• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Use of Incremental Analysis Updates in 4D-Var Data Assimilation

    2015-06-09 21:24:03BanglinZHANGVijayTALLAPRAGADAFuzhongWENGJasonSIPPELandZaizhongMA
    Advances in Atmospheric Sciences 2015年12期

    Banglin ZHANGVijay TALLAPRAGADAFuzhong WENGJason SIPPELand Zaizhong MA

    1I.M.System Group,Inc.,College Park,MD 20740,USA

    2NOAA NCEP Environmental Modeling Center,College Park,MD 20740,USA

    3NOAA Center for Satellite Applications and Research,College Park,MD 20740,USA

    4Joint Center for Satellite Data Assimilation,College Park,MD 20740,USA

    Use of Incremental Analysis Updates in 4D-Var Data Assimilation

    Banglin ZHANG?1,2,Vijay TALLAPRAGADA2,Fuzhong WENG3,Jason SIPPEL1,2,and Zaizhong MA4

    1I.M.System Group,Inc.,College Park,MD 20740,USA

    2NOAA NCEP Environmental Modeling Center,College Park,MD 20740,USA

    3NOAA Center for Satellite Applications and Research,College Park,MD 20740,USA

    4Joint Center for Satellite Data Assimilation,College Park,MD 20740,USA

    The four-dimensional variational(4D-Var)data assimilation systems used in most operational and research centers use initial condition increments as control variables and adjust initial increments to f i nd optimal analysis solutions.This approach may sometimes create discontinuities in analysis fields and produce undesirable spin ups and spin downs.This study explores using incremental analysis updates(IAU)in 4D-Var to reduce the analysis discontinuities.IAU-based 4D-Var has almost the same mathematical formula as conventional 4D-Var if the initial condition increments are replaced with time-integrated increments as control variables.

    The IAU technique was implemented in the NASA/GSFC 4D-Var prototype and compared against a control run without IAU.The results showed that the initial precipitation spikes were removed and that other discontinuities were also reduced, especially for the analysis of surface temperature.

    data assimilation,incremental analysis updates,4D-Var,convergence

    1.Introduction

    A prototype incremental strong constraint fourdimensional variational(4D-Var)data assimilation system has been developed at the Goddard Space Flight Center (GSFC)Global Modeling and Assimilation Of fi ce(GMAO) (Tremolet and Todling,personal communication).This prototype uses the Grid-Point Statistical Interpolation developed in the National Centers for Environmental Prediction(Wu et al.,2002),the fi fth generation of the Goddard Earth Observing System(GEOS-5)atmospheric model(Rienecker et al.,2008),and the GEOS-4 based tangent linear and adjoint models(Giering et al.,2003).

    The 4D-Varprototype issuperiorto the NASA/GFSC 3DVar system for a number of reasons.A key bene fi t is the use of the tangent linear and its adjoint model,which enables flow-dependent propagation of background error covariance over a given assimilation window.Preliminary experiments made with the prototype 4D-Var system showed improvements over 3D-Var.For instance,the forecast skill scores were improved,especially in the data-sparse Southern Hemisphere.

    However,a veri fi cation study of the 4D-Var prototype found that large spikes exist in the time series of global mean precipitation(Fig.1).While the exact cause of this has yet to be determined,it most likely arises from discontinuities at the beginning of data assimilation windows due to using initial condition increments as control variables.Such discontinuities can trigger spurious gravity waves that impact precipitation and other physics fields.

    Bloom et al.(1996)introduced an incremental analysis updating(IAU)technique to the NASA/GSFC 3D-Var analysis system to remove the same type of initial discontinuities in 3D-Var.Polavarapu et al.(2000)also found a positive impact from using digital filter initialization to suppress gravity waves and to smooth analyses in a 4D-Var system,and Polavarapu et al.(2004)later showed that IAU and incremental digital filtering are equivalent to each other for linear models using time-invariant coeff icients.Because the NASA/GSFC 4D-Var prototype was based on the 3D-Var system with an IAU component embedded in the nonlinear forward model,it is quite straightforward to implement the IAU technique in the 4D-Var system.

    The methodology underlying the current study has roots in advancements long before the development of operational 4D-Var.Derber(1989)proposed variational continuous assimilation(VCA)as a modif i cation to the adjoint technique introduced by Le Dimet and Talagrand(1986).In the adjoint technique,the initial conditions are control variables that areadjusted to f i nd the bestfit to the data.Meanwhile,in VCA the control variables are the values that alter the model time derivatives over the assimilation interval.The operational implementation of 4D-Var in terms of increments was later proposed by Courtier et al.(1994).

    In the current study the initial condition increments in conventional 4D-Var were replaced with time-integrated increments as control variables in the cost function,which is similar to the VCA technique.This new IAU-based 4D-Var system distributes analysis increments throughout the entire assimilation window both in the full model outer loops and in the tangent linear and the adjoint models.By working this way,a continuous analysis state is generated,and initial discontinuities are greatly reduced.The characteristics of the IAU-based 4D-Var solution could be quite different from those of the conventional 4D-Var without IAU since the latter incrementally adjusts the time derivatives or tendencies throughoutthe analysiswindow while the formeradjustsonly the initial condition at the beginning of the window.Theoretically,IAU-based 4D-Var is also superior to IAU-based 3DVar,which does not take into account the propagation of the analysis increment in the analysis inner loop.

