• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Sensitivity of the Warm Core of Tropical Cyclones to Solar Radiation

    2015-06-09 21:37:22GEXuyangMAYueZHOUShunwuandTimLI
    Advances in Atmospheric Sciences 2015年8期
    關(guān)鍵詞:財經(jīng)類民辦教學(xué)管理

    GE Xuyang,MA Yue,ZHOU Shunwu,and Tim LI

    1Key Laboratory of Meteorological Disaster,Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters,Nanjing University of Information Science and Technology,Nanjing 210044

    2International Pacific Research Center,University of Hawaii,Hawaii 96822,USA

    Sensitivity of the Warm Core of Tropical Cyclones to Solar Radiation

    GE Xuyang?1,MA Yue1,ZHOU Shunwu1,and Tim LI2

    1Key Laboratory of Meteorological Disaster,Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters,Nanjing University of Information Science and Technology,Nanjing 210044

    2International Pacific Research Center,University of Hawaii,Hawaii 96822,USA

    To investigate the impacts of solar radiation on tropical cyclone(TC)warm-core structure(i.e.,the magnitude and height), a pair of idealized simulations are conducted by specifying different strengths of solar shortwave radiation.It is found that the TC warm core is highly sensitive to the shortwave radiative effect.For the nighttime storm,a tendency for a more intense warm core is found,with an elevated height compared to its daytime counterpart.As pointed out by previous studies,the radiative cooling during nighttime destabilizes the local and large-scale environment and thus promotes deep moist convection,which enhances the TC’s intensity.Due to the different inertial stabilities,the diabatic heating in the eyewall will force different secondary circulations.For a strong TC with a deeper vertical structure,this promotes a thin upper-level inflow layer.This inflow carries the lower stratospheric air with high potential temperature and descends adiabatically in the eye, resulting in significant upper-level warming.The Sawyer–Eliassen diagnosis further confirms that the height of the maximum temperature anomaly is likely attributable to the balance among the forced secondary circulations.

    tropical cyclone,warm core,structure,solar radiation

    1.Introduction

    It is well known that the warm core is a prominent feature of tropical cyclones(TCs).For a typical cyclone,its primary circulation(tangential wind)decreases with altitude.Hence, to satisfy the thermal wind balance relationship,it is required that the temperature weakens with the radius(Willoughby, 1990).The result is the so-called TC warm core.The characteristics of the warm core(i.e.,the magnitude and altitude) are closely linked to TC intensity and structure.For instance, the higher the altitude of the peak warming,the lower the surface pressure and thus the more intense the TC is.Previous studies(Hawkins and Rubsam,1968;Hawkins and Imbembo,1976;Emanuel,1986;Chen and Zhang,2013)have found that the height of the maximum warm core usually occurs in the upper levels,such as 200–300 hPa.Interestingly, Stern and Nolan(2012)examined the structure of simulated TCs,and found that the warm core generally maximized in the mid-troposphere(i.e.,z=5–6 km,z stands for height), which was in contrast to the widely held view that this occurs in the upper troposphere.The recent observational study by Durden(2013)revealed that the altitude of the warm core shows large variability.That is,the warm core may occur anywhere between 700 and 200 hPa,and in some cases may even have multiple centers.Hence,there is debate surrounding the characteristics of the TC warm core,which encourages us to investigate the possible processes responsible for the structure of the TC warm core.

    Numerous investigators(Webster and Stephens,1980; Tao et al.,1996;Dai,2001;Nesbitt and Zipser,2003)have examined the impacts of the diurnal variation of solar radiation on the tropical climate system.Possible mechanisms have been put forward regarding the roles of solar variation in modulating tropical convection.Recent numerical studies(Ge et al.,2014;Melhauser and Zhang,2014)point out that the environmental stability and deep moist convection are substantially modulated by the diurnal variation of radiation.The radiative cooling during nighttime destabilizes the local and large-scale environment and thus promotes deep moist convection,which enhances TC intensity.However, these studies mainly focused on the early stage of TC development,and the impacts of the diurnal variation of radiation on TC warm-core structure remain less clear.In the present study,the primary purpose is to demonstrate the potential impacts of solar radiation on the structure of the TC warm core.

    The remainder of the paper is organized as the follows. In section 2,the characteristics of the TC warm core(i.e.,the height and intensity)are discussed.Possible physical interpretations are presented in section 3.The results of sensitiv-ity tests using different model schemes are presented in section 4.And finally,a short summary and further discussion is given in section 5.

    2.Preliminary results

    In our previous study(Ge et al.,2014),the impacts of the diurnal cycle of radiation on TC development and size were examined.Three idealized experiments were conducted by specifying different levels of solar radiation.In the control experiment(CTL),the TC developed with a full diurnal cycle of solar radiation.In the sensitivity experiments,the solar radiation was either excluded or artificially extreme.Specifically,shortwave solar radiation was excluded in the NIGHT experiment,whereas it was strongest in the DAY experiment. Further details,including a description of the model and the design of the experiments can be found in the paper(Ge et al.,2014).In the present companion study,the primary goal is to understand the possible mechanisms accounting for the structure of the TC warm core.

    The simulations showed salient differences in TC development and size,especially between NIGHT and DAY.The storm in CTL bore many similarities as that in NIGHT.To emphasize the discrepancies,the NIGHT and DAY results in particular are further compared in the present study.Figure 1 displays the evolution of the intensity(represented by the central minimum sea level pressure,MSLP)in NIGHT and DAY,respectively.The weak vortices eventually develop into stronger TCs in both experiments,although there are marked differences in terms of the intensification rate.The NIGHT (DAY)simulation exhibits a faster(slower)intensification rate.For instance,in NIGHT,the MSLP starts to fall rapidly shortly after t=36 h,which is nearly 24 hours earlier than in DAY.This suggests that,under the identical initial environmental conditions,the timing of rapid intensification(RI) varies with different radiative effects.Specifically,the TC is likely to develop quicker during nighttime than daytime.The possible mechanisms involved in the influence of solar radiation on TC intensification have been discussed in previous studies(Ge et al.,2014;Melhauser and Zhang,2014).

