 compares the height–radius cross section of potential temperature,vertical velocity,and radial in flow iˉnNIGHT and DAY,separately.Notice that the surfaces ofθin both cases are displaced downward in the inner-core region.The differences in the downward displacement suggest different locally static stabilities in the eye.Another salient feature is that a strong in flow layer is located near z=18 km in NIGHT. In contrast,accompanied by a much weaker upper-level inflow,the upper-level warming is insignificant in DAY.The results suggest that the upper-level radial in flow layer likely plays an important role in upper-level warming,since the altitude of the warm core is attributable to the strength of the upper-level in flow.It is hypothesized that,while lower stratospheric air moves inward radially along the isentropic surface,the adiabatic descent may result in a warming therein. Chen and Zhang(2013)argued that this thin radial in flow layer is likely induced by the mass sink and lower pressure in the eye.To further determine the possible mechanism for this upper in flow layer,the Sawyer–Eliassen(SE)diagnosis is applied here to solve the forced problem.The SE equation in the radius-pseudoheight coordinates(Hendricks and Montgomery,2004)can be written as

    Figure 9 displays the radial cross sections of azimuthal mean inertial stability,tangential wind,diabatic heating,and the forced massstreamfunction ofsecondary circulation.Figures 9a and b compare the tangential wind and the associated inertial stability in NIGHT and DAY,respectively.It is obvious that,compared with the DAY storm,the NIGHT storm has a vertically deeper structure in which the top extends to higher altitude,indicating a greater inertial stability in the inner area.Given the different inertial stabilities,the change in the local Rossby deformation radius will lead to different extensions of the response to the forcing.Schubert and Hack (1982)pointed out that,for a given heating forcing,an increase in inertial stability results in a decrease in the forced secondary circulation and thus a change in the radial distri-bution of local temperature,with enhanced temperature tendency in the region of high inertial stability.Figures 9c and d compare the radial vertical cross section of the mass streamfunction of the secondary circulation forced by the diabatic heating.In general,the maximum mass streamfunction is located just outside the eyewall at the 10 km height,and the minimum exists inside the eyewall.This pattern is consistent with the typical in-up-out secondary circulation,with the updraft at the location of the diabatic heating.The minimum center inside the heating suggests that descending motion appears in the eye.Note the remarkable differences in the mass streamfunctions in the two cases.That is,the amplitude is much more significant in NIGHT.As such,the strong horizontal gradient of mass streamfunction results in more robust downward flow in the eye.Furthermore,the minimum streamfunction extends outward atthe upperlevel(i.e.,z=15km)in NIGHT.This suggests a positive vertical gradient in the inner-core area,just above 15 km.As a result,an upperlevel inflow appears therein,as shown in Fig.8.This result confirms that the upper-level inflow is forced by the TC diabatic heating.Ohno and Satoh(2014)proposed that upperlevel subsidence is closely associated with TC structure.For instance,the upper-level subsidence is enhanced in the eye when the vortex is sufficiently tall to penetrate the statically stable stratosphere.It can be deduced that the height of the maximum temperature anomaly is largely attributable to the balance among forced secondary circulations.In this regard, since the NIGHT storm has both a stronger intensity and diabatic heating source,the greater inertial stability may extend the response to the heating to the upper troposphere and causeupper-level adiabatic warming.

    4.Sensitivity to model schemes

    The results show that the storm intensifies more rapidly in the NIGHT scenario for all the sensitivity experiments(not shown),which agrees wellwith Ge etal.(2014).Note thatthe warm-core structures show salient differences.That is,accompanied by the more intense TC in NIGHT,an upper-level warm core emanates,whereas only a mid-tropospheric entity emerges in its counterpart.Figure 10 shows the horizontal– vertical cross sections of temperature perturbations in the sensitivity experiments.It is clear that there is a distinctly higher warm core in NIGHT than in DAY,indicating that the results are robust and not sensitive to the different model configurations.

    Table 1.List of sensitivity experiments.See the text(section 4)for the definitions of the abbreviations.

    5.Conclusio n

    The sensitivity of TC warm-core structure to shortwave radiation was examined by conducting highly idealized experiments.It was found that solar radiation not only impacts on TC intensification,but also on the warm-core structure. In the NIGHT experiment,which excluded solar radiation, the TC favored the establishment of a significant warm core at higher altitude.Previous studies suggest that significant convective activity in the inner-core region is an important ingredient in the generation of an upper-level warm core.In the presentstudy,Sawyer–Eliassen diagnosis furthersuggeststhat the height of the maximum temperature anomaly is likely attributable to the balance among forced secondary circulations.It is proposed that strong CBs lead to strong diabatic heating and thus favor a more intense TC with larger inertial stability.As a result,the forced secondary circulation promotes a thin upper-level inflow layer.This radial inflow will effectively carry the lower-stratospheric air with high potential temperature and descend adiabatically in the eye,resulting in significant upper-level warming.

