• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Air–Sea Coupling Enhances the East Asian Winter Climate Response to the Atlantic Multidecadal Oscillation

    2015-06-09 21:24:03ZHOUXiaominLIShuanglinLUOFeifeiGAOYongqiandToreFUREVIK
    Advances in Atmospheric Sciences 2015年12期

    ZHOU Xiaomin,LI Shuanglin,LUO Feifei,GAO Yongqi,and Tore FUREVIK

    1Nansen-Zhu International Research Centre and Climate Change Research Center,Institute of Atmospheric Physics, Chinese Academy of Sciences,Beijing 100029

    2Joint Center for Global Change Studies,Beijing 100875

    3University of Chinese Academy of Sciences,Beijing 100049

    4Geophysical Institute and Bjerknes Center for Climate Research,University of Bergen,Bergen,Norway

    Air–Sea Coupling Enhances the East Asian Winter Climate Response to the Atlantic Multidecadal Oscillation

    ZHOU Xiaomin1,2,3,LI Shuanglin?1,2,LUO Feifei1,2,GAO Yongqi1,and Tore FUREVIK4

    1Nansen-Zhu International Research Centre and Climate Change Research Center,Institute of Atmospheric Physics, Chinese Academy of Sciences,Beijing 100029

    2Joint Center for Global Change Studies,Beijing 100875

    3University of Chinese Academy of Sciences,Beijing 100049

    4Geophysical Institute and Bjerknes Center for Climate Research,University of Bergen,Bergen,Norway

    A simple air–sea coupled model,the atmospheric general circulation model(AGCM)of the National Centers for Environmental Prediction coupled to a mixed-layer slab ocean model,is employed to investigate the impact of air–sea coupling on the signals of the Atlantic Multidecadal Oscillation(AMO).A regional coupling strategy is applied,in which coupling is switched off in the extratropical North Atlantic Ocean but switched on in the open oceans elsewhere.The coupled model is forced with warm-phase AMO SST anomalies,and the modeled responses are compared with those from parallel uncoupled AGCM experiments with the same SST forcing.The results suggest that the regionally coupled responses not only resemble the AGCM simulation,but also have a stronger intensity.In comparison,the coupled responses bear greater similarity to the observational composite anomaly.Thus,air–sea coupling enhances the responses of the East Asian winter climate to the AMO.To determine the mechanism responsible for the coupling amplif i cation,an additional set of AGCM experiments, forced with the AMO-induced tropical SST anomalies,is conducted.The SST anomalies are extracted from the simulated AMO-induced SST response in the regionally coupled model.The results suggest that the SST anomalies contribute to the coupling amplif i cation.Thus,tropical air–sea coupling feedback tends to enhance the responses of the East Asian winter climate to the AMO.

    amplif i cation,Atlantic Multidecadal Oscillation,air–sea coupling feedback,East Asian winter climate

    1.Introduction

    As a type of internal variability of the natural climate system linked to the thermohaline circulation(Delworth and Mann,2000;Knight et al.,2006),the leading decadal variability mode of the Atlantic basin-scale SST,the Atlantic Multidecadal Oscillation(AMO)has been found to have signifi cant impact on global or regional climate(Kerr,2000). It is associated with North American and European summer climate(Sutton and Hodson,2005,2007),Atlantic hurricanes (Goldenberg et al.,2001;McCabe et al.,2004),African Sahel rainfall(Zhang and Delworth,2006),and even Asian summer rainfall(Goswami et al.,2006;Lu et al.,2006;Li et al.,2008; Wang et al.,2009;Luo et al.,2011).

    Whether and how the AMO inf l uences East Asian winter climate is the key to understanding the contribution rate of internal natural variability to the substantial warming during recent decades,since the warming is strongest in winter and the AMO accounts for the largest fraction of observed winter surface air temperature Luo and Li(2014). It is diff icult to address this issue by observational analyses alone,due to the insuff i cient lengths of instrumental records.Thus,sensitivity experiments with atmospheric general circulation models(AGCMs)are often used.For example,Sutton and Hodson(2005)used an AGCM to study the AMO’s impact on Northern Hemispheric climate.Li and Bates(2007)(LB07 hereafter)conducted experiments with three AGCMs and found that positive-phase AMO causes warmer winters in East Asia.Wang et al.(2009)extended LB07 and showed a similar effect in the three other seasons. Although the simulated East Asian winter responses in these AGCMs are qualitatively consistent with the observed composite anomaly,further scrutiny suggests evident differences. For example,in observations,the strongest surface air temperature(Ts)anomaly is located in central China(~100?E),while the strongestTsresponse in models is located in East China[~115?E.cf.Figs.2a and 4e with Figs.9a,e and i in Wang et al.(2009)].Also,the simulated warming amplitude in China is about 0.35?C[a response of 0.7?C to the doubled AMO SST anomaly(SSTA);Fig.9 in Wang et al.(2009)], which is about one half of the observedTsanomaly linked to the AMO warm phase[~0.6?C;see Fig.4 in Wang et al. (2009)].What causes the gap between AGCM results and the observed anomalies is unclear.One candidate factor may be the exclusion in AGCMs of air–sea coupling processes, although other internal factors of the climate system like the Arctic Oscillation(Gong et al.,2001)and the Pacific Decadal Oscillation(Yu et al.,2014),or external forcing like volcanic eruptions(Wang et al.,2013b),may also play a role.

    The air–sea interaction within the adjacent oceans of the Asian–Australian–Pacific monsoonal region(the western subtropical Pacific and the tropical Indian Ocean)is of importance in modulating the monsoonal variability(Wang et al.,2005;Wu et al.,2006).AGCMs or coupled models failing to capture realistic air–sea interaction tend to yield a weakened or distorted monsoon response to forcing.Thus, air–sea coupled models capable of capturing the observational air–sea variability may be more useful for simulating the Asian climate responses to the AMO.This consideration is the primary motivation behind the present study.Here, we use a simple air–sea coupled model,the AGCM of the National Centers for Environmental Prediction(NCEP)coupled to a mixed-layer slab ocean model,to re-examine the AMO’s impact.It is found that the coupled model reproduces the observed intrinsic variability better than the AGCM,although the latter exhibits high skill.We emphasize the results from the coupled model,since the results from the uncoupled model and observations have been documented in detail by LB07 and Wang et al.(2009).

    The paper is organized as follows.Section 2 describes the models and the experimental design.Section 3 analyzes the model’s intrinsic variability and reports the modeled responses in the coupled model.The results are compared with those from the parallel AGCM experiments,and also with observational composites.Because the coupled responses are evidently stronger than the uncoupled AGCM simulation, an additional set of diagnostic AGCM experiments are conducted to understand the reasons for the coupling amplif i cation,the results of which are presented in section 4.Finally, a summary and discussion is provided in section 5.

