• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Brief Introduction to BNU-HESM1.0 and Its Earth Surface Temperature Simulations

    2015-06-09 21:24:03YANGShiliDONGWenjieCHOUJiemingFENGJinmingYANXiaodongWEIZhigangYUANWenpingGUOYanTANGYanliandHUJiacong
    Advances in Atmospheric Sciences 2015年12期

    YANG Shili,DONG Wenjie?,CHOU Jieming,FENG Jinming,YAN Xiaodong, WEI Zhigang,YUAN Wenping,GUO Yan,TANG Yanli,and HU Jiacong

    1State Key Laboratory of Earth Surface Processes and Resource Ecology,Beijing Normal University,Beijing 100875

    2Zhuhai Joint Innovative Center for Climate-Environment-Ecosystem,Future Earth Research Institute, Beijing Normal University,Zhuhai 519087

    3Key Laboratory of Regional Climate–Environment for East Asia,Institute of Atmospheric Physics, Chinese Academy of Sciences,Beijing 100029

    A Brief Introduction to BNU-HESM1.0 and Its Earth Surface Temperature Simulations

    YANG Shili1,2,DONG Wenjie?1,2,CHOU Jieming1,2,FENG Jinming3,YAN Xiaodong1,2, WEI Zhigang1,2,YUAN Wenping1,2,GUO Yan1,2,TANG Yanli1,and HU Jiacong2

    1State Key Laboratory of Earth Surface Processes and Resource Ecology,Beijing Normal University,Beijing 100875

    2Zhuhai Joint Innovative Center for Climate-Environment-Ecosystem,Future Earth Research Institute, Beijing Normal University,Zhuhai 519087

    3Key Laboratory of Regional Climate–Environment for East Asia,Institute of Atmospheric Physics, Chinese Academy of Sciences,Beijing 100029

    Integrated assessment models and coupled earth system models both have their limitations in understanding the interactions between human activity and the physical earth system.In this paper,a new human–earth system model,BNUHESM1.0,constructed by combining the economic and climate damage components of the Dynamic Integrated Model of Climate Change and Economy to the BNU-ESM model,is introduced.The ability of BNU-HESM1.0 in simulating the global CO2concentration and surface temperature is also evaluated.We f i nd that,compared to observation,BNU-HESM1.0 underestimates the global CO2concentration and its rising trend during 1965–2005,due to the uncertainty in the economic components.However,the surface temperature simulated by BNU-HESM1.0 is much closer to observation,resulting from the overestimates of surface temperature by the original BNU-ESM model.The uncertainty of BNU-ESM falls within the range of present earth system uncertainty,so it is the economic and climate damage component of BNU-HESM1.0 that needs to be improved through further study.However,the main purpose of this paper is to introduce a new approach to investigate the complex relationship between human activity and the earth system.It is hoped that it will inspire further ideas that prove valuable in guiding human activities appropriate for a sustainable future climate.

    economic model component,earth system model,human activity,global change

    1.Introduction

    Integrated assessment models(IAMs)and coupled atmosphere–land–sea-ice earth system models are two major tools used to investigate issues relates to climate change. However,both IAMs and coupled earth system models have their advantages and limitations in simulating and projecting emissions scenarios and climate changes.

    IAMs are widely used to provide information on global and national emissions and the costs of different climate polices.They can depict the cause–effect chain between emissions and rising temperature,but with relatively simple equations(Matsuoka et al.,1995;Brenkert et al.,2003;Sokolov et al.,2005;Bouwman et al.,2006;Moss et al.,2010).For example,the Dynamic Integrated Model of Climate Change and Economy(DICE)uses just one or two simple equations to calculate the global CO2concentration and temperature change,and most IAMs use a linearized representation of ocean carbon uptake(van Vuuren et al.,2011;Hof et al., 2012).This is an obvious oversimplif i cation of the complex physical and biochemical processes of the earth system.Indeed,recent studies have shown that the lack of complexity in the representation of physical processes in IAMs is likely to have signifi cant impacts on the outputs of policy cost,carbon tax,and so on(Schneider and Thompson,1981;Schultz and Kasting,1997;Smith and Edmonds,2006).For example, Smith and Edmonds(2006)demonstrated that the uncertainty in the carbon cycle results in a broader range of the cost of achieving certain CO2concentrations,and is equivalent to a change in the concentration target of up to 100 ppmv.

    Coupled earth systems models,which include ocean and terrestrial carbon cycle feedbacks,are designed to capture the biophysical processes of the real climate system(Taylor et al.,2012).They possess unique advantages in simulating, projecting and attributing climate change under given naturaland anthropogenic forces(Wei et al.,2012;Gillett and Fyfe, 2013;Weller and Cai,2013;Bellenger et al.,2014;Wei et al.,2014)and can be used to compensate for the def i ciencies of IAMs.For example,Wei et al.(2012)investigated the responsibilities of developed and developing countries in terms of historical climate change and CO2mitigation using two earth system models,and the results showed contributions to historical climate change of 2/3 and 1/3,respectively, while their contribution to future climate mitigation was predicted to be 1/3 and 2/3.Additionally,coupled earth system models provide larger datasets for the Intergovernmental Panel on Climate Change(IPCC)reports,which deepen our understanding of climate change.However,these models still do not include economic and climate-damage modules; they can only use the carbon emissions provided by separate economic models as external forces,and are thus unable to ref l ect the interactions between human activity and the physical earth system.So,to achieve more realistic simulations,it is essential and necessary to combine the economic and climate-damage components of IAMs with coupled earth system models,which should be possible in this era of increasing supercomputing power.A successful precedent is the integrated global system model framework(IGSM)of the Massachusetts Institute of Technology.The IGSM includes an emissions prediction and policy analysis model(EPPA) and uses an earth system model with intermediate complexity as its earth system component.It has been widely used in addressing scientif i c goals of earth system modeling and helping to inform the policy-making process(Prinn,2012; Reilly et al.,2013).However,in China,very little progress has been made in this area of study.