    Figure 2 compares the azimuthally averaged radial circulations and temperature perturbations during the mature stage.In this study,the temperature averaged within a particular annulus(i.e.,the radius between 600 and 700 km) is taken as the environmental value,and thus the deviation from this value reflects the characteristics of the TC warm core.Importantly,when the potential temperature is used to calculate the perturbation,the features of the warm core are qualitatively similar.Hence,the perturbation temperature is selected to represent the behavior of the warm core in the following sections.Generally,in the upper outflow layer, the warming spreads outward more radially.Obviously,there are pronounced differences in the warm-core areas between NIGHT and DAY.In NIGHT,the peak of the warm core is located at the same level as the outflow layer.However,in DAY,the height of peak warming is much lower than the outflow layer.More specifically,the height of the warm core in NIGHT is z=12–14 km,which is much higher than that in the DAY storm(i.e.,z=6–8 km).Furthermore,the magnitude is approximately 16?C in NIGHT,which is also greater than its counterpart(12?C).

    The structural difference of the warm core is dynamically consistent with the intensity changes.According to thehydrostatic balance relationship,the surface pressure deficit can be derived as follows:

    here ΔPsis the pressure difference between the TC center and the environment,Tvis the virtual temperature,PTis the pressure at the top of the troposphere,and other symbols are traditional meteorological variables.It can be inferred from Eq. (1),due to the“d P/P”effect,the surface pressure will be lower if the warming anomaly is highly elevated.This agrees with the fact that the NIGHT storm has a much lower MSLP compared with the DAY storm.

    Besides the differences in the magnitude and height of maximum perturbation temperature,the areal coverage of the warm core shows remarkable dissimilarities.For instance, the radial extension of the warm core in NIGHT is much wider than that in DAY,which is consistent with the fact that the former is large in size,as shown in Ge et al.(2014).For a typical TC,there is a lower(upper)-level radial inflow(outflow),and the updraft arises in the eyewall region.The maximum speed of the upper-level out flow jet exceeds 25 m s-1in NIGHT,which is much faster than in DAY(~20 m s-1). Consequently,the boundary inflow layer is slightly deeper in NIGHT,indicating a robust inward mass flux convergence, and thus helps the TC spin up.Accompanied by the strong in-up-out secondary circulation,the diabatic heating in the TC inner-core area is greatly enhanced in NIGHT.

    To gain perspective on the variation ofthe warm core,Fig. 3 presents the time–vertical cross sections of the perturbation temperature averaged within the eye region(i.e.,within a radius of 30 km).In both NIGHT and DAY,during the initially slow intensification period(prior to t=48 h),there are very few temperature perturbations.Accompanied by the period of rapid intensification,pronounced warm temperature deviations are established in the middle levels(z=6–8 km).For the NIGHT storm,after t=72 h,a second warm core occurs in the upper troposphere(i.e.,z=12–16 km).During the following short period(t=72–84 h),two discrete warming centers appear at z=6–8 and 12–16 km,respectively.The upper-level one further intensifies and becomes the dominant one.Eventually,it exhibits a single upper warm-core structure.Note that thisupper-levelentity showsa slow downward displacement with time.In DAY,the peak warming center remains at an essentially constant height(about z=8 km),and does not elevate very much during the whole integration.

    Numerous studies(Emanuel,1986;Holland,1997; Braun,2002;Knaff et al.,2004;Halverson et al.,2006; Powell et al.,2009;Chen and Zhang,2013)have suggested that the upper-tropospheric warm core is a common characteristic of TCs.In the present study,the NIGHT storm has an upper-tropospheric warm core(z=14 km),which is consistent with this widely believed viewpoint.However,in DAY,the maximum warm core occurs in the mid-troposphere (z=8 km),which is similar to the findings of Stern and Nolan(2012).Given the different structure of the warm core between NIGHT and DAY,the question arises as to what causes such discrepancies.In the following section,closer examination is made to disclose the possible mechanisms involved.

    3.Physical interpretations

    Numerous studies(Schubert and Hack,1982;Hack and Schubert,1986;Nolan et al.,2007)have suggested that the diabatic heating in the eyewall will force a secondary circulation.That is,the updraft coincides with the heating,and compensating subsidence appears on either side of the heating. These studies may explain the formation of mid-tropospheric warm cores.However,it is difficult to apply this explanation to upper-level warming via the aforementioned mechanisms, since there is little diabatic heating in the upper troposphere (i.e.,above z=14 km).The results here suggest that upperlevelhorizontaladvection likely playsan importantrole in the formation of upper level warm cores,and thus further studies are needed.

    Chen and Zhang(2013)proposed that the formation of the upper-level warm core is attributable to deep convective cells,such as vortical hot towers(“VHTs”).This motivates us to investigate the convective activity in the TC inner region.Previous studies(Ge et al.,2014;Melhauser and Zhang,2014)have suggested that TC convective activity is highly sensitive to solar radiative effects.That is,the diurnal solar radiation can considerably modulate the pregenesis environmental conditions and thus the behavior of moist convection.In general,nighttime destabilization of the local and large-scale environment through radiative cooling may promote deep moist convection and increase the genesis potential.On the contrary,daytime solar radiation will enhance the static stability and thus suppress convection.To this end,the statistics of convective activity in the inner area are compared.Figure 5 displays the temporal evolution of the vertical distribution of grid points of deep convection. The numbers of strong updrafts within a radius of 100 km at each level are calculated.Here,vertical velocity greater than 2 m s-1is considered as a strong updraft.Although the threshold of 2 m s-1is somewhat arbitrary,it is true that the areal percentage of updrafts greater than this value is quiet small,and the conclusion is qualitatively similar as long as the threshold is larger than 1.5 m s-1.Obviously,deep convection is much stronger in NIGHT during the whole model integration.Specifically,in NIGHT,the number is generallylarger than 250 after t=96 h,whereas it seldom reaches 250 in DAY.This indicates that the convective activity is more active in NIGHT.Along with the increase of the updrafts,the warm core becomes more prominent.

