• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ten-Year Climatological Features and Air Origin of Midlatitude Double Tropopauses

    2015-06-09 21:24:03WUXueandLUDaren
    Advances in Atmospheric Sciences 2015年12期

    WU Xue and LU¨ Daren

    Key Laboratory for Atmosphere and Global Environment Observation,Institute of Atmospheric Physics, Chinese Academy of Sciences,Beijing 100029

    Ten-Year Climatological Features and Air Origin of Midlatitude Double Tropopauses

    WU Xue and LU¨ Daren?

    Key Laboratory for Atmosphere and Global Environment Observation,Institute of Atmospheric Physics, Chinese Academy of Sciences,Beijing 100029

    The 10-year climatological features related to midlatitude double tropopause events(DTs)are examined using ERAInterim data from 2003 to 2012.The analysis is based on tropopauses de fined by lapse rate.Results show that DTs are permanent or semi-permanent in the midlatitudes,and high DT frequency bands move poleward in winter and equatorward in summer,which is consistent with the seasonal movement of the subtropical jet.Based on our statistics,the second tropopause is found at about 100 hPa in the subtropics and at slightly lower altitudes in sub-polar regions.The thickness between the first and second tropopause is smaller in the subtropics and increases with latitude.Next,the origin of air sandwiched between the first and second tropopause of DTs is studied with a revised version of the UK Universities Global Atmospheric Modelling Programme Of fl ine Trajectory Code(Version 3)diabatic trajectory model.The results show that,in the lower or middle troposphere,air is transported into the DTs from lower latitudes,mainly in the tropics.The dominant source regions are mainly areas of deep convection and steep orography,e.g.,the western Pacific and Himalayan Mountains,and they show strong seasonality following the seasonal shift of these strong upwelling regions.

    double tropopause,trajectory model,stratosphere–troposphere exchange

    1.Introduction

    The tropopause is a boundary that separates the statically unstable troposphere and much more stable stratosphere,and is a transition layer between radiative–convective balance in the troposphere and radiative balance in the stratosphere (Thuburn and Craig,2002).Two-way transport processes across the tropopause are an important mechanism that infl uences chemical composition in the upper troposphere and lower stratosphere.However,in the extratropical region especially,the lapse rate–based WMO(1957)de finition of the tropopause produces more than one tropopause.

    Double tropopauses(DTs),or even triple tropopauses, have been a focus of scientific interest for decades(e.g.,Yamanaka,1992;Yamanaka et al.,1996;Schmidt et al.,2006; An~el et al.,2007;Castanheira et al.,2012).Links between midlatitude DTs and baroclinic waves have been studied using idealized model and GPS radio occultation data,revealing that the location of DTs is associated with baroclinic Rossby wave breaking in the subtropical upper troposphere and lower stratosphere(McIntyre and Palmer,1983;Lamarque and Hess,1994;Newman and Schoeberl,1995;Vaughan and Timmis,1998;Pan et al.,2009;Castanheira et al.,2012). Moreover,DT structures are considered to be responsible for tropical tropospheric air intruding into the stratosphere above the subtropical jet core(Randel et al.,2007;Pan et al.,2009, 2010).Subsequent studies have shown that the DT structure consists of tropospheric air(low in ozone concentration and static stability)overlapping stratospheric air(high in ozone and static stability),using modelling results and satellite remote sensing data from Aura/HIRDLS and ozonesonde profiles(Olsen et al.,2008;Pan et al.,2009;Homeyer et al., 2011;Vogel et al.,2011),and that DTs are believed to favor cross-tropopause exchange in the subtropics(Sprenger et al., 2003;Bracci et al.,2012).

    Recent studies using reanalysis data,GPS radio occultation,radiosonde pro files and satellite data show that DTs are prevalent in the midlatitudes of both hemispheres in all seasons,and the maximum occurrence is during late winter and early spring(Schmidt et al.,2006;Randel et al.,2007;An~el et al.,2008;Castanheira and Gimeno,2011;Peevey et al., 2012).This may indicate,at least from the perspective of Rossby wave breaking,that there is more subtropical crosstropopause transport during DTs’maximum occurrence seasons(Horinouchi and Boville,2000;Waugh and Polvani, 2000).However,even though the above studies have shown that Rossby wave breaking and poleward transport are re-?Corresponding author:L¨U Darensponsible for a signifi cant fraction of DT events,DTs are also frequently found without the presence of Rossby wave breaking(e.g.,Biondi et al.,2011)and frequent DT occurrence years are not necessarily years of frequent irreversible mixing events(Olsen et al.,2010).Also,Lagrangian trajectory–based studies show that cross-tropopause transport in the subtropics is more vigorous in summer than in winter(Berthet et al.,2007;Skerlak et al.,2013).This controversy about the seasonal variation of stratosphere–troposphere transport raises the question:what role do DTs play in troposphere-tostratosphere transport?Peevey et al.(2014)stated that there is a robust global relationship between the DT and the tropical inversion layer through the warm conveyer belt,where the DT frequency increases(decreases)in the extratropics(tropics)as the tropical inversion layer increases in strength.But these systems all have opposing seasonal characteristics and formation mechanisms,demonstrating that the DT is more complicated than previous poleward-transport studies might suggest.

    Information on the climatological characteristics of DTs and the origin of air sandwiched within DTs is crucial for qualitative estimates of cross-tropopause exchange.However,there are still different opinions about the origin of air between two tropopauses.Wang and Polvani(2011)suggest that,as shown by an idealized model,air inside the DT structure originates from high latitudes,which is the opposite to some other results(Pan et al.,2009;A~nel et al.,2012).This apparent controversy might be caused by different formation mechanisms of midlatitude DT events,e.g.,baroclinic wave breaking and synoptic events like cut-off lows(Peevey et al., 2014).

    In the present study,we begin by examining the features of midlatitude DT events using ERA-Interim reanalysis data from 2003 to 2012,showing a 10-year climatological spatial distribution of DTs and seasonal variations.Then,the origin of air in DTs is analyzed based on the results of a diabatic Lagrangian trajectory model.In section 2,the input data and trajectory model are described.The results are presented in sections 3 and 4,and discussed in section 5.A summary is given in section 6.

    2.Data and methodology

    2.1.ERA-Interim data and analysis

    ERA-Interim is the latest global atmospheric reanalysis results produced by the European Centre for Medium-Range Weather Forecasts(ECMWF)(Simmons et al.,2006;Dee et al.,2011),which covers the period from 1 January 1979 to the present day.Compared with ERA-40,the ERA-Interim forecast model is run at a higher horizontal resolution of T255 (for the full resolution version).In this paper,our analysis of midlatitude DT features employs ERA-Interim data over 10 years from 2003 to 2012 on 60 ECMWF model levels (with a vertical resolution of~1 km in the upper troposphere and lower stratosphere region).These reanalysis temperature data,available daily at four analysis times(0000,0600,1200, and 1800 UTC),were utilized to de fine tropopauses according to the de finition from the World Meteorological Organization’s Commission for Aerology(WMO,1957):

    (1)The first tropopause is de fined as the lowest level at which the lapse rate decreases to 2 K km?1or less,provided also that the average lapse rate between this level and all higher levels within 2 km does not exceed 2 K km?1;

    (2)If above the first tropopause the average lapse rate between any level and all higher levels within 1 km exceeds 3 K km?1,then a second tropopause is de fined by the same criterion as under(a).This tropopause may be either within or above the 1 km layer.

