• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ten-Year Climatological Features and Air Origin of Midlatitude Double Tropopauses

    2015-06-09 21:24:03WUXueandLUDaren
    Advances in Atmospheric Sciences 2015年12期

    WU Xue and LU¨ Daren

    Key Laboratory for Atmosphere and Global Environment Observation,Institute of Atmospheric Physics, Chinese Academy of Sciences,Beijing 100029

    Ten-Year Climatological Features and Air Origin of Midlatitude Double Tropopauses

    WU Xue and LU¨ Daren?

    Key Laboratory for Atmosphere and Global Environment Observation,Institute of Atmospheric Physics, Chinese Academy of Sciences,Beijing 100029

    The 10-year climatological features related to midlatitude double tropopause events(DTs)are examined using ERAInterim data from 2003 to 2012.The analysis is based on tropopauses de fined by lapse rate.Results show that DTs are permanent or semi-permanent in the midlatitudes,and high DT frequency bands move poleward in winter and equatorward in summer,which is consistent with the seasonal movement of the subtropical jet.Based on our statistics,the second tropopause is found at about 100 hPa in the subtropics and at slightly lower altitudes in sub-polar regions.The thickness between the first and second tropopause is smaller in the subtropics and increases with latitude.Next,the origin of air sandwiched between the first and second tropopause of DTs is studied with a revised version of the UK Universities Global Atmospheric Modelling Programme Of fl ine Trajectory Code(Version 3)diabatic trajectory model.The results show that,in the lower or middle troposphere,air is transported into the DTs from lower latitudes,mainly in the tropics.The dominant source regions are mainly areas of deep convection and steep orography,e.g.,the western Pacific and Himalayan Mountains,and they show strong seasonality following the seasonal shift of these strong upwelling regions.

    double tropopause,trajectory model,stratosphere–troposphere exchange

    1.Introduction

    The tropopause is a boundary that separates the statically unstable troposphere and much more stable stratosphere,and is a transition layer between radiative–convective balance in the troposphere and radiative balance in the stratosphere (Thuburn and Craig,2002).Two-way transport processes across the tropopause are an important mechanism that infl uences chemical composition in the upper troposphere and lower stratosphere.However,in the extratropical region especially,the lapse rate–based WMO(1957)de finition of the tropopause produces more than one tropopause.

    Double tropopauses(DTs),or even triple tropopauses, have been a focus of scientific interest for decades(e.g.,Yamanaka,1992;Yamanaka et al.,1996;Schmidt et al.,2006; An~el et al.,2007;Castanheira et al.,2012).Links between midlatitude DTs and baroclinic waves have been studied using idealized model and GPS radio occultation data,revealing that the location of DTs is associated with baroclinic Rossby wave breaking in the subtropical upper troposphere and lower stratosphere(McIntyre and Palmer,1983;Lamarque and Hess,1994;Newman and Schoeberl,1995;Vaughan and Timmis,1998;Pan et al.,2009;Castanheira et al.,2012). Moreover,DT structures are considered to be responsible for tropical tropospheric air intruding into the stratosphere above the subtropical jet core(Randel et al.,2007;Pan et al.,2009, 2010).Subsequent studies have shown that the DT structure consists of tropospheric air(low in ozone concentration and static stability)overlapping stratospheric air(high in ozone and static stability),using modelling results and satellite remote sensing data from Aura/HIRDLS and ozonesonde profiles(Olsen et al.,2008;Pan et al.,2009;Homeyer et al., 2011;Vogel et al.,2011),and that DTs are believed to favor cross-tropopause exchange in the subtropics(Sprenger et al., 2003;Bracci et al.,2012).

    Recent studies using reanalysis data,GPS radio occultation,radiosonde pro files and satellite data show that DTs are prevalent in the midlatitudes of both hemispheres in all seasons,and the maximum occurrence is during late winter and early spring(Schmidt et al.,2006;Randel et al.,2007;An~el et al.,2008;Castanheira and Gimeno,2011;Peevey et al., 2012).This may indicate,at least from the perspective of Rossby wave breaking,that there is more subtropical crosstropopause transport during DTs’maximum occurrence seasons(Horinouchi and Boville,2000;Waugh and Polvani, 2000).However,even though the above studies have shown that Rossby wave breaking and poleward transport are re-?Corresponding author:L¨U Darensponsible for a signifi cant fraction of DT events,DTs are also frequently found without the presence of Rossby wave breaking(e.g.,Biondi et al.,2011)and frequent DT occurrence years are not necessarily years of frequent irreversible mixing events(Olsen et al.,2010).Also,Lagrangian trajectory–based studies show that cross-tropopause transport in the subtropics is more vigorous in summer than in winter(Berthet et al.,2007;Skerlak et al.,2013).This controversy about the seasonal variation of stratosphere–troposphere transport raises the question:what role do DTs play in troposphere-tostratosphere transport?Peevey et al.(2014)stated that there is a robust global relationship between the DT and the tropical inversion layer through the warm conveyer belt,where the DT frequency increases(decreases)in the extratropics(tropics)as the tropical inversion layer increases in strength.But these systems all have opposing seasonal characteristics and formation mechanisms,demonstrating that the DT is more complicated than previous poleward-transport studies might suggest.

    Information on the climatological characteristics of DTs and the origin of air sandwiched within DTs is crucial for qualitative estimates of cross-tropopause exchange.However,there are still different opinions about the origin of air between two tropopauses.Wang and Polvani(2011)suggest that,as shown by an idealized model,air inside the DT structure originates from high latitudes,which is the opposite to some other results(Pan et al.,2009;A~nel et al.,2012).This apparent controversy might be caused by different formation mechanisms of midlatitude DT events,e.g.,baroclinic wave breaking and synoptic events like cut-off lows(Peevey et al., 2014).

    In the present study,we begin by examining the features of midlatitude DT events using ERA-Interim reanalysis data from 2003 to 2012,showing a 10-year climatological spatial distribution of DTs and seasonal variations.Then,the origin of air in DTs is analyzed based on the results of a diabatic Lagrangian trajectory model.In section 2,the input data and trajectory model are described.The results are presented in sections 3 and 4,and discussed in section 5.A summary is given in section 6.

    2.Data and methodology

    2.1.ERA-Interim data and analysis

    ERA-Interim is the latest global atmospheric reanalysis results produced by the European Centre for Medium-Range Weather Forecasts(ECMWF)(Simmons et al.,2006;Dee et al.,2011),which covers the period from 1 January 1979 to the present day.Compared with ERA-40,the ERA-Interim forecast model is run at a higher horizontal resolution of T255 (for the full resolution version).In this paper,our analysis of midlatitude DT features employs ERA-Interim data over 10 years from 2003 to 2012 on 60 ECMWF model levels (with a vertical resolution of~1 km in the upper troposphere and lower stratosphere region).These reanalysis temperature data,available daily at four analysis times(0000,0600,1200, and 1800 UTC),were utilized to de fine tropopauses according to the de finition from the World Meteorological Organization’s Commission for Aerology(WMO,1957):

    (1)The first tropopause is de fined as the lowest level at which the lapse rate decreases to 2 K km?1or less,provided also that the average lapse rate between this level and all higher levels within 2 km does not exceed 2 K km?1;

    (2)If above the first tropopause the average lapse rate between any level and all higher levels within 1 km exceeds 3 K km?1,then a second tropopause is de fined by the same criterion as under(a).This tropopause may be either within or above the 1 km layer.

