• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    On the First Hochschild Cohomology of Admissible Algebras?

    2015-06-06 06:22:12FangLIDezhanTAN

    Fang LI Dezhan TAN

    1 Introduction

    The Hochschild cohomology of algebras is invariant under Morita equivalence.Hence it is enough to consider basic connected algebras when the algebras are Artinian.Let Γ=(V,E)be a finite connected quiver,whereV(resp.E)is the set of vertices(resp.arrows)in Γ.Letkbe an arbitrary field andkΓ be the corresponding path algebra.Denote byRthe two-sided ideal ofkΓ generated byE.Recall that an idealIis called admissible if there existsm≥2 such thatRm?I?R2(see[2]).According to the Gabriel theorem,a finite dimensional basick-algebra over an algebraically closed fieldkis in the form ofkΓ/Ifor a finite quiver Γ and an admissible ideaI.

    An Artinian algebra is called a monomial algebra(see[3])if it is isomorphic to a quotientkΓ/Iof a path algebrakΓ for a finite quiver Γ and an ideaIofkΓ generated by some paths in Γ.In particular,denote byknΓ the ideal ofkΓ generated by all paths of lengthn.Then the monomial algebrakΓ/knΓ is called then-truncated quiver algebra.

    The study of Hochschild cohomology of quiver related algebras started with the paper of Happel in 1989(see[11]),who gave the dimensions of Hochschild cohomology of arbitrary orders of path algebras for acyclic quivers.Afterwards,there have been extensive studies on the Hochschild cohomology of quiver-related algebras such as truncated quiver algebras,monomial algebras,schurian algebras and 2-nilpotent algebras(see[1,4,6–7,12–15,17–19]).In[11],a minimal projective resolution of a finite-dimensional algebraAover its enveloping algebra is described in terms of the combinatorics when the fieldkis an algebraically closed field.In these papers listed above,the authors used this kind of projective resolution or its improving version to compute the Hochschild cohomology.

    In[10],the authors applied an explicit and combinatorial method to studyHH1(kΓ).In this paper,we improve the method in[10]to the case of algebras with relations in order to study theHH1(kΓ/I),wherekΓ/Iis an admissible algebra.This way does not depend on projective resolution and the requirement ofkbeing an algebraically closed field.Using this method,we can obtain some structural results which would not arise by the classical method in the above listed papers.

    IfI?R2holds for a two-sided idealI,we callkΓ/Ian admissible algebra(see Definition 2.1).So finite-dimensional basic algebras are always admissible algebras.We will give Proposition 2.1,which shows that admissible algebras,including basic algebras,possess the similar characterization of monomial algebras and truncated quiver algebras,although they are not graded.From this point of view,the admissible algebra is motivated to unify and generalize the basic algebra and the monomial algebra.

    In the following,we always assume thatkΓ/Iis an admissible algebra.This paper includes three sections except for the introduction.In Section 2,we introduce the basic definitions which are used in this paper.In particular,we define the notion of an acyclic admissible algebra,which can be thought as a generalization of the notion of an acyclic quiver.A sufficient and necessary condition is obtained for a linear operator fromkΓ tokΓ/Ito be a differential operator.Next,we give a standard basis of Dif f(kΓ,kΓ/I).

    In Section 3,we investigateH1(kΓ,kΓ/I).In(3.3),a dimension-formula ofH1(kΓ,kΓ/I)is given for a finite-dimensional admissible algebra.Moreover,in Theorem 3.1,we construct a basis ofH1(kΓ,kΓ/I)when Γ is planar andkΓ/Iis an acyclic admissible algebra.

    In Section 4,we characterizeHH1(kΓ/I).In(4.2),we give the dimension-formula ofHH1(kΓ/I)for any finite-dimensional admissible algebraskΓ/I.Moreover,we apply this method to complete monomial algebras and truncated quiver algebras.In Theorems 4.1–4.2,we constructk-linear bases of their first cohomology groups under certain conditions.The Hochschild cohomology of monomial algebras and truncated quiver algebras has been studied in[7,12,16,18–19].Our results in Section 4 can be seen as the generalization of those corresponding conclusions in the listed references above.In the same section,two examples of admissible algebras are given which are not monomial algebras.Their first Hochschild cohomology is characterized using our theory.

    2 The k-Linear Basis of Dif f(kΓ,kΓ/I)

    We always assume Γ=(V,E)to be a finite connected quiver,whereV(resp.E)is the set of vertices(resp.arrows)in Γ.For a pathp,denote its starting vertex byt(p),called the tail ofp,and the ending point byh(p),called the head ofp.For two pathspandq,ift(p)=t(q)andh(p)=h(q),we saypandqare parallel,denoted bypq.Denote byP=PΓthe set of paths in a quiver Γ including its vertices;denote byPAthe set of its acyclic paths.Trivially,Γ is acyclic if and only ifPΓV=PA.Throughout this paper,we always assume quivers to be finite and connected.

    Definition 2.1SupposeΓ =(V,E)is a quiver and I is a two-sided ideal of kΓ.We call the quotient algebra kΓ/I an admissible algebra if IR2,where R denotes the two-sided ideal of kΓgenerated by E.

    Proposition 2.1Suppose kΓ/I is an admissible algebra,and then there exists a subsetof P such that V∪E?and Q={|x∈forms a basis of kΓ/I for=x+I.

    ProofLetXbe ak-linear basis ofI.Denote byP≥2the set of all paths of length≥2.De fine

    Tbecomes a partial set due to the order of inclusion between subsets ofkΓ.It is easy to see thatT?andTsatis fies the upper-bound condition of chains.So by the famous Zorn’s lemma,Thas a maximal element,denoted byZ.