    In this paper,a new coupled human–earth system model (BNU-HESM1.0)is introduced.Designed to simulate the interaction between human activity and the earth system,the model was developed by integrating a simplified version of DICE and the coupled earth system model from Beijing Normal University(BNU-ESM).The construction of BNUHESM1.0 is described in section 2.In section 3,the model’s capability in simulating the global CO2concentration and surface temperature is evaluated.A summary and further discussion are provided in section 4.

    2.Methods

    2.1.DICE

    DICE,which was first developed by Nordhause(1992), an economist from Yale University,formed the basis of IAMs in climate change.DICE was based on the Ramey model of optimal economic growth and was designed to maximize the discounted“utility”under a number of economic and climate constraints.The model consists of three parts:(1)an economic–emissions relationship;(2)an objective function; and(3)an emissions–climate relationship.In the following, we provide the main equations for the first and second parts, but for a more detailed description of DICE readers are referred to Nordhaus(1992).

    In the first part,the output is given by the Cobb–Douglas function,Eq.(1),whereQ(t)represents the net outputs andγis the elasticity of output with respect to the capital.The termsK(t)andL(t)represent the capital and technology,respectively.The term ?(t)represents the net output ratio, which is the fraction of the rest of the output that the impact of climate damage and policy interference on the total output is removed—see Eq.(2).In Eq.(2),the termμ(t) represents the fraction of the reduction of the emission relative to uncontrolled emission,andT(t)is the global averaged temperature.The empirical coeff icientsb1,θ1andθ2in Eq. (2)are 0.0686,2.887,0.00144 and 2.0,respectively.

    DICE also includes two equations that describe the distribution of net output and the process of capital accumulation. The net output is divided into investment(I)and consumption(C),Eq.(3),and the termδtin Eq.(4)is the depreciation rate.

    Equation(5)describes the relationship between the net outputs and emissions,whereσ(t)is the exogenous technology parameter,which describes the trend of the output and emissions ratio.

    DICE maximizes a social welfare function that is the discounted sum of the utility of per capital consumption.The mathematical expression is given as follows,

    wherec(t)represents the per capital consumption andρis the pure rate of social time preference.The utility function is given in Eq.(6),in whichαrepresents the rate of inequality aversion.

    In this paper,we assume theμ(t)=0 and use Eqs.(1–5) to calculate the global emissions amount by prescribing the exogenous variablesA(t),K(t),L(t)andσ(t).This simplified approach is designed to match the integration algorithm of BNU-ESM,and is inconsistent with the original algorithms that calculate the optimal emissions path by maximizing the discounted utility.

    2.2.BNU-ESM

    The earth system model of Beijing Normal University (BNU-ESM)is an atmosphere–land–sea-ice fully coupled model,and was one of the models that participated in the Coupled Model Intercomparison Project Phase 5(CMIP5). Recently,various aspects of the simulation ability of BNUESM have been evaluated,and it is has also been widely usedin climate attribution and projection studies(Wuebbles et al., 2013;Bellengeretal.,2014;Mehran etal.,2014).Brief l y,the atmosphere component is CAM3.5(Community Atmosphere Model Version 3.5)from the NCAR(National Center for Atmospheric Research),the land component is CoLM(Common Land Model),which includes the LPJ(Lund–Postdam–Jena)DGVM(dynamic global vegetation model),and its ocean component is the idealized biogeochemical cycling (iBGC)module.Wu et al.(2013)provides a detailed description of BNU-ESM.Comparison between BNU-ESM results, observation,and other Chinese coupled climate model outputs indicates reasonable performance(Zhou et al.,2014).

    2.3.BNU-HESM1.0 model construction

    BNU-HESM1.0 was built by coupling the economic parts of DICE with BNU-ESM.The coupled model includes the following two steps:First,the economic model calculates global emissions using exogenous variables(e.g.,capital, population,technology etc.),and then BNU-ESM uses these emissions as external forcing to calculate the possible climate changes.The second step connects the climate change results and the economic components through the damage function, describing the climate impact on the economic process(e.g., the GDP or outputs).These two processes are similar to the integrated approach of general climate–economic models.

    In the firststep,BNU-ESMusually usesthe monthly gridded CO2fossil fuel flux(units:kg m?2s?1)as the external forcing,but DICE only outputs the annual global emission (units:Gt C).So,we have to convert the annual global CO2emissions amount to CO2flux,which has a certain spatial and temporal resolution,and we realize this goal by def i ning theMindex as follows:

    whereEmandEannrepresent the observed monthly gridded CO2flux and annual emissions amount,respectively.The termsrepresent the monthly gridded CO2flux and annual emissions amount calculated by DICE,and we can thus obtainas follows:

    In the second step,the global annual averaged temperatureT(t)is calculated using parallel computing methods,and is called by the damage function,Eq.(2),in the economic components.Besides,it should be noted that we modif i ed the original time step of DICE(10 yr)to 1 yr,to coordinate it with BNU-ESM.As the exogenous variable of DICE is expressed in exponential form,this modif i cation is reasonable and has no effect on the outputs(Figs.1 and 2).The economic components calculate the emissions each year,and the climate damage also feeds back to the economic components each year.Therefore,BNU-HESM1.0 can describe the complete cycle of the socioeconomic–earth system.