    However,due to the relatively low vertical resolution of the ERA-Interim data near tropopauses(~1 km),a slight modi fi cation was made to criterion(b)based on a lapse rate of 2.5 K km?1,to generate a reasonable DT occurrence frequency.A similar approach was employed by Randel et al. (2007)and has been compared with results from GPS radio occultation data to verify its accuracy.Similar methods were also used in other studies when using ECMWF reanalysis data,e.g.Castanheira and Gimeno(2011),Castanheira et al. (2012)and Peevey et al.(2014).The in fl uence of this method on the results is discussed in section 5.

    Analysis winds,temperature,and ground pressure are also used to drive the three-dimensional(3D)trajectory model,which is discussed in the following subsection.

    2.2.3D OFFLINE3diab trajectory model

    To determine the origin of air sandwiched within the DT structure,3D trajectory integrations are performed using a diabatic trajectory model—OFFLINE3diab.This is a modi fi cation of the third edition of the UK Universities Global Atmospheric Modelling Programme Of fl ine Trajectory Code (Methven,1997),which is a kinematic trajectory model. Compared with the original kinematic trajectory model,the main difference in the diabatic model is the vertical velocity scheme:vertical(cross-isentropic)velocity is expressed with a diabatic heating rate(a change in potential temperature)instead of being calculated with the horizontal wind through the continuity equation.Diabatic trajectory models show air parcels transported along the isentropic surfaces by large-scale winds and these parcels move across isentropes only by net diabatic heating or cooling.If the heating rate is zero,trajectories move under adiabatic conditions and conserve potential temperature.A comprehensive review of the accuracy of the trajectories calculated using this model is given in Methven(1997)and Stohl(1998).By reducing errors in vertical velocity,diabatic trajectory models can give better results,especially when the models are driven by meteorological fi elds with low spatial resolutions(Ploeger et al., 2010,2011).

    The OFFLINE3diab model interpolates 3D gridded winds to the trajectory locations using bilinear interpolation (in time and in the horizontal direction)and cubic Lagrangian interpolation(in the vertical direction),and then the trajectories are integrated backward using a 4th-order Runge–Kutta scheme.The backward trajectories were calculated from 6-hourly ERA-Interim data.Three-dimensional off-line meteorological data,e.g.,wind f i eld and temperature,were interpolated to the trajectory locations and values of meteorological fields,including potential vorticity(PV),surface pressure, pressure,temperature,and potential temperature,were assigned as attributes for the particles at each integration time.

    The trajectories were initialized on grid resolutions of 1?×1?×5 K(with 17 vertical levels from 340 K to 420 K) covering the whole globe(altogether 556 920 particles),and the initial meteorological data were provided every 6 hours at 0000,0600,1200,and 1800 UTC;particles were released every 12 hours and the outputs were provided every 3 hours. The vertical range(from 340 K to 420 K)covers nearly all DT structures and sensitivity experiments on the spatial resolutions specif i ed.Additionally,release intervals of the trajectories showed that the origin of air in DTs is not sensitive to the initial settings of the trajectories.The settings used in this study were proved to be suff i cient to generate smooth and robust features and overall physical characteristics.

    3.Features of midlatitude DTs

    In this section,ERA-Interim data from 2003 to 2012 are used to reveal the spatial distribution and characteristics of DTs.

    Figure 1 shows a vertical cross section of a typical DT event.In this case,the spatial extent of a DT event is significant and the structure is clearly outlined.This case is located over the eastern Pacific Ocean and lasts for about 3 days and extends from about 20?N to 50?N.The air between the first and second tropopauses could be divided into two parts by the 2 K km?1isocline.The poleward intrusion contains air with lapse rate higher than 2 K km?1,and low static stability(vertical gradients of potential temperature).The proportional distribution of PV in the poleward intrusion is calculated with ERA-Interim data and is shown in Fig.1c.It indicates that PV for the majority of air in the poleward intrusion is larger than 4 PVU(1 PVU=10?6K kg?1m2s?1),especially in summer(June–July–August,JJA).And if the dynamic tropopause in the midlatitudes is def i ned by PV values between 2 PVU to 4 PVU,then air with tropospheric characteristics has notably intruded into the stratosphere.The layer below the poleward intrusion,which contains air with lower lapse rate and higher static stability,is more stratospheric in nature.

    Figure 2 displays the seasonal geographical distribution of the DT frequency of occurrence in winter(December–January–February,DJF)and summer(JJA),showing the preferred regions of formation and seasonal difference.DTs are permanent or semi-permanent in midlatitudes for both hemispheres.And generally,DT frequencies are maximum (minimum)during the winter(summer)in both hemispheres, which agrees well with previous studies(e.g.,Schmidt et al., 2006;A~nel et al.,2007;Randel et al.,2007;Castanheira and Gimeno,2011,Peevey et al.,2012).Moreover,the maximum frequencies of the Northern Hemisphere in DJF are larger than the maximum frequencies of the Southern Hemisphere in JJA.This may be due to the differences in the homogeneity of the land–sea distribution in the two hemispheres(Schmidt et al.,2006),i.e.,extensive mountain ranges may enhance the propagation of planetary waves forced by topography in the Northern Hemisphere(Holton,2004).

    In DJF,DT frequencies between 30?N and 45?N are between 35%and 60%,except for the eastern Pacific and central Atlantic region.Frequencies in the northern Atlantic are relatively high compared to other areas at the same latitudes.In the Southern Hemisphere,maximum DT frequency is about 15%,which is much smaller than that in the Northern Hemisphere.In JJA,frequencies are higher in the Southern Hemisphere,located between 25?S and 45?S,and the maxima appear at the south of Australia and the sea to its east. Notably,there is a band of high DT frequency in the midwest Eurasian continent,ranging from about 40?N to 55?N and the maxima can reach about 35%.And over the Andes Mountains in South America,DT frequency remains relatively high,compared with the rest of the Southern Hemisphere.Some localized maxima of frequencies,such as those overthe Tibetan Plateau and the southern partofSouth America,also observed in some previous studies(Schmidt et al., 2006;Randel et al.,2007;Peevey et al.,2012),may be a result of the summer monsoon circulation(Holton,2004)or the summer monsoon anticyclone(Randel et al.,2007),and large orography like the Tibetan Plateau and the Andes.

    In both hemispheres,high DT frequency bands move poleward in the winterand equatorward in the summer,which is consistent with the seasonal movement of the subtropical jet.As seen in Fig.3,the second tropopause always appears above and poleward of the subtropical jet core where the baroclinic instability of the subtropical jet exits(Pan and Munchak,2011;Manney et al.,2014).Maxima of occurrence frequencies are larger and located at higher latitudes in the winter hemisphere.