    The outline ofthispaperisasfollows:Section 2 describes both conventional 4D-Var and IAU-based 4D-Var.Solution convergence and computer costs are discussed in section 3. In section 4,some experimental results are presented,and the positive impacts of the IAU technique in the 4D-Var system are evaluated.A summary and discussion points are presented in section 5.

    2.Conventional 4D-Var and IAU-based 4DVar systems

    In this section,the algorithm employed by the NASA GMAO incremental strong constraint 4D-Var prototype is briefly described in section 2.1,and the generalized IAU-based 4D-Var system is presented in section 2.2.In section 2.3,two special cases of the generalized IAU-based 4D-Var system are discussed,one of which is simplified to the regular strong constraint 4D-Var,and the other is a strict IAU 4D-Var.

    2.1.Conventional incremental strong constraint 4D-Var

    In an incremental,strong-constraint 4D-Var system (Courtier et al.,1994),the model’s trajectory and the departure of observations from the model are calculated by the use of a non-linear model in the outer-loop,

    where x is the model state variable,M is the nonlinear forecast model,and the time stepis 0,1,2,···,n.

    The preconditioned Lanczos conjugate-gradient method (Fisher,1998)is used to solve the minimization problem with the cost-function in the inner loop written as where the control variableis the correction from first guessis the difference betweenand model stateis the background error covariance ma-observation error,andis the observation.TheT()notation denotes a transpose of a vector or a matrix.For i=0,1,···,n,

    In an actual implementation,the forward integrations are computed step by step for

    and the summation on the right-hand side of?J0is derived backward through adjoint operations fo

    2.2.IAU based 4D-Var

    In an IAU-based 4D-Var system,analysis increments are gradually inserted to the model at each time step instead of at the initial step.Noting the time-integrated incrementsthe new control variables,and assuming the tendenciesare small fractions of the total integrated increments at time stepi,we can write the nonlinear forward model in the outer loopas

    In the inner loop of the IAU based 4D-Var system,the forward operations,fori=1,···,n,are

    and the adjoint operations in a backward order fori=n?1,···,1,0,are

    The corresponding cost function in terms of?xis

    where fori=0,1,···,n

    The gradient ofJ0with respect to

    where all the symbols with tildes are rede fined to re flect the presence of IAU vectors,

    Here,the intermediate vectors with augmented IAU,andtheir adjoint vectorsare written as

    Thus,the forward tangent linear model operations for timei=1,···,n?1,n,are

    The backward adjoint operations fori=n?1,···,1,are

    Fori=0,

    Equations(18–22)for IAU-based 4D-Var are very similar to Eqs.(4)and(6–8),which allows for easy implementation of Eqs.(18–22).

    The differences between the conventional incremental, strong-constraint 4D-Var and IAU-based 4D-Var are illustrated in Fig.2.In conventional 4D-Var,analysis increments are added at the initial step,which creates discontinuities at the beginning of an assimilation window.On the other hand, IAU-based 4D-Var gradually adds small fractions of analysis increments to a nonlinear forecast model in the outer loops at each time step and acts like a continuous assimilation method.The IAU-based 4D-Var system also gradually adds small fractions of increments to the tangent linear model in the inner loops.

    In data assimilation a weak constraint refers to corrections made to the forecast model rather than the initial condition,so IAU-based 4D-Var is actually a weak-constraint scheme.However,the algorithm is implemented exactly as in the incremental strong-constraint algorithm.The only difference is that time-integrated increments replace initial condition increments as control variables.As for computational overhead,the increase is negligible for IAU-based 4D-Var when compared with conventional 4D-Var.

    2.3.Special cases

    The generalized IAU-based 4D-Var can be simpli fi ed to the conventional incremental 4D-Var when

    For another extreme case,the generalized algorithm reduces to a strict IAU-based 4D-Var when

    In this study,we only run experiments for the above two special cases to evaluate the impacts of the IAU in a 4D-Var system.

    3.Convergence issue

    To validate the algorithm,the first step is to examine solution convergence.We ran the outer loop 10 times and fi xed the number of inner loop iterations at 70 for both conventional 4D-Var and strict IAU-based 4D-Var.Both the conventional 4D-Var experiment and IAU-based algorithm were carried out with version fdda b1p3-das 215-3 of the NASA/GFSC 4D-Var prototype.The default con fi guration was adopted for setting up the control experiment,except that the inner loop iteration numbers and outer loop numbers were changed.Figure 3 shows the evolution of the cost per observation(Jo/p)as a function of the accumulated number of inner loop iterations for 10 outer loops.The convergence ofJo/pis obtained after only three outer loop iterations,though the convergence values are quite different between the two experiments.Meanwhile,Fig.4 shows the reduction of gradient norms as a function of inner-loop iteration number for the first three outer loops.The gradient norm from IAU-based 4D-Var decreases much more quickly than that of the conventional 4D-Var,which shows that the IAU-based algorithm converges faster.However,IAU-based 4D-Var converges to a bigger minimum value(0.470)than the conventional 4D-Var system(0.389).This implies that conventional 4D-Var has less model constraint and more strongly fit sobservations,but this could be a less balanced solution.IAU-based 4D-Var has more constraint from the model and a more balanced solution,but it does not fit observations as well.