    2.Models and experimental design

    2.1.Air–sea coupled model and experiments

    The air–sea coupled model is an AGCM coupled to a mixed-layer slab ocean model with a f i xed 50 m mixed-layer depth based on the flux-correction scheme(Peng et al.,2005; Li et al.,2006).A regional coupling scheme is adopted in which coupling is switched off within the extratropical North Atlantic Ocean but switched on in the open oceans elsewhere.In other words,air–sea coupling is permitted only in the open oceans beyond the extratropical North Atlantic.The aim of this coupling strategy is to isolate the impact of the atmosphere–ocean interaction,outside the North Atlantic,on the AMO-forced direct atmospheric signals.A similar coupling strategy has been used in previous studies(Lu et al., 2006;Shukla and Kinter III,2014).The AGCM,consisting of the atmospheric component of the coupled model,is an earlier version of the NCEP’s Global Forecast System for seasonal prediction.It is confi gured with 28 vertical levels and has a horizontal resolution corresponding to a T42 spectral truncation(Peng et al.,2002,2003).

    We perform two sets of coupled ensembles,each with 60 members.Ensemble one,referred to as the“control ensemble”,is formed from the runs forced with the climatological SST seasonal cycle in the North Atlantic.Ensemble two,referred to as the“AMO ensemble”,is from the runs with the warm-phase AMO SST anomaly pattern added on to the SST climatology.The AMO SST anomaly pattern is extracted from the difference of the averaged annual SST during the warm AMO phase(1935–55)minus that during the cold phase(1970–90)in the North Atlantic basin(0?–60?N,75?–7.5?W)(Fig.1).As in LB07,the Kaplan Extended SST dataset(version 2)from 1870–2014 is used to obtain the AMO SSTA.

    All members in the above ensembles start from different initial fields and are integrated for 12 months from September to the following August.The 60 initial fields are from the NCEP–(NCAR:National Center for Atmospheric Research) reanalysis of 0000 UTC,1–3 September 1980–99(Kalnay et al.,1996).Thus,a total of 60 model years are available for analysisin each ensemble.Forone single variable,likeTs,the modeled response is expressed as the difference of the winter mean in the AMO ensemble minus that in the control ensemble.The Student’st-test is used to check the significance of the response.

    2.2.Parallel AGCM experiments

    The coupled simulation results from the above experiments,including both the intrinsic variability and the SST-forced response,are compared with corresponding parallel uncoupled AGCM runs.Here,the AGCM runs are adapted from Wang et al.(2009).The response in the AGCM is determined in the same way as described above.Since the only difference of the coupled model ensembles relative to the uncoupled is the utilization of coupling,such a comparison can isolate the air–sea coupling impact on the AMO-forced direct signals.

    3.Results

    3.1.Modeled intrinsic variability

    Previous studies suggest that a model’s intrinsic variability modulates atmospheric responses to forcing.Whether a model realistically reproduces the observed atmospheric intrinsic variability is a vitalfactorforthe reliability ofmodeled results.Hence,we first examine and compare the models’intrinsic variabilities in SST and one large-scale atmospheric circulation variable,500 hPa geopotentialheight(Z500),with the observed.Here,the observational monthly SST data are from the Met Off i ce Hadley Centre(HadISST;Rayner et al., 2003),and the observational monthly Z500 data are from the NCEP/NCAR reanalysis(Kalnay et al.,1996).

    Figure 2 compares the standard deviation of winter (December–January–February,DJF)averaged monthly SST in the regionally coupled model’s control runs with the observed.Overall,the regionally coupled model captures the general features of the observed SST variability north of 10?N.This can be seen clearly from the two maximum centers situated in the Kuroshio extension of the North Pacific and the Gulf Stream extension of the western North Atlantic, although the model’s maxima are slightly stronger and the model overstates the maximum in the northeastern Pacific and shifts it to the coast of Alaska.

    Figure 3 displays the standard deviation of winteraveraged monthly Z500 and its leading EOF modes.First, both the models reproduce the observed standard deviation generally well,including the two maxima in the North Atlantic and the North Pacific,respectively.In comparison,the value in the regionally coupled model is relatively larger and thus closer to the observed than the uncoupled model.Second,the simulated leading EOFs of Z500 in both the models resemble the observed well,which can be seen from their substantial projection onto the Northern Hemisphere annular pattern.In comparison,the explained variance rate in the coupled model(~30%)is closerto the observed(~30%)than the uncoupled model(~33%).Thus,both the uncoupled and regionally coupled model reproduces the observed variability reasonably,and the regionally coupled model is relatively better than the uncoupled.

    3.2.Coupled response and its comparison with the uncoupled and the observational composite

    3.2.1.Tsand precipitation

    Figures 4a and b show the responses ofTsand precipitation to the AMO SSTA.There are significantly warmerTsresponses over the whole of East Asia,especially mainland China,with an amplitude of about 1?C.In comparison,theTsresponse in east China is larger than that in western China. The warmer response in East Asia extends southwestward to India and eastward to the adjacent seas of the western North Pacific and Japan(Fig.4a).

    By contrast,the precipitation responses in East Asia are relatively weaker(Fig.4b).There is precipitation intensif i cation in North China along with suppression in South China. The suppression signal is signifi cant in southwestern China and the northern Indo-China Peninsula.Besides,there is sub-stantial suppression over the western North Pacific and the tropical Indian Ocean,possibly linked to the AMO-induced SST responses there,which is discussed later.

    In the uncoupled AGCM simulation(Fig.4c),a significantly warmer response is seen in East China and the Mongolian region,which bears an overall resemblance to the above coupled results.However,in comparison with the coupled model,the difference is still clear.First,the area with a warmerTsresponse does not extend as widely as the coupled result(cf.Figs.4a and c).Second,the response amplitude is weaker in the AGCM.The weaker response is clearly seen from the averagedTsvalue over the region(20?–50?N,100?–120?E).The value in the uncoupled model is 0.53?C,while it is 0.95?C in the coupled model—the latter almost double the former.Thissuggeststhatcoupling ampli fi estheTsresponses to the AMO by a factor close to two.

    Consistent with theTsresponse,the precipitation response pattern in the uncoupled model bears an overall resemblance to the coupled model,including the south-driernorth-wetter dipolar structure in East China and the intensifi cation in the southern Tibetan Plateau(Figs.4b and d).In comparison,the response in the uncoupled model is weaker. The domain size with intensi fi cation in East China shrinks obviously,and the response strength in the tropical IndianOcean weakens greatly.The weaker precipitation response in the AGCM again suggests that the coupling amplif i es the atmospheric responses to the AMO.Despite an overall resemblance over the Asian continent,a substantial difference is seen over the open oceanic regions.This illustrates the importance of air–sea coupling in shaping the AMO’s signals there.

    For further analysis,the modeled results are compared with observational composites.Slightly different from LB07, in which the observational composite is derived from the differences of the AMO warm period(1935/36 to 1955/56)minus the cold period(1970/71 to 1990/91),here,one more recent warm period(1995/96 to 2012/13)is additionally used. From Fig.5,the compositeTsor precipitation in this recent warm period is consistent with the earlier warm period.For example,Tsin both the warm periods has a large-scale southwarmer-north-colder dipolar pattern.This suggests that the AMO’s signals in the observation may be robust.

    From the comparison of the modeledTsresponses with the observational composites(cf.Figs.4a and c with Figs.5a and d),an overall resemblance to each other is apparent.In comparison,theTsresponse in the regionally coupled model is closer to the observation,including its spatial pattern and amplitude.From the comparison of precipitation(cf.Figs.4b and d with Figs.5b and e),the dipolar pattern in southeastern China seen in both the coupled and uncoupled responses also emerges in the observational composites,albeit with a southward shift of its nodal line.Thus,the more evident responses in East China in the regionally coupled model are closer to the observation,and are perhaps more realistic relative to the uncoupled model.