    However,due to the relatively low vertical resolution of the ERA-Interim data near tropopauses(~1 km),a slight modi fi cation was made to criterion(b)based on a lapse rate of 2.5 K km?1,to generate a reasonable DT occurrence frequency.A similar approach was employed by Randel et al. (2007)and has been compared with results from GPS radio occultation data to verify its accuracy.Similar methods were also used in other studies when using ECMWF reanalysis data,e.g.Castanheira and Gimeno(2011),Castanheira et al. (2012)and Peevey et al.(2014).The in fl uence of this method on the results is discussed in section 5.

    Analysis winds,temperature,and ground pressure are also used to drive the three-dimensional(3D)trajectory model,which is discussed in the following subsection.

    2.2.3D OFFLINE3diab trajectory model

    To determine the origin of air sandwiched within the DT structure,3D trajectory integrations are performed using a diabatic trajectory model—OFFLINE3diab.This is a modi fi cation of the third edition of the UK Universities Global Atmospheric Modelling Programme Of fl ine Trajectory Code (Methven,1997),which is a kinematic trajectory model. Compared with the original kinematic trajectory model,the main difference in the diabatic model is the vertical velocity scheme:vertical(cross-isentropic)velocity is expressed with a diabatic heating rate(a change in potential temperature)instead of being calculated with the horizontal wind through the continuity equation.Diabatic trajectory models show air parcels transported along the isentropic surfaces by large-scale winds and these parcels move across isentropes only by net diabatic heating or cooling.If the heating rate is zero,trajectories move under adiabatic conditions and conserve potential temperature.A comprehensive review of the accuracy of the trajectories calculated using this model is given in Methven(1997)and Stohl(1998).By reducing errors in vertical velocity,diabatic trajectory models can give better results,especially when the models are driven by meteorological fi elds with low spatial resolutions(Ploeger et al., 2010,2011).

    The OFFLINE3diab model interpolates 3D gridded winds to the trajectory locations using bilinear interpolation (in time and in the horizontal direction)and cubic Lagrangian interpolation(in the vertical direction),and then the trajectories are integrated backward using a 4th-order Runge–Kutta scheme.The backward trajectories were calculated from 6-hourly ERA-Interim data.Three-dimensional off-line meteorological data,e.g.,wind f i eld and temperature,were interpolated to the trajectory locations and values of meteorological fields,including potential vorticity(PV),surface pressure, pressure,temperature,and potential temperature,were assigned as attributes for the particles at each integration time.

    The trajectories were initialized on grid resolutions of 1?×1?×5 K(with 17 vertical levels from 340 K to 420 K) covering the whole globe(altogether 556 920 particles),and the initial meteorological data were provided every 6 hours at 0000,0600,1200,and 1800 UTC;particles were released every 12 hours and the outputs were provided every 3 hours. The vertical range(from 340 K to 420 K)covers nearly all DT structures and sensitivity experiments on the spatial resolutions specif i ed.Additionally,release intervals of the trajectories showed that the origin of air in DTs is not sensitive to the initial settings of the trajectories.The settings used in this study were proved to be suff i cient to generate smooth and robust features and overall physical characteristics.

    3.Features of midlatitude DTs

    In this section,ERA-Interim data from 2003 to 2012 are used to reveal the spatial distribution and characteristics of DTs.

    Figure 1 shows a vertical cross section of a typical DT event.In this case,the spatial extent of a DT event is significant and the structure is clearly outlined.This case is located over the eastern Pacific Ocean and lasts for about 3 days and extends from about 20?N to 50?N.The air between the first and second tropopauses could be divided into two parts by the 2 K km?1isocline.The poleward intrusion contains air with lapse rate higher than 2 K km?1,and low static stability(vertical gradients of potential temperature).The proportional distribution of PV in the poleward intrusion is calculated with ERA-Interim data and is shown in Fig.1c.It indicates that PV for the majority of air in the poleward intrusion is larger than 4 PVU(1 PVU=10?6K kg?1m2s?1),especially in summer(June–July–August,JJA).And if the dynamic tropopause in the midlatitudes is def i ned by PV values between 2 PVU to 4 PVU,then air with tropospheric characteristics has notably intruded into the stratosphere.The layer below the poleward intrusion,which contains air with lower lapse rate and higher static stability,is more stratospheric in nature.

    Figure 2 displays the seasonal geographical distribution of the DT frequency of occurrence in winter(December–January–February,DJF)and summer(JJA),showing the preferred regions of formation and seasonal difference.DTs are permanent or semi-permanent in midlatitudes for both hemispheres.And generally,DT frequencies are maximum (minimum)during the winter(summer)in both hemispheres, which agrees well with previous studies(e.g.,Schmidt et al., 2006;A~nel et al.,2007;Randel et al.,2007;Castanheira and Gimeno,2011,Peevey et al.,2012).Moreover,the maximum frequencies of the Northern Hemisphere in DJF are larger than the maximum frequencies of the Southern Hemisphere in JJA.This may be due to the differences in the homogeneity of the land–sea distribution in the two hemispheres(Schmidt et al.,2006),i.e.,extensive mountain ranges may enhance the propagation of planetary waves forced by topography in the Northern Hemisphere(Holton,2004).

    In DJF,DT frequencies between 30?N and 45?N are between 35%and 60%,except for the eastern Pacific and central Atlantic region.Frequencies in the northern Atlantic are relatively high compared to other areas at the same latitudes.In the Southern Hemisphere,maximum DT frequency is about 15%,which is much smaller than that in the Northern Hemisphere.In JJA,frequencies are higher in the Southern Hemisphere,located between 25?S and 45?S,and the maxima appear at the south of Australia and the sea to its east. Notably,there is a band of high DT frequency in the midwest Eurasian continent,ranging from about 40?N to 55?N and the maxima can reach about 35%.And over the Andes Mountains in South America,DT frequency remains relatively high,compared with the rest of the Southern Hemisphere.Some localized maxima of frequencies,such as those overthe Tibetan Plateau and the southern partofSouth America,also observed in some previous studies(Schmidt et al., 2006;Randel et al.,2007;Peevey et al.,2012),may be a result of the summer monsoon circulation(Holton,2004)or the summer monsoon anticyclone(Randel et al.,2007),and large orography like the Tibetan Plateau and the Andes.

    In both hemispheres,high DT frequency bands move poleward in the winterand equatorward in the summer,which is consistent with the seasonal movement of the subtropical jet.As seen in Fig.3,the second tropopause always appears above and poleward of the subtropical jet core where the baroclinic instability of the subtropical jet exits(Pan and Munchak,2011;Manney et al.,2014).Maxima of occurrence frequencies are larger and located at higher latitudes in the winter hemisphere.