    To also gain insight into the relationship between the warm core and the inner-core convection,Figs.6–7 compare snapshots of 200 hPa vertical motion and temperature tendency in NIGHT and DAY,respectively.Following Chen and Zhang(2013),the temperature tendency is defined as the temperature difference:ΔT=Ti+1-Ti,where i indicates the modeloutputatthe i th time step(time interval:15 min).Convective bursts(CBs)occur frequently in the inner core(i.e., within radius=100 km).Generally,the CB band is conducive to cyclonic movement as the storm intensifies,and becomes more symmetric over time.Note that the areal coverage of the updraft is significant larger in NIGHT,which also coincides with pronounced positive temperature tendencies. The updraft core coincides with the maximum temperature tendency,suggesting that the CB plays an important role in the formation of the warm core.This result agrees well with Chen and Zhang(2013).Furthermore,the significant warming is likely attributable to the subsidence associated with the updrafts that penetrate into the upper troposphere(Holland et al.,1984;Heymsfield et al.,2001;Chen and Zhang,2013). Since there is little diabatic heating within the eye,the collective effect of intense downdrafts should play an essential role.Chen and Zhang(2013)revealed that an upper inflow layer,residing just above the upper out flow channel,plays a substantial role in the establishment of the upper warm core. This in flow layer,located above the out flow layˉer,will effectively carry the higher potential temperature(θ)air into the TC eye,where it descends adiabatically and isentropically to induce signi ficant warming.To test this hypothesis,Fig.8 compares the height–radius cross section of potential temperature,vertical velocity,and radial in flow iˉnNIGHT and DAY,separately.Notice that the surfaces ofθin both cases are displaced downward in the inner-core region.The differences in the downward displacement suggest different locally static stabilities in the eye.Another salient feature is that a strong in flow layer is located near z=18 km in NIGHT. In contrast,accompanied by a much weaker upper-level inflow,the upper-level warming is insignificant in DAY.The results suggest that the upper-level radial in flow layer likely plays an important role in upper-level warming,since the altitude of the warm core is attributable to the strength of the upper-level in flow.It is hypothesized that,while lower stratospheric air moves inward radially along the isentropic surface,the adiabatic descent may result in a warming therein. Chen and Zhang(2013)argued that this thin radial in flow layer is likely induced by the mass sink and lower pressure in the eye.To further determine the possible mechanism for this upper in flow layer,the Sawyer–Eliassen(SE)diagnosis is applied here to solve the forced problem.The SE equation in the radius-pseudoheight coordinates(Hendricks and Montgomery,2004)can be written as

    Figure 9 displays the radial cross sections of azimuthal mean inertial stability,tangential wind,diabatic heating,and the forced massstreamfunction ofsecondary circulation.Figures 9a and b compare the tangential wind and the associated inertial stability in NIGHT and DAY,respectively.It is obvious that,compared with the DAY storm,the NIGHT storm has a vertically deeper structure in which the top extends to higher altitude,indicating a greater inertial stability in the inner area.Given the different inertial stabilities,the change in the local Rossby deformation radius will lead to different extensions of the response to the forcing.Schubert and Hack (1982)pointed out that,for a given heating forcing,an increase in inertial stability results in a decrease in the forced secondary circulation and thus a change in the radial distri-bution of local temperature,with enhanced temperature tendency in the region of high inertial stability.Figures 9c and d compare the radial vertical cross section of the mass streamfunction of the secondary circulation forced by the diabatic heating.In general,the maximum mass streamfunction is located just outside the eyewall at the 10 km height,and the minimum exists inside the eyewall.This pattern is consistent with the typical in-up-out secondary circulation,with the updraft at the location of the diabatic heating.The minimum center inside the heating suggests that descending motion appears in the eye.Note the remarkable differences in the mass streamfunctions in the two cases.That is,the amplitude is much more significant in NIGHT.As such,the strong horizontal gradient of mass streamfunction results in more robust downward flow in the eye.Furthermore,the minimum streamfunction extends outward atthe upperlevel(i.e.,z=15km)in NIGHT.This suggests a positive vertical gradient in the inner-core area,just above 15 km.As a result,an upperlevel inflow appears therein,as shown in Fig.8.This result confirms that the upper-level inflow is forced by the TC diabatic heating.Ohno and Satoh(2014)proposed that upperlevel subsidence is closely associated with TC structure.For instance,the upper-level subsidence is enhanced in the eye when the vortex is sufficiently tall to penetrate the statically stable stratosphere.It can be deduced that the height of the maximum temperature anomaly is largely attributable to the balance among forced secondary circulations.In this regard, since the NIGHT storm has both a stronger intensity and diabatic heating source,the greater inertial stability may extend the response to the heating to the upper troposphere and causeupper-level adiabatic warming.

    4.Sensitivity to model schemes

    The results show that the storm intensifies more rapidly in the NIGHT scenario for all the sensitivity experiments(not shown),which agrees wellwith Ge etal.(2014).Note thatthe warm-core structures show salient differences.That is,accompanied by the more intense TC in NIGHT,an upper-level warm core emanates,whereas only a mid-tropospheric entity emerges in its counterpart.Figure 10 shows the horizontal– vertical cross sections of temperature perturbations in the sensitivity experiments.It is clear that there is a distinctly higher warm core in NIGHT than in DAY,indicating that the results are robust and not sensitive to the different model configurations.

    Table 1.List of sensitivity experiments.See the text(section 4)for the definitions of the abbreviations.

    5.Conclusio n

    The sensitivity of TC warm-core structure to shortwave radiation was examined by conducting highly idealized experiments.It was found that solar radiation not only impacts on TC intensification,but also on the warm-core structure. In the NIGHT experiment,which excluded solar radiation, the TC favored the establishment of a significant warm core at higher altitude.Previous studies suggest that significant convective activity in the inner-core region is an important ingredient in the generation of an upper-level warm core.In the presentstudy,Sawyer–Eliassen diagnosis furthersuggeststhat the height of the maximum temperature anomaly is likely attributable to the balance among forced secondary circulations.It is proposed that strong CBs lead to strong diabatic heating and thus favor a more intense TC with larger inertial stability.As a result,the forced secondary circulation promotes a thin upper-level inflow layer.This radial inflow will effectively carry the lower-stratospheric air with high potential temperature and descend adiabatically in the eye,resulting in significant upper-level warming.