    3.2.2.Large-scale atmospheric circulation

    The large-scale atmospheric circulation responses in the regionally coupled and uncoupled models are analyzed in this subsection.Figure 6 compares the Z500 and 1000 hPa geopotential height(Z1000)responses.The latter is used to ref l ect surface pressure characteristics.In the regionally coupled model,there is a zonally extended positive Z500 response across the subtropics,with the maxima located over the eastern subtropical North Atlantic and eastern Eurasia (Fig.5a).The latter weakens the climatological East Asian grand trough—an essential component of the East Asian winter monsoon system.Besides,there is a substantial negative Z1000 response over northern Eurasia(Fig.5b),which weakens the Siberia/Mongolian cold high—another core member of the winter monsoon system.Thus,the atmospheric circulation responses can explain the weakened East Asian winter monsoon and warmerTsin China.

    The uncoupled response exhibits an overall resemblance to the coupled response.For example,the Z500 response also projects onto a positive-phase North Atlantic Oscillation(NAO).In spite of the similarity,certain differences are still identif i able.The uncoupled Z500 response has a smaller projection coeff i cient onto the NAO.Although the positive height responses over Eurasia are evident,their maximumshifts to the west,away from the climatological East Asian grand trough(Fig.6c).Similar to Z500,there are negative Z1000 responses extending from the northeastern Atlantic to northern Eurasia,albeit the Eurasian responses are less signifi cant(Fig.6d).

    The modeled circulation responses are also compared with observationalcomposites.Figure 5(lowerpanels)shows the observational sea level pressure(SLP)anomaly composite between the aforementioned two AMO periods.There are signifi cant negative SLP anomalies extending from the northeastern North Atlantic to midlatitudinal East Asia in both the composites.This agreement suggests robustness in the observational signals.Besides,these negative SLP anomalies are accompanied by warmerTs.This connection appears physically reasonable,because the negative SLP anomalies over the Asian continent weaken the winter Mongolian cold high and cause warmerTsin China.Comparing the modeled and observed Z1000(Fig.6)reveals similarities;however, the coupled response is relatively closer to the observational composites.

    Figures 7a and c compare the 850 hPa wind responses.In the regionally coupled model,a positive AMO SSTA leads to a substantial westerly response over the tropical western Pacific,but an easterly response in the western North Pacific(Fig.7a).Over coastal East Asia,it causes an evident southerly response in East China,which corresponds to a weakened winter monsoon.On a larger scale,there is an anomalous cyclone over the subtropical western Pacific along with an anticyclone in the northern Pacific.The easterly in the northern f l ank of the cyclone transports more moisture to the west,enhancing precipitation over eastern coastal China.

    The above circulation response is clearer in the 850 hPa stream function(Fig.7b).In the subtropical western Pacific, there is an anomalous cyclone corresponding to the above cyclonic wind anomalies.In the north,there is an anomalous anticyclone that extends from the Sea of Japan to the northern North Pacific.Such an anticyclonic anomaly along coastal northern East Asia may lead to westward extension of the climatological western Pacific subtropical anticyclone (Lu,2001).This is conducive to a weakened East Asian winter monsoon and contributes to more precipitation in eastern coastal China(Fig.4b).

    In the AGCM,the easterly response over the tropical western Pacific expands toward the southeastern coastal area of Asia(Fig.7c),but is much weaker in comparison with the coupled response.The southerly response over East China is less clear.Corresponding to the wind response,the stream function response over the western Pacific weakens and becomes less signifi cant(Fig.7d).The anomalous anticyclonic center along coastal northern East Asia disappears,and the cyclonic anomaly over the western North Pacific shrinks.All the differences are in agreement with the weakened response in the uncoupled model.

    4.AGCM-simulated responses to the AMO-induced tropical SSTA:impact of air–sea interaction

    The above response difference between the regionally coupled and uncoupled simulations should originate from the air–sea feedback,because the only difference between the simulations is the switching off of coupling in the uncoupled experiment.The surface flux response can provide clues as to the existence of such processes.Figures 8a and b compare the simulated AMO-induced SST response with the observed SST composite anomaly.There are large-scale warmer SST responses in the central North Pacific meridionally extending to the central tropical-southern Pacific(Fig. 8a).The warmer SST response is zonally sandwiched by two large cooling centers:one in the subtropical western Pacific expanding to the northern Indian Ocean,and the other in the tropical eastern Pacific extending from the northeastern to southeastern Pacific.In general,the basin-scale SST response pattern resembles the observational composite SST anomalies(cf.Figs.8a and b).

    Figure 8c displays the response of surface heat flux, which may provide indications about the formation of the above SST responses.First,the heat flux responses over the northern Atlantic are upward(positive),which is understandable because the AMO SSTA is prescribed there and provides an inf i nite heat source to the atmosphere above.The downward flux over the western North Pacific suggests that the warmer SST response therein is forced by the atmosphere above.Corresponding to their individual SST responses in the western and central tropical Pacific,there are overall opposite-sign heat fluxes,indicating the existence of atmospheric forcing.Thus,the warm AMO results in these Indo-Pacific SST responses through atmosphere–ocean interaction processes.This is in agreement with Dong et al.(2006),who revealed the criticalrole ofair–sea coupling feedback in caus-ing the remote response of wind and SST to a warm North Atlantic SST pattern.

    Considering the primary importance of the tropical SST in inducing the atmospheric responses,we investigate the role of AMO-induced tropical Indo-Pacific SST anomalies in forcing the coupled responses.We conduct an additional set of ensemble runs in the AGCM with the AMO-induced SST forcing.Similar to the AGCM experiments,the monthly SSTresponses over the tropical Indo-Pacific(30?S–30?N)(Fig.9) are overlapped onto the seasonally climatological SST cycle. With the 20 differentinitialfields from 1 September1980–99, a total of 20 runs are conducted.

    Figure 10 shows the AGCM-simulatedTsand precipitation responses.TheTsresponse pattern exhibits warming in much of China,which is consistentoverallwith the difference of the regionally coupled run minus the uncoupled run(cf. Figs.10a and c).This is further seen from their substantial spatial correlation(~0.49).In addition toTs,the enhanced precipitation response over northern East China is also consistent with the difference of the model responses(cf.Figs. 10b and d),with a spatial correlation coeff i cient of 0.55.This is even clearer from the rainfall suppression in the southern coastal area of China and the Indian–western Pacific Ocean.

    For the atmospheric circulation,Z500 possesses wave train–like characteristics over the northern Atlantic(Fig. 11a),with a negative response extending to the polar region. Over the East Asian coastal area,there are positive responses, which weaken the climatological East Asian grand trough. The Z1000 response shows a similar wave-train structure over the Atlantic,along with negative anomalies over Eurasia.These responses also resemble the difference between the coupled and uncoupled responses.