    Based on our statistics,a schematic diagram of midlatitude DTs is drawn in Fig.4.The first tropopause can reach up to a height higher than 100 hPa in the tropics,and the vertical location of the first tropopause decreases steeply poleward,located between 300 hPa and 200 hPa.DTs are permanent or semi-permanent at midlatitudes,with the second tropopause existing at about 100 hPa in the subtropics and slightly lower in sub-polar regions.The DT thickness,which is def i ned by the height differences between the first and second tropopause,is smaller in the subtropics and increases with latitude.Air within DTs can be divided into two types. Air in area I is tropospheric,characterized by a high lapse rate and low static stability,as seen in Fig.1;air in area II is characterized by a low lapse rate and high static stability. High-resolution satellite data also display low ozone concentration forairin area Iand there isa large ozone concentration gradient between area I and area II(Pan et al.,2009).

    4.Origin of air between DTs

    Determining the origin of the air sandwiched within DTs is helpful for estimating the significance of DTs in troposphere-to-stratosphere transport.In this section,air parcels between DTs in the Northern Hemisphere and Southern Hemisphere are tracked separately using backward trajec-tories to f i nd out their origin.Thirty-day backward trajectories are started on 31 December,31 January,and 28 February for each year between 2003 and 2012.

    Figure 5 shows the composite fraction and geographical locations of the air parcels crossing the pressure levels of 700 hPa,500 hPa,300 hPa,200 hPa and 100 hPa before entering DTs in winter(DJF).At or below the pressure level of 300 hPa,for the Northern Hemisphere,air is transported from the western Pacific and central Pacific region in the tropics and the Amazon basin between the equator and the Tropic of Capricorn;while for the Southern Hemisphere,air is mainly transported from the western Pacific region.At the pressure levels of 200 hPa and 100 hPa,where the DTs exist,air may be transported into the DTs from both higher and lower latitudes.As shown in Fig.6,the source regions in summer for the Southern Hemisphere are dominated by the western tropical Pacific,the Himalayan plateau and Indian subcontinent, and a thin equatorial source corresponding to the Intertropical Convergence Zone(ITCZ).For the Northern Hemisphere,the eastern tropical Pacific between the equator and the Tropic of Cancer is also a dominant region.

    For both hemispheres,air initialized within DTs comes from regions of strong convection and steep orography,and paths for the trajectories from the troposphere are relatively concentrated.Only a fraction of air parcels have existed at 300 hPa and even lower levels in the troposphere before entering into DTs,and the fraction grows as pressure decreases. For the Southern Hemisphere,the fraction of trajectories is smaller and the horizontal range of the paths is narrower than those for the Northern Hemisphere on each pressure surface.

    The distribution and strength in Fig.5 to Fig.6 show a strong seasonality following the seasonal shift of the strong upwelling regions in the tropics and subtropics,as depicted by the long-term mean outgoing longwave radiation(OLR) in Fig.7.The OLR data are from the National Oceanic and Atmospheric Administration(NOAA)Interpolated OLR product.

    Although the source regions are constrained,the pathways of trajectories were not found to enter into DTs directly in the convective areas.As well-established research states,only a small fraction of convective systems can overshoot the tropopause and inject air into the stratosphere,andthe majority of air parcels rising from the troposphere have to travel several thousand kilometers before entering the uppertroposphere–lower-stratosphere(UTLS)region(Fueglistaler et al.,2004),including DTs.

    Figure 8 gives the totalfraction ofairparcels thathave existed at specif i ed pressure levels before entering DTs for four scenarios.The black and red solid lines denote the Northern Hemisphere in winter(DJF)and summer(JJA),respectively, and the black and red dashed lines are for the Southern Hemisphere.As seen in this figure,no more than 15%of the air between DTs has existed at 300 hPa or even lower in the troposphere.From 300 hPa up to about 150 hPa,the fraction for the four scenarios increases and peaks at about 150 hPa, which is not unexpected because this is the altitude where air between a DT is mostly likely to reside.From 150 hPa to 100 hPa,the fraction begins to decrease.For the Northern Hemisphere,the fraction in summer is much larger than that in winter;for the Southern Hemisphere,the difference between the fraction in winter and summer is very small,except that between 400 hPa and 200 hPa,the fraction in winter exceeds that in summer.Overall,in the summer hemisphere, a larger fraction of air within DTs is transported from below 300 hPa,but it should be noted that there are almost twice as many DTs in winter as in summer.

    5.Discussion

    The climatological features in section 3 are all based on DTs derived from ERA-Interim data using the modif i ed WMO(1957)criteria stated in section 2.Similar modif i cation has been applied in previous studies when def i ning the second tropopauses of DTs with reanalysis data(e.g.,Randel et al.,2007;and Castanheira and Gimeno,2011).To verify the accuracy of the modif i cation,the frequencies of occurrence were also calculated using the temperature profiles from GPS radio occultation measurements from the Constellation Observing System for Meteorology,Ionosphere,and Climate(COSMIC)mission(Anthes et al.,2008)between December 2006 and August 2012,as shown in Fig.9.The wet temperature profiles were downloaded from the COSMIC Data Analysis and Archive Center of the University Corporation for Atmospheric Research.The precision of each radio occultation(RO)prof i le could reach~0.05?C in the UTLS region(Anthes et al.,2008)and the vertical resolution is 0.1 km.

    Comparing with Fig.9,the frequencies in Fig.2 show similarities both in horizontal range and magnitude,suggesting it should be reasonable to use the reduced(2.5 K km?1) constraint when using ERA40 data for identifying DT occurrences.

    Derivation of DT statistics from reanalysis data using the standard WMO(1957)criteria gives far fewer occurrences (Randel et al.,2007),and the reason may be two-fold.The WMO(1957)criteria are very sensitive to temperature profiles(Za¨ngl and Hoinka,2001).The ERA-40 or ERA-Interim data with low vertical resolution probably lose large temperature gradients above the first tropopause(Randel et al.,2007). Also,the accuracy of temperature pro files may have effects on the frequencies of DTs.As an updated version of ERA-40 data,the ERA-Interim data could produce DT frequencies comparable to RO data by reducing the constraint to 2.5 K km?1(Castanheira and Gimeno,2011;Castanheira et al., 2012),while the constraint for ERA-40 should be reduced to 2 K km?1to obtain reasonable DT frequencies.Overall,the large DT frequencies in Fig.2 agree well spatially with previous results from reanalysis or observation data(Schmidt et al.,2006;A~nel et al.,2007;Castanheira and Gimeno,2011; Peevey et al.,2012),albeit there are minor differences in the values that may result from different data and calculating algorithms.

    For the results in section 4,there is an important point to be made about the time length of the backward trajectories used to examine the origin of air within DTs.To verify the effectiveness of the 30-day backward trajectories,the calculations were repeated with backward trajectories of 15 days and 60 days.The results(not shown)indicated that the horizontal origin of air within DTs was unaffected by trajectory length changes within the above ranges(15 days,30 days, and 60 days).The proportion of air in Fig.5 and Fig.6 also remained largely unaltered when using 30-day and 60-day backward trajectories;but when using 15-day backward trajectories,the proportion did reduce a little from the 30-day cases.This might be attributable to the fact that the 15-day trajectories may ignore a minority of air transported over a longer period from the troposphere to the extratropical UTLS region(Fueglistaler et al.,2004).So,30-day trajectories is an appropriate choice to balance the computation cost and transportation time of air parcels.