    Admittedly,the results are only based on highly idealized numerical simulations,since the radiation is artificially extreme.Solar radiation modulates the static stability and thus influences the convective activity,which affects TC intensity and structure.The response to the diabatic heating is sensitive to the vortex structure.With different inertial stability,the diabatic heating in the eyewall will force differentsecondary circulations,resulting in a large variability of TC warm-core structure.By this reasoning,the conclusion here may represent the scenario for TCs with different intensity and structure.For instance,under favorable environmental conditions,strong CBs likely favor a stronger TC and thus a preferred upper-level warm core.In contrast,weak convective activity in the TC inner-core area may lead to a much lower entity.Moreover,in the current model configuration, TCs develop under the most favorable environmental conditions(i.e.,no mean flows).In reality,a TC is also highly dependent on the underlying oceanic state,the large-scale environment,and storm-scale dynamics(Wu et al.,2011;Ge etal.,2013;Liang et al.,2014).Hence,more sensitivity experiments involving complex environmental flows should be conducted in the future.

    Acknowledgements.This work was jointly sponsored by the National Key Basic Research Program of China(Grant No. 2015CB452803),the National Natural Science Foundation of China (Grant No.41275095),the“Six peaks of high-level talent”funding project of Jiangsu,the Key University Science Research Project of Jiangsu Province(Grant No.14KJA170005),and the China Meteorological Administration Henan Key Laboratory of Agrometeorological Support and Applied Technique(Grant No.AMF201403). This paper is Earth system modeling center(ESMC)contribution number 032.

    REFERENCES

    Braun,S.A.,2002:A cloud-resolving simulation of Hurricane Bob(1991):Storm structure and eyewall buoyancy.Mon. Wea.Rev.,130,1573–1592.

    Chen,H.,and D.-L.Zhang,2013:On the rapid intensification of Hurricane Wilma(2005).Part II:Convective bursts and the upper-level warm core.J.Atmos.Sci.,70,146–172.

    Dai,A.G.,2001:Global precipitation and thunderstorm frequencies.Part II:Diurnal variations.J.Climate,14,1112–1128.

    Durden,S.L.,2013:Observed tropical cyclone eye thermal anomaly profiles extending above 300 hPa.Mon.Wea.Rev.,141,4256–4268.

    Emanuel,K.A.,1986:An air-sea interaction theory for tropical cyclones.Part I:Steady-state maintenance.J.Atmos.Sci.,43, 585–604.

    Ge,X.,Y.Ma,S.W.Zhou,and T.Li,2014:Impacts of the diurnal cycle of radiation on tropical cyclone intensification and structure.Adv.Atmos.Sci.,31,1377–1385,doi:10.1007/ s00376-014-4060-0.

    Ge,X.Y.,T.Li,and M.Peng,2013:Effects of vertical shears and mid-level dry air on tropical cyclone developments.J.Atmos. Sci.,70,3859–3875.

    Hack,J.J.,and W.H.Schubert,1986:Nonlinear response of atmospheric vortices to heating by organized cumulus convection. J.Atmos.Sci.,43,1559–1573.

    Halverson,J.B.,J.Simpson,G.Heymsfield,H.Pierce,T.Hock, and L.Ritchie,2006:Warm core structure of Hurricane Erin diagnosed from high altitude dropsondes during CAMEX-4. J.Atmos.Sci.,63,309–324.

    Hawkins,H.F.,and D.T.Rubsam,1968:Hurricane Hilda,1964. II:Structure and budgets of the hurricane on October 1,1964. Mon.Wea.Rev.,96,617–636.

    Hendricks,E.A.,and M.T.Montgomery,2004:The role of“vortical”hot towers in the formation of tropical cyclone Diana (1984).J.Atmos.Sci.,61,1209–1232.

    Heymsfield,G.M.,J.B.Halverson,J.Simpson,L.Tian,and T. P.Bui,2001:ER-2 Doppler radar investigations of the eyewallof Hurricane Bonnie during the Convection and Moisture Experiment-3.J.Appl.Meteor.,40,1310–1330.

    Holland,G.J.,1997:The maximum potential intensity of tropical cyclones.J.Atmos.Sci.,54,2519–2541.

    Holland,G.J.,T.D.Keenan,and G.D.Crane,1984:Observations of a phenomenal temperature perturbation in Tropical Cyclone Kerry(1979).Mon.Wea.Rev.,112,1074–1082.

    Hong,S.-Y.,and J.-O.J.Lim,2006:The WRF single-moment 6-class microphysics scheme(WSM6).Journal of the Korean Meteorological Society,42,129–151.

    Hong,S.-Y,Y.Noh,and J.Dudhia,2006:A new vertical diffusion package with an explicit treatment of entrainment processes. Mon.Wea.Rev.,134,2318–2341.

    Knaff,J.A.,S.A.Seseske,M.DeMaria,and J.L.Demuth,2004: On the influences of vertical wind shear on symmetric tropical cyclone structure derived from AMSU.Mon.Wea.Rev.,132,2503–2510.

    Liang,J.,L.G.Wu,and H.J.Zhong,2014:Idealized numerical simulations of tropical cyclone formation associated with monsoon gyres.Adv.Atmos.Sci.,31,305–315,doi: 10.1007/s00376-013-2282-1.

    目前大部分普通高校都是根據(jù)教育部的要求定位數(shù)學(xué)教學(xué)目標(biāo)、設(shè)定數(shù)學(xué)教學(xué)內(nèi)容,但是民辦院校需要結(jié)合自己的學(xué)生情況,適度調(diào)整數(shù)學(xué)教學(xué)目標(biāo),把專業(yè)化要求轉(zhuǎn)化到職業(yè)化領(lǐng)域內(nèi)。為提高財經(jīng)專業(yè)應(yīng)用能力,民辦高校往往增加專業(yè)課比重。院校的教學(xué)管理部門對于數(shù)學(xué)在財經(jīng)類專業(yè)的重要性也往往認(rèn)識不夠,加之學(xué)生數(shù)學(xué)學(xué)習(xí)能力相對較低,為了減少對學(xué)生學(xué)習(xí)時間的占用,降低學(xué)生考試焦慮,減輕學(xué)生學(xué)習(xí)壓力,弱化數(shù)學(xué)教學(xué)內(nèi)容經(jīng)常成為民辦財經(jīng)類高校的最先選項。

    Lin,Y.L.,R.D.Rarley,and H.D.Orville,1983:Bulk parameterization of the snow field in a cloud model.J.Appl.Meteor.,22,1065–1092.