    From the 850 hPa wind and stream function(Fig.12), over coastal East Asia and the western Pacific,the SSTA leads to a response pattern similar to the modeled response difference to the AMO in the regionally coupled and uncoupled models.For example,there is a southerly response from the South China Sea to East China(Fig.12a),corresponding to the southerly anomaly in the difference(Fig.12c).In response,the easterly over the subtropical western Pacific (~30?N)and the westerly in the tropical western Pacific(0?–5?N)also have counterparts in the difference.This similarity is even clearer in the stream function.There is a signifi cant cyclone in the subtropical central-western Pacific along withan anticyclone in the western boundary seas,which is apparent in both Figs.12b and d.Thus,air–sea coupling feedback may indeed have contributed to the amplif i ed response in the coupled model.

    5.Summary and discussion

    A simple air–sea coupled model,the AGCM of the NCEP coupled to a mixed-layer slab ocean model,is employed to investigate the impact of air–sea coupling on the signals of the AMO.A regional coupling strategy is applied,in which coupling is switched off in the extratropical North Atlantic Ocean but switched on in the open oceans elsewhere.Two sets of ensemble experiments are conducted by forcing the model with the climatological SST seasonal cycle or with the warm-phase AMO SST anomalies overlapping onto the climatological SST seasonal cycle.Parallel uncoupled AGCM experiments conducted previously are adapted for comparison.

    First,the model’s atmospheric intrinsic variability is compared with the observed,and the results suggest that the both the coupled and uncoupled models can reproduce the observed atmospheric intrinsic variability well.In comparison,the coupled model performs slightly better than the uncoupled model.Then,the modeled responses in the regionally coupled model are compared with those in the parallel AGCM.The resultssuggestthatthe regionally coupled model not only yields qualitatively similar atmospheric responses to the uncoupled model,butalso enhances the responses’amplitude.A comparison with the observational composites from two different AMO warm periods suggests that the regionally coupled response is closer to the observation.This implies that the air–sea interaction amplif i es the pure atmospheric responses to the AMO.The amplif i cation may be realistic,considering the improved performance of the coupled model in simulating the observed atmospheric intrinsic variability.The amplif i cation is also verif i ed by an additional set of AGCM experiments,in which the AGCM is forced with the AMO-induced SSTA over the tropical Indian–Pacific Ocean.Thus the air–sea coupling feedback over the tropical ocean may play the key role in enhancing the atmospheric response to the AMO.

    Previous multiple-AGCM studies have shown that the AMO SSTA induces a 0.35?CTswarming response in China [0.7?C response to the double enhanced AMO;Fig.9 in Wang et al.(2009)].Such a magnitude is about one half of the observedTsanomaly linked to the AMO warm phase in instrumental records[~0.6?C;see Fig.4 in Wang et al. (2009)].A recent observational and modeling study demonstrated that the AMO can explain most of the observedTsdecadal variance in the past century(Luo and Li,2014).This illustrates that previous AGCM experiments may have underestimated theTsresponse in the actual climate system.The factthatair–sea coupling intensif i esthe atmospheric response provides one possible explanation for the gap between the observational composite and the AGCM simulated responses. These results further confi rm the substantial inf l uence of the AMO on East Asia,as suggested by instrumental records and recent proxy data studies(LB07;Wang et al.,2013a,2014).

    In previous studies(LB07;Wang et al.,2009),a mechanism was proposed to explain the AMO’s impact on East Asia.The warm-phase AMO directly heats the atmosphere above.The heat received by the overlying atmosphere is advected and transported downstream by midlatitudinal westerly f l ow.The AMO-induced heating also results in an atmospheric dynamical response,which may act as a Rossby Wave source to activate energy to propagate downstream. Both these two inf l uences heat the atmosphere downstream, which will result in a warmer mid-upper tropospheric atmosphere over Eurasia,causing a weakened land–sea thermal contrast in winter and thus a weakened East Asian winter monsoon.Because only atmospheric thermodynamical processes are involved,this mechanism may be referred to as an“atmospheric bridge”.In the present study,another mechanism,which emphasizes the role of air–sea coupling,and can thus be referred to as an“air–sea coupling bridge”,is revealed.It provides a supplemental explanation of the AMO’s impact on East Asia.

    Since the coupled model used here is a simple one based on the flux-correction scheme,implicitly,it only includes a fraction of the oceanic dynamical processes.Previous studies have shown that ocean dynamics also play a role in extending the AMO’s climate impact.For example, Zhang and Delworth(2005)used the global coupled ocean–atmosphere model of the Geophysical Fluid Dynamics Laboratory(CM2.0)and found that the AMO-related Atlantic thermohaline circulation can cause a southward shift of the Intertropical Convergence Zone over the Atlantic and Pacific, an El Ni~no–like pattern in the southeastern tropical Pacific, and weakened Indian and Asian summer monsoons.Wu et al.(2005),Dong et al.(2006)and Chen et al.(2010)utilized a coupled general circulation model and revealed that anomalous Atlantic SSTs can modulate ENSO.These studies illustrate that ocean dynamics may indeed inf l uence the AMO’s signals in the East Asian winter climate.The relative importance of the air–sea flux exchange and detailed oceanic dynamics in enhancing the AMO’s signals is,however,unclear and requires further study.

    Acknowledgements.This study was jointly supported by the strategic project of the Chinese Academy of Sciences(Grant No. XDA11010406)and the National Natural Science Foundation of China(Grant Nos.41375085 and 41421004).

    REFERENCES

    Allan,R.,and T.Ansell,2006:A new globally complete monthly historical gridded mean sea level pressure dataset(Had-SLP2),1850–2004.J.Climate,19,5816–5842,doi:10.1175/ JCLI3937.1.

    Chen,W.,B.W.Dong,and R.Y.Lu,2010:Impact of the Atlantic Ocean on the multidecadal f l uctuation of El Ni~no-Southern Oscillation-South Asian monsoon relationship in a coupledgeneral circulation model.J.Geophys.Res.,115,D17109, doi:10.1029/2009JD013596.

    Delworth,T.L.,and M.E.Mann,2000:Observed and simulated multidecadal variability in the Northern Hemisphere.Climate Dyn.,16,661–676.

    Dong,B.W.,R.T.Sutton,and A.A.Scaife,2006:Multidecadal modulation of El Ni~no-Southern Oscillation(ENSO)variance by Atlantic Ocean sea surface temperatures.Geophys.Res. Lett.,33,L08705,doi:10.1029/2006GL025766.

    Enf i eld,D.B.,A.M.Mestas-Nu~nez,and P.J.Trimble,2001:The Atlantic Multidecadal Oscillation and its relation to rainfall and river f l ows in the continental U.S.Geophys.Res.Lett., 28(10),2077–2080.

    Goldenberg,S.B.,C.W.Landsea,A.M.Mestas-Nunez,and W. M.Gray,2001:The recent increase in Atlantic hurricane activity:Causes and implications.Science,293,474–479,doi: 10.1126/science.1060040.

    Gong,D.Y.,S.W.Wang,and J.H.Zhu,2001:East Asian winter monsoon and Arctic Oscillation.Geophys.Res.Lett.,28(10), 2073–2076.

    Goswami,B.N.,M.S.Madhusoodanan,C.P.Neema,and D. Sengupta,2006:A physical mechanism for North Atlantic SST inf l uence on the Indian summer monsoon.Geophys.Res. Lett.,33,L02706,doi:10.1029/2005GL024803.