    As stated in section 4,the geophysical location and proportion of the origin of air within DTs vary between seasons. Moreover,they may also vary substantially from year to year. Since the main sources of transport from the lower or middle troposphere to DTs are associated with regions of deep convection,i.e.,the western tropical Pacific and Maritime Continent,the Himalayan plateau,and a thin equatorial source corresponding to the ITCZ,any event that may inf l uence these areas would have effects on the air source.For instance,El Ni~no–Southern Oscillation(ENSO)circulation is one of the mosteffective factors.ENSO’seffectson the strength oftropical upwelling and stratosphere–troposphere exchange have been clearly demonstrated(Scaife etal.,2003;Zeng and Pyle, 2005).Plus,there have been studies on the origin of air in the tropical tropopause layer showing that,in positive phases of ENSO(El Ni~no years),the source region is shifted towards the eastern Pacific in all seasons,while in negative phases of ENSO(La Ni~na years)the Himalayas contribute more as a source region of boundary layer air in the Northern Hemisphere summer.To further study the main factors inf l uencing the origin of air in DTs,data over a longer time range are needed.

    6.Summary

    The 10-year climatological features of midlatitude DT events have been analyzed using ERA-Interim data from 2003 to 2012.The results show that,in the midlatitudes,DTs are permanent or semi-permanent and occur throughout the year.In the Northern Hemisphere winter,high DT frequencies happen between 30?N and 45?N;while in the Southern Hemisphere winter,high DT frequencies are located between 25?S and 45?S.High DT frequency bands move poleward in winter and equatorward in summer,which is consistent with the seasonal movement of the subtropical jet.Based on our results,the second tropopauses of DTs exist at about 100 hPa in the subtropics,and slightly lower in sub-polar regions.The DT thickness,which is de fined by the height differences between the first and second tropopause,is smaller in the subtropics and increases with latitude.

    A 3-D trajectory-based Lagrangian model was then employed to track the origin of air sandwiched within DTs.The results show that only a fraction(less than 15%)of air sandwiched within DTs originates in the lower or middle troposphere.Additionally,the fraction of air within Northern Hemisphere DTs coming from 300 hPa or even lower in the troposphere is larger in summer(JJA)than in winter(DJF), while this difference is not clearly observed in the Southern Hemisphere.The dominant source regions vary with season following the seasonal shift of strong upwelling regions in the tropics and subtropics,and they are all located over deep convection and steep orography,e.g.,the western and central Pacific,the Amazon basin and Himalayan plateau.

    Acknowledgements.We thank Dr.Sue Yu LIU for providing the OFFLINE3diab model and for her helpful suggestions.The ERA-Interim data were obtained from the ECMWF via www.ecmwf.int.The COSMIC data were obtained from the COSMIC Data Analysis and Archive Center via http://cdaac-www.cosmic.ucar.edu/cdaac/index.html.The OLR data were obtained from the NOAA Earth Science Research Laboratory via http://www.esrl. noaa.gov/.This work was supported by the Special Fund for Strategic Pilot Technology of the Chinese Academy of Sciences(Grant No.XDA05040300).

    REFERENCES

    A~nel,J.A.,J.C.Antu~na,L.de la Torre,R.Nieto,and L.Gimeno,2007:Global statistics of multiple tropopauses from the IGRA database.Geophys.Res.Lett.,34(6),L06709,doi: 10.1029/2006GL029224.

    A~nel,J.A.,J.C.Antu~na,L.de la Torre,J.M.Castanheira,and L.Gimeno,2008:Climatological features of global multiple tropopause events.J.Geophys.Res.,113,D00B08,doi: 10.1029/2007JD009697.

    A~nel,J.A.,L.de la Torre,and L.Gimeno,2012:On the origin of the air between multiple tropopauses at midlatitudes.The Scientif i c World Journal,2012,191028,doi:10.1100/2012/ 191028.

    Anthes,R.A.,and Coauthors,2008:The COSMIC/FORMOSAT-3 mission:Early results.Bull.Amer.Meteor.Soc.,89(3),313– 333,doi:10.1175/BAMS-89-3-313.

    Berthet,G.,J.G.Esler,and P.H.Haynes,2007:A Lagrangian perspective of the tropopause and the ventilation of the lowermost stratosphere.J.Geophys.Res.,112,D18102,doi: 10.1029/2006JD008295.

    Biondi,R.,T.Neubert,S.Syndergaard,and J.Nielsen,2011:Measurements of the upper troposphere and lower stratosphere during tropical cyclones using the GPS radio occultation technique.Adv.Space Res.,47(2),348–355.

    Bracci,A.,and Coauthors,2012:Transport of stratospheric air masses to the Nepal climate observatory-pyramid(Himalaya; 5079 m MSL):A synoptic-scale investigation.J.Appl.Meteorol.Clim.,51(8),1489–1507,doi:10.1175/JAMC-D-11-0154.1.

    Castanheira,J.M.,and L.Gimeno,2011:Association of double tropopause events with baroclinic waves.J.Geophys.Res., 116,D19113,doi:10.1029/2011JD016163.

    Castanheira,J.M.,T.R.Peevey,C.A.F.Marques,and M. A.Olsen,2012:Relationships among Brewer-Dobson circulation,double tropopauses,ozone and stratospheric water vapour.Atmos.Chem.Phys.,12,12 391–12 421.

    Dee,D.P.,and Coauthors,2011:The ERA-Interim reanalysis: confi guration and performance of the data assimilation system.Quart.J.Roy.Meteor.Soc.137,553–597.doi:10.1002/ qj.828.

    Fueglistaler,S.,H.Wernli,and T.Peter,2004:Tropicaltroposphereto-stratosphere transport inferred from trajectory calculations.J.Geophys.Res.,109(D3),D03108,doi:10.1029/2003 JD004069.

    Holton,J.R.,2004:An Introduction to Dynamic Meteorology.4th ed.,Burlington,San Diego and London,Academic Press,535 pp.

    Homeyer,C.R.,K.P.Bowman,L.L.Pan,E.L.Atlas,R.-S.Gao, and T.L.Campos,2011:Dynamical and chemical characteristics of tropospheric intrusions observed during START08.J. Geophys.Res.,116,D06111,doi:10.1029/2010JD015098.

    Horinouchi,T.,F.Sassi,and B.A.Boville,2000:Synoptic-scale Rossby waves and the geographic distribution of lateral transport routes between the tropics and the extratropics in the lower stratosphere.J.Geophys.Res.,105(D21),26 579–26 592,doi:10.1029/2000JD900281.

    Lamarque,J.-F.,and P.G.Hess,1994:Cross-tropopause mass exchange and potential vorticity budget in a simulated tropopause folding.J.Atmos.Sci.,51(15),2246–2269,doi: 10.1175/1520-0469051.