    Based on our statistics,a schematic diagram of midlatitude DTs is drawn in Fig.4.The first tropopause can reach up to a height higher than 100 hPa in the tropics,and the vertical location of the first tropopause decreases steeply poleward,located between 300 hPa and 200 hPa.DTs are permanent or semi-permanent at midlatitudes,with the second tropopause existing at about 100 hPa in the subtropics and slightly lower in sub-polar regions.The DT thickness,which is def i ned by the height differences between the first and second tropopause,is smaller in the subtropics and increases with latitude.Air within DTs can be divided into two types. Air in area I is tropospheric,characterized by a high lapse rate and low static stability,as seen in Fig.1;air in area II is characterized by a low lapse rate and high static stability. High-resolution satellite data also display low ozone concentration forairin area Iand there isa large ozone concentration gradient between area I and area II(Pan et al.,2009).

    4.Origin of air between DTs

    Determining the origin of the air sandwiched within DTs is helpful for estimating the significance of DTs in troposphere-to-stratosphere transport.In this section,air parcels between DTs in the Northern Hemisphere and Southern Hemisphere are tracked separately using backward trajec-tories to f i nd out their origin.Thirty-day backward trajectories are started on 31 December,31 January,and 28 February for each year between 2003 and 2012.

    Figure 5 shows the composite fraction and geographical locations of the air parcels crossing the pressure levels of 700 hPa,500 hPa,300 hPa,200 hPa and 100 hPa before entering DTs in winter(DJF).At or below the pressure level of 300 hPa,for the Northern Hemisphere,air is transported from the western Pacific and central Pacific region in the tropics and the Amazon basin between the equator and the Tropic of Capricorn;while for the Southern Hemisphere,air is mainly transported from the western Pacific region.At the pressure levels of 200 hPa and 100 hPa,where the DTs exist,air may be transported into the DTs from both higher and lower latitudes.As shown in Fig.6,the source regions in summer for the Southern Hemisphere are dominated by the western tropical Pacific,the Himalayan plateau and Indian subcontinent, and a thin equatorial source corresponding to the Intertropical Convergence Zone(ITCZ).For the Northern Hemisphere,the eastern tropical Pacific between the equator and the Tropic of Cancer is also a dominant region.

    For both hemispheres,air initialized within DTs comes from regions of strong convection and steep orography,and paths for the trajectories from the troposphere are relatively concentrated.Only a fraction of air parcels have existed at 300 hPa and even lower levels in the troposphere before entering into DTs,and the fraction grows as pressure decreases. For the Southern Hemisphere,the fraction of trajectories is smaller and the horizontal range of the paths is narrower than those for the Northern Hemisphere on each pressure surface.

    The distribution and strength in Fig.5 to Fig.6 show a strong seasonality following the seasonal shift of the strong upwelling regions in the tropics and subtropics,as depicted by the long-term mean outgoing longwave radiation(OLR) in Fig.7.The OLR data are from the National Oceanic and Atmospheric Administration(NOAA)Interpolated OLR product.

    Although the source regions are constrained,the pathways of trajectories were not found to enter into DTs directly in the convective areas.As well-established research states,only a small fraction of convective systems can overshoot the tropopause and inject air into the stratosphere,andthe majority of air parcels rising from the troposphere have to travel several thousand kilometers before entering the uppertroposphere–lower-stratosphere(UTLS)region(Fueglistaler et al.,2004),including DTs.

    Figure 8 gives the totalfraction ofairparcels thathave existed at specif i ed pressure levels before entering DTs for four scenarios.The black and red solid lines denote the Northern Hemisphere in winter(DJF)and summer(JJA),respectively, and the black and red dashed lines are for the Southern Hemisphere.As seen in this figure,no more than 15%of the air between DTs has existed at 300 hPa or even lower in the troposphere.From 300 hPa up to about 150 hPa,the fraction for the four scenarios increases and peaks at about 150 hPa, which is not unexpected because this is the altitude where air between a DT is mostly likely to reside.From 150 hPa to 100 hPa,the fraction begins to decrease.For the Northern Hemisphere,the fraction in summer is much larger than that in winter;for the Southern Hemisphere,the difference between the fraction in winter and summer is very small,except that between 400 hPa and 200 hPa,the fraction in winter exceeds that in summer.Overall,in the summer hemisphere, a larger fraction of air within DTs is transported from below 300 hPa,but it should be noted that there are almost twice as many DTs in winter as in summer.

    5.Discussion

    The climatological features in section 3 are all based on DTs derived from ERA-Interim data using the modif i ed WMO(1957)criteria stated in section 2.Similar modif i cation has been applied in previous studies when def i ning the second tropopauses of DTs with reanalysis data(e.g.,Randel et al.,2007;and Castanheira and Gimeno,2011).To verify the accuracy of the modif i cation,the frequencies of occurrence were also calculated using the temperature profiles from GPS radio occultation measurements from the Constellation Observing System for Meteorology,Ionosphere,and Climate(COSMIC)mission(Anthes et al.,2008)between December 2006 and August 2012,as shown in Fig.9.The wet temperature profiles were downloaded from the COSMIC Data Analysis and Archive Center of the University Corporation for Atmospheric Research.The precision of each radio occultation(RO)prof i le could reach~0.05?C in the UTLS region(Anthes et al.,2008)and the vertical resolution is 0.1 km.

    Comparing with Fig.9,the frequencies in Fig.2 show similarities both in horizontal range and magnitude,suggesting it should be reasonable to use the reduced(2.5 K km?1) constraint when using ERA40 data for identifying DT occurrences.

    Derivation of DT statistics from reanalysis data using the standard WMO(1957)criteria gives far fewer occurrences (Randel et al.,2007),and the reason may be two-fold.The WMO(1957)criteria are very sensitive to temperature profiles(Za¨ngl and Hoinka,2001).The ERA-40 or ERA-Interim data with low vertical resolution probably lose large temperature gradients above the first tropopause(Randel et al.,2007). Also,the accuracy of temperature pro files may have effects on the frequencies of DTs.As an updated version of ERA-40 data,the ERA-Interim data could produce DT frequencies comparable to RO data by reducing the constraint to 2.5 K km?1(Castanheira and Gimeno,2011;Castanheira et al., 2012),while the constraint for ERA-40 should be reduced to 2 K km?1to obtain reasonable DT frequencies.Overall,the large DT frequencies in Fig.2 agree well spatially with previous results from reanalysis or observation data(Schmidt et al.,2006;A~nel et al.,2007;Castanheira and Gimeno,2011; Peevey et al.,2012),albeit there are minor differences in the values that may result from different data and calculating algorithms.

    For the results in section 4,there is an important point to be made about the time length of the backward trajectories used to examine the origin of air within DTs.To verify the effectiveness of the 30-day backward trajectories,the calculations were repeated with backward trajectories of 15 days and 60 days.The results(not shown)indicated that the horizontal origin of air within DTs was unaffected by trajectory length changes within the above ranges(15 days,30 days, and 60 days).The proportion of air in Fig.5 and Fig.6 also remained largely unaltered when using 30-day and 60-day backward trajectories;but when using 15-day backward trajectories,the proportion did reduce a little from the 30-day cases.This might be attributable to the fact that the 15-day trajectories may ignore a minority of air transported over a longer period from the troposphere to the extratropical UTLS region(Fueglistaler et al.,2004).So,30-day trajectories is an appropriate choice to balance the computation cost and transportation time of air parcels.