    Mlawer,E.J.,S.J.Taubman,P.D.Brown,M.J.Iacono,and S.A. Clough,1997:Radiative transfer for inhomogeneous atmospheres:RRTM,a validated correlated-k model for the longwave.J.Geophys.Res.,102,16 663–16 682.

    Melhauser,C.,and F.Q.Zhang,2014:Diurnal radiation cycle impact on the pregenesis environment of Hurricane Karl(2010). J.Atmos.Sci.,71,1241–1259.

    Mellor,G.L.,and T.Yamada,1982:Development of a turbulence closure model for geophysical fluid problems.Rev.Geophys. Space Phys.,20,851–875.

    Nesbitt,S.W.,and E.J.Zipser,2003:The diurnal cycle of rainfall and convective intensity according to three years of TRMM measurements.J.Climate,16,1456–1475.

    Nolan,D.S.,Y.Moon,and D.P.Stern,2007:Tropical cyclone intensification from asymmetric convection:Energetics and efficiency.J.Atmos.Sci.,64,3377–3405.

    Ohno,T.,and M.Satoh,2014:On the Warm core of the tropical cyclone formed near the tropopause.J.Atmos.Sci.,doi: 10.1175/JAS-D-14-0078.1.(in press)

    Powell,M.D.,E.W.Uhlhorn,and J.D.Kepert,2009:Estimating maximum surface winds from hurricane reconnaissance measurements.Wea.Forecasting,24,868–883.

    Schubert,W.H.,and J.J.Hack,1982:Inertial stability and tropical cyclone development.J.Atmos.Sci.,39,1687–1697.

    Stern,D.P.,and D.S.Nolan,2012:On the height of the warm core in tropical cyclones.J.Atmos.Sci.,69,1657–1680.

    Tao,W.K.,S.Lang,J.Simpson,C.H.Sui,B.Ferrier,and M.D., Chou,1996:Mechanisms of cloud-radiation interaction in the Tropics and midlatitudes.J.Atmos.Sci.,53,2624–2651.

    Webster,P.J.,and G.L.Stephens,1980:Tropical uppertropospheric extended clouds:Inferences from winter MONEX.J.Atmos.Sci.,37,1521–154.

    Willoughby,H.E.,1990:Gradient balance in tropical cyclones.J. Atmos.Sci.,47,265–274.

    Wu,L.G.,J.Liang,and C.-C.Wu,2011:Monsoonal influence on Typhoon Morakot(2009).Part I:Observational analysis. J.Atmos.Sci.,68,2208–2221.

    :Ge,X.Y.,Y.Ma,S.W.Zhou,and T.Li,2015:Sensitivity of the warm core of tropical cyclones to solar radiation. Adv.Atmos.Sci.,32(8),1038–1048,

    10.1007/s00376-014-4206-0.