    Manney,G.L.,M.I.Hegglin,W.H.Daffer,M.J.Schwartz, M.L.Santee,and S.Pawson,2014:Climatology of upper tropospheric-lower stratospheric(UTLS)jets and tropopauses in MERRA.J.Climate,27(9),3248–3271.

    McIntyre,M.E.,and T.N.Palmer,1983:Breaking planetary waves in the stratosphere.Nature,305,593–600,doi: 10.1038/305593a0.

    Methven,J.,1997:Off l ine trajectories:Calculation and accuracy UGAMP Tech.Rep.44,Dep.of Meteorol.,Univ.of Reading, Reading,U.K.,18 pp.

    Newman,P.A.,and M.R.Schoeberl,1995:A reinterpretation of the data from the NASA Stratosphere-Troposphere exchange project.Geophys.Res.Lett.,22(18),2501–2504,doi: 10.1029/95GL02220.

    Olsen,M.A.,A.R.Douglass,P.A.Newman,J.C.Gille,B.Nardi, V.A.Yudin,D.E.Kinnison,and R.Khosravi,2008:HIRDLS observations and simulation of a lower stratospheric intrusionof tropical air to high latitudes.Geophys.Res.Lett.,35(21), L21813.doi:10.1029/2008GL035514.

    Olsen,M.A.,A.R.Douglass,M.R.Schoeberl,J.M.Rodriquez, and Y.Yoshida,2010:Interannual variability of ozone in the winter lower stratosphere and the relationship to lamina and irreversible transport.J.Geophys.Res.,115,D15305,doi: 10.1029/2009JD013004

    Pan,L.L.,and Coauthors,2009:Tropospheric intrusions associated with the secondary tropopause.J.Geophys.Res.,114, D10302,doi:10.1029/2008JD011374.

    Pan,L.L.,and Coauthors,2010:The stratosphere-troposphere analyses of regional transport 2008 experiment.Bull.Amer. Meteor.Soc.,91(3),327–342,doi:10.1175/2009BAMS 2865.1.

    Pan,L.L.,and L.A.Munchak,2011:Relationship of cloud top to the tropopause and jet structure from CALIPSO data.J.Geophys.Res.,116(D12),D12201,doi:10.1029/2010JD015462.

    Peevey,T.R.,J.C.Gille,C.E.Randall,and A.Kunz,2012:Investigation of double tropopause spatial and temporal global variability utilizing High Resolution Dynamics Limb Sounder temperature observations.J.Geophys.Res.,117,D01105, doi:10.1029/2011JD016443.

    Peevey,T.R.,J.C.Gille,C.R.Homeyer,and G.L.Manney,2014: The double tropopause and its dynamical relationship to the tropopause inversion layer in storm track regions.J.Geophys. Res.,119(17),10 194–10 212.

    Ploeger,F.,P.Konopka,G.G¨unther,J.-U.Groo?,and R.M¨uller, 2010:Impact of the vertical velocity scheme on modeling transport in the tropical tropopause layer.J.Geophys.Res., 115,D03301,doi:10.1029/2009jd012023.

    Ploeger,F.,and Coauthors,2011:Insight from ozone and water vapour on transport in the tropical tropopause layer(TTL).Atmos.Chem.Phys.,11,407–419,doi:10.5194/acp-11-407-2011.

    Randel,W.J.,D.J.Seidel,and L.L.Pan,2007:Observational characteristics of double tropopauses.J.Geophys.Res., 112(D7),D07309,doi:10.1029/2006jd007904.

    Scaife,A.A.,N.Butchart,D.R.Jackson,and R.Swinbank, 2003:Can changes in ENSO activity help to explain increasing stratospheric water vapor?Geophys.Res.Lett.,30,doi: 10.1029/2003GL017591.

    Schmidt,T.,G.Beyerle,S.Heise,J.Wickert,and M.Rothacher, 2006:A climatology of multiple tropopauses derived from GPS radio occultations with CHAMP and SAC-C.Geophys. Res.Lett.,33(4),L04808,doi:10.1029/2005GL024600.

    Simmons,S.M.,S.M.Uppala,D.Dee,and S.Kobayashi,2006: ERA-interim:New ECMWF reanalysis products from 1989 onward.ECMWF Newsletter,110,25–35.

    Skerlak,B.,M.Sprenger,and H.Wernli,2013:A global climatology of stratosphere-troposphere exchange using the ERA-interim dataset from 1979 to 2011.Atmos.Chem.Phys., 13(5),11537–11595,doi:10.5194/acpd-13-11537-2013.

    Sprenger,M.,M.Croci-Maspoli,and H.Wernli,2003:Tropopause folds and cross-tropopause exchange:A global investigation based upon ECMWF analyses for the time period March 2000 to February 2001.J.Geophys.Res.,108(D12),8518,doi: 10.1029/2002JD002587.

    Stohl,A.,1998:Computation,accuracy and applications of trajectories-A review and bibliography.Atmos.Environ., 32(6),947–966,doi:1016/s1352-2310(97)00457-3.

    Thuburn,J.,and G.C.Craig,2002:On the temperature structure of the tropical substratosphere.J.Geophys.Res.,107(D2),ACL 10-1–ACL 10-10,doi:10.1029/2001jd000448.

    Vaughan,G.,and C.Timmis,1998:Transport of near-tropopause air into the lower midlatitude stratosphere.Quart.J.Roy.Meteor.Soc.,124(549),1559–1578,doi:10.1256/smsqj.54909. Vogel,B.,and Coauthors,2011:Transport pathways and signatures of mixing in the extratropical tropopause region derived from Lagrangian model simulations.J.Geophys.Res.,116, D05306,doi:10.1029/2010jd014876.

    Wang,S.,and L.M.Polvani,2011:Double tropopause formation in idealized baroclinic life cycles:The key role of an initial tropopause inversion layer.J.Geophys.Res.,116,D05108, doi:10.1029/2010jd015118.

    Waugh,D.W.,and L.M.Polvani,2000:Climatology of intrusions into the tropical upper troposphere.Geophys.Res.Lett., 27(23),3857–3860,doi:10.1029/2000gl012250.

    WMO,1957:Meteorology—A three-dimensional science:Second session of the Commission for Aerology.WMO Bulletin, 4,134–138.

    Yamanaka,M.D.,1992:Formation of multiple tropopause and stratospheric inertio-gravity waves.Advances in Space Research,12(10),181–190.

    Yamanaka,M.D.,S.Ogino,S.Kondo,T.Shimomai,S.Fukao, Y.Shibagaki,Y.Maekawa,and I.Takayabu,1996:Inertiogravity waves and subtropical multiple tropopauses:Vertical wavenumber spectra of wind and temperature observed by the MU radar,radiosondes and operational rawinsonde network.J.Atmos.Terr.Phys.,58(6),785–805.

    Z¨angl,G.,and K.P.Hoinka:2001:The tropopause in the polar regions.J.Climate,14(14),3117–3139.

    Zeng,G.,and J.A.Pyle,2005:Inf l uence of El Ni~no Southern Oscillation on stratosphere/troposphere exchange and the global tropospheric ozone budget.Geophys.Res.Lett.,32,L01814, doi:10.1029/2004gl021353.