    4.Results

    In this section experiments were designed to diagnose the impacts of IAU on 4D-Var.An assimilation experiment was run for both conventional and IAU-based 4D-Var starting from the same initial condition at 2100 UTC 8 September 2007 and ending at 2100 UTC 31 October 2007.The experiments used three outer loops based on the aforementioned convergence study,but the number of inner loop iterations was cut from 70 to 35 for the second and third outer loops to reduce the computational cost.

    Figure 5 shows the temperature control variable as an example comparison between the two systems.Shown in the left panels are the initial condition increments from conventional 4D-Var at the 51st model level(≈5.6 hPa;Fig.5a)and on the model surface(Fig.5c)at 2100 8 September 2007. The right-hand panels show time-integrated temperature increments from the IAU-based 4D-Var system in a 6 h assimilation window starting from 2100 8 September 2007 at the 51st model level(Fig.5b),and on the model surface(Fig. 5d).The difference in temperature increments between conventional4D-Varand IAU-based 4D-Varis quite small.However,for IAU-based 4D-Var the time-integrated increment at level 51 has more detailed small structure over the Southern Hemisphere.In addition,the biggest increments in conventional 4D-Var are near locations with many rawinsonde observations,while IAU-based 4D-Var has big increments farther away.

    4.1.Analysis and diagnostic fields

    The time series of hourly total precipitation averaged over the globe from both conventional 4D-Var and IAU-based 4DVar are first analyzed to see if introducing IAU into 4D-Var can reduce discontinuities.As shown in Fig.1,the discontinuities found at the beginning of assimilation windows in the conventional4D-Var(red curve)are completely smoothed out by the IAU implementation(blue line).

    Verif i cation of other state variables is also conducted to check the impacts of IAU in 4D-Var.Figure 6 shows an example time series of background and analysis surface temperature at(30?N,120?E)from conventional 4D-Var and the IAU-based 4D-var systems.For this example,the conventional 4D-Var analysis itself is of high quality,and only small discontinuities appeared at initial time of each assimilation window.The evolutions of background and analysis surface temperature from IAU based 4D-Var are quite close to the conventional 4D-Var.

    In contrast,the time series of surface temperature atin Fig.7 demonstrates poor performance of the conventional strong constraint 4D-Var.The model background temperatures are much warmer than observations in many assimilation windows,and the analysis overcorrected the systematic warm bias,which resulted in an unrealistic saw-tooth pattern.The IAU-based 4D-Var distributed the increment over the entire assimilation window without over-correction and with a much smoother analysis,although the warm bias still exists.

    The time series in Fig.8,which shows temperature at the 51st model level at(30?N,120?E),demonstrates noisier gravity wave effects in conventional 4D-Var than in the IAU-based 4D-Var system.Figure 9 shows a time series of globally averaged hourly temperature analyses from conventional 4D-Var(red)and the IAU-based 4D-Var system(blue) at the 51st model level(top panel)and at the model surface (bottom panel).Spurious high-frequency waves are observed in the conventional 4D-Var,while they are absent from the IAU-based 4D-Var.

    The time series of globally averaged 6-hourly temperature analyses from IAU-based 3D-Var(green),conventional 4D-Var(red),and IAU-based 4D-Var(blue)are given in Fig. 10.The IAU-based 4D-Var analysis is even smoother than that of the IAU-based 3D-Var,but the difference between 4DVar analyses with and without IAU is much smaller than the difference between 3D-Var and 4D-Var.

    4.2.Observation-minus-background and-analysis statistics

    To verify IAU-based 4D-Var,the statistics of the observation-minus-background(OmB)departures and observation-minus-analysis(OmA)were calculated for 4DVar experiments with and without IAU.Giving atmospheric water vapor mixing ratio as an example,Fig.11 shows the monthly mean bias(solid)and standard deviations(dashed) of OmB residuals(top panels)and OmA residuals(bottom panels)for four different regions.Although the OmA standard deviation from 4D-Var with IAU is slightly larger than 4D-Var without IAU,the OmB mean biases and standarddeviations from both conventional 4D-Var and IAU-based 4D-Var are very similar.The IAU-based analysis slightly degrades in the OmA standard deviation statistics because of more constraint by the model.For other variables such as temperature,zonal and meridional winds,the results are similar(figures not shown here).