    18 September 2014;revised 5 December 2014;accepted 26 December 2014)

    ?Corresponding author:GE Xuyang

    Email:xuyang@nuist.edu.cn

    猜你喜歡
    財經(jīng)類民辦教學(xué)管理
    民辦本科院校開展文科復(fù)合型人才培養(yǎng)的創(chuàng)新與實踐
    成才(2023年13期)2023-10-24 08:48:32
    新時代加強(qiáng)民辦中小學(xué)黨建工作的必要性
    教學(xué)管理信息化問題研究
    大學(xué)(2021年2期)2021-06-11 01:13:24
    新時期高中教學(xué)管理改革與實踐
    甘肅教育(2020年17期)2020-10-28 09:01:24
    談教學(xué)管理的藝術(shù)
    甘肅教育(2020年4期)2020-09-11 07:41:24
    基于學(xué)科競賽的民辦本科高校會計實踐教學(xué)改革探討
    “雙平臺嵌入式”的“糧味”財經(jīng)類專業(yè)人才培養(yǎng)模式創(chuàng)新與實踐
    貼近生活的商業(yè)財經(jīng)類期刊
    民辦少兒英文圖書館工作初探
    財經(jīng)類MBA院校案例研發(fā)隊伍建設(shè)研究
    国产免费福利视频在线观看| 久久久久久国产a免费观看| 国产黄色免费在线视频| 久久99蜜桃精品久久| 国产高潮美女av| 黄色一级大片看看| 三级经典国产精品| 天天一区二区日本电影三级| 亚洲精品456在线播放app| 美女cb高潮喷水在线观看| 日日干狠狠操夜夜爽| 免费大片18禁| 日韩av免费高清视频| 国产国拍精品亚洲av在线观看| 国产成人福利小说| 国国产精品蜜臀av免费| 噜噜噜噜噜久久久久久91| 午夜亚洲福利在线播放| 18禁在线无遮挡免费观看视频| 男女视频在线观看网站免费| 欧美日韩国产mv在线观看视频 | 亚洲国产日韩欧美精品在线观看| 国产黄片美女视频| 两个人的视频大全免费| 最近最新中文字幕大全电影3| 国产激情偷乱视频一区二区| 亚洲精品aⅴ在线观看| 美女国产视频在线观看| 美女cb高潮喷水在线观看| 精品久久久久久久久久久久久| 欧美激情国产日韩精品一区| 免费播放大片免费观看视频在线观看| 欧美成人a在线观看| 国产视频内射| 看黄色毛片网站| 男的添女的下面高潮视频| xxx大片免费视频| 一级毛片我不卡| 精品亚洲乱码少妇综合久久| 国产精品久久久久久久电影| 久久久久久久久久黄片| 一级毛片我不卡| 国产在视频线在精品| 岛国毛片在线播放| 精品久久久久久久久亚洲| 亚洲av一区综合| 人妻系列 视频| 久久久久久久久中文| ponron亚洲| 97超视频在线观看视频| 一级毛片我不卡| 乱码一卡2卡4卡精品| 欧美最新免费一区二区三区| 免费电影在线观看免费观看| 国产精品久久久久久精品电影小说 | 亚洲精品亚洲一区二区| 少妇裸体淫交视频免费看高清| 久久99热6这里只有精品| 亚洲无线观看免费| 91av网一区二区| 美女xxoo啪啪120秒动态图| 三级毛片av免费| a级一级毛片免费在线观看| 大话2 男鬼变身卡| 夫妻午夜视频| 久久精品久久久久久久性| 亚洲精华国产精华液的使用体验| 街头女战士在线观看网站| 99九九线精品视频在线观看视频| 国产单亲对白刺激| 人妻制服诱惑在线中文字幕| 黄片wwwwww| 成人午夜高清在线视频| 欧美日韩亚洲高清精品| 免费无遮挡裸体视频| 日韩伦理黄色片| 国产成人a∨麻豆精品| 国产久久久一区二区三区| 国产黄片美女视频| 国产av不卡久久| 老司机影院成人| 波多野结衣巨乳人妻| 大话2 男鬼变身卡| 偷拍熟女少妇极品色| 女人被狂操c到高潮| 十八禁网站网址无遮挡 | 久久精品国产鲁丝片午夜精品| 白带黄色成豆腐渣| 国产精品一区二区三区四区久久| 国内精品宾馆在线| 免费看日本二区| 久久精品久久久久久久性| 亚洲精品亚洲一区二区| 日产精品乱码卡一卡2卡三| 男人舔奶头视频| 看非洲黑人一级黄片| 亚洲一级一片aⅴ在线观看| 噜噜噜噜噜久久久久久91| 精品久久久精品久久久| 99热全是精品| 老女人水多毛片| 91狼人影院| 大陆偷拍与自拍| 2022亚洲国产成人精品| 色综合亚洲欧美另类图片| 舔av片在线| 亚洲av免费高清在线观看| 晚上一个人看的免费电影| 欧美97在线视频| 黄色日韩在线| 神马国产精品三级电影在线观看| 男人舔女人下体高潮全视频| 美女cb高潮喷水在线观看| 成人一区二区视频在线观看| 自拍偷自拍亚洲精品老妇| 亚洲最大成人av| 亚洲精品第二区| 18+在线观看网站| 在线观看av片永久免费下载| 欧美日韩视频高清一区二区三区二| 国产乱来视频区| 久久精品熟女亚洲av麻豆精品 | 国产一区亚洲一区在线观看| 成年人午夜在线观看视频 | 26uuu在线亚洲综合色| 精品久久久久久久末码| 欧美97在线视频| 中文字幕av成人在线电影| 听说在线观看完整版免费高清| 欧美成人精品欧美一级黄| 国产精品.久久久| 99久久中文字幕三级久久日本| 成年人午夜在线观看视频 | 免费不卡的大黄色大毛片视频在线观看 | 色5月婷婷丁香| 看非洲黑人一级黄片| 插阴视频在线观看视频| 亚洲av中文字字幕乱码综合| 久久久久精品久久久久真实原创| 精品一区二区三区视频在线| 18+在线观看网站| 国产 一区精品| 国产免费视频播放在线视频 | 国产国拍精品亚洲av在线观看| 乱系列少妇在线播放| 91狼人影院| 成人国产麻豆网| 能在线免费看毛片的网站| 男女那种视频在线观看| 欧美日韩在线观看h| 亚洲aⅴ乱码一区二区在线播放| 国产精品伦人一区二区| 边亲边吃奶的免费视频| 亚洲av一区综合| 亚洲不卡免费看| 国产成人精品久久久久久| 欧美另类一区| av黄色大香蕉| 国产极品天堂在线| 免费观看的影片在线观看| 精品久久久噜噜| 久久久午夜欧美精品| 女人十人毛片免费观看3o分钟| 中文在线观看免费www的网站| 日本-黄色视频高清免费观看| 亚洲自偷自拍三级| 亚洲精品成人av观看孕妇| 日韩国内少妇激情av| 精品国产三级普通话版| 亚洲精品成人av观看孕妇| 色综合色国产| 日韩强制内射视频| 午夜精品国产一区二区电影 | 亚洲电影在线观看av| 国产av不卡久久| 国产精品伦人一区二区| 国产高潮美女av| 国产午夜精品论理片| 国内精品一区二区在线观看| 美女国产视频在线观看| 国产成人aa在线观看| 国产伦理片在线播放av一区| 我的女老师完整版在线观看| 久久久久性生活片| .