    :Wu,X.,and D.R.Lu¨,2015:Ten-year climatological features and air origin of midlatitude double tropopauses.Adv.Atmos.Sci.,32(12),1592–1602,

    10.1007/s00376-015-5036-4.

    2 February 2015;revised 9 May 2015;accepted 28 May 2015)

    Email:ludr@mail.iap.cas.cn

    亚洲av中文av极速乱| 男人爽女人下面视频在线观看| 少妇人妻 视频| 亚洲av欧美aⅴ国产| 欧美黄色片欧美黄色片| 久久狼人影院| 国产色婷婷99| 精品亚洲乱码少妇综合久久| 免费看av在线观看网站| 亚洲欧美精品综合一区二区三区 | 久久久精品94久久精品| 国产国语露脸激情在线看| 欧美日韩一级在线毛片| freevideosex欧美| 天天操日日干夜夜撸| 国产av码专区亚洲av| 黄色配什么色好看| 午夜免费男女啪啪视频观看| 97在线人人人人妻| 欧美日韩亚洲高清精品| 亚洲成人一二三区av| 狂野欧美激情性bbbbbb| av不卡在线播放| 成人18禁高潮啪啪吃奶动态图| 人人妻人人澡人人看| 波多野结衣一区麻豆| 少妇被粗大猛烈的视频| 最黄视频免费看| 欧美精品一区二区免费开放| 一级,二级,三级黄色视频| 精品酒店卫生间| h视频一区二区三区| 国产精品久久久av美女十八| 精品人妻一区二区三区麻豆| 久久精品国产鲁丝片午夜精品| 十八禁高潮呻吟视频| 亚洲美女搞黄在线观看| 久久久久久人人人人人| 久久人人爽人人片av| 人妻少妇偷人精品九色| 欧美日韩av久久| 99久久精品国产国产毛片| 午夜福利影视在线免费观看| 婷婷色综合www| 亚洲国产最新在线播放| 不卡av一区二区三区| 2021少妇久久久久久久久久久| 精品卡一卡二卡四卡免费| 啦啦啦中文免费视频观看日本| 亚洲国产欧美在线一区| 亚洲av.av天堂| 18禁裸乳无遮挡动漫免费视频| xxx大片免费视频| 国产男人的电影天堂91| 成人国语在线视频| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲内射少妇av| 欧美日韩亚洲国产一区二区在线观看 | 校园人妻丝袜中文字幕| 亚洲情色 制服丝袜| 亚洲国产欧美在线一区| 亚洲一区二区三区欧美精品| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 如何舔出高潮| 蜜桃国产av成人99| 如何舔出高潮| 女人高潮潮喷娇喘18禁视频| 丝袜喷水一区| 国产xxxxx性猛交| 午夜免费观看性视频| 成人午夜精彩视频在线观看| 国产精品不卡视频一区二区| 精品少妇黑人巨大在线播放| 伦精品一区二区三区| 亚洲成av片中文字幕在线观看 | 午夜福利在线观看免费完整高清在| 最近中文字幕2019免费版| 亚洲成色77777| 在线天堂最新版资源| 国产有黄有色有爽视频| 免费观看在线日韩| 国产女主播在线喷水免费视频网站| 1024视频免费在线观看| 母亲3免费完整高清在线观看 | 免费av中文字幕在线| 在线观看国产h片| 最近中文字幕高清免费大全6| 国产综合精华液| 校园人妻丝袜中文字幕| 久久国产亚洲av麻豆专区| 色播在线永久视频| 国产片特级美女逼逼视频| 国产精品99久久99久久久不卡 | 麻豆精品久久久久久蜜桃| 秋霞在线观看毛片| 国产无遮挡羞羞视频在线观看| 中文字幕制服av| 男女无遮挡免费网站观看| 少妇被粗大的猛进出69影院| 九草在线视频观看| videosex国产| 人体艺术视频欧美日本| 午夜福利网站1000一区二区三区| 一级片免费观看大全| 日韩伦理黄色片| 各种免费的搞黄视频| 亚洲综合色网址| av一本久久久久| 青春草亚洲视频在线观看| 亚洲精品av麻豆狂野| 精品卡一卡二卡四卡免费| 欧美 亚洲 国产 日韩一| 国产成人aa在线观看| 国产无遮挡羞羞视频在线观看| 色婷婷av一区二区三区视频| 麻豆av在线久日| 久久久久久久久久久久大奶| 大香蕉久久成人网| 精品一区二区三区四区五区乱码 | 免费观看无遮挡的男女| 久久久久网色| 性色av一级| 成年av动漫网址| tube8黄色片| 久久av网站| 女人久久www免费人成看片| 欧美日韩综合久久久久久| 久久久久久久久久久久大奶| 国产 一区精品| 中文字幕色久视频| 欧美精品av麻豆av| 国产精品女同一区二区软件| videossex国产| 老司机影院成人| 国产精品久久久久久久久免| 18禁观看日本| 久久久国产欧美日韩av| 久久亚洲国产成人精品v| 亚洲成色77777| 最近最新中文字幕大全免费视频 | 女的被弄到高潮叫床怎么办| 欧美在线黄色| 亚洲男人天堂网一区| 人体艺术视频欧美日本| 国产精品国产三级专区第一集| 欧美精品一区二区免费开放| 日韩三级伦理在线观看| 亚洲欧洲日产国产| 亚洲色图综合在线观看| 2021少妇久久久久久久久久久| 热re99久久精品国产66热6| 婷婷成人精品国产| 亚洲av在线观看美女高潮| 国产精品香港三级国产av潘金莲 | 黄色怎么调成土黄色| 久久午夜福利片| 亚洲欧美日韩另类电影网站| 伊人久久国产一区二区| 一区二区日韩欧美中文字幕| www.av在线官网国产| 国产精品.