    5.Summary and discussion

    In this paper we introduced IAU into 4D-Var and compared it to conventional strong constraint 4D-Var without IAU.The implementation of IAU in 4D-Var generates a continuous analysis state,and large spikes in global mean precipitation present in conventional 4D-Var were greatly reduced. The easy conversion to the strong constraint formula from IAU is another outstanding characteristic and is why the IAU-based 4D-Var does not have additional computational cost.

    The experiment in IAU-based 4D-Var used the same background error from conventional 4D-Var without any tuning.This might also be one of the reasons that the OmA statistics of the IAU-based 4D-Var are slightly larger than for conventional 4D-Var.Tuning of the background error will be carried out in the future to improve the OmA statistics and to obtain better forecast skill scores.

    Acknowledgements.The authors thank Yannick TREMOLET of the European Centre for Medium-Range Weather Forecasts and Ricardo TODLING of the GMAO for their help with the development of the NASA/GMAO 4D-Var prototype.The authors are grateful to Jing GUO of Science Systems and Applications,Inc.at the NASA/GMAO for helpful discussions.The work was supported by NOAA’s Hurricane Forecast Improvement Project.

    REFERENCES

    Bloom,S.C.,L.L.Takacs,A.M.da Silva,and D.Ledvina,1996: Data assimilation using incremental analysis updates.Mon. Wea.Rev.,124,1256–1271.

    Courtier,P.,J.-N.Th′epaut,and A.Hollingsworth,1994:A strategy for operational implementation of 4d-Var,using an incremental approach.Quart.J.Roy.Meteor.Soc.,120,1367–1387.

    Derber,J.C.,1989:A variational continuous assimilation technique.Mon.Wea.Rev.,117,2437–2446.

    Fisher,M.,1998:Minimization algorithms for variational data assimilation.Seminar on Recent Developments in Numerical Methods for Atmospheric Modelling,ECMWF,364–385.

    Giering,R.,T.Kaminski,R.Todling,and S.-J.Lin,2003:Generating the tangent linear and adjoint models of the DAO f i nite volume GCM’s dynamical core by means of TAF.EGS-AGUEUG Joint Assembly,Abstracts,11680,France.

    Le Dimet,F.-X.,and O.Talagrand,1986:Variational algorithms for analysis and assimilation of meteorological observations.Tellus,38A,97–110.

    Polavarapu,S.,M.Tanguay,and L.Fillion,2000:Fourdimensional variational Data assimilation with digital filter initialization.Mon.Wea.Rev.,128,2491–2510.

    Polavarapu,S.,S.Z.Ren,A.M.Clayton,S.David,and Y.Rochon, 2004:On the relationship between incremental analysis updating and incremental digital filtering.Mon.Wea.Rev.,132, 2495–2502.

    Rienecker,M.,and Coauthors,2008:The GEOS-5 data assimilation system-documentation of versions 5.0.1,5.1.0,and 5.2.0.Technical Report Series on Global Modeling and Data Assimilation,NASA TM 104606.

    Wu,W.S.,R.J.Purser,and D.F.Parrish,2002:Three-dimensional variational analysis with spatially inhomogeneous covariances.Mon.Wea.Rev.,130,2905–2916.

    :Zhang,B.,V.Tallapragada,F.Weng,J.Sippel,and Z.Ma,2015:Use of incremental analysis updates in 4D-Var data assimilation.Adv.Atmos.Sci.,32(12),1575–1582,

    10.1007/s00376-015-5041-7.