    3.Experimental design

    We conducted two simulations to evaluate the simulation ability of BNU-HESM1.0.One was the historical simulation carried out by the original model(BNU-ESM),referred to as ESM-Hist,which followed the CMIP5 historical simulation requirements(Taylor et al.,2012)and whose simulation period ran from 1850 to 2005.The other simulation,referred to as HESM-Hist,was carried out by BNU-HESM1.0.In terms ofthe inputdata ofthe economic components,which began in 1965,HESM-Hist was simulated from 1965 to 2005 and used the simulation results of ESM-Hist in 1965 as the initial condition.In the HESM-Hist simulation,BNU-HESM1.0 calculated the CO2flux with its economic component,so there was no need to provide the observed CO2flux as external forcing. Apart from the CO2flux,the other forcing conditions were the same as those used in ESM-Hist during the period 1965–2005.Further details regarding the natural and anthropogenic forcing conditions are provided in Table 1.

    4.Results

    4.1.C O2emissions and concentration

    Figure 3 shows the observed and simulated global CO2concentrations from BNU-ESM and BNU-HESM1.0.It isclear that BNU-ESM overestimates the CO2concentration and its rising trend after the 1970s,while BNU-HESM1.0 produces a much lower CO2concentration during 1965–2005,resulting from its underestimations of global annual emissions(Fig.4).Figure 4 also indicates that BNUHESM1.0 can reproduce the increasing trend of global emissions,but it does not have the ability to capture the interannual variability of global emissions.We consider this inability mainly result from the uncertainty of the economic exogenous variables,such as the population,capital,and so on.For 2005,the CO2concentration simulated by BNU-HESM1.0 model is about 25 ppm less than that observed,which is much greater than the BNU-ESM uncertainty.

    Table 1.Forcing data for the experiments.

    4.2.Global temperature

    Figure 5 shows the observed and simulated global temperature anomalies relative to 1965–99.It indicates that BNU-ESM underestimates the global temperature during 1850–1970,but overestimates it after the 1970s.In 2005, the temperature simulated by BNU-ESM is 0.4?C above the observation.This deviation is within the range of CMIP5 model uncertainty(?0.1?C to 0.7?C).Relatively,the temperature simulated by BNU-HESM1.0 during 1965–2005 is much closer to that observed.The lineartrend ofthe temperature over1965–2005 is0.16?C(10 yr)?1,0.3?C(10 yr)?1and 0.14?C(10 yr)?1for the observation,BNU-ESM and BNUHESM1.0,respectively.However,this result does not mean that BNU-HESM1.0 is better than BNU-ESM at simulating the temperature,because BNU-HESM1.0 underestimates the global emissions amount.Both BNU-ESM and BNUHESM1.0 can reproduce the globaltemperature gradientwith latitude,with little difference between the two models(Fig. 6).This means that BNU-HESM1.0 can maintain BNUEMS’ability in simulating the spatial distribution of climate variables.

    4.3.Conclusion and discussion

    This paper describes the first attempt to construct a human–earth system model(BNU-HESM1.0)by coupling an economic model to an earth system model,and provides a new approach to investigating the complex interactions between human activity and the earth system.BNU-HESM1.0 is more advanced compared to DICE or BNU-ESM.Specifically,compared to DICE,BNU-HESM1.0 includes a fully coupled earth system model,which is superior in simulating various aspects of climate change.Meanwhile,compared to BNU-ESM,it not only retains the simulation ability of BNU-ESM,but is also able to quantify emissions levels and climate damage by itself,which represents an advancement over BNU-ESM.Thus,we could use BNU-HESM1.0 to project future emissions levels and climate change under given macroeconomic conditions(e.g.,population,capital etc.).However,there are still many unresolved problems and uncertainties with BNU-HESM1.0.For example,the results of the present reported experiments showed it underestimates global CO2emissions and cannot reproduce its interannual variability,due to the uncertainty of the empirical parameters and exogenous variables.As we know,economics comprises complex issues affected by numerous social activities (e.g.,policy,employment etc.).These complex processes are highly parameterized or even ignored in DICE,resulting in its limitations in capturing a complete socioeconomic picture. Besides,economic processes also possess large regional disparities,and these features are not well expressed in DICE. Therefore,in future work,we should try to use,instead of DICE,much more complex economic models,such as RICE (Nordhaus,2010)or EPPA(Paltsev et al.,2005),which feature more detailed economic processes and can re flect the regional disparity of the economy.Alternatively,we could seek to add new parameters to make the economic model much more re flective of reality.In terms of the climate damage component,this is excessively simple,possessing many de fi ciencies.For example,as well as economic output,climate change also has signi ficant impacts on agriculture,ecology,health,and so on,which is not well expressed in this study.So,other methods to develop BNU-HESM1.0 must include attempts to improve the climate-damage function.A fi nal but very important point is that the ability of BNUHESM1.0 in simulating various aspects of the natural system is largely dependent on that of BNU-ESM.So,we also need to improve BNU-ESM using traditional development methods,such as enhancing the resolution,adding physical processes with smaller scales,and so on.

    Despite the limitations acknowledged in the above discussion,this paper represents a pioneering attempt to build a human–earth system model,and several ways to improve or complete BNU-HESM1.0 have been identif i ed.We hope that the development of BNU-HESM1.0 in the future produces a comprehensive tool that not only provide guidance for appropriate human activity(Fu and Ye,1995;Ye et al.,2001,2003, 2009)and global and regional sustainable development,but also strengthens the communications and exchanges of the IPCC’s three working groups.

    Acknowledgements.This work was funded by the National Key Program for Global Change Research of China(Grant No. 2010CB950504),the National Basic Research Program of China (973 Program)(Grant No.2012CB95570001),and the nationallevel major cultivation project of Guangdong Province entitled:“The construction and application of coupled earth system and social economic models”(Grant No.2014GKXM058).