久久久| 天堂中文最新版在线下载| 制服诱惑二区| 成人国语在线视频| 在线观看国产h片| 亚洲精品国产av成人精品| 啦啦啦啦在线视频资源| 日本欧美视频一区| 高清视频免费观看一区二区| 在线天堂最新版资源| 大香蕉久久成人网| 啦啦啦在线观看免费高清www| 卡戴珊不雅视频在线播放| 国产精品99久久99久久久不卡 | 亚洲精品在线美女| 亚洲第一av免费看| 亚洲男人天堂网一区| 日本免费在线观看一区| 国产精品无大码| 国产男人的电影天堂91| 国精品久久久久久国模美| 天堂俺去俺来也www色官网| 波多野结衣av一区二区av| 老汉色av国产亚洲站长工具| 成人毛片60女人毛片免费| 99香蕉大伊视频| 国产激情久久老熟女| 欧美日韩国产mv在线观看视频| 国产亚洲一区二区精品| 欧美av亚洲av综合av国产av | 国产在线免费精品| 欧美精品人与动牲交sv欧美| 久久这里只有精品19| 两个人看的免费小视频| www日本在线高清视频| 亚洲国产成人一精品久久久| 日韩一区二区视频免费看| 大陆偷拍与自拍| 日本午夜av视频| 欧美精品av麻豆av| 亚洲国产精品成人久久小说| 自线自在国产av| 成人午夜精彩视频在线观看| 99国产综合亚洲精品| 69精品国产乱码久久久| 亚洲精品国产色婷婷电影| 在现免费观看毛片| 自线自在国产av| 亚洲精品美女久久久久99蜜臀 | 性色av一级| 亚洲欧美色中文字幕在线| 人体艺术视频欧美日本| 成人国产av品久久久| 亚洲美女搞黄在线观看| 色吧在线观看| 日韩av免费高清视频| 欧美日韩视频高清一区二区三区二| 中文乱码字字幕精品一区二区三区| 亚洲欧美清纯卡通| 免费黄色在线免费观看| 亚洲国产毛片av蜜桃av| 亚洲经典国产精华液单| 在线观看免费日韩欧美大片| 97在线视频观看| 色婷婷久久久亚洲欧美| 九九爱精品视频在线观看| 国产一区二区三区综合在线观看| 青草久久国产| 丰满乱子伦码专区| 超碰成人久久| 极品少妇高潮喷水抽搐| 中文字幕人妻丝袜一区二区 | 亚洲av欧美aⅴ国产| 日韩大片免费观看网站| 日韩欧美精品免费久久| 久久久久久久大尺度免费视频| 人妻一区二区av| 国产极品天堂在线| 国产视频首页在线观看| 亚洲精品第二区| 赤兔流量卡办理| 交换朋友夫妻互换小说| 少妇人妻 视频| 日本爱情动作片www.在线观看| 最近的中文字幕免费完整| 午夜福利一区二区在线看| 中文字幕另类日韩欧美亚洲嫩草| 美女国产视频在线观看| 精品少妇久久久久久888优播| 亚洲五月色婷婷综合| 两个人免费观看高清视频| 日本-黄色视频高清免费观看| 中文精品一卡2卡3卡4更新| 欧美人与性动交α欧美软件| 老汉色∧v一级毛片| 亚洲国产精品999| 日韩av在线免费看完整版不卡| www.精华液| 97精品久久久久久久久久精品| 蜜桃在线观看..| av在线观看视频网站免费| 久久人人爽av亚洲精品天堂| 精品国产超薄肉色丝袜足j| 国产伦理片在线播放av一区| 国产黄频视频在线观看| 久久ye,这里只有精品| 国产老妇伦熟女老妇高清| 国产亚洲av片在线观看秒播厂| 亚洲欧美一区二区三区黑人 | 韩国高清视频一区二区三区| 考比视频在线观看| 婷婷色麻豆天堂久久| 午夜久久久在线观看| 秋霞在线观看毛片| 午夜福利,免费看| av在线观看视频网站免费| 国产综合精华液| 久久久久久人人人人人| 捣出白浆h1v1| 亚洲色图 男人天堂 中文字幕| 中国国产av一级| 婷婷色av中文字幕| 在线精品无人区一区二区三| 国产精品成人在线| 国产人伦9x9x在线观看 | 亚洲一码二码三码区别大吗| 777米奇影视久久| 免费日韩欧美在线观看| 青春草视频在线免费观看| 成人毛片60女人毛片免费| 国产精品三级大全| 久久久久精品性色| 国产淫语在线视频| 一级,二级,三级黄色视频| 黑人猛操日本美女一级片| 一边摸一边做爽爽视频免费| 亚洲第一青青草原| 街头女战士在线观看网站| 黄片播放在线免费| 热re99久久精品国产66热6| 久久久久精品人妻al黑| 日本午夜av视频| 久久精品国产综合久久久| 亚洲国产毛片av蜜桃av| 亚洲国产精品一区二区三区在线| 亚洲国产欧美在线一区| 男人爽女人下面视频在线观看| 两个人免费观看高清视频| 一级片免费观看大全| 亚洲欧洲精品一区二区精品久久久 | 亚洲成人av在线免费| 美女国产视频在线观看| 高清欧美精品videossex| 亚洲第一av免费看| 母亲3免费完整高清在线观看 | 三级国产精品片| 99re6热这里在线精品视频| 久久精品国产自在天天线| 一本大道久久a久久精品| 午夜免费观看性视频| 男女边摸边吃奶| 在线观看美女被高潮喷水网站| 熟妇人妻不卡中文字幕| 大陆偷拍与自拍| 精品午夜福利在线看| 最近的中文字幕免费完整| 18+在线观看网站| 国产精品一国产av| 黄色怎么调成土黄色| 欧美成人精品欧美一级黄| 欧美日韩综合久久久久久| 可以免费在线观看a视频的电影网站 | 亚洲美女视频黄频| 亚洲欧美清纯卡通| 少妇的逼水好多| 国产一区二区三区av在线| 卡戴珊不雅视频在线播放| 天天操日日干夜夜撸| av天堂久久9| 日韩制服丝袜自拍偷拍| 大陆偷拍与自拍| 亚洲欧洲日产国产| 久久精品久久久久久久性| 中文字幕人妻丝袜一区二区 | 最新中文字幕久久久久| 精品国产国语对白av| 男女无遮挡免费网站观看| 亚洲精品视频女| 午夜免费鲁丝| 免费黄网站久久成人精品| 久久99一区二区三区| 制服人妻中文乱码| 久久人人97超碰香蕉20202| 日本-黄色视频高清免费观看| 激情五月婷婷亚洲| 久久久久久久大尺度免费视频| 丝袜美腿诱惑在线| 夫妻午夜视频| 亚洲精品在线美女| 久久久久久久久久人人人人人人| 少妇的丰满在线观看| 少妇人妻精品综合一区二区| 免费大片黄手机在线观看| 亚洲av男天堂| 不卡av一区二区三区| kizo精华| 又大又黄又爽视频免费| 亚洲欧美清纯卡通| 精品一品国产午夜福利视频| 哪个播放器可以免费观看大片| 精品卡一卡二卡四卡免费| 一级爰片在线观看| 欧美亚洲 丝袜 人妻 在线| 亚洲,一卡二卡三卡| 欧美精品高潮呻吟av久久| 天天操日日干夜夜撸| 久久97久久精品| 一个人免费看片子| 美女大奶头黄色视频| 日本爱情动作片www.