    As stated in section 4,the geophysical location and proportion of the origin of air within DTs vary between seasons. Moreover,they may also vary substantially from year to year. Since the main sources of transport from the lower or middle troposphere to DTs are associated with regions of deep convection,i.e.,the western tropical Pacific and Maritime Continent,the Himalayan plateau,and a thin equatorial source corresponding to the ITCZ,any event that may inf l uence these areas would have effects on the air source.For instance,El Ni~no–Southern Oscillation(ENSO)circulation is one of the mosteffective factors.ENSO’seffectson the strength oftropical upwelling and stratosphere–troposphere exchange have been clearly demonstrated(Scaife etal.,2003;Zeng and Pyle, 2005).Plus,there have been studies on the origin of air in the tropical tropopause layer showing that,in positive phases of ENSO(El Ni~no years),the source region is shifted towards the eastern Pacific in all seasons,while in negative phases of ENSO(La Ni~na years)the Himalayas contribute more as a source region of boundary layer air in the Northern Hemisphere summer.To further study the main factors inf l uencing the origin of air in DTs,data over a longer time range are needed.

    6.Summary

    The 10-year climatological features of midlatitude DT events have been analyzed using ERA-Interim data from 2003 to 2012.The results show that,in the midlatitudes,DTs are permanent or semi-permanent and occur throughout the year.In the Northern Hemisphere winter,high DT frequencies happen between 30?N and 45?N;while in the Southern Hemisphere winter,high DT frequencies are located between 25?S and 45?S.High DT frequency bands move poleward in winter and equatorward in summer,which is consistent with the seasonal movement of the subtropical jet.Based on our results,the second tropopauses of DTs exist at about 100 hPa in the subtropics,and slightly lower in sub-polar regions.The DT thickness,which is de fined by the height differences between the first and second tropopause,is smaller in the subtropics and increases with latitude.

    A 3-D trajectory-based Lagrangian model was then employed to track the origin of air sandwiched within DTs.The results show that only a fraction(less than 15%)of air sandwiched within DTs originates in the lower or middle troposphere.Additionally,the fraction of air within Northern Hemisphere DTs coming from 300 hPa or even lower in the troposphere is larger in summer(JJA)than in winter(DJF), while this difference is not clearly observed in the Southern Hemisphere.The dominant source regions vary with season following the seasonal shift of strong upwelling regions in the tropics and subtropics,and they are all located over deep convection and steep orography,e.g.,the western and central Pacific,the Amazon basin and Himalayan plateau.

    Acknowledgements.We thank Dr.Sue Yu LIU for providing the OFFLINE3diab model and for her helpful suggestions.The ERA-Interim data were obtained from the ECMWF via www.ecmwf.int.The COSMIC data were obtained from the COSMIC Data Analysis and Archive Center via http://cdaac-www.cosmic.ucar.edu/cdaac/index.html.The OLR data were obtained from the NOAA Earth Science Research Laboratory via http://www.esrl. noaa.gov/.This work was supported by the Special Fund for Strategic Pilot Technology of the Chinese Academy of Sciences(Grant No.XDA05040300).

    REFERENCES

    A~nel,J.A.,J.C.Antu~na,L.de la Torre,R.Nieto,and L.Gimeno,2007:Global statistics of multiple tropopauses from the IGRA database.Geophys.Res.Lett.,34(6),L06709,doi: 10.1029/2006GL029224.

    A~nel,J.A.,J.C.Antu~na,L.de la Torre,J.M.Castanheira,and L.Gimeno,2008:Climatological features of global multiple tropopause events.J.Geophys.Res.,113,D00B08,doi: 10.1029/2007JD009697.

    A~nel,J.A.,L.de la Torre,and L.Gimeno,2012:On the origin of the air between multiple tropopauses at midlatitudes.The Scientif i c World Journal,2012,191028,doi:10.1100/2012/ 191028.

    Anthes,R.A.,and Coauthors,2008:The COSMIC/FORMOSAT-3 mission:Early results.Bull.Amer.Meteor.Soc.,89(3),313– 333,doi:10.1175/BAMS-89-3-313.

    Berthet,G.,J.G.Esler,and P.H.Haynes,2007:A Lagrangian perspective of the tropopause and the ventilation of the lowermost stratosphere.J.Geophys.Res.,112,D18102,doi: 10.1029/2006JD008295.

    Biondi,R.,T.Neubert,S.Syndergaard,and J.Nielsen,2011:Measurements of the upper troposphere and lower stratosphere during tropical cyclones using the GPS radio occultation technique.Adv.Space Res.,47(2),348–355.

    Bracci,A.,and Coauthors,2012:Transport of stratospheric air masses to the Nepal climate observatory-pyramid(Himalaya; 5079 m MSL):A synoptic-scale investigation.J.Appl.Meteorol.Clim.,51(8),1489–1507,doi:10.1175/JAMC-D-11-0154.1.

    Castanheira,J.M.,and L.Gimeno,2011:Association of double tropopause events with baroclinic waves.J.Geophys.Res., 116,D19113,doi:10.1029/2011JD016163.

    Castanheira,J.M.,T.R.Peevey,C.A.F.Marques,and M. A.Olsen,2012:Relationships among Brewer-Dobson circulation,double tropopauses,ozone and stratospheric water vapour.Atmos.Chem.Phys.,12,12 391–12 421.

    Dee,D.P.,and Coauthors,2011:The ERA-Interim reanalysis: confi guration and performance of the data assimilation system.Quart.J.Roy.Meteor.Soc.137,553–597.doi:10.1002/ qj.828.

    Fueglistaler,S.,H.Wernli,and T.Peter,2004:Tropicaltroposphereto-stratosphere transport inferred from trajectory calculations.J.Geophys.Res.,109(D3),D03108,doi:10.1029/2003 JD004069.

    Holton,J.R.,2004:An Introduction to Dynamic Meteorology.4th ed.,Burlington,San Diego and London,Academic Press,535 pp.

    Homeyer,C.R.,K.P.Bowman,L.L.Pan,E.L.Atlas,R.-S.Gao, and T.L.Campos,2011:Dynamical and chemical characteristics of tropospheric intrusions observed during START08.J. Geophys.Res.,116,D06111,doi:10.1029/2010JD015098.

    Horinouchi,T.,F.Sassi,and B.A.Boville,2000:Synoptic-scale Rossby waves and the geographic distribution of lateral transport routes between the tropics and the extratropics in the lower stratosphere.J.Geophys.Res.,105(D21),26 579–26 592,doi:10.1029/2000JD900281.

    Lamarque,J.-F.,and P.G.Hess,1994:Cross-tropopause mass exchange and potential vorticity budget in a simulated tropopause folding.J.Atmos.Sci.,51(15),2246–2269,doi: 10.1175/1520-0469051.

    Manney,G.L.,M.I.Hegglin,W.H.Daffer,M.J.Schwartz, M.L.Santee,and S.Pawson,2014:Climatology of upper tropospheric-lower stratospheric(UTLS)jets and tropopauses in MERRA.J.Climate,27(9),3248–3271.