    Admittedly,the results are only based on highly idealized numerical simulations,since the radiation is artificially extreme.Solar radiation modulates the static stability and thus influences the convective activity,which affects TC intensity and structure.The response to the diabatic heating is sensitive to the vortex structure.With different inertial stability,the diabatic heating in the eyewall will force differentsecondary circulations,resulting in a large variability of TC warm-core structure.By this reasoning,the conclusion here may represent the scenario for TCs with different intensity and structure.For instance,under favorable environmental conditions,strong CBs likely favor a stronger TC and thus a preferred upper-level warm core.In contrast,weak convective activity in the TC inner-core area may lead to a much lower entity.Moreover,in the current model configuration, TCs develop under the most favorable environmental conditions(i.e.,no mean flows).In reality,a TC is also highly dependent on the underlying oceanic state,the large-scale environment,and storm-scale dynamics(Wu et al.,2011;Ge etal.,2013;Liang et al.,2014).Hence,more sensitivity experiments involving complex environmental flows should be conducted in the future.

    Acknowledgements.This work was jointly sponsored by the National Key Basic Research Program of China(Grant No. 2015CB452803),the National Natural Science Foundation of China (Grant No.41275095),the“Six peaks of high-level talent”funding project of Jiangsu,the Key University Science Research Project of Jiangsu Province(Grant No.14KJA170005),and the China Meteorological Administration Henan Key Laboratory of Agrometeorological Support and Applied Technique(Grant No.AMF201403). This paper is Earth system modeling center(ESMC)contribution number 032.

    REFERENCES

    Braun,S.A.,2002:A cloud-resolving simulation of Hurricane Bob(1991):Storm structure and eyewall buoyancy.Mon. Wea.Rev.,130,1573–1592.

    Chen,H.,and D.-L.Zhang,2013:On the rapid intensification of Hurricane Wilma(2005).Part II:Convective bursts and the upper-level warm core.J.Atmos.Sci.,70,146–172.

    Dai,A.G.,2001:Global precipitation and thunderstorm frequencies.Part II:Diurnal variations.J.Climate,14,1112–1128.

    Durden,S.L.,2013:Observed tropical cyclone eye thermal anomaly profiles extending above 300 hPa.Mon.Wea.Rev.,141,4256–4268.

    Emanuel,K.A.,1986:An air-sea interaction theory for tropical cyclones.Part I:Steady-state maintenance.J.Atmos.Sci.,43, 585–604.

    Ge,X.,Y.Ma,S.W.Zhou,and T.Li,2014:Impacts of the diurnal cycle of radiation on tropical cyclone intensification and structure.Adv.Atmos.Sci.,31,1377–1385,doi:10.1007/ s00376-014-4060-0.

    Ge,X.Y.,T.Li,and M.Peng,2013:Effects of vertical shears and mid-level dry air on tropical cyclone developments.J.Atmos. Sci.,70,3859–3875.

    Hack,J.J.,and W.H.Schubert,1986:Nonlinear response of atmospheric vortices to heating by organized cumulus convection. J.Atmos.Sci.,43,1559–1573.

    Halverson,J.B.,J.Simpson,G.Heymsfield,H.Pierce,T.Hock, and L.Ritchie,2006:Warm core structure of Hurricane Erin diagnosed from high altitude dropsondes during CAMEX-4. J.Atmos.Sci.,63,309–324.

    Hawkins,H.F.,and D.T.Rubsam,1968:Hurricane Hilda,1964. II:Structure and budgets of the hurricane on October 1,1964. Mon.Wea.Rev.,96,617–636.

    Hendricks,E.A.,and M.T.Montgomery,2004:The role of“vortical”hot towers in the formation of tropical cyclone Diana (1984).J.Atmos.Sci.,61,1209–1232.

    Heymsfield,G.M.,J.B.Halverson,J.Simpson,L.Tian,and T. P.Bui,2001:ER-2 Doppler radar investigations of the eyewallof Hurricane Bonnie during the Convection and Moisture Experiment-3.J.Appl.Meteor.,40,1310–1330.

    Holland,G.J.,1997:The maximum potential intensity of tropical cyclones.J.Atmos.Sci.,54,2519–2541.

    Holland,G.J.,T.D.Keenan,and G.D.Crane,1984:Observations of a phenomenal temperature perturbation in Tropical Cyclone Kerry(1979).Mon.Wea.Rev.,112,1074–1082.