    We claim thatZis linearly equivalent toP≥2.Otherwise,there existsp∈P≥2such thatpcan not be linearly expressed byZ,and thenZ∪{p}is linearly independent inkΓ,which contradicts the maximal property ofZ.

    SinceZis linearly equivalent toP≥2,it follows thatV∪E∪Zis linearly equivalent toP=V∪E∪P≥2.By the definition ofT,Z?X∪P≥2.Iis generated byX.HenceV∪E∪(ZX)forms a basis of the complement space ofIinkΓ.It means thatQ=V∪E∪(ZX)}forms a basis ofkΓ/I.It is clear thatV∪E∪(ZX)?Pand it is thewe want.

    WhenI?R2is finite dimensional,we have an explicit way to determine theConcretely,suppose that{x1,x2,···,xm}is a basis ofI.Then there exists a finite subset{p1,p2,···,pn}ofPsuch thatxican be expressed by the linear combinations ofpj.Supposexi=fori=1,2,···,m,and then we obtain anm×nmatrixA=(aij).We can transform the matrixAinto a row-ladder matrixB=(bij)through only row transformations.Suppose thatbi,c(i)is the first nonzero number of thei-th row ofB.SinceBis a row-ladder matrix,we havecickforik.Then{x1,x2,···,xm}∪{pl|lc1,c2,···,cm}is linearly equivalent to{p1,p2,···,pn}.Hence(P{p1,p2,···,pn})∪{pl|lc1,c2,···,cm}is a basis of the complement space ofIinkΓ.Then the residue classes inkΓ/Iof all elements in this basis form a basis ofkΓ/I.

    On the other hand,in some special cases,e.g.,whenkΓ/Iis a monomial algebra,even ifIis not finite dimensional,the choice ofis also given in the same way.IfkΓ/Iis a monomial algebra andIis generated by a set of paths of length≥2,the set of paths that does not belong toIis just therequired.

    Definition 2.2Let A be a k-algebra and M an A-bimodule.A differential operator(or say,derivation)from A into M is a k-linear map D:A→M such that

    In particular,when M=A,this coincides with the differential operator of algebras.

    Lemma 2.1Suppose that D is a differential operator from kΓinto kΓ/I.Then D is determined by its action on the set V of vertices ofΓand the set E of arrows ofΓ.

    Lemma 2.2LetΓbe a quiver.Denote by kV(resp.kE)the linear space spanned by the set V of the vertices ofΓ (resp.the set E of the arrows ofΓ).Assume that we have a pair of linear maps D0:kV→kΓ/I and D1:kE→kΓ/I satisfying that

    Then,the pair of linear maps(D0,D1)can be uniquely extended to a differential operator D:kΓ →kΓ/I satisfying that

    for any path p=p1p2···pl,pi∈E,1≤i≤l,l≥2.

    ProofOne only need to prove thatDis indeed a differential operator.For this,we need to check(2.1)in the next four cases:

    (a)x,y∈V;(b)x∈V,y∈PV;(c)x∈PV,y∈V;(d)x,y∈PV.

    However,the checking process is routine,so we omit it here.

    In the sequel,we always supposekΓ/Ito be an admissible algebra for the given idealIand the notations in Definition 2.1 are used.From Definition 2.1 and Proposition 2.1,there exists a basis ofkΓ/Iwhich consists of residue classes of some paths including that ofVandE.Denote the fixed basis ofkΓ/IbyQ.Suppose thatD:kΓ →kΓ/Iis a linear operator,then for anyp∈P,D(p)is a unique combination of the basisQofkΓ/I.Write this linear combination by

    where all∈k.We will use this notation throughout this paper.As a convention,for the empty set?,we say

    Lemma 2.3Suppose that q1,q2∈P,q1,q2/∈I andin kΓ/I,then t(q1)=t(q2),h(q1)=h(q2),i.e.,q1q2.

    ProofIft(q1)t(q2),thena contradiction,sot(q1)=t(q2).Similarly,h(q1)=h(q2).

    According to the lemma above,for∈Q,we can de fine:=t(q)(resp.:=h(q))for any pathq∈PsatisfyinginkΓ/I.For a paths∈Pandp∈Q,ift(s)=andh(s)=we saysandare parallel,denoted bys

    Denote

    Moreover,(resp.)denotes the subspace ofkΓ/Igenerated by(resp.).Clearly,ask-linear spaces,

    Definition 2.3Using the above notations,an admissible algebra kΓ/I is called acyclic if

    It is easy to see from this definition that

    (i)the fact whether the givenkΓ/Iis acyclic is independent on the choice of

    (ii)if the quiver Γ is acyclic,thenkΓ/Iis acyclic;the converse is not true in general;

    (iii)ifkΓ/Iis acyclic,then it is finite dimensional;the converse is not true,e.g.,kΓ/knΓ if Γ is a loop forn≥2.

    Proposition 2.2Let D:kΓ→kΓ/I be a k-linear operator.

    (i)If D is a differential operator,then

    (a)for v∈V,

    (b)for p∈E,

    where the coefficients are subject to the following condition:For any path∈Q such that

    (ii)Conversely,assume that the linear map D from kV⊕kE to kΓ/I satisfies(2.8)–(2.10),then D can be uniquely extended linearly to a differential operator as(2.6).

    Proof(i)For a givenv∈V,sincevv=v,we have

    So by the direct computation,we can get

    Moreover,

    So we havevD(v)v=0.That means=0.So we get(2.8).

    Also,for a givenp∈E,we have

    Sincet(p),h(p)∈V,by(2.8),we can easily get(2.9).