    McIntyre,M.E.,and T.N.Palmer,1983:Breaking planetary waves in the stratosphere.Nature,305,593–600,doi: 10.1038/305593a0.

    Methven,J.,1997:Off l ine trajectories:Calculation and accuracy UGAMP Tech.Rep.44,Dep.of Meteorol.,Univ.of Reading, Reading,U.K.,18 pp.

    Newman,P.A.,and M.R.Schoeberl,1995:A reinterpretation of the data from the NASA Stratosphere-Troposphere exchange project.Geophys.Res.Lett.,22(18),2501–2504,doi: 10.1029/95GL02220.

    Olsen,M.A.,A.R.Douglass,P.A.Newman,J.C.Gille,B.Nardi, V.A.Yudin,D.E.Kinnison,and R.Khosravi,2008:HIRDLS observations and simulation of a lower stratospheric intrusionof tropical air to high latitudes.Geophys.Res.Lett.,35(21), L21813.doi:10.1029/2008GL035514.

    Olsen,M.A.,A.R.Douglass,M.R.Schoeberl,J.M.Rodriquez, and Y.Yoshida,2010:Interannual variability of ozone in the winter lower stratosphere and the relationship to lamina and irreversible transport.J.Geophys.Res.,115,D15305,doi: 10.1029/2009JD013004

    Pan,L.L.,and Coauthors,2009:Tropospheric intrusions associated with the secondary tropopause.J.Geophys.Res.,114, D10302,doi:10.1029/2008JD011374.

    Pan,L.L.,and Coauthors,2010:The stratosphere-troposphere analyses of regional transport 2008 experiment.Bull.Amer. Meteor.Soc.,91(3),327–342,doi:10.1175/2009BAMS 2865.1.

    Pan,L.L.,and L.A.Munchak,2011:Relationship of cloud top to the tropopause and jet structure from CALIPSO data.J.Geophys.Res.,116(D12),D12201,doi:10.1029/2010JD015462.

    Peevey,T.R.,J.C.Gille,C.E.Randall,and A.Kunz,2012:Investigation of double tropopause spatial and temporal global variability utilizing High Resolution Dynamics Limb Sounder temperature observations.J.Geophys.Res.,117,D01105, doi:10.1029/2011JD016443.

    Peevey,T.R.,J.C.Gille,C.R.Homeyer,and G.L.Manney,2014: The double tropopause and its dynamical relationship to the tropopause inversion layer in storm track regions.J.Geophys. Res.,119(17),10 194–10 212.

    Ploeger,F.,P.Konopka,G.G¨unther,J.-U.Groo?,and R.M¨uller, 2010:Impact of the vertical velocity scheme on modeling transport in the tropical tropopause layer.J.Geophys.Res., 115,D03301,doi:10.1029/2009jd012023.

    Ploeger,F.,and Coauthors,2011:Insight from ozone and water vapour on transport in the tropical tropopause layer(TTL).Atmos.Chem.Phys.,11,407–419,doi:10.5194/acp-11-407-2011.

    Randel,W.J.,D.J.Seidel,and L.L.Pan,2007:Observational characteristics of double tropopauses.J.Geophys.Res., 112(D7),D07309,doi:10.1029/2006jd007904.

    Scaife,A.A.,N.Butchart,D.R.Jackson,and R.Swinbank, 2003:Can changes in ENSO activity help to explain increasing stratospheric water vapor?Geophys.Res.Lett.,30,doi: 10.1029/2003GL017591.

    Schmidt,T.,G.Beyerle,S.Heise,J.Wickert,and M.Rothacher, 2006:A climatology of multiple tropopauses derived from GPS radio occultations with CHAMP and SAC-C.Geophys. Res.Lett.,33(4),L04808,doi:10.1029/2005GL024600.

    Simmons,S.M.,S.M.Uppala,D.Dee,and S.Kobayashi,2006: ERA-interim:New ECMWF reanalysis products from 1989 onward.ECMWF Newsletter,110,25–35.

    Skerlak,B.,M.Sprenger,and H.Wernli,2013:A global climatology of stratosphere-troposphere exchange using the ERA-interim dataset from 1979 to 2011.Atmos.Chem.Phys., 13(5),11537–11595,doi:10.5194/acpd-13-11537-2013.

    Sprenger,M.,M.Croci-Maspoli,and H.Wernli,2003:Tropopause folds and cross-tropopause exchange:A global investigation based upon ECMWF analyses for the time period March 2000 to February 2001.J.Geophys.Res.,108(D12),8518,doi: 10.1029/2002JD002587.

    Stohl,A.,1998:Computation,accuracy and applications of trajectories-A review and bibliography.Atmos.Environ., 32(6),947–966,doi:1016/s1352-2310(97)00457-3.

    Thuburn,J.,and G.C.Craig,2002:On the temperature structure of the tropical substratosphere.J.Geophys.Res.,107(D2),ACL 10-1–ACL 10-10,doi:10.1029/2001jd000448.

    Vaughan,G.,and C.Timmis,1998:Transport of near-tropopause air into the lower midlatitude stratosphere.Quart.J.Roy.Meteor.Soc.,124(549),1559–1578,doi:10.1256/smsqj.54909. Vogel,B.,and Coauthors,2011:Transport pathways and signatures of mixing in the extratropical tropopause region derived from Lagrangian model simulations.J.Geophys.Res.,116, D05306,doi:10.1029/2010jd014876.

    Wang,S.,and L.M.Polvani,2011:Double tropopause formation in idealized baroclinic life cycles:The key role of an initial tropopause inversion layer.J.Geophys.Res.,116,D05108, doi:10.1029/2010jd015118.

    Waugh,D.W.,and L.M.Polvani,2000:Climatology of intrusions into the tropical upper troposphere.Geophys.Res.Lett., 27(23),3857–3860,doi:10.1029/2000gl012250.

    WMO,1957:Meteorology—A three-dimensional science:Second session of the Commission for Aerology.WMO Bulletin, 4,134–138.

    Yamanaka,M.D.,1992:Formation of multiple tropopause and stratospheric inertio-gravity waves.Advances in Space Research,12(10),181–190.

    Yamanaka,M.D.,S.Ogino,S.Kondo,T.Shimomai,S.Fukao, Y.Shibagaki,Y.Maekawa,and I.Takayabu,1996:Inertiogravity waves and subtropical multiple tropopauses:Vertical wavenumber spectra of wind and temperature observed by the MU radar,radiosondes and operational rawinsonde network.J.Atmos.Terr.Phys.,58(6),785–805.

    Z¨angl,G.,and K.P.Hoinka:2001:The tropopause in the polar regions.J.Climate,14(14),3117–3139.

    Zeng,G.,and J.A.Pyle,2005:Inf l uence of El Ni~no Southern Oscillation on stratosphere/troposphere exchange and the global tropospheric ozone budget.Geophys.Res.Lett.,32,L01814, doi:10.1029/2004gl021353.

    :Wu,X.,and D.R.Lu¨,2015:Ten-year climatological features and air origin of midlatitude double tropopauses.Adv.Atmos.Sci.,32(12),1592–1602,

    10.1007/s00376-015-5036-4.