    13 February 2015;revised 9 June 2015;accepted 10 June 2015)?

    Banglin ZHANG Email:banglin.zhang@noaa.gov

    嫩草影视91久久| 国产99久久九九免费精品| 亚洲精品一二三| 久热这里只有精品99| 婷婷精品国产亚洲av在线 | 国产av一区二区精品久久| 久久亚洲精品不卡| 精品人妻1区二区| 亚洲精品在线观看二区| 老熟女久久久| 一区在线观看完整版| 亚洲一区中文字幕在线| 国产精品久久久久久精品古装| 18禁裸乳无遮挡动漫免费视频| 久久亚洲真实| av有码第一页| 亚洲成人免费av在线播放| 乱人伦中国视频| 国产亚洲精品第一综合不卡| 新久久久久国产一级毛片| 午夜激情av网站| 亚洲精品一卡2卡三卡4卡5卡| 国产精品98久久久久久宅男小说| 黄网站色视频无遮挡免费观看| 黄色成人免费大全| 黄色 视频免费看| 嫩草影视91久久| 色综合欧美亚洲国产小说| 久久精品国产99精品国产亚洲性色 | av天堂久久9| 欧美不卡视频在线免费观看 | 一个人免费在线观看的高清视频| 午夜精品久久久久久毛片777| 久久人妻av系列| 在线观看免费视频日本深夜| 国产av一区二区精品久久| 天天操日日干夜夜撸| 国产精品亚洲av一区麻豆| 国产一区二区三区视频了| 王馨瑶露胸无遮挡在线观看| 国产精品综合久久久久久久免费 | 飞空精品影院首页| 日韩熟女老妇一区二区性免费视频| 波多野结衣一区麻豆| 欧美大码av| 久热爱精品视频在线9| 久久国产精品男人的天堂亚洲| 极品教师在线免费播放| 女人被狂操c到高潮| 91九色精品人成在线观看| 99久久人妻综合| 亚洲av日韩精品久久久久久密| 亚洲熟女精品中文字幕| 少妇猛男粗大的猛烈进出视频| 老熟妇仑乱视频hdxx| 亚洲熟妇熟女久久| 国产av又大| 精品久久久久久久久久免费视频 | 日韩免费av在线播放| 日韩三级视频一区二区三区| 波多野结衣一区麻豆| 看免费av毛片| www.自偷自拍.com| 亚洲av日韩在线播放| 18禁裸乳无遮挡动漫免费视频| 国产免费男女视频| 在线观看免费视频网站a站| 满18在线观看网站| 精品午夜福利视频在线观看一区| 成人永久免费在线观看视频| 亚洲成人免费av在线播放| 少妇裸体淫交视频免费看高清 | 国产精品永久免费网站| 999精品在线视频| 亚洲熟妇中文字幕五十中出 | 丰满人妻熟妇乱又伦精品不卡| 亚洲色图av天堂| 亚洲片人在线观看| 夜夜爽天天搞| 国产高清videossex| 亚洲欧美精品综合一区二区三区| 久久久精品免费免费高清| 亚洲一码二码三码区别大吗| 国产亚洲欧美精品永久| 成人特级黄色片久久久久久久| 美女高潮喷水抽搐中文字幕| 香蕉国产在线看| xxxhd国产人妻xxx| 精品亚洲成a人片在线观看| 大陆偷拍与自拍| 美女 人体艺术 gogo| 亚洲中文日韩欧美视频| 国产野战对白在线观看| 亚洲国产欧美一区二区综合| 国产高清videossex| 建设人人有责人人尽责人人享有的| 亚洲av美国av| 亚洲人成电影免费在线| 免费日韩欧美在线观看| 精品乱码久久久久久99久播| 国产熟女午夜一区二区三区| 一区二区三区国产精品乱码| 久久久国产欧美日韩av| 麻豆av在线久日| 黄片播放在线免费| 老司机靠b影院| 国产精品九九99| 精品久久久久久电影网| 激情在线观看视频在线高清 | 成人精品一区二区免费| 欧美av亚洲av综合av国产av| 欧美在线一区亚洲| 欧美成人午夜精品| 久久性视频一级片| 亚洲第一青青草原| 1024香蕉在线观看| 天天影视国产精品| 下体分泌物呈黄色| 十八禁高潮呻吟视频| 午夜福利一区二区在线看| 国产主播在线观看一区二区| 久久久久精品人妻al黑| 黄频高清免费视频| 别揉我奶头~嗯~啊~动态视频| 久久久国产一区二区| 一级毛片精品| 国产精品1区2区在线观看. | 啦啦啦免费观看视频1| 国产欧美亚洲国产| 欧美在线一区亚洲| 国产麻豆69| 成人18禁高潮啪啪吃奶动态图| 国产在视频线精品| 天天躁夜夜躁狠狠躁躁| 一区二区日韩欧美中文字幕| 欧美日韩亚洲综合一区二区三区_| 欧美黑人精品巨大| 欧美亚洲日本最大视频资源| 亚洲全国av大片| 女人高潮潮喷娇喘18禁视频| 日本精品一区二区三区蜜桃| av网站免费在线观看视频| 一级作爱视频免费观看| 777米奇影视久久| 精品国内亚洲2022精品成人 | 动漫黄色视频在线观看| 久久人人97超碰香蕉20202| 