    Letx,y∈V,andxy.By(2.8),

    ButD(xy)=0 sincexy=0.So

    For a path∈Qsuch thatsubstitutingxandyrespectively withandhwe get(2.10).

    (ii)We only need to verify that the conditions of Lemma 2.2 are satisfied.Because the process is straightforward,we leave it to the readers.

    Next,we apply Proposition 2.2 to display a standard basis of differential operators fromkΓ tokΓ/I,for any admissible algebrakΓ/I.

    Proposition 2.3(Dif f erential operatorFor a quiverΓ=(V,E),let r∈E and s∈P with rs.Define the k-linear operator:kV⊕kE→kΓ/I satisfying

    Then,the conditions of Lemma2.2are satisfied and thus,can be uniquely extended to a differential operator from kΓto kΓ/I,denoted still byfor convenience.

    Proof(2.2)–(2.5)can be checked easily by the definition of

    For a givens∈P,we have the corresponding inner differential operator:

    Theorem 2.1LetΓ =(V,E)be a quiver and I be an ideal such that kΓ/I is an admissible algebra.Then the set

    is a basis of the k-linear space of differential operators from kΓto kΓ/I,where

    ProofWe only need to verify that the operators in B are linearly independent and any differential operators can be generatedk-linearly by

    Step 1is linearly independentSuppose that there are∈ksuch that

    Then for any givenby the definitions ofandwe have

    In the last formula above,always holds.Thus,their coefficients are all zero.In particular,=0 for any∈Qwith

    Thus,from(2.15),we get that

    Further,for any givenr0∈E,∈Qwithr0,we have

    It follows that=0 for anyr0∈E,∈Qwithr

    Hence,isk-linearly independent.

    Step 2is the set of k-linear generatorsLetD:kΓ →kΓ/Ibe any differential operator.Then forv∈Vandp∈E,by(2.8)–(2.10),we have

    We claim thatDagrees with the differential operatordefined by the linear combination

    whereandcome from(2.16)–(2.17).Any path inPis either a vertex or a product of arrows.Thus by the product rule of di ff erential operators,to showD=we only need to verify thatD(q)=for eachq=v∈Vandq=p∈E.The veri fication is straightforward,so we omit it.

    We call the set B in Theorem 2.1 the standard basis of thek-linear space Di ff(kΓ,kΓ/I)generated by all di ff erential operators fromkΓ tokΓ/I.

    From this theorem,we get Di ff(kΓ,kΓ/I)=whereis thek-linear space generated byfori=1,2 in(2.14).

    For anyp∈E,∈is called the arrow di ff erential operator fromkΓ tokΓ/I.Letis called the space of arrow di ff erential operators.

    3 H1(kΓ,kΓ/I)for an Admissible Algebra kΓ/I

    Proposition 3.1Let q∈P be such that h(q)=t(q)=v0.We have

    ProofNote that both sides of(3.1)arek-linearly generated by differential operators.So,by the product formula of differential operators,we only need to verify that the both sides always agree when they act on the elements ofVandE.Since the computation is direct,we omit it here.

    Remark 3.1Forv∈V,it is clear thatt(v)=h(v)=v.From Proposition 3.1,we have

    We callthe vertex differential operator fromkΓ tokΓ/I.Letdenote the linear space spanned bycalled the space of vertex differential operators.It is clear thatis a subspace of

    Lemma 3.1Let p∈P,and then is always in the k-subspacegenerated by

    ProofSupposeand then

    Corollary 3.1Let q∈P be such that h(q)=t(q).Then

    ProofForr∈E,rs∈P;by Lemma 3.1,supposeand it is clear thatso then we use Proposition 3.1.

    Remark 3.2Forfrom Theorem 2.1 and Corollary 3.1,we know thatbut not in=DenoteThenand=0.

    Denote by Inn-Dif f(kΓ,kΓ/I)the linear space consisting of inner dif f erential operators from kΓ to kΓ/I.Then,Inn-Dif f(kΓ,kΓ/I)=.Thus,we have

    Since the basis of kΓ/I given in Proposition 2.1 contains the residue classes of V and E,we can see that the center of kΓ/I as a kΓ-bimodule and the center of kΓ/I as an algebra are the same,denoted by Z(kΓ/I).

    Proposition 3.2Let kΓ/I be a f i nite-dimensional admissible algebra,and then

    ProofBy the discussion above,dimkHH1(kΓ,kΓ/I)=Then

    where the f i rst isomorphism is assured by(2.12),the second and fourth isomorphisms are trivial,and the third is because of the facts thatSoas k-linear spaces,and it follows that

    IfkΓ/Iis acyclic,thenThus,we have the following corollary.

    Corollary 3.2If kΓ/I is an acyclic admissible algebra(in particular,ifΓis an acyclic quiver),then

    On the other hand,when Γ is a planar quiver andkΓ/Iis an acyclic admissible algebra,we can apply the approach of[10]to give a basis ofHH1(kΓ,kΓ/I).A planar quiver is a quiver with a fixed embedding into the planeThe setFof faces of a planar quiver Γ is the set of connected component of

    We will need the famous Euler formula on the planar graph(see[5,9]),which states that for any finite connected planar graph(which can be thought as the underlying graph of a quiver Γ),we have

    For each face of Γ,its boundary is called a primitive cycle.Letdenote the boundary of the unique unbounded facef0of Γ.Letdenote the set of primitive cycles of Γ andThen clearly,the set ΓPof primitive cycles of Γ is in bijection with the setFof the faces of Γ.So

    For a facef∈F,denote bythe corresponding primitive cycle off.Suppose thatis comprised of an ordered list of arrowsp1,···,ps∈E,and define an operator fromkΓ tokΓ/Iby

    where aifpiis in clockwise direction when viewed from the interior of the faceand is?otherwise.We calla face differential operator fromkΓ tokΓ/I.Letdenote the linear space spanned bycalled the space of face differential operators.