    Kalnay,E.,and Coauthors,1996:The NCEP/NCAR 40-year reanalysis project.Bull.Amer.Meteor.Soc.,77,437–471.

    Kerr,R.A.,2000:A north Atlantic climate pacemaker for the centuries.Science,288(5473),1984–1985.

    Knight,J.R.,C.K.Folland,and A.A.Scaife,2006:Climate impacts of the Atlantic Multidecadal Oscillation.Geophys.Res. Lett.,33,L17706,doi:10.1029/2006GL026242.

    Li,S.L.,M.P.Hoerling,and S.L.Peng,2006:Coupled oceanatmosphere response to Indian Ocean warmth.Geophys.Res. Lett.,33(7),L07713,doi:10.1029/2005GL025558.

    Li,S.L.,and G.T.Bates,2007:Inf l uence of the Atlantic Multidecadal Oscillation on the winter climate of East China.Adv. Atmos.Sci.,24(1),126–135,doi:10.1007/s00376-007-0126-6.

    Li,S.L.,J.Perlwitz,X.W.Quan,and M.P.Hoerling,2008:Modelling the inf l uence of North Atlantic multidecadal warmth on the Indian summer rainfall.Geophys.Res.Lett.,35,L05804, doi:10.1029/2007GL032901.

    Lu,R.Y.,2001:Interannual variability of the summertime North Pacific subtropical high and its relation to atmospheric convection over the warm pool.J.Meteor.Soc.Japan,79,771–783.

    Lu,R.Y.,B.W.Dong,and H.Ding,2006:Impact of the Atlantic Multidecadal Oscillation on the Asian summer monsoon.Geophys.Res.Lett.,33,L24701,doi:10.1029/2006GL 027655.

    Luo,F.F.,S.L.Li,and T.Furevik,2011:The connection between the Atlantic Multidecadal Oscillation and the Indian Summer Monsoon in Bergen Climate Model Version 2.0.J.Geophys. Res.,116,D19117,doi:10.1029/2011JD015848.

    Luo,F.F.,and S.L.Li,2014:Joint statistical-dynamical approach to decadal prediction of East Asian surface air temperature.Science China Earth Sciences,57,3062–3072,doi: 10.1007/s11430-014-4984-3.

    McCabe,G.J.,M.A.Palecki,and J.L.Betancourt,2004:Pacific and Atlantic Ocean inf l uences on multidecadal drought frequency in the United States.Proc.Natl.Acad.Sci.U.S.A., 101,4136–4141,doi:10.1073/pnas.0306738101.

    Mitchell,T.D.,and P.D.Jones,2005:An improved method of constructing a database monthly climate observations and associated high-resolution grids.Inter.J.Climatol.,25,693–712,doi:10.1002/joc.1181.

    Peng,S.L.,W.A.Robinson,and S.L.Li,2002:North Atlantic SST forcing of the NAO and relationships with intrinsic hemispheric variability.Geophys.Res.Lett.,29,1276,doi: 10.1029/2001GL014043.

    Peng,S.L.,W.A.Robinson,and S.L.Li,2003:Mechanisms for the NAO responses to the North Atlantic SST tripole.J. Climate,16(12),1987–2004.

    Peng,S.L.,W.A.Robinson,S.L.Li,and M.P.Hoerling,2005: Tropical Atlantic SST forcing of coupled North Atlantic seasonal responses.J.Climate,18,480–496.

    Rayner,N.A.,D.E.Parker,E.B.Horton,C.K.Folland,L. V.Alexander,D.P.Rowell,E.C.Kent,and A.Kaplan, 2003:Global analyses of sea surface temperature,sea ice, and nightmarine airtemperature since the late nineteenth century.J.Geophys.Res.,108(D14),4407,doi:10.1029/2002JD 002670.

    Shukla,R.P.,and J.L.Kinter III,2014:Simulations of the Asian monsoon using a regionally coupled-global model.Climate Dyn.,44,827–843.

    Sutton,R.T.,and D.L.R.Hodson,2005:Atlantic Ocean forcing of North American and European summer climate.Science, 309,115–118.

    Sutton,R.T.,and D.L.R.Hodson,2007:Climate response to basin-scale warming and cooling of the North Atlantic Ocean.J.Climate,20(5),891–907.

    Wang,B.,Q.H.Ding,X.H.Fu,I.-S.Kang,K.Jin,J.Shukla,and F.Doblas-Reyes,2005:Fundamental challenge in simulation and prediction of summer monsoon rainfall.Geophys.Res. Lett.,32,L15711,doi:10.1029/2005GL022734.

    Wang,J.L.,B.Yang,F C.Ljungqvist,and Y.Zhao,2013a:The relationship between the Atlantic Multidecadal Oscillation and temperature variability in China during the last millennium.Journal of Quaternary Science,28(7),653–658.

    Wang,J.L.,B.Yang,C.Qin,S.Y.Kang,M.H.He,and Z. Y.Wang,2014:Tree-ring inferred annual mean temperature variations on the southeastern Tibetan Plateau during the last millennium and their relationships with the Atlantic Multidecadal Oscillation.Climate Dyn.,43,627–640,doi: 10.1007/s00382-013-1802-0.

    Wang,T.,H.J.Wang,O.H.Otter?a,Y.Q.Gao,L.L.Suo,T.Furevik,and L.Yu,2013b:Anthropogenic agent implicated as a prime driver of shift in precipitation in eastern China in the late 1970s.Atmos.Chem.Phys.,13,12 433–12 450.

    Wang,Y.M.,S.L.Li,and D.H.Luo,2009:Seasonal response of Asian monsoonal climate to the Atlantic Multidecadal Oscillation.J.Geophys.Res.,114,D02112,doi: 10.1029/2008JD010929.

    Wu,L.X.,F.He,and Z.Y.Liu,2005:Coupled ocean-atmosphere response to north tropical Atlantic SST:Tropical Atlantic dipole and ENSO.Geophys.Res.Lett.,32,L21712,doi: 10.1029/2005GL024222.

    Wu,R.G.,B.P.Kirtman,and K.Pegion,2006:Local air-sea relationship in observations and model simulations.J.Climate, 19,4914–4932.

    Yu,L.,T.Furevik,O.H.Otter?a,and Y.Gao,2014:Modulation of the Pacific Decadal Oscillation on the summer precipitation over East China:A comparison of observations to 600-years control run of Bergen Climate Model.Climate Dyn.,44,475–494,doi:10.1007/s00382-014-2141-5.

    Zhang,R.,and T.L.Delworth,2005:Simulated tropical response to a substantial weakening of the Atlantic thermohaline circulation.J.Climate,18,1853–1860,doi:10.1175/JCLI3460.1.

    Zhang,R.,and T.L.Delworth,2006:Impact of Atlantic Multidecadal Oscillations on India/Sahel rainfall and Atlantic hurricanes.Geophys.Res.Lett.,33,L17712,doi:10.1029/2006 GL026267.

    :Zhou,X.M.,S.L.Li,F.F.Luo,Y.Q.Gao,and T.Furevik,2015:Air–sea coupling enhances the East Asian winter climate response to the Atlantic Multidecadal Oscillation.Adv.Atmos.Sci.,32(12),1647–1659,

    10.1007/s00376-015-5030-x.