国产精品久久| 国产成人精品婷婷| 国产亚洲一区二区精品| 一级毛片黄色毛片免费观看视频| 青青草视频在线视频观看| 日日啪夜夜爽| 午夜福利网站1000一区二区三区| 丝袜美腿在线中文| 真实男女啪啪啪动态图| 日韩欧美精品v在线| 天天躁日日操中文字幕| 看黄色毛片网站| 黄片wwwwww| 精品久久久精品久久久| 黄色配什么色好看| 2018国产大陆天天弄谢| 99热这里只有精品一区| 纵有疾风起免费观看全集完整版 | av专区在线播放| av播播在线观看一区| 久久韩国三级中文字幕| 美女被艹到高潮喷水动态| 日本色播在线视频| 一本久久精品| 久久久国产一区二区| 国产精品一二三区在线看| 国产成人一区二区在线| 精品久久国产蜜桃| 别揉我奶头 嗯啊视频| 天堂中文最新版在线下载 | 成人午夜高清在线视频| 99热这里只有是精品50| 国产一区二区三区av在线| 精品久久久精品久久久| 国产亚洲精品av在线| 国产 亚洲一区二区三区 | 简卡轻食公司| 色综合色国产| av在线天堂中文字幕| 国产在视频线在精品| 亚洲精品视频女| videossex国产| 人人妻人人看人人澡| 亚洲国产av新网站| 久久精品久久久久久久性| 天堂中文最新版在线下载 | 午夜福利视频精品| 国产在线男女| 国产伦精品一区二区三区视频9| 51国产日韩欧美| 伦理电影大哥的女人| 亚洲av福利一区| 51国产日韩欧美| 老司机影院毛片| 国产亚洲最大av| 中文字幕亚洲精品专区| 汤姆久久久久久久影院中文字幕 | 免费大片黄手机在线观看| 久久久久久久久久黄片| 精品久久久久久成人av| 国产三级在线视频| 国产亚洲av嫩草精品影院| 亚洲,欧美,日韩| 最近最新中文字幕免费大全7| 国产乱来视频区| 成年女人看的毛片在线观看| 最近中文字幕高清免费大全6| 成人二区视频| 欧美不卡视频在线免费观看| 国产久久久一区二区三区| 看黄色毛片网站| 人人妻人人澡欧美一区二区| 成人漫画全彩无遮挡| 欧美 日韩 精品 国产| 小蜜桃在线观看免费完整版高清| 日韩人妻高清精品专区| 久久久国产一区二区| 99热这里只有是精品在线观看| 少妇的逼水好多| 国产高潮美女av| 又粗又硬又长又爽又黄的视频| 性色avwww在线观看| 一级爰片在线观看| 天天躁夜夜躁狠狠久久av| 日韩强制内射视频| 国产精品久久久久久久久免| 亚洲成人av在线免费| 爱豆传媒免费全集在线观看| 人妻少妇偷人精品九色| 亚洲国产日韩欧美精品在线观看| 亚洲成人中文字幕在线播放| 亚洲欧美日韩卡通动漫| 丝瓜视频免费看黄片| 精品国产一区二区三区久久久樱花 | 亚洲18禁久久av| 最近2019中文字幕mv第一页| 亚洲无线观看免费| 久久久久久久久久黄片| 久久久久久久久久久丰满| 色网站视频免费| 日韩成人av中文字幕在线观看| 啦啦啦韩国在线观看视频| 亚洲怡红院男人天堂| 成人鲁丝片一二三区免费| 国产爱豆传媒在线观看| 亚洲综合精品二区| 国产av码专区亚洲av| 最近中文字幕高清免费大全6| 中文字幕av在线有码专区| 亚洲av福利一区| av黄色大香蕉| 高清日韩中文字幕在线| 老师上课跳d突然被开到最大视频| 精品久久久久久久久亚洲| 韩国高清视频一区二区三区| 亚洲精品视频女| 中文乱码字字幕精品一区二区三区 | 亚洲精品乱久久久久久| 国产亚洲av片在线观看秒播厂 | 日韩一区二区三区影片| 亚洲精品久久久久久婷婷小说| 五月天丁香电影| 久久久久久久久久人人人人人人| 国产成人a∨麻豆精品| 熟妇人妻久久中文字幕3abv| 国产精品爽爽va在线观看网站| 国产日韩欧美在线精品| 黑人高潮一二区| 丝瓜视频免费看黄片| 五月伊人婷婷丁香| 干丝袜人妻中文字幕| 日韩av在线免费看完整版不卡| 免费观看的影片在线观看| 久久久久久久久久人人人人人人| videossex国产| 欧美不卡视频在线免费观看| 少妇猛男粗大的猛烈进出视频 | 美女大奶头视频| 建设人人有责人人尽责人人享有的 | 三级国产精品片| 国产女主播在线喷水免费视频网站 | 国产伦一二天堂av在线观看| 免费大片18禁| 国产探花极品一区二区| 观看美女的网站| 久久久久久久久中文| 国产成人福利小说| 精品久久久久久久人妻蜜臀av| 国产精品一区二区三区四区久久| 夜夜爽夜夜爽视频| 久久人人爽人人爽人人片va| 男女那种视频在线观看| 亚洲熟妇中文字幕五十中出| 国产成人精品一,二区| 国产精品久久久久久精品电影| 免费黄网站久久成人精品| 精品人妻视频免费看| 99热这里只有是精品在线观看| 亚洲精品亚洲一区二区| 青春草国产在线视频| 神马国产精品三级电影在线观看| 三级国产精品片| 国产精品国产三级专区第一集| 午夜爱爱视频在线播放| 我的老师免费观看完整版| 午夜免费激情av| 久久久久久久久久人人人人人人| 国语对白做爰xxxⅹ性视频网站| 欧美最新免费一区二区三区| 性色avwww在线观看| 色网站视频免费| 丰满少妇做爰视频| 夫妻性生交免费视频一级片| 亚洲精品影视一区二区三区av| 大香蕉久久网| 亚洲国产精品成人综合色| 国产成人freesex在线| 久久精品夜色国产| 欧美三级亚洲精品| 日本一二三区视频观看| 国产女主播在线喷水免费视频网站 | 国产伦一二天堂av在线观看| 日本爱情动作片www.