    The next lemma is similar to Theorem 4.9 in[10].

    Lemma 3.2LetΓbe a planar quiver with the ground field k of characteristic0,and then

    (a)dim=|V|?1;

    (b)dim=|F|? 1=

    (c)andare linearly disjoint subspaces ofthe

    Proof(a) Denote γ0= |V|.Sinceis the identity ofkΓ/I,which clearly lies in the center of kΓ/I, we have

    So dim≤γ0?1.We next prove that dim≥γ0?1.We may assume thatγ0≥2.

    We claim that anyγ0?1 elements of|i=1,···,γ0}are linearly independent.In fact,suppose=0,whereai∈k,which means thatis in the center ofkΓ/I.

    Since Γ is connected,let the vertexvγ0be connected toviby an arrowpforiγ0.We may assume thatt(p)=viandh(p)=vγ0.We have

    Soai=0.Note that Γ is connected,and we can repeat this process to getaj=0 for anyj.

    (b)Let|F|=γ2.Through simple observation of the planar quiver,we can see that ifp∈Eis in the boundary,then it is at most in the boundary of two primitive cycles.Note that ifp∈Eis in the boundary of two primitive cyclesandthen the signs ofinandare opposite.Ifp∈Eis in the boundary of only one primitive cycle P,thenoccurs twice inwith an opposite sign.Thus we have

    wheredenotes the primite cycle corresponding tof0as above.So dim≤ |F|?1.

    We next prove that dim≥ |F|? 1.We may assume that|F|≥ 2.Suppose

    wherebj∈k.Ifp∈Eis in the boundary ofandforj>0,thenSo we havebj=0.This means that ifandhave a commonp∈Ein their boundary,thenbj=0.Replacebyand repeat this process.Since the quiver is connected,we can getbj=0 for anyj>0.

    (c)From[10]and Theorem 2.1,we know thatandE}arek-linearly independent sets in Di ff(kΓ)and Di ff(kΓ,kΓ/I)respectively.Based on this,andcan be linearly expressed by usingwhich is similar to the fact thatDviandcan be linearly expressed byin[10].Under this correspondence,referring to Theorem 4.9 in[10]in the same process,we obtain thatandare linearly disjoint subspaces of

    By this lemma,is a basis of

    Theorem 3.1LetΓbe a planar quiver and kΓ/I be an acyclic admissible algebra with the ground field k of characteristic0.Then the union set

    is a basis of H1(kΓ,kΓ/I).

    ProofBy the Euler formula and Lemma 3.2,we can getBecausekΓ/Iis acyclic,we haveand then

    4 HH1(kΓ/I)for an Admissible Algebra kΓ/I

    Lemma 4.1A differential operator of kΓ/I can naturally induce a differential operator from kΓto kΓ/I.Conversely,a differential operator D from kΓto kΓ/I satisfying D(I)=can induce a differential operator of kΓ/I.

    ProofDenote bypthe canonical map fromkΓ tokΓ/I.Given a differential operatorDofkΓ/I,we claim that the compositionDpis a differential operator fromkΓ tokΓ/I.Note that the canonical map fromkΓ tokΓ/Iis an algebra homomorphism,and it can be directly verified.The converse result can be shown directly,too.

    For a differential operatorDfromkΓ tokΓ/IsatisfyingD(I)=we denote bythe induced differential operator onkΓ/I.Write(I):={D|D∈Dif f(kΓ,kΓ/I),D(I)=It is clear thatfors∈P.So

    Lemma 4.2(I)Dif f(kΓ/I)as k-linear spaces.

    ProofThe map from F(I)to Dif f(kΓ/I)is as follows:

    The proof of Lemma 4.1 assures that the map fromto Dif f(kΓ/I)is surjective.As for the injectivity,supposeD1,D2∈(I)andD1D2,so according to Lemma 2.1,there exists a

    By this lemma,we can think Dif f(kΓ/I)as ak-subspace of Dif f(kΓ,kΓ/I).

    From Lemma 4.2,we have

    as linear spaces.This means thatHH1(kΓ/I)can be embedded into

    Moreover,we have the next proposition.

    Proposition 4.1Suppose that kΓ/I is a finite-dimensional admissible algebra,and then

    ProofNote thatare linear spaces.By(4.2),we have pathp∈V∪Esuch thatD1(p)D2(p).Since

    Corollary 4.1If kΓ/I is an acyclic admissible algebra(in particular,ifΓis an acyclic quiver),then

    IfkΓ/Iis an acyclic admissible algebra,we have a standard procedure to compute dim(I).First note that for a differential operatorDfromkΓ tokΓ/I,D(I)=if and only ifD(ri)=where{r1,···,ri,···,rn}is a minimal set of generators ofI.This property follows easily from the Leibnitz rule of differential operators.SincekΓ/Iis acyclic,is finite foras given in Theorem 2.1.Suppose thatfori=1,···,n.This means that the coefficientssatisfy the system of these homogeneous linear equations.So dim(I)is equal to the dimension of the solution space of the system of homogeneous linear equations.

    Now we give two examples of admissible algebras that are not monomial algebras or truncated quiver algebras,and characterize their first Hochschild cohomology.

    Example 4.1Let Γ=(V,E)be the quiverandI=

    In this case,So we have

    Suppose that

    and then we geta+b?c?d=0.Hence dim(I)=3 and dimkHH1(kΓ/I)=0.