    REFERENCES

    Bellenger,H.,E.Guilyardi,J.Leloup,M.Lengaigne,and J. Vialard,2014:ENSO representation in climate models:FromCMIP3 to CMIP5.Climate Dyn.,42(7–8),1999–2018.

    Bouwman,A.,T.Kram,and K.K.Goldewijk,2006:Integrated Modelling of Global Environmental Change,an Overview of IMAGE 2.4.The Netherlands Environmental Assessment Agency,Bilthoven.228 pp.

    Brenkert,A.L.,A.Smith,S.H.Kim,and H.M.Pitcher,2003:Model Documentation for the MiniCAM.Pacific Northwest National Laboratory,Richland,WA.188 pp.

    Fu,C.B.,and D.Z.Ye,1995:Global Change and the Future Trend of Ecological Environment Evolution in China.Scientia Atmospherica Sinica,19(1),116–126.(in Chinese)

    Gillett,N.P.,and J.C.Fyfe,2013:Annular mode changes in the CMIP5 simulations.Geophys.Res.Lett.,40(6),1189–1193.

    Hof,A.F.,C.W.Hope,J.Lowe,M.D.Mastrandrea,M.Meinshausen,and D.P.van Vuuren,2012:The benefits of climate change mitigation in integrated assessment models:The role of the carbon cycle and climate component.Climatic Change, 113(3-4),897–917.

    Matsuoka,Y.,M.Kainuma,and T.Morita,1995:Scenario analysis of global warming using the Asian Pacific Integrated Model (AIM).Energy Policy,23(4-5),357–371.

    Mehran,A.,A.AghaKouchak,and T.J.Phillips,2014:Evaluation of CMIP5 continental precipitation simulations relative to satellite-based gauge-adjusted observations.J.Geophys. Res.,119(4),1695–1707.

    Moss,R.H.,and Coauthors,2010:The next generation of scenarios for climate change research and assessment.Nature, 463(7282),747–756.

    Nordhaus,W.D.,1992:The‘DICE’Model:Background and structure of a dynamic integrated climate-economy model of the economics of global warming.Cowles Foundation for Research in Economics,Yale University.[Available online from http://cowles.econ.yale.edu/P/cd/d10a/d1009.pdf]

    Nordhaus,W.D.,2010:Economic aspects of global warming in a post-Copenhagen environment.Proceedings of the National Academy of Sciences of the United States of America, 107(26),11 721–11 726.

    Paltsev,S.,J.M.Reilly,H.D.Jacoby,R.S.Eckaus,J.R.Mc-Farland,M.C.Sarof i m,M.O.Asadoorian,and M.H.M. Babiker,2005:The MIT Emissions Prediction and Policy Analysis(EPPA)Model:Version 4.MIT Joint Program on the Science and Policy of Global Change.[Available online from http://hdl.handle.net/1721.1/29790]

    Prinn,R.G.,2012:Development and application of earth system models.Proceedings of the National Academy of Sciences of the United States of America,110,3673–3680.

    Reilly,J.,and Coauthors,2013:Valuing climate impacts in integrated assessmentmodels:The MIT IGSM.Climatic Change, 117(3),561–573.

    Schneider,S.H.,and S.L.Thompson,1981:Atmospheric CO2and climate:Importance of the transient response.J.Geophys.Res.,86,3135–3147.

    Schultz,P.A.,and J.F.Kasting,1997:Optimal reductions in CO2emissions.Energy Policy,25,491–500.

    Smith,S.J.,and J.A.Edmonds,2006:The economic implications of carbon cycle uncertainty.Tellus B,58,586–590.

    Sokolov,A.P.,and Coauthors,2005:Mit Integrated Global System Model(IGSM)Version 2:Model description and baseline evaluation.MIT Joint Program on the Science and Policy of Global Change,Report No.124.[Available online at http://hdl.handle.net/1721.1/29789.]

    Taylor,K.E.,R.J.Stouffer,and G.A.Meehl,2012:An overview of CMIP5 and the experiment design.Bull.Amer.Meteor. Soc.,93(4),485–498.

    van Vuuren,D.P.,and Coauthors,2011:How well do integrated assessment models simulate climate change?.Climatic Change,104(2),255–285.

    Wu,Q.Z.,J.M.Feng,W.J.Dong,L.N.Wang,D.Y.Ji,and H.Q.Cheng,2013:Introduction of the CMIP5 experiments carried out by BNU-ESM.Progressus Inquisitlones de Mutatlone Climatis,9(4),291–294.

    Wei,T.,and Coauthors,2012:Developed and developing world responsibilities for historical climate change and CO2mitigation.Proceedings of the National Academy of Sciences of the United States of America,109(32),12 911–12 915.

    Wei,T,W.J.Dong,W.P.Yuan,X.D.Yan,and Y.Guo,2014: Inf l uence of the carbon cycle on the attribution of responsibility for climate change.Chinese Science Bulletin,59(15), 1459–1467.

    Weller,E.,and W.J.Cai,2013:Realism ofthe Indian Ocean dipole in CMIP5 models:The implications for climate projections.J.Climate,26(17),6649–6659.

    Wuebbles,D.,and Coauthors,2013:CMIP5 climate model analyses:Climate extremes in the united states.Bull.Amer.Meteor. Soc.,95(4),571–583.

    Ye,D.Z,C.B.Fu,J.J.Ji,W.J.Dong,J.H.Lu,G.Wen,and X.D.Yan,2001:Orderly human activities and subsistence environment.Advances in Earth Science,16(4),453–460,(in Chinese).