    Hong,S.-Y.,and J.-O.J.Lim,2006:The WRF single-moment 6-class microphysics scheme(WSM6).Journal of the Korean Meteorological Society,42,129–151.

    Hong,S.-Y,Y.Noh,and J.Dudhia,2006:A new vertical diffusion package with an explicit treatment of entrainment processes. Mon.Wea.Rev.,134,2318–2341.

    Knaff,J.A.,S.A.Seseske,M.DeMaria,and J.L.Demuth,2004: On the influences of vertical wind shear on symmetric tropical cyclone structure derived from AMSU.Mon.Wea.Rev.,132,2503–2510.

    Liang,J.,L.G.Wu,and H.J.Zhong,2014:Idealized numerical simulations of tropical cyclone formation associated with monsoon gyres.Adv.Atmos.Sci.,31,305–315,doi: 10.1007/s00376-013-2282-1.

    目前大部分普通高校都是根據(jù)教育部的要求定位數(shù)學(xué)教學(xué)目標(biāo)、設(shè)定數(shù)學(xué)教學(xué)內(nèi)容,但是民辦院校需要結(jié)合自己的學(xué)生情況,適度調(diào)整數(shù)學(xué)教學(xué)目標(biāo),把專業(yè)化要求轉(zhuǎn)化到職業(yè)化領(lǐng)域內(nèi)。為提高財經(jīng)專業(yè)應(yīng)用能力,民辦高校往往增加專業(yè)課比重。院校的教學(xué)管理部門對于數(shù)學(xué)在財經(jīng)類專業(yè)的重要性也往往認(rèn)識不夠,加之學(xué)生數(shù)學(xué)學(xué)習(xí)能力相對較低,為了減少對學(xué)生學(xué)習(xí)時間的占用,降低學(xué)生考試焦慮,減輕學(xué)生學(xué)習(xí)壓力,弱化數(shù)學(xué)教學(xué)內(nèi)容經(jīng)常成為民辦財經(jīng)類高校的最先選項。

    Lin,Y.L.,R.D.Rarley,and H.D.Orville,1983:Bulk parameterization of the snow field in a cloud model.J.Appl.Meteor.,22,1065–1092.

    Mlawer,E.J.,S.J.Taubman,P.D.Brown,M.J.Iacono,and S.A. Clough,1997:Radiative transfer for inhomogeneous atmospheres:RRTM,a validated correlated-k model for the longwave.J.Geophys.Res.,102,16 663–16 682.

    Melhauser,C.,and F.Q.Zhang,2014:Diurnal radiation cycle impact on the pregenesis environment of Hurricane Karl(2010). J.Atmos.Sci.,71,1241–1259.

    Mellor,G.L.,and T.Yamada,1982:Development of a turbulence closure model for geophysical fluid problems.Rev.Geophys. Space Phys.,20,851–875.

    Nesbitt,S.W.,and E.J.Zipser,2003:The diurnal cycle of rainfall and convective intensity according to three years of TRMM measurements.J.Climate,16,1456–1475.

    Nolan,D.S.,Y.Moon,and D.P.Stern,2007:Tropical cyclone intensification from asymmetric convection:Energetics and efficiency.J.Atmos.Sci.,64,3377–3405.

    Ohno,T.,and M.Satoh,2014:On the Warm core of the tropical cyclone formed near the tropopause.J.Atmos.Sci.,doi: 10.1175/JAS-D-14-0078.1.(in press)

    Powell,M.D.,E.W.Uhlhorn,and J.D.Kepert,2009:Estimating maximum surface winds from hurricane reconnaissance measurements.Wea.Forecasting,24,868–883.

    Schubert,W.H.,and J.J.Hack,1982:Inertial stability and tropical cyclone development.J.Atmos.Sci.,39,1687–1697.

    Stern,D.P.,and D.S.Nolan,2012:On the height of the warm core in tropical cyclones.J.Atmos.Sci.,69,1657–1680.

    Tao,W.K.,S.Lang,J.Simpson,C.H.Sui,B.Ferrier,and M.D., Chou,1996:Mechanisms of cloud-radiation interaction in the Tropics and midlatitudes.J.Atmos.Sci.,53,2624–2651.

    Webster,P.J.,and G.L.Stephens,1980:Tropical uppertropospheric extended clouds:Inferences from winter MONEX.J.Atmos.Sci.,37,1521–154.

    Willoughby,H.E.,1990:Gradient balance in tropical cyclones.J. Atmos.Sci.,47,265–274.