    Example 4.2Let Γ be the quiver having one vertex with two loops,or equivalently,kΓ =k.Suppose the idealI=.ThenkΓ/I=k[x,y].

    In this case,=?andare the basis of Dif fk[x,y]),wherexmynmeans the multiplication ink[x,y].Sincek[x,y]is commutative,we get that

    Moreover,note thatandThus we obtain the basis ofHH1(k[x,y])to be

    Similarly,we can obtain the first Hochschild cohomology for

    Assume thatkΓ/Iis a monomial algebra.The residue classes of paths that do not belong toIform a basis ofkΓ/I.For convenience,we also denote byQthe basis ofkΓ/IwhenkΓ/Iis a monomial algebra.

    Definition 4.1A monomial algebra kΓ/I is called complete if for any parallel paths p,inΓ,p∈I implies∈I.

    Proposition 4.2Suppose that kΓ/I is a complete monomial algebra with I?R2.Then the following set

    is a basis ofDif f(kΓ/I),where

    ProofSincekΓ/Iis complete,we have=for any∈wherepis any path inI.Then=It follows that Dif f(kΓ,kΓ/I)Dif f(kΓ/I)ask-linear spaces.Thus due to Theorem 2.1,the result follows.

    Corollary 4.2Suppose that kΓ/I is an acyclic complete monomial algebra with I?R2.Then

    ProofBy the proof of Proposition 4.2,dimkBy Corollary 4.1,we get the required result.

    In[15],the author gave a characterization of the first Hochschild cohomology of an acyclic complete monomial algebra through a projective resolution.However,itsk-linear basis has not been constructed so far.Here,we want to reach this aim by our method.

    Theorem 4.1LetΓbe a planar quiver,and kΓ/I be an acyclic complete monomial algebra with I?R2over the field k of characteristic0.Then the union set

    is a basis of HH1(kΓ/I),where

    ProofBy(4.1)and(I)=we haveHH1(kΓ/I)H1(kΓ,kΓ/I)in this case.So from Theorem 3.1,we can directly get this theorem.

    For a truncated quiver algebrakΓ/knΓ withn≥2,we can give a standard basis of Dif f(kΓ/knΓ).kΓ/knΓ has the basis formed by the residue classes of the paths of length≤n?1,denoted also byQ.

    Proposition 4.3LetΓ=(V,E)be a quiver and the field k be of characteristic0.A basis ofDif f(kΓ/knΓ)for any truncated quiver algebra kΓ/knΓwith n≥2is given by the set

    where

    ProofIt is clear thatfor∈Q,(knΓ)=forNote that whenris a loop of Γ,∈Dif f(kΓ,kΓ/knΓ),butMoreover,for all loopsr1,···,rsof Γ andc1,···,csnot all 0,we claim thatWithout loss of generality,we can assumec10.So we have

    Then by Theorem 2.1,the union set

    forms a basis of the linear space(knΓ)forI=knΓ.By Lemma 4.2,we have

    Noting the map from(knΓ)to Dif f(kΓ/knΓ)in Lemma 4.2,we can see that the union setis ak-linear basis of Dif f(kΓ/knΓ).

    Thus Dif f(kΓ/knΓ)=whereis thek-linear space generated byfori=1,2.

    Corollary 4.3LetΓ=(V,E)be a quiver and the field k be of characteristic0.Then

    ProofBy the proof of Proposition 4.3 and the definition of(I),we can see thatE,is a basis of(knΓ)forI=knΓ.By Proposition 4.3,

    Then by Proposition 4.1 and the correspondence betweenDr,sandfor each pairwe get the required result.

    This corollary has indeed been given as Theorem 1 in[12]and Theorem 2 in[18].The method we obtain here is different from that in[12,18].

    Moreover,whenkΓ/knΓ is acyclic,we can get a basis ofHH1(kΓ/knΓ)as in Theorem 4.1.

    Theorem 4.2LetΓbe a planar quiver,and kΓ/knΓfor n≥2be acyclic over the field k of characteristic0.Then the union set

    is a basis of HH1(kΓ/knΓ),where

    ProofSincekΓ/Iis acyclic,By Lemma 4.2,So the result can be obtained in the same way as the proof of Theorem 3.1.

    AcknowledgementWe would like to thank the referees for their careful reviewing and useful comments.

    [1]Ames,G.,Cagliero,L.and Tirao,P.,Comparison morphisms and the Hochschild cohomology ring of truncated quiver algebras,J.Algebra,322,2009,1466–1497.

    [2]Assem,I.,Simson,D.and Skowronski,A.,Elements of the Representation Theory of Associative Algebras Vol I:Techniques of Representation Theory,London Mathematical Society Student Texts,65,Cambridge University Press,Cambridge,2006.

    [3]Auslander,M.,Reiten,I.and Smal?,S.O.,Representation Theory of Artin Algebra,Cambridge University Press,Cambridge,1995.

    [4]Bardzell,M.J.,The alternating syzygy behavior of monomial algebras,J.Algebra,188(1),1997,69–89.

    [5]Bollobas,B.,Modern Graph Theory,Graduate Texts in Mathematics,184,Springer-Verlag,New York,1998.

    [6]Cibils,C.,Rigidity of truncated quiver algebras,Adv.Math.,79,1990,18–42.

    [7]Cibils,C.,Rigid monomial algebras,Math.Ann.,289,1991,95–109.

    [8]Crawley-Boevey,W.W.,Lectures on Representations of Quivers.http://www1.maths.leeds.ac.uk/?pmtwc/quivlecs.pdf

    [9]Gross,J.L.and Tucker,T.W.,Topological Graph Theory,John Wiley and Sons,New York,1987.