    Ye,D.Z.,C.B.Fu,W.J.Dong,G.Wen,and X.D.Yan,2003: Some advance in global change science study.Chinese J.Atmos.Sci.,27(4),435–450.(in Chinese)

    Ye,D.Z,J.J.Ji,Z.W.Yan,Y.Wang,and X.D.Yan,2009: Anthroposphere—An interactive component in the Earth system.Chinese J.Atmos.Sci.,33(3),409–415.(in Chinese)

    Zhou,T.J.,and Coauthors,2014:Chinese contribution to CMIP5: An overview of f i ve Chinese models’performances.Journal of Meteorology Research,28(4),481–509.

    :Yang,S.L.,and Coauthors,2015:A brief introduction to BNU-HESM1.0 and its earth surface temperature simulations.Adv.Atmos.Sci.,32(12),1683–1688,

    10.1007/s00376-015-5050-6.

    11 February 2015;revised 10 June 2015;accepted 15 June 2015)?

    DONG Wenjie Email:dongwj@bnu.edu.cn

    av网站在线播放免费| 少妇 在线观看| 中文乱码字字幕精品一区二区三区| 99国产精品一区二区三区| 欧美黑人欧美精品刺激| 国产成人欧美| 亚洲国产最新在线播放| 国产精品偷伦视频观看了| 国产亚洲欧美在线一区二区| 国产91精品成人一区二区三区 | 这个男人来自地球电影免费观看| 性高湖久久久久久久久免费观看| 建设人人有责人人尽责人人享有的| 热re99久久国产66热| 免费一级毛片在线播放高清视频 | 国产日韩欧美亚洲二区| 亚洲欧美日韩高清在线视频 | 中文字幕人妻丝袜制服| 电影成人av| 国产成人精品无人区| 亚洲av国产av综合av卡| bbb黄色大片| 亚洲熟女精品中文字幕| 国产国语露脸激情在线看| 黄片播放在线免费| 亚洲图色成人| 一本久久精品| 久久综合国产亚洲精品| www日本在线高清视频| 成人国产一区最新在线观看 | 欧美大码av| 精品福利观看| 新久久久久国产一级毛片| 久久久久精品人妻al黑| 日韩大码丰满熟妇| 免费av中文字幕在线| 亚洲欧美清纯卡通| 亚洲图色成人| 考比视频在线观看| 国产成人精品无人区| 国产成人91sexporn| 国产免费视频播放在线视频| 狂野欧美激情性bbbbbb| 亚洲国产毛片av蜜桃av| 精品久久久久久久毛片微露脸 | 男人操女人黄网站| 嫁个100分男人电影在线观看 | xxxhd国产人妻xxx| 精品少妇久久久久久888优播| 97精品久久久久久久久久精品| 国产淫语在线视频| 性色av乱码一区二区三区2| 日本vs欧美在线观看视频| 午夜日韩欧美国产| 一区二区三区激情视频| 国产精品麻豆人妻色哟哟久久| 日本五十路高清| 国产日韩欧美亚洲二区| 中文字幕亚洲精品专区| 欧美av亚洲av综合av国产av| 十八禁网站网址无遮挡| 在线观看免费日韩欧美大片| 久久ye,这里只有精品| 日韩 亚洲 欧美在线| 久久久国产欧美日韩av| 考比视频在线观看| 亚洲人成网站在线观看播放| 午夜福利一区二区在线看| 少妇被粗大的猛进出69影院| 免费看不卡的av| 国产亚洲精品久久久久5区| 免费高清在线观看视频在线观看| 在线观看免费日韩欧美大片| 人人妻人人澡人人看| 青青草视频在线视频观看| 亚洲一码二码三码区别大吗| 菩萨蛮人人尽说江南好唐韦庄| 国产亚洲欧美精品永久| a级毛片黄视频| 国产在线观看jvid| 日韩 欧美 亚洲 中文字幕| 国产欧美亚洲国产| 精品国产一区二区三区四区第35| 欧美黄色片欧美黄色片| 日韩熟女老妇一区二区性免费视频| 大话2 男鬼变身卡| 男女床上黄色一级片免费看| 午夜免费成人在线视频| 侵犯人妻中文字幕一二三四区| 另类精品久久| 在线亚洲精品国产二区图片欧美| 国产爽快片一区二区三区| 午夜影院在线不卡| 午夜福利乱码中文字幕| 免费在线观看完整版高清| 一级毛片黄色毛片免费观看视频| 在线天堂中文资源库| 高清视频免费观看一区二区| 成人亚洲精品一区在线观看| 久久毛片免费看一区二区三区| 国产一卡二卡三卡精品| 亚洲人成电影观看| 国产成人av教育| 高清不卡的av网站| 老司机靠b影院| 97人妻天天添夜夜摸| 