    Wu,L.G.,J.Liang,and C.-C.Wu,2011:Monsoonal influence on Typhoon Morakot(2009).Part I:Observational analysis. J.Atmos.Sci.,68,2208–2221.

    :Ge,X.Y.,Y.Ma,S.W.Zhou,and T.Li,2015:Sensitivity of the warm core of tropical cyclones to solar radiation. Adv.Atmos.Sci.,32(8),1038–1048,

    10.1007/s00376-014-4206-0.

    18 September 2014;revised 5 December 2014;accepted 26 December 2014)

    ?Corresponding author:GE Xuyang

    Email:xuyang@nuist.edu.cn

    猜你喜歡
    財經(jīng)類民辦教學(xué)管理
    民辦本科院校開展文科復(fù)合型人才培養(yǎng)的創(chuàng)新與實踐
    成才(2023年13期)2023-10-24 08:48:32
    新時代加強(qiáng)民辦中小學(xué)黨建工作的必要性
    教學(xué)管理信息化問題研究
    大學(xué)(2021年2期)2021-06-11 01:13:24
    新時期高中教學(xué)管理改革與實踐
    甘肅教育(2020年17期)2020-10-28 09:01:24
    談教學(xué)管理的藝術(shù)
    甘肅教育(2020年4期)2020-09-11 07:41:24
    基于學(xué)科競賽的民辦本科高校會計實踐教學(xué)改革探討
    “雙平臺嵌入式”的“糧味”財經(jīng)類專業(yè)人才培養(yǎng)模式創(chuàng)新與實踐
    貼近生活的商業(yè)財經(jīng)類期刊
    民辦少兒英文圖書館工作初探
    財經(jīng)類MBA院校案例研發(fā)隊伍建設(shè)研究
    三上悠亚av全集在线观看| 两个人免费观看高清视频| 老司机影院成人| 91老司机精品| 欧美人与性动交α欧美精品济南到| 精品国产一区二区三区久久久樱花| 少妇粗大呻吟视频| 中文字幕精品免费在线观看视频| av又黄又爽大尺度在线免费看| 免费人妻精品一区二区三区视频| 久久精品人人爽人人爽视色| 精品亚洲成国产av| 女性被躁到高潮视频| 搡老乐熟女国产| 色综合欧美亚洲国产小说| 大片电影免费在线观看免费| 亚洲第一青青草原| 欧美日韩福利视频一区二区| 国产在线一区二区三区精| 免费看十八禁软件| 国产av精品麻豆| 18禁国产床啪视频网站| 亚洲专区国产一区二区| 国产无遮挡羞羞视频在线观看| 午夜免费成人在线视频| 亚洲国产毛片av蜜桃av| 国产不卡av网站在线观看| 国产欧美日韩精品亚洲av| 在线观看人妻少妇| 美女视频免费永久观看网站| av不卡在线播放| 精品一区在线观看国产| 亚洲欧美成人综合另类久久久| 中亚洲国语对白在线视频| 91精品三级在线观看| 涩涩av久久男人的天堂| 99热全是精品| 女人爽到高潮嗷嗷叫在线视频| 老司机午夜福利在线观看视频 | 亚洲欧洲精品一区二区精品久久久| 亚洲精华国产精华精| 女性生殖器流出的白浆| 日韩电影二区| 12—13女人毛片做爰片一| 美国免费a级毛片| 久久久精品94久久精品| 最黄视频免费看| 亚洲黑人精品在线| 啦啦啦 在线观看视频| 丁香六月天网| 女人被躁到高潮嗷嗷叫费观| 欧美性长视频在线观看| av天堂久久9| 视频区图区小说| av超薄肉色丝袜交足视频| 亚洲人成77777在线视频| 亚洲视频免费观看视频| 新久久久久国产一级毛片| 欧美精品啪啪一区二区三区 | 欧美性长视频在线观看| 人人妻人人添人人爽欧美一区卜| 