精品人妻1区二区| 午夜免费观看网址| 国产亚洲精品久久久久5区| 一边摸一边抽搐一进一小说 | av不卡在线播放| 下体分泌物呈黄色| 亚洲精品国产一区二区精华液| 首页视频小说图片口味搜索| 久久久久久久久免费视频了| 中文字幕av电影在线播放| 久久精品亚洲熟妇少妇任你| 国产高清视频在线播放一区| 国产淫语在线视频| 久久人妻福利社区极品人妻图片| 别揉我奶头~嗯~啊~动态视频| 中出人妻视频一区二区| 看片在线看免费视频| 亚洲欧美激情在线| 欧美在线黄色| 成人亚洲精品一区在线观看| 黄片大片在线免费观看| 91麻豆av在线| netflix在线观看网站| 日本黄色视频三级网站网址 | 色综合欧美亚洲国产小说| 色播在线永久视频| 免费在线观看影片大全网站| 在线永久观看黄色视频| 母亲3免费完整高清在线观看| 91麻豆av在线| www日本在线高清视频| 精品久久久久久,| 午夜福利,免费看| 少妇粗大呻吟视频| 精品国产美女av久久久久小说| 精品免费久久久久久久清纯 | 窝窝影院91人妻| 一本大道久久a久久精品| 国产精品久久久久久精品古装| 国产精品久久久人人做人人爽| 欧美日韩亚洲综合一区二区三区_| 久99久视频精品免费| 午夜久久久在线观看| 一本综合久久免费| 午夜视频精品福利| 午夜福利,免费看| 亚洲七黄色美女视频| 女人精品久久久久毛片| 免费一级毛片在线播放高清视频 | 亚洲成国产人片在线观看| 91精品国产国语对白视频| 日韩免费av在线播放| 国产精品久久久人人做人人爽| 两性夫妻黄色片| 午夜福利影视在线免费观看| 午夜免费观看网址| 大码成人一级视频| 国产精品影院久久| 两性夫妻黄色片| 欧美人与性动交α欧美软件| 在线免费观看的www视频| 免费在线观看亚洲国产| 999久久久精品免费观看国产| 精品国产乱码久久久久久男人| 亚洲欧洲精品一区二区精品久久久| 日韩免费av在线播放| 免费人成视频x8x8入口观看| 久久国产亚洲av麻豆专区| 99re在线观看精品视频| 国产成人av教育| 精品福利观看| 国产欧美亚洲国产| 久久热在线av| 黄色女人牲交| 中出人妻视频一区二区| 日韩欧美国产一区二区入口| 18禁裸乳无遮挡免费网站照片 | 一二三四社区在线视频社区8| 狂野欧美激情性xxxx| 免费在线观看影片大全网站| 交换朋友夫妻互换小说| 久久青草综合色| 一级a爱片免费观看的视频| 国产av又大| 色老头精品视频在线观看| 19禁男女啪啪无遮挡网站| 日韩欧美在线二视频 | 亚洲国产中文字幕在线视频| 日韩免费av在线播放| 中亚洲国语对白在线视频| 成人精品一区二区免费| 久久精品国产清高在天天线| 首页视频小说图片口味搜索| 欧美亚洲日本最大视频资源| 丝袜美腿诱惑在线| 亚洲avbb在线观看| 精品少妇一区二区三区视频日本电影| 国产欧美日韩精品亚洲av| 亚洲精品乱久久久久久| 亚洲专区国产一区二区| 99国产精品免费福利视频| 免费不卡黄色视频| 亚洲色图av天堂| 热99久久久久精品小说推荐| 久久99一区二区三区| 国产精品亚洲av一区麻豆| 欧美乱码精品一区二区三区| 亚洲全国av大片| 国产成人精品在线电影| 国产麻豆69| 午夜91福利影院| av线在线观看网站| 亚洲精品美女久久av网站| 制服诱惑二区| 日日爽夜夜爽网站| 国产高清视频在线播放一区| 国产精品.久久久| 国产欧美日韩综合在线一区二区| 日日夜夜操网爽| 亚洲专区中文字幕在线| 夜夜爽天天搞| 欧美激情久久久久久爽电影 | 18禁国产床啪视频网站| 色综合欧美亚洲国产小说| 欧美+亚洲+日韩+国产| 欧美亚洲 丝袜 人妻 在线| 老司机亚洲免费影院| 男女床上黄色一级片免费看| 操美女的视频在线观看| 9热在线视频观看99| 久久狼人影院| 黄频高清免费视频| 大片电影免费在线观看免费| 午夜激情av网站| 国产91精品成人一区二区三区| 香蕉国产在线看| 国产片内射在线| 亚洲专区字幕在线| 亚洲国产精品sss在线观看 | 亚洲精品粉嫩美女一区| 两人在一起打扑克的视频| 欧美不卡视频在线免费观看 | 午夜福利乱码中文字幕| 人人妻人人澡人人爽人人夜夜| 夜夜夜夜夜久久久久| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美老熟妇乱子伦牲交| 一级,二级,三级黄色视频| 啦啦啦视频在线资源免费观看| 乱人伦中国视频| 麻豆av在线久日| 精品卡一卡二卡四卡免费| 久久精品aⅴ一区二区三区四区| 国产精品美女特级片免费视频播放器 | av有码第一页| x7x7x7水蜜桃| 