    26 January 2015;revised 28 May 2015;accepted 4 June 2015)?

    LI Shuanglin Email:shuanglin.li@mail.iap.ac.cn

    老熟妇乱子伦视频在线观看| 亚洲精品粉嫩美女一区| 日本免费a在线| 色精品久久人妻99蜜桃| 精品日产1卡2卡| 午夜免费鲁丝| 一区二区三区激情视频| 亚洲av美国av| 久久久久九九精品影院| 国产人伦9x9x在线观看| 又紧又爽又黄一区二区| av天堂在线播放| 亚洲美女黄片视频| 久久欧美精品欧美久久欧美| 97人妻天天添夜夜摸| 亚洲精品成人av观看孕妇| 热re99久久精品国产66热6| 久久久久亚洲av毛片大全| 涩涩av久久男人的天堂| 久久人人精品亚洲av| 成人三级黄色视频| 欧美黑人精品巨大| 在线永久观看黄色视频| 国产精品98久久久久久宅男小说| 亚洲一卡2卡3卡4卡5卡精品中文| 91成年电影在线观看| 少妇裸体淫交视频免费看高清 | 国产在线观看jvid| 午夜福利,免费看| 电影成人av| 欧美中文日本在线观看视频| 亚洲一区中文字幕在线| 婷婷六月久久综合丁香| 国产亚洲精品一区二区www| 久久伊人香网站| 欧美激情久久久久久爽电影 | 岛国视频午夜一区免费看| 久久天躁狠狠躁夜夜2o2o| 免费久久久久久久精品成人欧美视频| 免费日韩欧美在线观看| 日韩 欧美 亚洲 中文字幕| 国产有黄有色有爽视频| 欧美成人免费av一区二区三区| 免费一级毛片在线播放高清视频 | 两个人免费观看高清视频| 久久人妻熟女aⅴ| bbb黄色大片| 亚洲色图综合在线观看| 国产精品影院久久| 中文字幕人妻丝袜制服| 可以免费在线观看a视频的电影网站| 久久国产亚洲av麻豆专区| 一进一出抽搐gif免费好疼 | 国产熟女xx| 亚洲全国av大片| 啦啦啦 在线观看视频| 欧美色视频一区免费| 黄色怎么调成土黄色| 亚洲一区二区三区色噜噜 | 亚洲成国产人片在线观看| 午夜91福利影院| 18禁观看日本| av在线天堂中文字幕 | 亚洲中文字幕日韩| 成年人免费黄色播放视频| 午夜精品在线福利| 在线观看免费高清a一片| 国产精品综合久久久久久久免费 | 国产精品一区二区精品视频观看| 老司机靠b影院| 亚洲熟女毛片儿| 人人妻,人人澡人人爽秒播| 人人妻,人人澡人人爽秒播| 天天躁狠狠躁夜夜躁狠狠躁| 精品国产亚洲在线| 久久久久亚洲av毛片大全| avwww免费| 精品乱码久久久久久99久播| 90打野战视频偷拍视频| 老鸭窝网址在线观看| 制服诱惑二区| 日韩欧美在线二视频| 成年版毛片免费区| 国产成年人精品一区二区 | 亚洲自偷自拍图片 自拍| 男女午夜视频在线观看| 交换朋友夫妻互换小说| 欧美大码av| 一区二区三区激情视频| 国产成人精品在线电影| 免费不卡黄色视频| 成年版毛片免费区| 欧美黄色片欧美黄色片| 三级毛片av免费| 国产亚洲精品一区二区www| 亚洲国产毛片av蜜桃av| 51午夜福利影视在线观看| 成人三级做爰电影| 一边摸一边做爽爽视频免费| 午夜福利,免费看| 久久久国产成人免费| 免费一级毛片在线播放高清视频 | 啦啦啦 在线观看视频| bbb黄色大片| 搡老熟女国产l中国老女人| 亚洲美女黄片视频| 18禁裸乳无遮挡免费网站照片 | 久久久久久久精品吃奶| 国产高清videossex| 成年版毛片免费区| 男女床上黄色一级片免费看| 99久久国产精品久久久| 国产熟女xx| 国产真人三级小视频在线观看| 国产av精品麻豆| 欧美丝袜亚洲另类 | 国产欧美日韩一区二区三区在线| 日韩三级视频一区二区三区| 日本vs欧美在线观看视频| 好看av亚洲va欧美ⅴa在| 精品国产一区二区三区四区第35| 国产精品 国内视频| 一级作爱视频免费观看| 色综合欧美亚洲国产小说| 色综合欧美亚洲国产小说| www.熟女人妻精品国产| 亚洲一区二区三区不卡视频| 精品一区二区三区视频在线观看免费 | 一边摸一边抽搐一进一出视频| 精品一区二区三区av网在线观看| 欧美大码av| 日韩大尺度精品在线看网址 | 99久久99久久久精品蜜桃| 亚洲精品成人av观看孕妇| 欧美日本亚洲视频在线播放| 国产一区二区在线av高清观看| 在线观看免费日韩欧美大片| 精品卡一卡二卡四卡免费| 久久国产乱子伦精品免费另类| 极品教师在线免费播放| 国产av一区在线观看免费| 国产亚洲精品久久久久久毛片| 亚洲激情在线av| 麻豆国产av国片精品| netflix在线观看网站| 在线视频色国产色| 中亚洲国语对白在线视频| 淫妇啪啪啪对白视频| 好男人电影高清在线观看| 精品免费久久久久久久清纯| 亚洲情色 制服丝袜| 91字幕亚洲| 免费女性裸体啪啪无遮挡网站| 老司机午夜福利在线观看视频| 在线十欧美十亚洲十日本专区| 啦啦啦免费观看视频1| 国产精品久久视频播放| 黄色怎么调成土黄色| av天堂在线播放| 亚洲黑人精品在线| 免费一级毛片在线播放高清视频 | 在线观看一区二区三区激情| 欧美在线黄色| 欧美日本中文国产一区发布| 俄罗斯特黄特色一大片| 欧美人与性动交α欧美精品济南到| 操出白浆在线播放| 99国产精品99久久久久| 日韩中文字幕欧美一区二区| 日韩欧美一区视频在线观看| 亚洲精品粉嫩美女一区| 18禁美女被吸乳视频| 免费在线观看黄色视频的| 成人18禁在线播放| 不卡av一区二区三区| 悠悠久久av| 午夜福利在线免费观看网站| 国产国语露脸激情在线看| 国产片内射在线| 久久青草综合色| a级毛片黄视频| 色在线成人网| 99热只有精品国产| 亚洲精华国产精华精| 91麻豆av在线| 欧美日韩黄片免| 亚洲性夜色夜夜综合| 久久这里只有精品19| 又黄又粗又硬又大视频| 亚洲熟妇熟女久久| 免费久久久久久久精品成人欧美视频| 午夜两性在线视频| 久久人妻福利社区极品人妻图片| 夫妻午夜视频| 国产av在哪里看| 一边摸一边抽搐一进一小说| 国产免费男女视频| 欧美黑人欧美精品刺激| 精品欧美一区二区三区在线| 