桃花免费在线播放| 色精品久久人妻99蜜桃| 国产精品一区二区在线观看99| 午夜免费观看性视频| 日韩欧美国产一区二区入口| 亚洲专区国产一区二区| 99久久99久久久精品蜜桃| 国产高清国产精品国产三级| av片东京热男人的天堂| 一区二区三区精品91| 天堂中文最新版在线下载| 老汉色av国产亚洲站长工具| 国产日韩欧美在线精品| 黄网站色视频无遮挡免费观看| 中文字幕高清在线视频| 久久久久精品国产欧美久久久 | 中文字幕色久视频| 亚洲熟女精品中文字幕| 狠狠狠狠99中文字幕| 亚洲精品国产精品久久久不卡| 午夜免费观看性视频| 国产在线观看jvid| 久久国产精品男人的天堂亚洲| 国产精品久久久久久精品古装| 国产精品久久久久久精品电影小说| 国产1区2区3区精品| 91大片在线观看| av片东京热男人的天堂| 欧美人与性动交α欧美精品济南到| 亚洲黑人精品在线| 久久女婷五月综合色啪小说| 蜜桃在线观看..| avwww免费| 亚洲伊人色综图| 热re99久久精品国产66热6| 美女国产高潮福利片在线看| 热re99久久国产66热| 9色porny在线观看| 熟女少妇亚洲综合色aaa.| 国产麻豆69| 欧美日韩一级在线毛片| 精品久久蜜臀av无| 欧美亚洲 丝袜 人妻 在线| 天堂中文最新版在线下载| 欧美午夜高清在线| 97在线人人人人妻| 国产亚洲av高清不卡| 欧美性长视频在线观看| 女人爽到高潮嗷嗷叫在线视频| 亚洲精品av麻豆狂野| 搡老乐熟女国产| 色综合欧美亚洲国产小说| 亚洲免费av在线视频| 午夜精品久久久久久毛片777| 青草久久国产| 久久精品成人免费网站| 欧美精品一区二区大全| 叶爱在线成人免费视频播放| av有码第一页| 99re6热这里在线精品视频| www.999成人在线观看| 宅男免费午夜| 欧美老熟妇乱子伦牲交| 午夜福利,免费看| 女性生殖器流出的白浆| 狠狠婷婷综合久久久久久88av| 麻豆av在线久日| 99热国产这里只有精品6| 在线av久久热| 亚洲国产中文字幕在线视频| 黄片播放在线免费| 亚洲精品av麻豆狂野| 国产亚洲精品一区二区www | www.av在线官网国产| 亚洲中文av在线| 亚洲av日韩精品久久久久久密| 精品国产一区二区三区久久久樱花| 精品免费久久久久久久清纯 | 精品久久久精品久久久| 99国产精品一区二区三区| 亚洲精品一卡2卡三卡4卡5卡 | 欧美黑人精品巨大| 国产一卡二卡三卡精品| 大香蕉久久网| 国产有黄有色有爽视频| 国产免费福利视频在线观看| 精品福利永久在线观看| 国产精品 国内视频| 久久性视频一级片| 69精品国产乱码久久久| 国产成人av教育| 久久久久国产一级毛片高清牌| 国产成人欧美在线观看 | 天天躁夜夜躁狠狠躁躁| 精品亚洲成a人片在线观看| 国产淫语在线视频| 在线观看免费视频网站a站| 国产精品久久久人人做人人爽| 人人妻人人爽人人添夜夜欢视频| 91麻豆精品激情在线观看国产 | 深夜精品福利| 最近中文字幕2019免费版| 亚洲激情五月婷婷啪啪| 欧美日韩福利视频一区二区| 国产一区二区在线观看av| 自拍欧美九色日韩亚洲蝌蚪91| 777米奇影视久久| 男女高潮啪啪啪动态图| 欧美久久黑人一区二区| 一本综合久久免费| a 毛片基地| 好男人电影高清在线观看| 日韩欧美一区视频在线观看| 国产精品国产av在线观看| 深夜精品福利| 国产一区二区三区综合在线观看| 99精国产麻豆久久婷婷| av网站免费在线观看视频| 欧美精品一区二区免费开放| bbb黄色大片| av又黄又爽大尺度在线免费看| 成人影院久久| 窝窝影院91人妻| 夜夜骑夜夜射夜夜干| 日韩 亚洲 欧美在线| 亚洲精品中文字幕在线视频| 日韩制服丝袜自拍偷拍| 亚洲精品久久成人aⅴ小说| 深夜精品福利| 亚洲七黄色美女视频| 一区二区三区精品91| 日本vs欧美在线观看视频| 正在播放国产对白刺激| 精品久久久精品久久久| 日韩一区二区三区影片| 精品人妻一区二区三区麻豆| 1024香蕉在线观看| 