    2 February 2015;revised 9 May 2015;accepted 28 May 2015)

    Email:ludr@mail.iap.cas.cn

    久久久久人妻精品一区果冻| 亚洲欧美中文字幕日韩二区| 一级黄片播放器| av女优亚洲男人天堂| 国产视频首页在线观看| 亚洲欧洲国产日韩| 最近中文字幕2019免费版| 考比视频在线观看| 女人被躁到高潮嗷嗷叫费观| 激情视频va一区二区三区| 欧美成人精品欧美一级黄| 婷婷色综合www| 一级a做视频免费观看| av免费观看日本| 人妻一区二区av| 99热全是精品| 日韩 亚洲 欧美在线| 中文乱码字字幕精品一区二区三区| 国产在视频线精品| 国产综合精华液| 日日撸夜夜添| 美女主播在线视频| 日本与韩国留学比较| a级毛片在线看网站| h视频一区二区三区| 夜夜爽夜夜爽视频| 亚洲美女搞黄在线观看| 久热久热在线精品观看| 国产午夜精品一二区理论片| 久久久亚洲精品成人影院| 一级片'在线观看视频| 婷婷色综合www| videos熟女内射| 国产男女超爽视频在线观看| 亚洲精品乱久久久久久| 国内精品宾馆在线| 新久久久久国产一级毛片| av线在线观看网站| 飞空精品影院首页| 欧美精品亚洲一区二区| 美国免费a级毛片| 咕卡用的链子| 亚洲欧洲精品一区二区精品久久久 | 丝袜人妻中文字幕| 国国产精品蜜臀av免费| 亚洲五月色婷婷综合| 一区二区日韩欧美中文字幕 | 午夜福利视频精品| 午夜福利视频在线观看免费| 交换朋友夫妻互换小说| 国产精品 国内视频| 成人亚洲精品一区在线观看| 国产免费一级a男人的天堂| 99国产综合亚洲精品| 不卡视频在线观看欧美| 亚洲经典国产精华液单| www.av在线官网国产| 久久精品国产亚洲av天美| 欧美精品亚洲一区二区| 美女国产高潮福利片在线看| 丝袜在线中文字幕| 黄色一级大片看看| 国产极品粉嫩免费观看在线| 99热网站在线观看| 精品国产乱码久久久久久小说| 国产永久视频网站| 中文字幕人妻丝袜制服| 大陆偷拍与自拍| 免费看光身美女| 亚洲成av片中文字幕在线观看 | 成年女人在线观看亚洲视频| 91精品三级在线观看| 黄色配什么色好看| 亚洲精品美女久久久久99蜜臀 | 高清在线视频一区二区三区| 韩国精品一区二区三区 | 啦啦啦在线观看免费高清www| 免费日韩欧美在线观看| 久久久久久人妻| 久久狼人影院| 老熟女久久久| a 毛片基地| 下体分泌物呈黄色| av卡一久久| 夜夜骑夜夜射夜夜干| 国产精品嫩草影院av在线观看| 国产黄色视频一区二区在线观看| 欧美激情 高清一区二区三区| 22中文网久久字幕| 69精品国产乱码久久久| 只有这里有精品99| 插逼视频在线观看| 人人妻人人爽人人添夜夜欢视频| 亚洲精品美女久久久久99蜜臀 | 婷婷色麻豆天堂久久| 精品午夜福利在线看| 国产精品一区二区在线不卡| 久久午夜综合久久蜜桃| 高清av免费在线| 国产片内射在线| 一级片'在线观看视频| 精品午夜福利在线看| 欧美国产精品一级二级三级| 亚洲欧洲日产国产| 国产精品99久久99久久久不卡 | 黄色毛片三级朝国网站| 久久97久久精品| 精品一区在线观看国产| 夫妻午夜视频| 久久99热这里只频精品6学生| 9色porny在线观看| 少妇猛男粗大的猛烈进出视频| 男人爽女人下面视频在线观看| 精品人妻在线不人妻| 亚洲av欧美aⅴ国产| 老司机午夜十八禁免费视频| 欧美精品av麻豆av| 无人区码免费观看不卡| 青草久久国产| 很黄的视频免费| 亚洲精品国产色婷婷电影| 亚洲欧美日韩高清在线视频| 看黄色毛片网站| 成人永久免费在线观看视频| 在线观看66精品国产| 一本综合久久免费| 一级a爱视频在线免费观看| 亚洲国产欧美网| 一区二区三区国产精品乱码| 精品卡一卡二卡四卡免费| 国产精品99久久99久久久不卡| 黑人巨大精品欧美一区二区蜜桃| 黄色视频,在线免费观看| 91国产中文字幕| 黄色片一级片一级黄色片| 在线观看免费午夜福利视频| 99久久精品国产亚洲精品| 桃红色精品国产亚洲av| 免费在线观看黄色视频的| 免费在线观看黄色视频的| 91麻豆av在线| 国产日韩一区二区三区精品不卡| 在线观看舔阴道视频| 国产在线一区二区三区精| 99热只有精品国产| 少妇裸体淫交视频免费看高清 | 人人妻人人爽人人添夜夜欢视频| 日本五十路高清| 亚洲精品久久成人aⅴ小说| 亚洲精品国产精品久久久不卡| 俄罗斯特黄特色一大片| 国产成人影院久久av| av片东京热男人的天堂| 国产精品一区二区免费欧美| 午夜成年电影在线免费观看| 成熟少妇高潮喷水视频| 国内久久婷婷六月综合欲色啪| 国产成人啪精品午夜网站| svipshipincom国产片| svipshipincom国产片| 成人精品一区二区免费| 女性被躁到高潮视频| 好男人电影高清在线观看| 亚洲第一青青草原| 日韩精品免费视频一区二区三区| 午夜免费观看网址| 欧美日韩中文字幕国产精品一区二区三区 | 在线天堂中文资源库| 亚洲国产精品一区二区三区在线| a在线观看视频网站| 久久久国产成人免费| 成人手机av| 免费在线观看亚洲国产| 久久精品国产99精品国产亚洲性色 | av片东京热男人的天堂| 国产精品免费大片| 中文字幕av电影在线播放| 亚洲欧美一区二区三区久久| 久久精品91无色码中文字幕| 欧美黄色片欧美黄色片| 大陆偷拍与自拍| 亚洲熟女精品中文字幕| 久久草成人影院| 看免费av毛片| 亚洲av熟女| 久久香蕉激情| 搡老乐熟女国产| 亚洲精品av麻豆狂野| 精品卡一卡二卡四卡免费| 一级黄色大片毛片| 日韩成人在线观看一区二区三区| 一区二区日韩欧美中文字幕| 国产精品免费一区二区三区在线 | 欧美精品人与动牲交sv欧美| 亚洲欧美日韩高清在线视频| 欧美黑人精品巨大| 老司机午夜十八禁免费视频| 国产精品亚洲一级av第二区| 一夜夜www| 淫妇啪啪啪对白视频| ponron亚洲| 黄色视频不卡| 