    [10]Guo,L.and Li,F.,Structure of Hochschild cohomology of path algebras and differential formulation of Euler’s polyhedron formula.arxiv:1010.1980v2

    [11]Happel,D.,Hochschild cohomology of finite dimensional algebras,Lecture Notes in Math.,1404,1989,108–126.

    [12]Locateli,A.C.,Hochschild cohomology of truncated quiver algebras,Comm.Algebra,27,1999,645–664.

    [13]Pena,J.A.and Saorin,M.,On the first Hochschild cohomology group of an algebra,Manscripta Math.,104,2001,431–442.

    [14]Sanchez-Flores,S.,The Lie module structure on the Hochschild cohomology groups of monomial algebras with radical square zero,J.Algebra,320,2008,4249–4269.

    [15]Sanchez-Flores,S.,On the semisimplicity of the outer derivations of monomial algebras,Communications in Algebra,39,2011,3410–3434.

    [16]Sardanashvily,G.,Dif f erential operators on a Lie and graded Lie algebras.arxiv:1004.0058v1[math-ph]

    [17]Strametz,C.,The Lie algebra structure on the first Hochschild cohomology group of a monomial algebra,J.Algebra Appl.,5(3),2006,245–270.

    [18]Xu,Y.,Han,Y.and Jiang,W.,Hochschild cohomology of truncated quiver algebras,Science in China,Series A:Mathematics,50(5),2007,727–736.

    [19]Zhang,P.,Hochschild cohomology of truncated basic cycle,Science in China,Series A,40(12),1997,1272–1278.