在线观看| 国产精品麻豆人妻色哟哟久久| 大香蕉久久成人网| 男人爽女人下面视频在线观看| 久久鲁丝午夜福利片| 精品午夜福利在线看| 婷婷色av中文字幕| 肉色欧美久久久久久久蜜桃| 丰满乱子伦码专区| 伊人久久大香线蕉亚洲五| 男女免费视频国产| 国精品久久久久久国模美| 国产精品香港三级国产av潘金莲 | 女人高潮潮喷娇喘18禁视频| 麻豆av在线久日| 一二三四中文在线观看免费高清| 成年动漫av网址| 国产国语露脸激情在线看| 久久久久网色| 看免费成人av毛片| 久久这里只有精品19| 亚洲 欧美一区二区三区| 青春草视频在线免费观看| 肉色欧美久久久久久久蜜桃| 亚洲美女黄色视频免费看| 欧美 亚洲 国产 日韩一| 久久鲁丝午夜福利片| 国产男女内射视频| 熟妇人妻不卡中文字幕| 国产精品 国内视频| 91精品伊人久久大香线蕉| 亚洲国产看品久久| 观看av在线不卡| 人妻少妇偷人精品九色| 免费大片黄手机在线观看| 国产成人精品婷婷| 国产成人欧美| 老鸭窝网址在线观看| 亚洲国产欧美网| 国产精品不卡视频一区二区| 精品久久蜜臀av无| 女人被躁到高潮嗷嗷叫费观| 亚洲精品日韩在线中文字幕| 美女福利国产在线| 蜜桃在线观看..| 亚洲精品乱久久久久久| 成人二区视频| 精品福利永久在线观看| 精品少妇内射三级| 亚洲男人天堂网一区| 有码 亚洲区| 极品少妇高潮喷水抽搐| 亚洲激情五月婷婷啪啪| 亚洲国产最新在线播放| 亚洲在久久综合| 精品午夜福利在线看| 少妇 在线观看| 夫妻性生交免费视频一级片| 男女边吃奶边做爰视频| 久久久久久人妻| 久久99精品国语久久久| 日韩欧美精品免费久久| 亚洲男人天堂网一区| 国产精品免费大片| 成年av动漫网址| 欧美精品一区二区免费开放| 美女国产高潮福利片在线看| 成年人免费黄色播放视频| 国产精品三级大全| 免费黄网站久久成人精品| 这个男人来自地球电影免费观看 | 美国免费a级毛片| 老汉色av国产亚洲站长工具| 免费av中文字幕在线| 美女午夜性视频免费| 精品一区二区免费观看| 性色av一级| 亚洲一区二区三区欧美精品| 中文天堂在线官网| 免费在线观看黄色视频的| 精品国产超薄肉色丝袜足j| 亚洲av欧美aⅴ国产| 亚洲,一卡二卡三卡| 熟女av电影| 国产男女内射视频| 在线观看人妻少妇| 欧美bdsm另类| 亚洲三区欧美一区| 精品人妻偷拍中文字幕| 国产在视频线精品| 亚洲欧美成人精品一区二区| 一级毛片 在线播放| 天天躁夜夜躁狠狠躁躁| 街头女战士在线观看网站| 水蜜桃什么品种好| 香蕉丝袜av| 午夜日韩欧美国产| 亚洲精品美女久久av网站| 成人漫画全彩无遮挡| 秋霞伦理黄片| 中文字幕色久视频| 极品少妇高潮喷水抽搐| 国产麻豆69| 纯流量卡能插随身wifi吗| 久久99蜜桃精品久久| 男人爽女人下面视频在线观看| 熟女电影av网| 一二三四中文在线观看免费高清| 人人妻人人爽人人添夜夜欢视频| www.精华液| 女人高潮潮喷娇喘18禁视频| 欧美日韩一级在线毛片| 国产亚洲一区二区精品| 日韩人妻精品一区2区三区| 亚洲四区av| 丝袜美腿诱惑在线| 好男人视频免费观看在线| 国产成人精品福利久久| 久久人人爽av亚洲精品天堂| 日韩欧美一区视频在线观看| 国产精品人妻久久久影院| 精品亚洲成a人片在线观看| 国产麻豆69| 久久精品国产亚洲av天美| 亚洲熟女精品中文字幕| 久久人人爽人人片av| 久久久久久久久久久久大奶| 亚洲精品日本国产第一区| 免费女性裸体啪啪无遮挡网站| 久久精品国产综合久久久| 亚洲成色77777| 美女福利国产在线| www.av在线官网国产| 亚洲色图综合在线观看| 人人妻人人爽人人添夜夜欢视频| 多毛熟女@视频| 80岁老熟妇乱子伦牲交| 国产精品三级大全| 男人添女人高潮全过程视频| 日韩中文字幕视频在线看片| 老女人水多毛片| 日日撸夜夜添| 日日啪夜夜爽| 少妇人妻久久综合中文| av线在线观看网站| 久久精品久久久久久噜噜老黄| 欧美成人精品欧美一级黄| 观看av在线不卡| 亚洲国产成人一精品久久久| 成人黄色视频免费在线看| 韩国高清视频一区二区三区| 亚洲人成电影观看| 久久精品夜色国产| 亚洲精品,欧美精品| 免费黄色在线免费观看| 婷婷色麻豆天堂久久| 人妻系列 视频| 免费人妻精品一区二区三区视频| 三级国产精品片| 国产精品成人在线| 久久精品久久久久久久性| 国产精品偷伦视频观看了| 性色av一级| 国产精品一国产av| 晚上一个人看的免费电影| 欧美日韩精品成人综合77777| 啦啦啦啦在线视频资源| 在线观看免费日韩欧美大片| 国产无遮挡羞羞视频在线观看| 制服诱惑二区| 黄色 视频免费看| 日本午夜av视频| 999久久久国产精品视频| 日本wwww免费看| 高清在线视频一区二区三区| 日韩制服骚丝袜av| 久久精品国产a三级三级三级| 极品人妻少妇av视频| 精品人妻一区二区三区麻豆| 爱豆传媒免费全集在线观看| 国产亚洲精品第一综合不卡| 最近最新中文字幕免费大全7| 少妇精品久久久久久久| 啦啦啦在线观看免费高清www| 日韩电影二区| 亚洲欧洲日产国产| 热99久久久久精品小说推荐| 国产精品女同一区二区软件| 亚洲久久久国产精品| 啦啦啦在线免费观看视频4| 亚洲久久久国产精品| 久久99热这里只频精品6学生| 亚洲成av片中文字幕在线观看 | 最近的中文字幕免费完整| 麻豆av在线久日| 国产精品国产三级国产专区5o| 男人操女人黄网站| 亚洲国产成人一精品久久久| 日韩伦理黄色片| 丁香六月天网| 大片电影免费在线观看免费| av视频免费观看在线观看| 在线观看国产h片| 欧美人与善性xxx| 91在线精品国自产拍蜜月| videosex国产| 亚洲精品国产av成人精品| 永久网站在线| a级毛片黄视频| 这个男人来自地球电影免费观看 | 婷婷成人精品国产| 又大又黄又爽视频免费| av线在线观看网站| 亚洲精品乱久久久久久| 国产色婷婷99| 亚洲欧洲日产国产| 熟女av电影| 卡戴珊不雅视频在线播放| 国产男女超爽视频在线观看| 春色校园在线视频观看| 在线看a的网站| 曰老女人黄片| 在线观看免费日韩欧美大片| 成人二区视频| 色婷婷av一区二区三区视频| 午夜影院在线不卡| 欧美精品av麻豆av| 精品少妇黑人巨大在线播放| 久久97久久精品| 亚洲人成77777在线视频| 亚洲四区av| 超色免费av| av线在线观看网站| 亚洲国产欧美在线一区| 18+在线观看网站| 久久精品久久精品一区二区三区|