婷婷色av中文字幕| 国产精品1区2区在线观看. | 男女午夜视频在线观看| 国产精品久久久人人做人人爽| 久久国产精品大桥未久av| 午夜福利在线观看吧| 午夜老司机福利片| 久久久久精品国产欧美久久久 | 好男人电影高清在线观看| 两个人免费观看高清视频| 成人亚洲精品一区在线观看| 欧美日韩成人在线一区二区| 操出白浆在线播放| 午夜激情久久久久久久| 搡老乐熟女国产| av电影中文网址| 欧美日韩精品网址| 十八禁高潮呻吟视频| 欧美激情 高清一区二区三区| 少妇裸体淫交视频免费看高清 | 美女福利国产在线| 美女国产高潮福利片在线看| 亚洲专区中文字幕在线| 午夜影院在线不卡| 亚洲精品美女久久久久99蜜臀| 久久人妻熟女aⅴ| 亚洲天堂av无毛| 欧美另类亚洲清纯唯美| 色播在线永久视频| 在线观看www视频免费| 国产精品香港三级国产av潘金莲| 日本黄色日本黄色录像| 啪啪无遮挡十八禁网站| 国产一区二区在线观看av| 91大片在线观看| 免费在线观看视频国产中文字幕亚洲 | 丰满人妻熟妇乱又伦精品不卡| 日日夜夜操网爽| 曰老女人黄片| www.自偷自拍.com| 一本一本久久a久久精品综合妖精| 黄频高清免费视频| 亚洲天堂av无毛| 黑人猛操日本美女一级片| 色播在线永久视频| 韩国高清视频一区二区三区| 久久久国产欧美日韩av| 人人妻人人爽人人添夜夜欢视频| 男女免费视频国产| 精品熟女少妇八av免费久了| 中文字幕最新亚洲高清| 美国免费a级毛片| 国产成人欧美| 国产淫语在线视频| 国产精品一区二区在线观看99| 免费高清在线观看视频在线观看| 一本—道久久a久久精品蜜桃钙片| 淫妇啪啪啪对白视频 | av天堂在线播放| 99国产精品免费福利视频| 日韩人妻精品一区2区三区| 一本—道久久a久久精品蜜桃钙片| 免费一级毛片在线播放高清视频 | 免费观看av网站的网址| 波多野结衣一区麻豆| 午夜成年电影在线免费观看| 一本久久精品| 12—13女人毛片做爰片一| 久久亚洲国产成人精品v| 18在线观看网站| 婷婷丁香在线五月| 一区二区三区乱码不卡18| www.自偷自拍.com| 十八禁网站网址无遮挡| 又大又爽又粗| 国产男人的电影天堂91| 人妻人人澡人人爽人人| 精品人妻1区二区| 大香蕉久久网| 欧美成狂野欧美在线观看| 亚洲欧洲日产国产| 不卡av一区二区三区| 老熟女久久久| 国产三级黄色录像| 青草久久国产| 亚洲欧洲精品一区二区精品久久久| 无限看片的www在线观看| 欧美亚洲日本最大视频资源| 午夜免费观看性视频| 51午夜福利影视在线观看| 18禁黄网站禁片午夜丰满| 国产精品一区二区免费欧美 | 香蕉丝袜av| 热99re8久久精品国产| 亚洲自偷自拍图片 自拍| 丝袜喷水一区| 欧美在线一区亚洲| 免费av中文字幕在线| 亚洲三区欧美一区| 国产精品香港三级国产av潘金莲| 欧美精品一区二区大全| 成人三级做爰电影| netflix在线观看网站| 99久久人妻综合| 久久人妻福利社区极品人妻图片| 夜夜夜夜夜久久久久| 午夜福利影视在线免费观看| 国产视频一区二区在线看| 999久久久精品免费观看国产| 久久毛片免费看一区二区三区| 色精品久久人妻99蜜桃| 亚洲国产精品一区三区| 丝袜脚勾引网站| 天天躁狠狠躁夜夜躁狠狠躁| 午夜福利免费观看在线| 99热网站在线观看| 脱女人内裤的视频| 每晚都被弄得嗷嗷叫到高潮| 国产在线视频一区二区| 欧美日韩视频精品一区| 人人妻人人添人人爽欧美一区卜| 美女视频免费永久观看网站| 国产欧美亚洲国产| 久久香蕉激情| 久久综合国产亚洲精品| 999久久久精品免费观看国产| 国产欧美日韩精品亚洲av| 亚洲人成电影观看| 久久热在线av| 欧美日韩黄片免| www.av在线官网国产| 国产成人av教育| netflix在线观看网站| 无遮挡黄片免费观看| 中亚洲国语对白在线视频| 亚洲国产精品一区三区| 亚洲成人免费电影在线观看| 高清视频免费观看一区二区| av超薄肉色丝袜交足视频| 欧美久久黑人一区二区| 