    videossex国产| 国产成人一区二区在线| 亚洲人成网站高清观看| 国产日韩欧美在线精品| 日本三级黄在线观看| 极品教师在线视频| 精品人妻一区二区三区麻豆| 免费黄频网站在线观看国产| 久久精品国产亚洲av天美| 久久精品熟女亚洲av麻豆精品| 欧美高清成人免费视频www| 伦精品一区二区三区| 欧美区成人在线视频| 亚洲av日韩在线播放| 久久99热6这里只有精品| 在线免费观看不下载黄p国产| 少妇 在线观看| 99久久人妻综合| 高清在线视频一区二区三区| 男人添女人高潮全过程视频| 亚洲在久久综合| 国产黄片美女视频| 免费观看av网站的网址| freevideosex欧美| 日韩欧美精品v在线| 国产精品av视频在线免费观看| 亚洲精品乱久久久久久| 欧美少妇被猛烈插入视频| 一级毛片久久久久久久久女| 久久99热这里只频精品6学生| 亚洲va在线va天堂va国产| 天堂俺去俺来也www色官网| 亚洲美女搞黄在线观看| 欧美高清性xxxxhd video| 黄色欧美视频在线观看| 在线播放无遮挡| 看十八女毛片水多多多| 国产老妇女一区| 91久久精品电影网| freevideosex欧美| 成人黄色视频免费在线看| 成人国产麻豆网| 国产一区亚洲一区在线观看| 成人特级av手机在线观看| 女人十人毛片免费观看3o分钟| 免费观看无遮挡的男女| 51国产日韩欧美| 亚洲不卡免费看| av专区在线播放| 日本熟妇午夜| 九九在线视频观看精品| 22中文网久久字幕| 在线观看一区二区三区| 国产欧美另类精品又又久久亚洲欧美| 丰满乱子伦码专区| 久久6这里有精品| 婷婷色综合www| 水蜜桃什么品种好| 亚洲成人一二三区av| 精品99又大又爽又粗少妇毛片| 国产成人精品一,二区| 国产成人freesex在线| 国产成人精品久久久久久| 亚洲成人中文字幕在线播放| 爱豆传媒免费全集在线观看| 激情五月婷婷亚洲| 国产免费一区二区三区四区乱码| 五月天丁香电影| 日本黄色片子视频| videos熟女内射| 国产精品不卡视频一区二区| 免费大片黄手机在线观看| 亚洲成人av在线免费| 自拍偷自拍亚洲精品老妇| 国产成年人精品一区二区| 日韩不卡一区二区三区视频在线| 亚洲精品,欧美精品| 久久精品久久久久久噜噜老黄| 精品久久国产蜜桃| 卡戴珊不雅视频在线播放| 最近2019中文字幕mv第一页| 久久久久久久久久久丰满| 免费看不卡的av| av天堂中文字幕网| 国内少妇人妻偷人精品xxx网站| 国内揄拍国产精品人妻在线| 97在线视频观看| 69人妻影院| 精品人妻熟女av久视频| 国产日韩欧美亚洲二区| 久久久精品免费免费高清| 色综合色国产| 日产精品乱码卡一卡2卡三| 中文精品一卡2卡3卡4更新| 亚洲色图综合在线观看| 午夜激情福利司机影院| 真实男女啪啪啪动态图| 亚洲无线观看免费| 国产免费一级a男人的天堂| av免费观看日本| 国产黄a三级三级三级人| 国模一区二区三区四区视频| 美女高潮的动态| 日韩一区二区视频免费看| www.av在线官网国产| 交换朋友夫妻互换小说| 国内揄拍国产精品人妻在线| 国产国拍精品亚洲av在线观看| 国产av国产精品国产| 在线免费观看不下载黄p国产| 精品人妻一区二区三区麻豆| 国产伦理片在线播放av一区| 欧美区成人在线视频| 久久精品久久久久久噜噜老黄| 噜噜噜噜噜久久久久久91| 久久午夜福利片| 少妇 在线观看| 欧美97在线视频| 国产精品.久久久| 日韩欧美 国产精品| 最近最新中文字幕免费大全7| 青春草亚洲视频在线观看| 18禁裸乳无遮挡免费网站照片| 91精品国产九色| 在线播放无遮挡| 亚洲av中文av极速乱| 老司机影院毛片| 国产精品一区二区性色av| 免费播放大片免费观看视频在线观看| 一级毛片电影观看| 一区二区三区乱码不卡18| 热re99久久精品国产66热6| 国产亚洲av片在线观看秒播厂| 久久鲁丝午夜福利片| 亚洲精品乱码久久久久久按摩| 亚洲自拍偷在线| 2018国产大陆天天弄谢| 成人无遮挡网站| 18禁动态无遮挡网站| 国产毛片在线视频| 国产爱豆传媒在线观看| 久久久久久伊人网av| 我要看日韩黄色一级片| 精品久久久精品久久久| 中文字幕制服av| 中文资源天堂在线| 制服丝袜香蕉在线| 国产成人91sexporn| 天美传媒精品一区二区| 熟女人妻精品中文字幕| 欧美一级a爱片免费观看看| 国产成人精品福利久久| 精品国产乱码久久久久久小说| 18禁在线播放成人免费| 狂野欧美激情性bbbbbb| 97在线人人人人妻| 一个人看视频在线观看www免费| 成人毛片60女人毛片免费| 亚洲av免费在线观看| 国产免费一区二区三区四区乱码| 久久99热6这里只有精品| 少妇的逼水好多| 男女啪啪激烈高潮av片| 国产成人免费观看mmmm| 久久精品综合一区二区三区| 一区二区三区乱码不卡18| 中文字幕免费在线视频6| 91精品一卡2卡3卡4卡| 日韩一本色道免费dvd| av又黄又爽大尺度在线免费看| 国模一区二区三区四区视频| 蜜桃久久精品国产亚洲av| 97超碰精品成人国产| 国产精品久久久久久久电影| 久久精品国产自在天天线| 综合色丁香网| 毛片一级片免费看久久久久| 中文字幕亚洲精品专区| 在线播放无遮挡| 亚洲欧美精品专区久久| av在线天堂中文字幕| 午夜爱爱视频在线播放| 中文字幕久久专区| www.av在线官网国产| 自拍偷自拍亚洲精品老妇| 精品一区在线观看国产| 日本欧美国产在线视频| 国产亚洲av片在线观看秒播厂| 国产男女超爽视频在线观看| 精品久久久久久久久亚洲| 免费观看性生交大片5| 成人二区视频| 色5月婷婷丁香| 国产精品国产三级专区第一集| 亚洲自偷自拍三级| 亚洲国产最新在线播放| 丝袜脚勾引网站| 涩涩av久久男人的天堂| 黄色一级大片看看| 亚洲自拍偷在线| 国产高清有码在线观看视频| 好男人在线观看高清免费视频| 最近最新中文字幕大全电影3| 五月开心婷婷网| 久久精品国产自在天天线| 久久精品久久精品一区二区三区| 91精品国产九色| 亚洲国产精品999| 免费高清在线观看视频在线观看| 亚洲国产欧美人成| 久久久久网色| 精品视频人人做人人爽| 午夜福利在线观看免费完整高清在| 国产精品av视频在线免费观看| 久久久久久久精品精品| 麻豆乱淫一区二区| 99久久精品一区二区三区| 精品熟女少妇av免费看| 黑人高潮一二区| 最近手机中文字幕大全| 久久久a久久爽久久v久久| 最近中文字幕2019免费版| 