国产色视频综合| 日本av免费视频播放| 日韩一卡2卡3卡4卡2021年| 自拍欧美九色日韩亚洲蝌蚪91| av国产精品久久久久影院| 真人做人爱边吃奶动态| 久久国产精品影院| 男女午夜视频在线观看| 亚洲av美国av| 免费观看人在逋| 亚洲精品久久久久久婷婷小说| 亚洲伊人久久精品综合| 久久影院123| av电影中文网址| 国产无遮挡羞羞视频在线观看| 欧美av亚洲av综合av国产av| 亚洲国产日韩一区二区| 国产成人精品久久二区二区91| 制服诱惑二区| 在线看a的网站| 这个男人来自地球电影免费观看| 亚洲天堂av无毛| 午夜激情久久久久久久| 一级a爱视频在线免费观看| 国产91精品成人一区二区三区 | 亚洲国产日韩一区二区| 久久这里只有精品19| 女人爽到高潮嗷嗷叫在线视频| 国产免费又黄又爽又色| 色精品久久人妻99蜜桃| 成人18禁高潮啪啪吃奶动态图| 久久久精品区二区三区| 日韩,欧美,国产一区二区三区| 18禁黄网站禁片午夜丰满| 亚洲欧美一区二区三区久久| 欧美精品高潮呻吟av久久| 国产女主播在线喷水免费视频网站| 在线av久久热| 男人爽女人下面视频在线观看| 久热这里只有精品99| 丝袜人妻中文字幕| 午夜免费鲁丝| 久久人人97超碰香蕉20202| 久久国产精品大桥未久av| 日韩中文字幕视频在线看片| 97人妻天天添夜夜摸| 欧美人与善性xxx| 亚洲国产av新网站| 老司机亚洲免费影院| 热99久久久久精品小说推荐| 亚洲美女黄色视频免费看| 黄色毛片三级朝国网站| 妹子高潮喷水视频| 90打野战视频偷拍视频| 大码成人一级视频| 亚洲中文字幕日韩| 亚洲久久久国产精品| 日本午夜av视频| 国产激情久久老熟女| 国产免费一区二区三区四区乱码| av天堂在线播放| 欧美在线一区亚洲| 精品一区二区三区av网在线观看 | 男男h啪啪无遮挡| 日本欧美视频一区| 麻豆av在线久日| 久久精品久久精品一区二区三区| av天堂在线播放| 伊人亚洲综合成人网| 青青草视频在线视频观看| 亚洲国产精品国产精品| 在线看a的网站| 亚洲国产欧美在线一区| 亚洲欧洲日产国产| a级片在线免费高清观看视频| 国产成人一区二区在线| av网站免费在线观看视频| 久久性视频一级片| av又黄又爽大尺度在线免费看| 精品高清国产在线一区| 亚洲午夜精品一区,二区,三区| 亚洲少妇的诱惑av| 夫妻性生交免费视频一级片| 亚洲欧洲日产国产| 欧美 日韩 精品 国产| 肉色欧美久久久久久久蜜桃| 免费av中文字幕在线| 亚洲av欧美aⅴ国产| 在线av久久热| 99热全是精品| 国产精品一区二区在线观看99| av网站在线播放免费| 老汉色∧v一级毛片| 人体艺术视频欧美日本| 激情五月婷婷亚洲| 亚洲av成人不卡在线观看播放网 | 1024视频免费在线观看| 激情五月婷婷亚洲| 丝袜脚勾引网站| 国产成人一区二区在线| 欧美黄色淫秽网站| 秋霞在线观看毛片| 国产男女超爽视频在线观看| 国产精品 欧美亚洲| 男人舔女人的私密视频| 纵有疾风起免费观看全集完整版| 成人18禁高潮啪啪吃奶动态图| av天堂在线播放| 国产精品国产三级专区第一集| netflix在线观看网站| 成人午夜精彩视频在线观看| 精品国产一区二区久久| 精品少妇一区二区三区视频日本电影| 免费高清在线观看日韩| 欧美少妇被猛烈插入视频| 三上悠亚av全集在线观看| 亚洲黑人精品在线| 国产成人a∨麻豆精品| 久久精品aⅴ一区二区三区四区| 18禁黄网站禁片午夜丰满| 亚洲欧美精品综合一区二区三区| 波野结衣二区三区在线| 制服人妻中文乱码| 新久久久久国产一级毛片| 91国产中文字幕| av电影中文网址| 一本一本久久a久久精品综合妖精| 国产成人免费观看mmmm| 国产日韩欧美视频二区| 黑丝袜美女国产一区| 久久热在线av| 波多野结衣av一区二区av| 亚洲天堂av无毛| 亚洲午夜精品一区,二区,三区| 国产一区二区激情短视频 | 老司机在亚洲福利影院| 国产日韩欧美在线精品| 丝袜美腿诱惑在线| 伦理电影免费视频| 午夜免费成人在线视频| 91国产中文字幕| 在线 av 中文字幕| 九草在线视频观看| 亚洲欧洲日产国产| 精品人妻1区二区| 两性夫妻黄色片| 国产片特级美女逼逼视频| 国产一区二区激情短视频 | 久久久精品区二区三区| 国产成人精品久久二区二区91| 午夜福利视频精品| 欧美激情 高清一区二区三区| 午夜av观看不卡| 脱女人内裤的视频| 日韩视频在线欧美| 精品国产乱码久久久久久小说| 下体分泌物呈黄色| 岛国毛片在线播放| 欧美另类一区| 亚洲精品国产区一区二| 美女视频免费永久观看网站| 黄片播放在线免费| 国产免费视频播放在线视频| 亚洲伊人色综图| 精品人妻熟女毛片av久久网站| 欧美亚洲 丝袜 人妻 在线| 国产成人啪精品午夜网站| 国产日韩欧美视频二区| 高清黄色对白视频在线免费看| 精品高清国产在线一区| 欧美黑人欧美精品刺激| 