国产无遮挡羞羞视频在线观看| 国产精品一区二区三区四区久久 | 国产成人精品在线电影| 日韩欧美在线二视频| 丝袜在线中文字幕| 久久精品91无色码中文字幕| 91精品国产国语对白视频| 亚洲国产毛片av蜜桃av| 亚洲欧美一区二区三区黑人| 日韩有码中文字幕| 狂野欧美激情性xxxx| 啦啦啦在线免费观看视频4| 黑人巨大精品欧美一区二区mp4| 精品电影一区二区在线| 亚洲熟妇熟女久久| 欧美中文综合在线视频| 欧美午夜高清在线| 日本wwww免费看| 亚洲一区中文字幕在线| 国产一区二区在线av高清观看| 久久久精品国产亚洲av高清涩受| 黑人巨大精品欧美一区二区mp4| 亚洲激情在线av| 欧美日韩一级在线毛片| 手机成人av网站| 久久精品影院6| 亚洲第一欧美日韩一区二区三区| 国产精品亚洲一级av第二区| 51午夜福利影视在线观看| 怎么达到女性高潮| 精品国产美女av久久久久小说| 后天国语完整版免费观看| 免费在线观看视频国产中文字幕亚洲| 88av欧美| 黑人猛操日本美女一级片| www.自偷自拍.com| 丝袜人妻中文字幕| 老熟妇乱子伦视频在线观看| 欧美日韩亚洲国产一区二区在线观看| 国产成人精品在线电影| 在线天堂中文资源库| 亚洲一区高清亚洲精品| 日本免费一区二区三区高清不卡 | 免费在线观看黄色视频的| av免费在线观看网站| 国产三级黄色录像| 多毛熟女@视频| 精品人妻1区二区| 青草久久国产| 亚洲一区中文字幕在线| 午夜亚洲福利在线播放| 一级毛片精品| 亚洲成人国产一区在线观看| 夫妻午夜视频| 国产不卡一卡二| 欧美人与性动交α欧美精品济南到| av电影中文网址| 欧美黑人欧美精品刺激| 在线播放国产精品三级| 巨乳人妻的诱惑在线观看| bbb黄色大片| 亚洲人成网站在线播放欧美日韩| 国产亚洲欧美在线一区二区| 久久久久久久久免费视频了| 久久精品国产清高在天天线| 免费久久久久久久精品成人欧美视频| 神马国产精品三级电影在线观看 | 日韩高清综合在线| 少妇的丰满在线观看| 久久精品国产综合久久久| 乱人伦中国视频| 国产精品日韩av在线免费观看 | 在线观看午夜福利视频| 国产片内射在线| 欧美日韩黄片免| 美女高潮喷水抽搐中文字幕| 18美女黄网站色大片免费观看| 国产亚洲欧美98| 美女国产高潮福利片在线看| 亚洲自拍偷在线| 久久人妻熟女aⅴ| 最近最新中文字幕大全电影3 | 亚洲人成伊人成综合网2020| 成人18禁高潮啪啪吃奶动态图| 麻豆成人av在线观看| 国产又色又爽无遮挡免费看| 国产精品久久久久久人妻精品电影| 欧美日韩福利视频一区二区| 日日爽夜夜爽网站| 99久久人妻综合| 久久久久久久久久久久大奶| 老司机亚洲免费影院| 琪琪午夜伦伦电影理论片6080| 校园春色视频在线观看| 啦啦啦免费观看视频1| 极品人妻少妇av视频| 精品国产超薄肉色丝袜足j| 男女下面插进去视频免费观看| 亚洲精品久久午夜乱码| 欧美老熟妇乱子伦牲交| 亚洲欧洲精品一区二区精品久久久| 新久久久久国产一级毛片| 桃红色精品国产亚洲av| 亚洲精品av麻豆狂野| 日韩免费av在线播放| 91成年电影在线观看| 日本vs欧美在线观看视频| 精品卡一卡二卡四卡免费| 日本 av在线| 久久九九热精品免费| 免费一级毛片在线播放高清视频 | 国产乱人伦免费视频| 成人国产一区最新在线观看| 琪琪午夜伦伦电影理论片6080| 国产亚洲欧美98| 欧美不卡视频在线免费观看 | 日本精品一区二区三区蜜桃| 1024视频免费在线观看| 久久 成人 亚洲| 悠悠久久av| 久久精品影院6| 成年女人毛片免费观看观看9| 亚洲欧美激情在线| 亚洲一区二区三区欧美精品| a级毛片黄视频| 黄频高清免费视频| 亚洲一区二区三区不卡视频| 欧美日韩亚洲综合一区二区三区_| 制服人妻中文乱码| 久久精品国产亚洲av香蕉五月| 亚洲一区高清亚洲精品| 亚洲成人精品中文字幕电影 | 国产精品99久久99久久久不卡| 亚洲性夜色夜夜综合| 黄色毛片三级朝国网站| 五月开心婷婷网| 欧美最黄视频在线播放免费 | 亚洲第一欧美日韩一区二区三区| av中文乱码字幕在线| 免费在线观看黄色视频的| 国产无遮挡羞羞视频在线观看| av网站免费在线观看视频| 欧美性长视频在线观看| 亚洲一码二码三码区别大吗| 亚洲av五月六月丁香网| 国产精品 国内视频| 曰老女人黄片| 国产精品久久久久久人妻精品电影| 亚洲一区二区三区不卡视频| 国产伦人伦偷精品视频| 又黄又粗又硬又大视频| 日日干狠狠操夜夜爽| 又黄又粗又硬又大视频| 在线看a的网站| 国产精品久久久久成人av| 嫩草影院精品99| 亚洲中文日韩欧美视频| 黄色视频,在线免费观看| 亚洲av成人一区二区三| 日韩视频一区二区在线观看| 看黄色毛片网站| 99国产精品免费福利视频| 精品久久久久久久久久免费视频 | 两人在一起打扑克的视频| 韩国精品一区二区三区| x7x7x7水蜜桃| 色在线成人网| av网站在线播放免费| 99re在线观看精品视频| 色尼玛亚洲综合影院| 91成人精品电影| 久久久久国内视频| 亚洲欧美一区二区三区久久| 日韩成人在线观看一区二区三区| 中文字幕另类日韩欧美亚洲嫩草| 91麻豆av在线| 欧美日韩亚洲高清精品| 天堂中文最新版在线下载| 91大片在线观看| 亚洲欧美日韩无卡精品| 亚洲九九香蕉| 黑人欧美特级aaaaaa片| 最好的美女福利视频网| 亚洲aⅴ乱码一区二区在线播放 | 日韩免费高清中文字幕av| 日韩欧美三级三区| 国产成人啪精品午夜网站| 婷婷六月久久综合丁香| 黑人欧美特级aaaaaa片| 久久香蕉国产精品| 国产熟女xx| 免费女性裸体啪啪无遮挡网站| 久久精品国产综合久久久| av在线天堂中文字幕 | 男女床上黄色一级片免费看| 可以在线观看毛片的网站| 亚洲av日韩精品久久久久久密| 精品国内亚洲2022精品成人| 亚洲av美国av| 99国产精品99久久久久| 日韩欧美免费精品| 欧美日韩精品网址| 国产精华一区二区三区| 12—13女人毛片做爰片一| 女警被强在线播放| 久久国产乱子伦精品免费另类| 免费不卡黄色视频| 精品国产一区二区三区四区第35| 熟女少妇亚洲综合色aaa.