亚洲精品成人av观看孕妇| 热99久久久久精品小说推荐| 欧美日韩成人在线一区二区| 精品一区二区三区av网在线观看 | 在线av久久热| 亚洲自偷自拍图片 自拍| 搡老岳熟女国产| 国产伦人伦偷精品视频| 大码成人一级视频| 99国产精品一区二区三区| 精品视频人人做人人爽| 母亲3免费完整高清在线观看| 高清在线国产一区| 婷婷成人精品国产| 深夜精品福利| 操出白浆在线播放| 久久国产亚洲av麻豆专区| 老汉色∧v一级毛片| 国产欧美亚洲国产| 亚洲伊人久久精品综合| 91精品伊人久久大香线蕉| 99久久人妻综合| 久久精品人人爽人人爽视色| 日本撒尿小便嘘嘘汇集6| 欧美人与性动交α欧美软件| 成年动漫av网址| 亚洲五月婷婷丁香| 看免费av毛片| 每晚都被弄得嗷嗷叫到高潮| 日韩熟女老妇一区二区性免费视频| 久久这里只有精品19| 一本久久精品| 国产在线观看jvid| 国产成人影院久久av| 久久影院123| 纯流量卡能插随身wifi吗| 国产伦人伦偷精品视频| 精品久久久久久电影网| 欧美 亚洲 国产 日韩一| 一区福利在线观看| 亚洲激情五月婷婷啪啪| 欧美精品av麻豆av| 12—13女人毛片做爰片一| 国产精品一区二区在线观看99| 视频区图区小说| 精品高清国产在线一区| 999久久久国产精品视频| 国产在线一区二区三区精| 在线看a的网站| 国产精品欧美亚洲77777| 国产精品久久久久久精品电影小说| 在线亚洲精品国产二区图片欧美| 大香蕉久久网| 日本wwww免费看| 亚洲精品久久午夜乱码| 伊人久久大香线蕉亚洲五| 男女床上黄色一级片免费看| 久久久国产成人免费| 精品高清国产在线一区| 巨乳人妻的诱惑在线观看| 国产伦人伦偷精品视频| av网站在线播放免费| 高清欧美精品videossex| 人人妻,人人澡人人爽秒播| 亚洲黑人精品在线| 久久ye,这里只有精品| 久久人人爽人人片av| 一二三四社区在线视频社区8| av福利片在线| 日日摸夜夜添夜夜添小说| 性色av一级| 欧美日本中文国产一区发布| 国产一区二区三区av在线| 中文字幕av电影在线播放| 亚洲国产成人一精品久久久| 一个人免费在线观看的高清视频 | 亚洲精品国产色婷婷电影| 欧美成人午夜精品| 亚洲,欧美精品.| 亚洲五月婷婷丁香| 国产av国产精品国产| 嫩草影视91久久| 国产精品久久久久久人妻精品电影 | 国产主播在线观看一区二区| 中文欧美无线码| 老司机深夜福利视频在线观看 | 午夜老司机福利片| 丝袜脚勾引网站| www.999成人在线观看| 最黄视频免费看| 精品卡一卡二卡四卡免费| 午夜精品国产一区二区电影| 国产亚洲欧美在线一区二区| 一进一出抽搐动态| 精品国产乱子伦一区二区三区 | 国产精品 国内视频| 亚洲情色 制服丝袜| 操美女的视频在线观看| 色94色欧美一区二区| 国产亚洲午夜精品一区二区久久| 精品少妇一区二区三区视频日本电影| 在线亚洲精品国产二区图片欧美| 咕卡用的链子| 国产精品熟女久久久久浪| 午夜免费观看性视频| 国产精品偷伦视频观看了| 亚洲成人手机| av欧美777| 麻豆国产av国片精品| 99国产精品一区二区三区| 18禁国产床啪视频网站| 亚洲伊人久久精品综合| 久久国产精品影院| 俄罗斯特黄特色一大片| 高清在线国产一区| 久久久国产欧美日韩av| 国产精品成人在线| 99国产精品一区二区三区| 久久久久精品人妻al黑| 成人国语在线视频| 一区二区三区激情视频| 免费观看人在逋| 国产一区二区 视频在线| 精品人妻一区二区三区麻豆| 啪啪无遮挡十八禁网站| 少妇猛男粗大的猛烈进出视频| 国产精品国产av在线观看| 日本撒尿小便嘘嘘汇集6| 天堂俺去俺来也www色官网| 国产av精品麻豆| 国产高清videossex| 亚洲伊人色综图| 这个男人来自地球电影免费观看| 久久 成人 亚洲| 宅男免费午夜| 成人国产av品久久久| 免费不卡黄色视频| 午夜两性在线视频| 美女脱内裤让男人舔精品视频| 制服人妻中文乱码| 亚洲伊人色综图| 欧美日韩成人在线一区二区| 