午夜激情久久久久久久| 亚洲精品一区蜜桃| 免费观看a级毛片全部| 老司机在亚洲福利影院| 欧美激情高清一区二区三区| 久久精品久久精品一区二区三区| 国产又色又爽无遮挡免| 狂野欧美激情性xxxx| 嫩草影视91久久| 欧美成狂野欧美在线观看| 亚洲一区中文字幕在线| 天天添夜夜摸| 50天的宝宝边吃奶边哭怎么回事| 精品人妻在线不人妻| 一级毛片 在线播放| 久久久久久久国产电影| 中文欧美无线码| 9热在线视频观看99| 成在线人永久免费视频| xxxhd国产人妻xxx| a级片在线免费高清观看视频| 亚洲精品国产一区二区精华液| 男女午夜视频在线观看| 亚洲欧洲国产日韩| 老汉色∧v一级毛片| 18在线观看网站| 色婷婷久久久亚洲欧美| 夫妻性生交免费视频一级片| 日日夜夜操网爽| 人妻一区二区av| 国产精品欧美亚洲77777| 国产亚洲精品第一综合不卡| 最黄视频免费看| 韩国高清视频一区二区三区| 日韩av不卡免费在线播放| 一本大道久久a久久精品| 五月开心婷婷网| av一本久久久久| 91字幕亚洲| 亚洲av电影在线进入| 男女边吃奶边做爰视频| 国产一区有黄有色的免费视频| 老司机午夜十八禁免费视频| 免费看av在线观看网站| 婷婷色麻豆天堂久久| 下体分泌物呈黄色| 国产精品国产av在线观看| 精品福利永久在线观看| 国产亚洲精品久久久久5区| 午夜久久久在线观看| 黄色 视频免费看| 欧美精品一区二区大全| 黄片播放在线免费| 乱人伦中国视频| 亚洲av日韩在线播放| 国产激情久久老熟女| 免费在线观看影片大全网站 | 只有这里有精品99| av电影中文网址| 久久av网站| 女人精品久久久久毛片| 亚洲中文字幕日韩| 亚洲av日韩精品久久久久久密 | 欧美精品亚洲一区二区| 亚洲精品久久成人aⅴ小说| 制服诱惑二区| 亚洲欧美精品综合一区二区三区| 成在线人永久免费视频| 亚洲精品久久午夜乱码| 国产精品久久久人人做人人爽| 一边亲一边摸免费视频| 午夜激情av网站| 久久精品国产亚洲av涩爱| 国产成人av教育| 一级a爱视频在线免费观看| 国产精品.久久久| 中文字幕最新亚洲高清| 免费在线观看影片大全网站 | 久久久久久久精品精品| 丁香六月天网| 午夜av观看不卡| 亚洲精品日本国产第一区| 午夜福利免费观看在线| 久久热在线av| 男女无遮挡免费网站观看| 亚洲av成人精品一二三区| 欧美精品啪啪一区二区三区 | 欧美老熟妇乱子伦牲交| 中文字幕人妻熟女乱码| 天天躁日日躁夜夜躁夜夜| 久久av网站| 精品久久久久久电影网| 国产精品免费视频内射| 欧美激情极品国产一区二区三区| 成年女人毛片免费观看观看9 | 久久久精品区二区三区| 黄频高清免费视频| 色视频在线一区二区三区| 日韩 欧美 亚洲 中文字幕| 久久精品久久久久久噜噜老黄| 亚洲精品国产av成人精品| 黄片小视频在线播放| 99香蕉大伊视频| 手机成人av网站| 国产精品.久久久| 国产一区二区 视频在线| 国产精品麻豆人妻色哟哟久久| 精品国产乱码久久久久久小说| 国产亚洲av高清不卡| 你懂的网址亚洲精品在线观看| 我的亚洲天堂| 国产淫语在线视频| av片东京热男人的天堂| 国产高清视频在线播放一区 | 精品国产乱码久久久久久小说| 亚洲精品一卡2卡三卡4卡5卡 | 蜜桃在线观看..| 免费不卡黄色视频| 亚洲欧美激情在线| 美女脱内裤让男人舔精品视频| 色视频在线一区二区三区| 国产精品久久久人人做人人爽| 大片电影免费在线观看免费| 久久精品aⅴ一区二区三区四区| 久久久精品94久久精品| 另类亚洲欧美激情| 国产视频首页在线观看| 熟女av电影| 亚洲欧美日韩高清在线视频 | 久久av网站| 亚洲欧美日韩高清在线视频 | 人妻一区二区av| 一级毛片女人18水好多 | 99国产精品一区二区三区| 最近中文字幕2019免费版| 一级毛片我不卡| 亚洲九九香蕉| 国产精品久久久久成人av| 黄频高清免费视频| 欧美日韩av久久| 色精品久久人妻99蜜桃| 久久久精品区二区三区| 亚洲人成电影免费在线| 女人高潮潮喷娇喘18禁视频| 亚洲国产欧美在线一区| 少妇被粗大的猛进出69影院| 亚洲情色 制服丝袜| 99国产精品免费福利视频| 丁香六月欧美| 亚洲人成77777在线视频| 老司机深夜福利视频在线观看 | 免费久久久久久久精品成人欧美视频| 另类亚洲欧美激情| 亚洲欧美日韩高清在线视频 | 亚洲精品美女久久久久99蜜臀 | 最近最新中文字幕大全免费视频 | 欧美日韩福利视频一区二区| 韩国精品一区二区三区| 狂野欧美激情性xxxx| 国产主播在线观看一区二区 | 人人妻人人澡人人爽人人夜夜| 精品国产国语对白av| 亚洲欧美一区二区三区黑人| 下体分泌物呈黄色| 国产精品偷伦视频观看了| 久久久久久久大尺度免费视频| 极品人妻少妇av视频| 国产免费又黄又爽又色| 制服人妻中文乱码| 亚洲,欧美,日韩| 国精品久久久久久国模美| 