欧美精品一区二区免费开放| 国产亚洲欧美精品永久| 国产极品粉嫩免费观看在线| 欧美乱妇无乱码| 高清av免费在线| 久久热在线av| 一级a爱视频在线免费观看| 欧美亚洲日本最大视频资源| 国产不卡av网站在线观看| 麻豆av在线久日| 久久青草综合色| 精品国产亚洲在线| 日韩欧美三级三区| 日韩大码丰满熟妇| 69精品国产乱码久久久| 欧美黄色淫秽网站| 国内久久婷婷六月综合欲色啪| 欧美精品亚洲一区二区| 老司机靠b影院| 在线观看免费视频网站a站| 国产一区二区三区在线臀色熟女 | 天堂√8在线中文| 香蕉国产在线看| 香蕉久久夜色| 日本黄色日本黄色录像| 欧美日韩福利视频一区二区| 夜夜躁狠狠躁天天躁| 少妇 在线观看| 国产野战对白在线观看| 老汉色av国产亚洲站长工具| 亚洲精品中文字幕一二三四区| 在线观看午夜福利视频| 久久久久国产一级毛片高清牌| 王馨瑶露胸无遮挡在线观看| 少妇粗大呻吟视频| 国产精品国产av在线观看| 国产精品自产拍在线观看55亚洲 | 色老头精品视频在线观看| 国产亚洲精品第一综合不卡| 成人亚洲精品一区在线观看| 精品熟女少妇八av免费久了| 亚洲第一欧美日韩一区二区三区| 久久热在线av| a级毛片黄视频| 中文字幕制服av| 久久久精品免费免费高清| 一夜夜www| 欧美亚洲 丝袜 人妻 在线| 国内久久婷婷六月综合欲色啪| 美女视频免费永久观看网站| 十八禁人妻一区二区| 一本大道久久a久久精品| 国产欧美日韩精品亚洲av| 免费久久久久久久精品成人欧美视频| 免费黄频网站在线观看国产| 一区二区三区精品91| 制服人妻中文乱码| 麻豆成人av在线观看| 国产一卡二卡三卡精品| 捣出白浆h1v1| 国产精品久久视频播放| 老司机午夜十八禁免费视频| 正在播放国产对白刺激| 97人妻天天添夜夜摸| 日韩精品免费视频一区二区三区| 欧美日韩乱码在线| 在线av久久热| 丝瓜视频免费看黄片| 香蕉丝袜av| 中文字幕色久视频| 亚洲av成人一区二区三| 麻豆成人av在线观看| 999久久久国产精品视频| 在线天堂中文资源库| 国产欧美日韩综合在线一区二区| 国产片内射在线| 精品少妇一区二区三区视频日本电影| 国产真人三级小视频在线观看| 狠狠婷婷综合久久久久久88av| 在线播放国产精品三级| 天堂俺去俺来也www色官网| 国产欧美日韩一区二区三| 欧美日韩中文字幕国产精品一区二区三区 | 日韩欧美国产一区二区入口| 国产91精品成人一区二区三区| 1024视频免费在线观看| 久久久久视频综合| 国产深夜福利视频在线观看| 操出白浆在线播放| 天堂俺去俺来也www色官网| 亚洲精品美女久久久久99蜜臀| 在线观看免费日韩欧美大片| 91老司机精品| 国产精品国产高清国产av | 国产亚洲精品久久久久5区| 欧美色视频一区免费| 国产成人欧美在线观看 | 99精品欧美一区二区三区四区| 欧美乱妇无乱码| 韩国av一区二区三区四区| 一级a爱片免费观看的视频| 大型av网站在线播放| 精品午夜福利视频在线观看一区| 国产男靠女视频免费网站| 亚洲,欧美精品.| 啪啪无遮挡十八禁网站| 欧美成人免费av一区二区三区 | 在线观看66精品国产| 成年动漫av网址| 又大又爽又粗| 亚洲色图综合在线观看| 日本五十路高清| 亚洲aⅴ乱码一区二区在线播放 | 999久久久国产精品视频| 久久中文看片网| 母亲3免费完整高清在线观看| 女人被狂操c到高潮| 国产精品1区2区在线观看. | cao死你这个sao货| 美女福利国产在线| 五月开心婷婷网| 一级毛片女人18水好多| 亚洲熟妇熟女久久| 国精品久久久久久国模美| 天堂动漫精品| 黑人猛操日本美女一级片| 老汉色∧v一级毛片| 欧美激情高清一区二区三区| 欧美一级毛片孕妇| 一级毛片高清免费大全| 老熟妇仑乱视频hdxx| 露出奶头的视频| 成人18禁在线播放| 黄色成人免费大全| 精品少妇久久久久久888优播| 免费在线观看视频国产中文字幕亚洲| 日韩 欧美 亚洲 中文字幕| 丝袜人妻中文字幕| 久久精品国产综合久久久| 一a级毛片在线观看| 制服诱惑二区| 高潮久久久久久久久久久不卡| 天天躁夜夜躁狠狠躁躁| 欧美激情高清一区二区三区| 老司机福利观看| 在线观看免费视频日本深夜| 亚洲中文av在线| 国产麻豆69| 欧美乱色亚洲激情| 每晚都被弄得嗷嗷叫到高潮| 日韩欧美三级三区| 久9热在线精品视频| 亚洲中文日韩欧美视频| 成年动漫av网址| 成人手机av| 少妇 在线观看| 女性生殖器流出的白浆| 女人被狂操c到高潮| 亚洲中文字幕日韩| 日韩 欧美 亚洲 中文字幕| 精品国产一区二区三区久久久樱花| 99久久综合精品五月天人人| 久热爱精品视频在线9| 久久亚洲精品不卡| 在线观看免费午夜福利视频| 丰满迷人的少妇在线观看| 国产高清视频在线播放一区| 中文字幕人妻丝袜一区二区| 一级作爱视频免费观看| 亚洲国产精品合色在线| av有码第一页| 在线播放国产精品三级| 十八禁高潮呻吟视频| 亚洲一区二区三区欧美精品| 国产成人av激情在线播放| 三上悠亚av全集在线观看| 美女高潮到喷水免费观看| 色综合欧美亚洲国产小说| 国产精品亚洲一级av第二区| 亚洲精品国产精品久久久不卡| 成熟少妇高潮喷水视频| 久久久精品区二区三区| 国产一卡二卡三卡精品| 两性夫妻黄色片| 精品国产国语对白av| 国产av一区二区精品久久| 欧美日韩成人在线一区二区| 在线播放国产精品三级| 亚洲精品在线美女| 欧美激情高清一区二区三区| 国产aⅴ精品一区二区三区波| 好男人电影高清在线观看| 国产黄色免费在线视频| 色婷婷久久久亚洲欧美| 亚洲精品自拍成人| 999精品在线视频| 99香蕉大伊视频| 建设人人有责人人尽责人人享有的| 91av网站免费观看| 久久ye,这里只有精品| 极品少妇高潮喷水抽搐| 国产精品久久久久久人妻精品电影| 精品少妇久久久久久888优播| 老熟妇仑乱视频hdxx| 成在线人永久免费视频| 国产片内射在线| 999精品在线视频| 久久99一区二区三区| 