| 一区福利在线观看| xxx96com| 亚洲av日韩精品久久久久久密| 久久 成人 亚洲| 亚洲人成77777在线视频| 一本综合久久免费| 免费搜索国产男女视频| 丰满饥渴人妻一区二区三| 国产精品成人在线| 欧美+亚洲+日韩+国产| 日本vs欧美在线观看视频| 成人三级黄色视频| www.熟女人妻精品国产| 长腿黑丝高跟| 丝袜美足系列| 亚洲精品中文字幕一二三四区| 精品卡一卡二卡四卡免费| 国产有黄有色有爽视频| 又黄又爽又免费观看的视频| 黄片大片在线免费观看| 欧美一区二区精品小视频在线| 女警被强在线播放| 国产在线观看jvid| √禁漫天堂资源中文www| 国产免费av片在线观看野外av| 国产成人啪精品午夜网站| 亚洲第一青青草原| 黄色毛片三级朝国网站| 中文字幕人妻丝袜制服| 侵犯人妻中文字幕一二三四区| 国产精品 国内视频| 夜夜看夜夜爽夜夜摸 | 欧美精品亚洲一区二区| 久久久久国内视频| 日韩免费av在线播放| 亚洲免费av在线视频| 搡老岳熟女国产| 国内久久婷婷六月综合欲色啪| 久久天堂一区二区三区四区| 香蕉久久夜色| 亚洲精品美女久久av网站| 在线播放国产精品三级| 天天影视国产精品| 精品久久久久久电影网| 别揉我奶头~嗯~啊~动态视频| 欧美性长视频在线观看| 国产一区二区激情短视频| 国产99久久九九免费精品| 在线免费观看的www视频| 丰满人妻熟妇乱又伦精品不卡| 亚洲伊人色综图| 精品无人区乱码1区二区| 亚洲少妇的诱惑av| 操美女的视频在线观看| 一进一出抽搐gif免费好疼 | 午夜91福利影院| 90打野战视频偷拍视频| 看片在线看免费视频| 天堂√8在线中文| 久久久久久久久免费视频了| 99热只有精品国产| 淫妇啪啪啪对白视频| 免费高清视频大片| 亚洲精品久久午夜乱码| 少妇被粗大的猛进出69影院| 国产激情久久老熟女| 久久欧美精品欧美久久欧美| 亚洲人成电影免费在线| 亚洲 国产 在线| 很黄的视频免费| 亚洲国产毛片av蜜桃av| 精品日产1卡2卡| 日韩欧美一区二区三区在线观看| 国产亚洲欧美98| 波多野结衣高清无吗| 欧美色欧美亚洲另类二区| 自拍偷自拍亚洲精品老妇| 成年免费大片在线观看| 精品人妻视频免费看| 亚洲欧美精品综合久久99| 少妇丰满av| 99热这里只有精品一区| 2021天堂中文幕一二区在线观| 非洲黑人性xxxx精品又粗又长| 亚洲 国产 在线| 国产视频内射| 精品不卡国产一区二区三区| 欧美成人a在线观看| 欧美日韩综合久久久久久 | 日本五十路高清| 国产麻豆成人av免费视频| 九九在线视频观看精品| 一区二区三区免费毛片| 又紧又爽又黄一区二区| 亚洲欧美清纯卡通| 精品一区二区三区视频在线观看免费| 一区二区三区免费毛片| 夜夜看夜夜爽夜夜摸| 成人午夜高清在线视频| 亚洲av五月六月丁香网| 亚洲五月天丁香| 久久香蕉精品热| 国产欧美日韩一区二区精品| 日韩欧美 国产精品| 国产人妻一区二区三区在| 日韩人妻高清精品专区| xxxwww97欧美| 欧美bdsm另类| 直男gayav资源| 国产精品免费一区二区三区在线| 免费在线观看亚洲国产| 国产真实伦视频高清在线观看 | 很黄的视频免费| 日韩欧美国产一区二区入口| 国产精品美女特级片免费视频播放器| 国产亚洲精品久久久久久毛片| 久久亚洲真实| 国产精品一区二区三区四区免费观看 | 性欧美人与动物交配| 色在线成人网| 欧美丝袜亚洲另类 | 麻豆久久精品国产亚洲av| 禁无遮挡网站| 亚洲人成网站在线播放欧美日韩| 一个人免费在线观看电影| 搞女人的毛片| 性色av乱码一区二区三区2| 亚洲无线观看免费| 亚洲内射少妇av| 99精品在免费线老司机午夜| 黄片小视频在线播放| 尤物成人国产欧美一区二区三区| 97碰自拍视频| 三级毛片av免费| 欧美一区二区精品小视频在线| 一边摸一边抽搐一进一小说| 国产白丝娇喘喷水9色精品| 91在线精品国自产拍蜜月| 757午夜福利合集在线观看| a级毛片a级免费在线| 直男gayav资源| 国产野战对白在线观看| 麻豆av噜噜一区二区三区| 中文亚洲av片在线观看爽| 亚洲无线在线观看| 国产在线男女| 国产精品自产拍在线观看55亚洲| 成人一区二区视频在线观看| 久久精品影院6| 日日摸夜夜添夜夜添小说| 亚洲狠狠婷婷综合久久图片| 中文字幕高清在线视频| 露出奶头的视频| 亚洲,欧美,日韩| 亚洲av熟女| 国产精品亚洲一级av第二区| 真人一进一出gif抽搐免费| 欧美又色又爽又黄视频| 蜜桃亚洲精品一区二区三区| 国产主播在线观看一区二区| 观看免费一级毛片| 九九热线精品视视频播放| 搞女人的毛片| 18美女黄网站色大片免费观看| 国产乱人伦免费视频| 搡老妇女老女人老熟妇| 国产乱人伦免费视频| 男插女下体视频免费在线播放| 亚洲成人免费电影在线观看| 毛片女人毛片| 日韩免费av在线播放| 麻豆av噜噜一区二区三区| av欧美777| 国产大屁股一区二区在线视频| 日韩欧美三级三区| 麻豆一二三区av精品| av在线天堂中文字幕| 国产毛片a区久久久久| a在线观看视频网站| 每晚都被弄得嗷嗷叫到高潮| 午夜激情欧美在线| 亚洲国产精品999在线| 99久久成人亚洲精品观看| 国产成年人精品一区二区| 亚洲av中文字字幕乱码综合| 黄色视频,在线免费观看| 日韩精品中文字幕看吧| 男插女下体视频免费在线播放| 女同久久另类99精品国产91| 男人的好看免费观看在线视频| 国产白丝娇喘喷水9色精品| www.www免费av| 12—13女人毛片做爰片一| 一级黄片播放器| 搡老岳熟女国产| 丰满人妻熟妇乱又伦精品不卡| 久久这里只有精品中国| 久久久精品大字幕| 欧美一区二区国产精品久久精品| 精品久久久久久久人妻蜜臀av| 亚洲最大成人av| 在线十欧美十亚洲十日本专区| 亚洲av第一区精品v没综合| 99国产精品一区二区三区| 久久天躁狠狠躁夜夜2o2o| 欧美日韩黄片免| 精品无人区乱码1区二区|