在线观看| 色5月婷婷丁香| 听说在线观看完整版免费高清| 国产精品人妻久久久久久| 国产视频首页在线观看| 精品久久久久久久人妻蜜臀av| 国产精品日韩av在线免费观看| 99久久精品一区二区三区| 国产欧美另类精品又又久久亚洲欧美| 国产日韩欧美在线精品| 一级a做视频免费观看| 欧美一级a爱片免费观看看| 中文精品一卡2卡3卡4更新| 丝袜喷水一区| 亚洲内射少妇av| 秋霞伦理黄片| 国产亚洲最大av| 91精品一卡2卡3卡4卡| 舔av片在线| 国产成人一区二区在线| 成人午夜高清在线视频| 伦理电影大哥的女人| 卡戴珊不雅视频在线播放| 午夜视频国产福利| 听说在线观看完整版免费高清| av在线亚洲专区| 校园人妻丝袜中文字幕| 亚洲av二区三区四区| 日韩成人av中文字幕在线观看| 国产综合懂色| 国产亚洲精品av在线| 精品少妇黑人巨大在线播放| 日韩制服骚丝袜av| 精品一区二区三区视频在线| 91狼人影院| 精品午夜福利在线看| 久久久久性生活片| 亚洲第一区二区三区不卡| 久久97久久精品| 免费看不卡的av| 一级毛片 在线播放| 极品教师在线视频| 午夜福利网站1000一区二区三区| av卡一久久| 亚洲国产日韩欧美精品在线观看| 亚洲精品色激情综合| 亚洲美女搞黄在线观看| 亚洲精品久久久久久婷婷小说| 国产精品熟女久久久久浪| www.av在线官网国产| 久久精品综合一区二区三区| 免费黄频网站在线观看国产| 免费观看a级毛片全部| 99热6这里只有精品| 肉色欧美久久久久久久蜜桃 | 欧美性感艳星| 免费人成在线观看视频色| 99久久精品热视频| 嘟嘟电影网在线观看| 欧美日韩精品成人综合77777| 亚洲精品乱码久久久v下载方式| 美女国产视频在线观看| 成人欧美大片| 午夜亚洲福利在线播放| 在线a可以看的网站| 亚洲四区av| 久久精品人妻少妇| 晚上一个人看的免费电影| 精品久久久久久电影网| 国产淫语在线视频| 综合色av麻豆| 国产一区二区三区综合在线观看 | 国产av国产精品国产| 网址你懂的国产日韩在线| 日本一二三区视频观看| 男女边摸边吃奶| 建设人人有责人人尽责人人享有的 | 久久精品国产鲁丝片午夜精品| 国产欧美另类精品又又久久亚洲欧美| 人人妻人人看人人澡| 久久99热这里只频精品6学生| 亚洲经典国产精华液单| 亚洲最大成人手机在线| 91午夜精品亚洲一区二区三区| 在线天堂最新版资源| 一区二区三区免费毛片| 亚洲欧美精品自产自拍| 最近的中文字幕免费完整| 亚洲国产精品sss在线观看| 精品99又大又爽又粗少妇毛片| www.色视频.com| 免费观看精品视频网站| 综合色丁香网| 一个人看的www免费观看视频| 亚洲va在线va天堂va国产| 两个人的视频大全免费| 欧美3d第一页| 免费av毛片视频| 欧美潮喷喷水| 少妇裸体淫交视频免费看高清| 波野结衣二区三区在线| 水蜜桃什么品种好| 少妇被粗大猛烈的视频| 亚洲在线观看片| or卡值多少钱| 精品酒店卫生间| 99久久精品国产国产毛片| 亚洲精品日韩在线中文字幕| 熟妇人妻不卡中文字幕| 777米奇影视久久| 日日摸夜夜添夜夜添av毛片| 亚洲高清免费不卡视频| 国产女主播在线喷水免费视频网站 | 国产成人精品久久久久久| 秋霞在线观看毛片| 又大又黄又爽视频免费| 成人一区二区视频在线观看| 最近中文字幕高清免费大全6| 人体艺术视频欧美日本| 一级黄片播放器| 黄片wwwwww| 亚洲在线观看片| 欧美性感艳星| 在线天堂最新版资源| 国产中年淑女户外野战色| 久久久久精品久久久久真实原创| 青春草视频在线免费观看| 亚洲av一区综合| 九九在线视频观看精品| 久久精品夜色国产| 草草在线视频免费看| 亚洲三级黄色毛片| 免费观看性生交大片5| 熟女电影av网| 国产精品一二三区在线看| 精品一区二区免费观看| 人人妻人人看人人澡| 毛片一级片免费看久久久久| 22中文网久久字幕| 特大巨黑吊av在线直播| 国产一区亚洲一区在线观看| 熟妇人妻久久中文字幕3abv| 毛片女人毛片| 国产三级在线视频| 久久久a久久爽久久v久久| 中国国产av一级| 亚洲成人av在线免费| 午夜激情福利司机影院| 菩萨蛮人人尽说江南好唐韦庄| 精品国内亚洲2022精品成人| 国产高清有码在线观看视频| 亚洲欧美精品自产自拍| 久久草成人影院| 国产精品国产三级国产av玫瑰| 国产亚洲精品av在线| 欧美日韩国产mv在线观看视频 | 纵有疾风起免费观看全集完整版 | 蜜臀久久99精品久久宅男| 亚洲av在线观看美女高潮| 国产精品日韩av在线免费观看| 伦理电影大哥的女人| 简卡轻食公司| 日韩不卡一区二区三区视频在线| 80岁老熟妇乱子伦牲交| 久久午夜福利片| 亚洲av中文av极速乱| 亚洲精品乱码久久久v下载方式| 亚洲国产欧美人成| 波野结衣二区三区在线| 久久精品国产亚洲网站| 日韩大片免费观看网站| 伦精品一区二区三区| 国产亚洲精品久久久com| 久久99精品国语久久久| 日韩欧美国产在线观看| 偷拍熟女少妇极品色| 肉色欧美久久久久久久蜜桃 | 人妻制服诱惑在线中文字幕| 亚洲国产色片| 搡女人真爽免费视频火全软件| 成人一区二区视频在线观看| 久久韩国三级中文字幕| 亚洲精品日韩在线中文字幕| 中文字幕人妻熟人妻熟丝袜美| 午夜激情久久久久久久| 内射极品少妇av片p| 五月天丁香电影| 26uuu在线亚洲综合色| 久久久精品免费免费高清| 97精品久久久久久久久久精品| 亚洲国产av新网站| 日韩成人伦理影院| 大香蕉97超碰在线| 3wmmmm亚洲av在线观看| 国产欧美日韩精品一区二区| 18禁在线无遮挡免费观看视频| 神马国产精品三级电影在线观看| 老女人水多毛片| 日本av手机在线免费观看| 亚洲精品aⅴ在线观看| 蜜桃久久精品国产亚洲av| 国产亚洲最大av| 国产有黄有色有爽视频| 欧美3d第一页| 少妇的逼好多水| 伦理电影大哥的女人| 亚洲精品第二区| 国产精品国产三级国产av玫瑰| 久久精品国产亚洲av涩爱| 国产精品久久久久久精品电影小说 | 天天一区二区日本电影三级| 国产人妻一区二区三区在| 久久久成人免费电影| av专区在线播放| 六月丁香七月| 亚洲欧美精品专区久久| 久久精品熟女亚洲av麻豆精品 | 亚洲欧美日韩东京热| 亚洲成人久久爱视频| 日日撸夜夜添| 国产一区二区三区综合在线观看 | 男人和女人高潮做爰伦理| 婷婷色综合大香蕉| 亚洲人成网站在线观看播放| 婷婷色综合www| 国产 一区精品| 午夜视频国产福利| 高清欧美精品videossex| 久久精品国产自在天天线| 国产午夜精品一二区理论片| 日本一二三区视频观看| 26uuu在线亚洲综合色| 97超碰精品成人国产| 老司机影院成人| 久久99热这里只有精品18| 亚洲无线观看免费| 在线免费十八禁| 亚洲国产精品专区欧美| 精品少妇黑人巨大在线播放| 最近2019中文字幕mv第一页| 日韩欧美三级三区| 大香蕉久久网| 青春草国产在线视频| 日韩av免费高清视频| 美女脱内裤让男人舔精品视频| 欧美 日韩 精品 国产| 国产精品爽爽va在线观看网站| 国内精品美女久久久久久| 成年av动漫网址|