最近最新中文字幕大全电影3 | 美女高潮喷水抽搐中文字幕| 亚洲欧洲精品一区二区精品久久久| 亚洲国产精品sss在线观看 | 丰满的人妻完整版| 欧美日韩成人在线一区二区| 精品卡一卡二卡四卡免费| 亚洲成人免费av在线播放| 久久久久国内视频| 国产99久久九九免费精品| 国产精品久久久av美女十八| 免费观看a级毛片全部| 国产在视频线精品| 中文字幕人妻丝袜一区二区| 国产精品欧美亚洲77777| av欧美777| 国产aⅴ精品一区二区三区波| 亚洲熟妇中文字幕五十中出 | 国产欧美日韩一区二区三区在线| 亚洲免费av在线视频| 久久久久久久国产电影| 国产成人影院久久av| 咕卡用的链子| 日本黄色日本黄色录像| 大码成人一级视频| 欧美 日韩 精品 国产| 99国产综合亚洲精品| 多毛熟女@视频| 日韩免费av在线播放| 国产伦人伦偷精品视频| 男女高潮啪啪啪动态图| 亚洲国产毛片av蜜桃av| 国产精品香港三级国产av潘金莲| 日韩人妻精品一区2区三区| 夜夜躁狠狠躁天天躁| 日本欧美视频一区| 69精品国产乱码久久久| 99国产精品一区二区三区| 一二三四社区在线视频社区8| 黑人猛操日本美女一级片| 丝袜在线中文字幕| 亚洲av欧美aⅴ国产| av不卡在线播放| 国产精品自产拍在线观看55亚洲 | 亚洲精品一卡2卡三卡4卡5卡| 成人亚洲精品一区在线观看| 高清在线国产一区| 欧美av亚洲av综合av国产av| 欧美精品一区二区免费开放| 老熟妇乱子伦视频在线观看| 91成年电影在线观看| 最新美女视频免费是黄的| av天堂在线播放| 别揉我奶头~嗯~啊~动态视频| 精品福利观看| 日韩欧美免费精品| 国产1区2区3区精品| 国产欧美日韩精品亚洲av| 啦啦啦视频在线资源免费观看| 日韩欧美免费精品| 一级a爱视频在线免费观看| 波多野结衣一区麻豆| 免费看a级黄色片| 狂野欧美激情性xxxx| 免费看a级黄色片| 国产成人av教育| 黄色 视频免费看| 欧美成狂野欧美在线观看| 夜夜爽天天搞| 一本综合久久免费| 国产一区二区三区综合在线观看| 久久ye,这里只有精品| 精品人妻在线不人妻| 久久香蕉激情| 午夜两性在线视频| 精品国产一区二区三区久久久樱花| 人妻丰满熟妇av一区二区三区 | 国产亚洲欧美在线一区二区| 欧美大码av| 在线永久观看黄色视频| 夫妻午夜视频| 99re在线观看精品视频| 大码成人一级视频| 乱人伦中国视频| 男人操女人黄网站| 水蜜桃什么品种好| 久久中文字幕一级| 色播在线永久视频| 国产蜜桃级精品一区二区三区 | 国产亚洲av高清不卡| 天堂中文最新版在线下载| 亚洲精品av麻豆狂野| 中文字幕人妻丝袜一区二区| xxx96com| 五月开心婷婷网| 色老头精品视频在线观看| 欧美日韩视频精品一区| 天天躁狠狠躁夜夜躁狠狠躁| 久久热在线av| 91av网站免费观看| 精品国产亚洲在线| 亚洲精品乱久久久久久| 国产又爽黄色视频| 欧美中文综合在线视频| 国产蜜桃级精品一区二区三区 | 人人妻,人人澡人人爽秒播| 国产色视频综合| 亚洲成人免费电影在线观看| 亚洲精品中文字幕一二三四区| 两性午夜刺激爽爽歪歪视频在线观看 | 人人澡人人妻人| 亚洲成人免费av在线播放| 久久久国产成人免费| 国产无遮挡羞羞视频在线观看| 精品第一国产精品| 欧美色视频一区免费| 欧美日韩瑟瑟在线播放| 国内毛片毛片毛片毛片毛片| 午夜91福利影院| 精品国产乱码久久久久久男人| 午夜91福利影院| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲国产精品合色在线| 日韩大码丰满熟妇| 欧美亚洲日本最大视频资源| 别揉我奶头~嗯~啊~动态视频| 身体一侧抽搐| 国产熟女午夜一区二区三区| 国产亚洲av高清不卡| 亚洲aⅴ乱码一区二区在线播放 | 波多野结衣一区麻豆| 水蜜桃什么品种好| 狠狠狠狠99中文字幕| 在线十欧美十亚洲十日本专区| 免费观看人在逋| 女人爽到高潮嗷嗷叫在线视频| 国产一区二区三区在线臀色熟女 | 真人做人爱边吃奶动态| 亚洲人成77777在线视频| 又紧又爽又黄一区二区| av片东京热男人的天堂| 高清视频免费观看一区二区| 免费在线观看视频国产中文字幕亚洲| 丝袜人妻中文字幕| 丰满饥渴人妻一区二区三| 一级作爱视频免费观看| 99国产极品粉嫩在线观看| 很黄的视频免费| 婷婷精品国产亚洲av在线 | 麻豆乱淫一区二区| 国产精品久久视频播放| 成人特级黄色片久久久久久久| 一区在线观看完整版| 999久久久精品免费观看国产| 久久九九热精品免费| 91字幕亚洲| 久久草成人影院| 成年人免费黄色播放视频| 精品福利观看| 操美女的视频在线观看| 亚洲精品一二三| 啦啦啦视频在线资源免费观看| 黑丝袜美女国产一区| 亚洲自偷自拍图片 自拍| 亚洲av电影在线进入| 天天躁日日躁夜夜躁夜夜| 俄罗斯特黄特色一大片| 欧美性长视频在线观看| 在线看a的网站| 美女国产高潮福利片在线看| 日韩人妻精品一区2区三区| 欧美 亚洲 国产 日韩一| 男女之事视频高清在线观看| 又黄又爽又免费观看的视频| 交换朋友夫妻互换小说| 国产亚洲一区二区精品| 一区二区三区精品91| 国产精品综合久久久久久久免费 | 99在线人妻在线中文字幕 | 一进一出抽搐动态| 国产av一区二区精品久久| 美国免费a级毛片| 久久久国产成人免费| 国产在线观看jvid| 国产人伦9x9x在线观看| 99在线人妻在线中文字幕 | 久久精品国产清高在天天线| 国产精品一区二区在线不卡| 99精品欧美一区二区三区四区| 久久人妻av系列| 亚洲,欧美精品.| 丁香六月欧美| 18禁美女被吸乳视频| 无限看片的www在线观看| 欧美日韩乱码在线| 97人妻天天添夜夜摸| 中文欧美无线码| 亚洲全国av大片| 精品午夜福利视频在线观看一区| 亚洲第一青青草原| 色老头精品视频在线观看| aaaaa片日本免费| 久久久久精品人妻al黑| 亚洲va日本ⅴa欧美va伊人久久| 黄片大片在线免费观看|