欧美激情久久久久久爽电影 | 国产精品98久久久久久宅男小说| 美女高潮喷水抽搐中文字幕| 亚洲一区高清亚洲精品| 亚洲一区二区三区不卡视频| 国产成人系列免费观看| 中文字幕人妻丝袜制服| 欧美日韩亚洲国产一区二区在线观看 | 亚洲欧美一区二区三区久久| 亚洲美女黄片视频| 男女之事视频高清在线观看| 午夜成年电影在线免费观看| 国产无遮挡羞羞视频在线观看| 午夜福利免费观看在线| 午夜成年电影在线免费观看| 亚洲欧美激情综合另类| 亚洲avbb在线观看| 亚洲欧美激情在线| 日韩熟女老妇一区二区性免费视频| 精品无人区乱码1区二区| 成人精品一区二区免费| 精品久久久久久,| 最近最新免费中文字幕在线| 黄色a级毛片大全视频| 成人av一区二区三区在线看| 老汉色av国产亚洲站长工具| 色婷婷av一区二区三区视频| 欧美精品啪啪一区二区三区| 国产一卡二卡三卡精品| 久久精品亚洲av国产电影网| 亚洲午夜理论影院| 搡老岳熟女国产| 亚洲一区二区三区欧美精品| 国产日韩一区二区三区精品不卡| 午夜视频精品福利| 91av网站免费观看| 亚洲avbb在线观看| 精品一区二区三区视频在线观看免费 | 两个人看的免费小视频| 亚洲国产欧美日韩在线播放| 天天添夜夜摸| 国产单亲对白刺激| 女同久久另类99精品国产91| 俄罗斯特黄特色一大片| 啦啦啦视频在线资源免费观看| 国产男靠女视频免费网站| 在线观看午夜福利视频| 怎么达到女性高潮| 午夜福利欧美成人| 成人黄色视频免费在线看| 人妻久久中文字幕网| 国产精品乱码一区二三区的特点 | 亚洲专区国产一区二区| 天堂√8在线中文| 三级毛片av免费| 中文字幕高清在线视频| 老汉色∧v一级毛片| 免费女性裸体啪啪无遮挡网站| 欧美久久黑人一区二区| 久久久久久久国产电影| 亚洲人成77777在线视频| 亚洲情色 制服丝袜| 久久国产精品影院| 国产不卡av网站在线观看| x7x7x7水蜜桃| 亚洲熟女毛片儿| 男女之事视频高清在线观看| 国产男女内射视频| 成人av一区二区三区在线看| 大型av网站在线播放| 国产在线精品亚洲第一网站| 久久国产精品男人的天堂亚洲| 又大又爽又粗| 夜夜躁狠狠躁天天躁| 涩涩av久久男人的天堂| 超色免费av| 亚洲国产欧美网| 国产精品二区激情视频| 狂野欧美激情性xxxx| 亚洲国产欧美日韩在线播放| av超薄肉色丝袜交足视频| 在线观看免费高清a一片| 无遮挡黄片免费观看| 中文字幕另类日韩欧美亚洲嫩草| 国产在线精品亚洲第一网站| 啦啦啦免费观看视频1| 国产黄色免费在线视频| 怎么达到女性高潮| 男女午夜视频在线观看| 国产精品偷伦视频观看了| 久久国产亚洲av麻豆专区| 久久精品熟女亚洲av麻豆精品| 99热国产这里只有精品6| 欧美不卡视频在线免费观看 | 日韩成人在线观看一区二区三区| 女性被躁到高潮视频| 亚洲久久久国产精品| 精品久久久久久电影网| 又黄又爽又免费观看的视频| 成人亚洲精品一区在线观看| 久久热在线av| 国产日韩欧美亚洲二区| 欧美日韩乱码在线| 中文字幕av电影在线播放| 日本五十路高清| 亚洲精品自拍成人| 午夜福利影视在线免费观看| 欧美老熟妇乱子伦牲交| 久99久视频精品免费| 亚洲专区字幕在线| 1024香蕉在线观看| 夫妻午夜视频| 亚洲美女黄片视频| 亚洲人成电影观看| 不卡av一区二区三区| a级片在线免费高清观看视频| 亚洲人成伊人成综合网2020| 中文字幕制服av| bbb黄色大片| 午夜两性在线视频| 视频区欧美日本亚洲| 首页视频小说图片口味搜索| a级毛片黄视频| 人妻 亚洲 视频| 首页视频小说图片口味搜索| 九色亚洲精品在线播放| 久久精品熟女亚洲av麻豆精品| 久久久国产成人精品二区 | 色婷婷久久久亚洲欧美| 国产在线一区二区三区精| 中文字幕人妻丝袜制服| 美女扒开内裤让男人捅视频| 亚洲国产精品sss在线观看 | 欧美日韩乱码在线| 亚洲一区二区三区不卡视频| 激情视频va一区二区三区| 午夜福利在线免费观看网站| 免费不卡黄色视频| 成人av一区二区三区在线看| 国产欧美日韩精品亚洲av| 日韩欧美在线二视频 | 女警被强在线播放| 国产精品免费视频内射| 大陆偷拍与自拍| 国产精品一区二区免费欧美| 两个人免费观看高清视频| 欧美另类亚洲清纯唯美| 亚洲美女黄片视频| 国产97色在线日韩免费| 国产精品久久久久久精品古装| 欧美成狂野欧美在线观看| 99热只有精品国产| 欧美精品高潮呻吟av久久| 久久这里只有精品19| 成人国产一区最新在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 