青青草视频在线视频观看| 一个人免费看片子| 国产男女内射视频| 99re6热这里在线精品视频| 日日摸夜夜添夜夜爱| 性高湖久久久久久久久免费观看| 国产精品久久久久成人av| 精品免费久久久久久久清纯 | 国产一区二区在线观看av| 无遮挡黄片免费观看| 自拍欧美九色日韩亚洲蝌蚪91| 免费看不卡的av| 一区二区三区四区激情视频| 黄频高清免费视频| 侵犯人妻中文字幕一二三四区| 免费观看a级毛片全部| 极品少妇高潮喷水抽搐| 十分钟在线观看高清视频www| 亚洲精品一区蜜桃| 国产成人精品久久久久久| 日韩大码丰满熟妇| 国产日韩一区二区三区精品不卡| 国产日韩欧美在线精品| 在线观看免费午夜福利视频| 欧美成人午夜精品| 在线看a的网站| 精品卡一卡二卡四卡免费| 国产不卡av网站在线观看| 精品国产一区二区久久| 91字幕亚洲| 99热网站在线观看| tube8黄色片| 亚洲欧洲国产日韩| 亚洲av成人不卡在线观看播放网 | 亚洲精品久久午夜乱码| 国产伦人伦偷精品视频| 国产精品一二三区在线看| 一区二区av电影网| 午夜福利乱码中文字幕| 高清不卡的av网站| 黄片小视频在线播放| 精品少妇内射三级| 大型av网站在线播放| 亚洲av综合色区一区| 极品人妻少妇av视频| 亚洲精品久久成人aⅴ小说| 黄色怎么调成土黄色| 成在线人永久免费视频| 又紧又爽又黄一区二区| 日本一区二区免费在线视频| 国产在线一区二区三区精| 中文精品一卡2卡3卡4更新| 国产91精品成人一区二区三区 | 乱人伦中国视频| 久久久国产一区二区| www.999成人在线观看| 午夜91福利影院| 伊人亚洲综合成人网| 久久久久久久大尺度免费视频| 国产精品人妻久久久影院| 一区二区日韩欧美中文字幕| 久久 成人 亚洲| cao死你这个sao货| 在线亚洲精品国产二区图片欧美| 成年女人毛片免费观看观看9 | 男女高潮啪啪啪动态图| 成人亚洲精品一区在线观看| 国产黄色视频一区二区在线观看| 99香蕉大伊视频| 精品一区二区三卡| 亚洲,一卡二卡三卡| 最近最新中文字幕大全免费视频 | 18禁裸乳无遮挡动漫免费视频| 国产一卡二卡三卡精品| 精品久久久精品久久久| 只有这里有精品99| 午夜福利视频在线观看免费| 天堂8中文在线网| 最近中文字幕2019免费版| 亚洲五月色婷婷综合| 人人妻人人澡人人看| 一区二区日韩欧美中文字幕| 亚洲中文日韩欧美视频| 电影成人av| 嫩草影视91久久| 欧美少妇被猛烈插入视频| 亚洲成色77777| 侵犯人妻中文字幕一二三四区| 国产麻豆69| 久久天堂一区二区三区四区| 丰满少妇做爰视频| 久久精品亚洲av国产电影网| 伊人久久大香线蕉亚洲五| 黑人猛操日本美女一级片| 90打野战视频偷拍视频| 精品少妇一区二区三区视频日本电影| 日韩一卡2卡3卡4卡2021年| 91麻豆精品激情在线观看国产 | 成人国语在线视频| 在线观看一区二区三区激情| 一本色道久久久久久精品综合| 女人被躁到高潮嗷嗷叫费观| 午夜免费观看性视频| 久久久久国产一级毛片高清牌| 成年动漫av网址| √禁漫天堂资源中文www| 亚洲成av片中文字幕在线观看| 精品卡一卡二卡四卡免费| 欧美xxⅹ黑人| 9热在线视频观看99| 亚洲国产欧美一区二区综合| 久久精品亚洲熟妇少妇任你| 亚洲国产欧美一区二区综合| 国产亚洲一区二区精品| 男人操女人黄网站| 精品亚洲乱码少妇综合久久| 大片电影免费在线观看免费| 人人妻人人爽人人添夜夜欢视频| 啦啦啦视频在线资源免费观看| 黑丝袜美女国产一区| 九色亚洲精品在线播放| 欧美日韩视频精品一区| 午夜免费成人在线视频| 国产成人啪精品午夜网站| 老汉色av国产亚洲站长工具| 91九色精品人成在线观看| 日韩av不卡免费在线播放| 另类精品久久| 亚洲国产av新网站| 久久精品熟女亚洲av麻豆精品| 91老司机精品| 90打野战视频偷拍视频| 下体分泌物呈黄色| 久久精品亚洲av国产电影网| 老熟女久久久| 欧美中文综合在线视频| 人人妻人人爽人人添夜夜欢视频| 99久久99久久久精品蜜桃| 亚洲欧美精品自产自拍| 97人妻天天添夜夜摸| 中文欧美无线码| av天堂在线播放| 色综合欧美亚洲国产小说| 国产欧美日韩一区二区三 | 欧美人与性动交α欧美精品济南到| 亚洲图色成人| xxx大片免费视频| 欧美变态另类bdsm刘玥| 亚洲国产精品一区三区| 国产在线视频一区二区| 9191精品国产免费久久| 国产女主播在线喷水免费视频网站| 亚洲精品第二区| 国产熟女午夜一区二区三区| 好男人电影高清在线观看| 极品人妻少妇av视频| 美女午夜性视频免费| 黑人欧美特级aaaaaa片| 19禁男女啪啪无遮挡网站| 亚洲精品国产av成人精品| 天天躁夜夜躁狠狠久久av| 丰满饥渴人妻一区二区三| 观看av在线不卡| 国产日韩欧美亚洲二区| 夫妻午夜视频| 91精品三级在线观看| 一本久久精品|