女人爽到高潮嗷嗷叫在线视频| 久久久欧美国产精品| e午夜精品久久久久久久| 99热全是精品| 亚洲九九香蕉| 久久热在线av| 免费黄频网站在线观看国产| 青草久久国产| 五月天丁香电影| av有码第一页| 两个人看的免费小视频| av欧美777| 国产精品秋霞免费鲁丝片| 亚洲中文字幕日韩| 满18在线观看网站| 亚洲av片天天在线观看| 人人妻人人爽人人添夜夜欢视频| 一级片'在线观看视频| 天天躁夜夜躁狠狠躁躁| 在线观看免费日韩欧美大片| a级毛片黄视频| 国产av精品麻豆| 国产99久久九九免费精品| 欧美老熟妇乱子伦牲交| 一本—道久久a久久精品蜜桃钙片| 老汉色∧v一级毛片| 天天操日日干夜夜撸| 91精品国产国语对白视频| 久久久精品免费免费高清| 日韩大片免费观看网站| 妹子高潮喷水视频| 精品福利永久在线观看| 99九九在线精品视频| 高清视频免费观看一区二区| 国产激情久久老熟女| 国产野战对白在线观看| 亚洲人成电影免费在线| 侵犯人妻中文字幕一二三四区| 国产有黄有色有爽视频| 精品少妇久久久久久888优播| 80岁老熟妇乱子伦牲交| 国产亚洲欧美精品永久| 国产日韩欧美亚洲二区| 18禁黄网站禁片午夜丰满| 亚洲精品国产区一区二| 麻豆av在线久日| 亚洲国产精品成人久久小说| 亚洲七黄色美女视频| 欧美人与性动交α欧美软件| 亚洲av电影在线进入| 黄色毛片三级朝国网站| 亚洲精品一二三| 亚洲欧洲精品一区二区精品久久久| 精品视频人人做人人爽| 午夜激情久久久久久久| 天天躁狠狠躁夜夜躁狠狠躁| 色婷婷av一区二区三区视频| 自线自在国产av| 欧美人与性动交α欧美精品济南到| 建设人人有责人人尽责人人享有的| 满18在线观看网站| 国产精品久久久久成人av| 精品久久久久久久毛片微露脸 | 97精品久久久久久久久久精品| 国产成人精品久久二区二区91| 手机成人av网站| 亚洲一区二区三区欧美精品| 99热全是精品| 亚洲精华国产精华精| 日韩 亚洲 欧美在线| cao死你这个sao货| 老司机深夜福利视频在线观看 | 窝窝影院91人妻| 黄色视频不卡| av在线播放精品| 岛国毛片在线播放| 亚洲精品av麻豆狂野| 亚洲精品美女久久久久99蜜臀| 国产一区二区 视频在线| a级片在线免费高清观看视频| 亚洲欧洲精品一区二区精品久久久| 两个人免费观看高清视频| 一级片'在线观看视频| 青春草视频在线免费观看| 爱豆传媒免费全集在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 久久久久久亚洲精品国产蜜桃av| av在线app专区| 欧美黄色淫秽网站| 国产亚洲av片在线观看秒播厂| 成人国语在线视频| 午夜福利视频在线观看免费| 十分钟在线观看高清视频www| 国产日韩欧美亚洲二区| 日韩一卡2卡3卡4卡2021年| 男人舔女人的私密视频| 一二三四在线观看免费中文在| 成年美女黄网站色视频大全免费| 夜夜骑夜夜射夜夜干| 少妇裸体淫交视频免费看高清 | 亚洲国产精品一区二区三区在线| 精品第一国产精品| 精品乱码久久久久久99久播| 丰满迷人的少妇在线观看| 欧美黑人欧美精品刺激| 国产成人a∨麻豆精品| 性色av乱码一区二区三区2| 777久久人妻少妇嫩草av网站| 国产在线免费精品| 大片免费播放器 马上看| 国产福利在线免费观看视频| 黄网站色视频无遮挡免费观看| 久久久精品国产亚洲av高清涩受| 午夜影院在线不卡| 国产人伦9x9x在线观看| 人妻一区二区av| 色播在线永久视频| 国产av精品麻豆| 一级黄色大片毛片| 麻豆国产av国片精品| 日本91视频免费播放| 国产精品 欧美亚洲| 欧美黄色片欧美黄色片| 少妇猛男粗大的猛烈进出视频| 性色av乱码一区二区三区2| 亚洲专区国产一区二区| 久久九九热精品免费| 自线自在国产av| 大码成人一级视频| 1024香蕉在线观看| 国产成人a∨麻豆精品| cao死你这个sao货| 777米奇影视久久| 在线观看免费视频网站a站| 色视频在线一区二区三区|