丰满饥渴人妻一区二区三| 日韩大码丰满熟妇| 精品福利观看| 久久久久久久久久久久大奶| 老司机亚洲免费影院| 久久中文字幕人妻熟女| 9191精品国产免费久久| 亚洲av成人av| 怎么达到女性高潮| 99久久人妻综合| 午夜精品在线福利| 亚洲欧美精品综合一区二区三区| 亚洲一码二码三码区别大吗| 亚洲av成人一区二区三| 啦啦啦 在线观看视频| 人人妻人人添人人爽欧美一区卜| 精品人妻在线不人妻| 精品久久蜜臀av无| 精品亚洲成a人片在线观看| 中文字幕人妻熟女乱码| 嫩草影视91久久| 波多野结衣一区麻豆| 国产精品国产高清国产av | 亚洲五月天丁香| 国产免费男女视频| 久久人妻熟女aⅴ| 一级毛片高清免费大全| 午夜福利免费观看在线| 国产成人精品久久二区二区免费| 亚洲精品美女久久av网站| 久久国产精品人妻蜜桃| 亚洲精品久久成人aⅴ小说| 美女扒开内裤让男人捅视频| 精品人妻在线不人妻| 国产精品 欧美亚洲| 国产主播在线观看一区二区| 在线播放国产精品三级| 另类亚洲欧美激情| 中文字幕最新亚洲高清| av视频免费观看在线观看| svipshipincom国产片| 一进一出好大好爽视频| 欧美久久黑人一区二区| a级片在线免费高清观看视频| 精品少妇久久久久久888优播| 美女高潮到喷水免费观看| 91精品国产国语对白视频| 天天添夜夜摸| www日本在线高清视频| 黑丝袜美女国产一区| 国产成+人综合+亚洲专区| 精品国产一区二区三区久久久樱花| av电影中文网址| 一夜夜www| 欧美日韩av久久| 久久久久久久精品吃奶| 精品福利观看| 国产黄色免费在线视频| 亚洲精品在线美女| 成人黄色视频免费在线看| 欧美+亚洲+日韩+国产| 国产成人免费观看mmmm| 波多野结衣av一区二区av| 大片电影免费在线观看免费| 国产xxxxx性猛交| 国产成人啪精品午夜网站| 另类亚洲欧美激情| 黄片播放在线免费| 亚洲精品美女久久久久99蜜臀| 午夜免费鲁丝| 成年人免费黄色播放视频| 最近最新中文字幕大全电影3 | 国产在线一区二区三区精| 亚洲一区高清亚洲精品| 免费少妇av软件| 国产成人啪精品午夜网站| 亚洲片人在线观看| 亚洲精品国产色婷婷电影| 国产蜜桃级精品一区二区三区 | 国产精品国产av在线观看| 高清在线国产一区| 日韩欧美一区二区三区在线观看 | 老汉色∧v一级毛片| 别揉我奶头~嗯~啊~动态视频| 久久精品国产a三级三级三级| 久久草成人影院| 久久精品熟女亚洲av麻豆精品| 国产精品 欧美亚洲| 18禁国产床啪视频网站| 淫妇啪啪啪对白视频| 欧美日本中文国产一区发布| 国产精品一区二区免费欧美| 亚洲精品美女久久久久99蜜臀| 日日夜夜操网爽| 免费在线观看完整版高清| 亚洲精品久久午夜乱码| 国产欧美日韩精品亚洲av| 99精品在免费线老司机午夜| 天堂√8在线中文| 一级毛片精品| 岛国毛片在线播放| 丁香六月欧美| 日韩熟女老妇一区二区性免费视频| 成人精品一区二区免费| 免费高清在线观看日韩| 欧美精品啪啪一区二区三区| 久久久久久久久久久久大奶| 欧美日韩av久久| 一级,二级,三级黄色视频| 亚洲三区欧美一区| 国产欧美日韩综合在线一区二区| 亚洲国产毛片av蜜桃av| www.熟女人妻精品国产| 日本精品一区二区三区蜜桃| 丝袜美足系列| 久久亚洲真实| 超碰97精品在线观看| 99香蕉大伊视频| 黄色 视频免费看| 精品国产一区二区久久| 新久久久久国产一级毛片| 中文字幕色久视频| 国产精品国产av在线观看| 精品国内亚洲2022精品成人 | 波多野结衣一区麻豆| 国产深夜福利视频在线观看| 久久久久久亚洲精品国产蜜桃av| 在线观看免费视频网站a站| av天堂久久9| 天堂√8在线中文| 久久精品国产综合久久久| 成人亚洲精品一区在线观看| 91在线观看av| 电影成人av| 国产99白浆流出| 色婷婷av一区二区三区视频| 日韩成人在线观看一区二区三区| 久久久久精品国产欧美久久久| 另类亚洲欧美激情| 免费一级毛片在线播放高清视频 | 久久国产乱子伦精品免费另类| 色尼玛亚洲综合影院| 大香蕉久久网| 激情在线观看视频在线高清 | 亚洲色图av天堂| 国产精品美女特级片免费视频播放器 | 国产蜜桃级精品一区二区三区 | 90打野战视频偷拍视频| 久久久久国产精品人妻aⅴ院 | 亚洲欧美精品综合一区二区三区| 青草久久国产| 国产深夜福利视频在线观看| 久久久国产一区二区| 久久亚洲精品不卡| 99精品在免费线老司机午夜| 天堂中文最新版在线下载|