一区二区av电影网| 亚洲av电影在线观看一区二区三区 | 久久久久国产精品人妻一区二区| 国产爽快片一区二区三区| 白带黄色成豆腐渣| 蜜臀久久99精品久久宅男| 又粗又硬又长又爽又黄的视频| 天天躁日日操中文字幕| 日日啪夜夜爽| 三级男女做爰猛烈吃奶摸视频| 少妇人妻久久综合中文| 久久韩国三级中文字幕| 乱码一卡2卡4卡精品| 你懂的网址亚洲精品在线观看| 国产成人福利小说| 国产视频内射| 久久鲁丝午夜福利片| 精品国产三级普通话版| 一级毛片我不卡| 国产成人精品一,二区| 国产免费一级a男人的天堂| 一级片'在线观看视频| 国产淫片久久久久久久久| 国产精品麻豆人妻色哟哟久久| 精品熟女少妇av免费看| 在线观看三级黄色| 男插女下体视频免费在线播放| 亚洲人成网站高清观看| 偷拍熟女少妇极品色| 国产亚洲精品久久久com| 秋霞伦理黄片| 亚洲精品自拍成人| 超碰av人人做人人爽久久| 欧美极品一区二区三区四区| av天堂中文字幕网| 我的女老师完整版在线观看| 亚洲高清免费不卡视频| 高清在线视频一区二区三区| 你懂的网址亚洲精品在线观看| 久久人人爽人人爽人人片va| 国产老妇伦熟女老妇高清| 亚洲av成人精品一区久久| 中文天堂在线官网| 国产精品精品国产色婷婷| 又爽又黄无遮挡网站| 五月开心婷婷网| 菩萨蛮人人尽说江南好唐韦庄| 欧美日韩国产mv在线观看视频 | 亚洲av不卡在线观看| 三级经典国产精品| 免费av毛片视频| 久久午夜福利片| 在线观看人妻少妇| 我的老师免费观看完整版| 高清av免费在线| 国产精品国产三级国产专区5o| 国产毛片在线视频| 久久国产乱子免费精品| 好男人视频免费观看在线| 尤物成人国产欧美一区二区三区| 人人妻人人澡人人爽人人夜夜| 菩萨蛮人人尽说江南好唐韦庄| 春色校园在线视频观看| 成人欧美大片| 国产亚洲5aaaaa淫片| 大片免费播放器 马上看| 又黄又爽又刺激的免费视频.| 交换朋友夫妻互换小说| av在线天堂中文字幕| 欧美3d第一页| 天天一区二区日本电影三级| 亚洲av成人精品一二三区| 日韩欧美精品免费久久| 在线观看人妻少妇| 两个人的视频大全免费| 日韩强制内射视频| 欧美3d第一页| 亚洲第一区二区三区不卡| 2018国产大陆天天弄谢| 99热全是精品| 天天一区二区日本电影三级| 精品一区二区免费观看| 亚洲国产色片| 免费看光身美女| 亚洲一级一片aⅴ在线观看| 亚洲四区av| 国产精品不卡视频一区二区| eeuss影院久久| 高清欧美精品videossex| 成人午夜精彩视频在线观看| 只有这里有精品99| 国产av国产精品国产| 真实男女啪啪啪动态图| 中文字幕av成人在线电影| 日韩成人av中文字幕在线观看| 精品亚洲乱码少妇综合久久| 亚洲av日韩在线播放| 国产综合精华液| 国产爽快片一区二区三区| 午夜福利在线观看免费完整高清在| 国产高清国产精品国产三级 | 免费黄网站久久成人精品| 成人高潮视频无遮挡免费网站| 日本wwww免费看| 久久久色成人| 亚洲精华国产精华液的使用体验| 亚洲精品aⅴ在线观看| 亚洲国产欧美人成| 久热久热在线精品观看| 人人妻人人澡人人爽人人夜夜| 亚洲欧洲日产国产| 欧美3d第一页| 在线天堂最新版资源| 嫩草影院精品99| 内地一区二区视频在线| av在线亚洲专区| 一本色道久久久久久精品综合| 青春草国产在线视频| .国产精品久久| 国产精品三级大全| 国产欧美日韩一区二区三区在线 | 亚洲av免费在线观看| 国产亚洲一区二区精品| 插逼视频在线观看| 国产精品三级大全| 超碰97精品在线观看| 寂寞人妻少妇视频99o| 午夜亚洲福利在线播放| 久久久a久久爽久久v久久| 日本与韩国留学比较| 天天躁日日操中文字幕| 日韩电影二区| 日韩伦理黄色片| 在线免费十八禁| 看免费成人av毛片| 久久人人爽人人爽人人片va| 欧美xxxx性猛交bbbb| 三级男女做爰猛烈吃奶摸视频| 麻豆国产97在线/欧美| 特大巨黑吊av在线直播| 亚洲av日韩在线播放| 偷拍熟女少妇极品色| 国产成人精品一,二区| 中文欧美无线码| 嫩草影院入口| 少妇的逼水好多| 亚洲伊人久久精品综合| 国产老妇伦熟女老妇高清| 国产探花极品一区二区| 国产成人免费观看mmmm| 麻豆乱淫一区二区| 高清午夜精品一区二区三区| 丰满乱子伦码专区| 国产日韩欧美亚洲二区| 婷婷色麻豆天堂久久| 国模一区二区三区四区视频| 另类亚洲欧美激情| 国产伦精品一区二区三区视频9| 精品一区二区三区视频在线| 免费看光身美女| 国产一区亚洲一区在线观看| 婷婷色av中文字幕| 永久网站在线| 欧美一区二区亚洲| tube8黄色片| 日本午夜av视频| 久久久久精品性色| 成年版毛片免费区| 欧美国产精品一级二级三级 | 搡女人真爽免费视频火全软件| 亚洲人与动物交配视频| 五月开心婷婷网| 成人漫画全彩无遮挡| 大又大粗又爽又黄少妇毛片口| 精品国产乱码久久久久久小说| 黄色视频在线播放观看不卡| 少妇高潮的动态图| 少妇的逼好多水| 亚洲av在线观看美女高潮| 午夜福利在线在线| 日韩免费高清中文字幕av| 久久久久久久久久成人| 中文精品一卡2卡3卡4更新| 熟妇人妻不卡中文字幕| 久久久亚洲精品成人影院| 日韩欧美精品免费久久| 天天一区二区日本电影三级| 一边亲一边摸免费视频| 久久精品国产a三级三级三级| 神马国产精品三级电影在线观看| 久久久久网色| 欧美区成人在线视频| 天美传媒精品一区二区| 成年女人在线观看亚洲视频 | 国产精品久久久久久精品古装| 亚洲精品aⅴ在线观看| 大片免费播放器 马上看| 欧美激情国产日韩精品一区| 久久精品综合一区二区三区| 国产大屁股一区二区在线视频| 少妇人妻 视频| 韩国av在线不卡| 亚洲电影在线观看av| 在线观看美女被高潮喷水网站| 精品久久久久久久人妻蜜臀av| 18禁裸乳无遮挡动漫免费视频 | 亚洲精品日韩av片在线观看| 久久精品夜色国产| av在线蜜桃| 毛片一级片免费看久久久久| 欧美激情国产日韩精品一区| 综合色av麻豆| tube8黄色片| 国产真实伦视频高清在线观看| 一级黄片播放器| 交换朋友夫妻互换小说| 亚洲欧美清纯卡通| 欧美激情久久久久久爽电影| 欧美一区二区亚洲| 国产探花在线观看一区二区| 99热网站在线观看| 狠狠精品人妻久久久久久综合| 男人舔奶头视频| 午夜爱爱视频在线播放| 黄色日韩在线| 亚洲色图综合在线观看| 人人妻人人看人人澡| 国产成人福利小说| 免费人成在线观看视频色| 成人免费观看视频高清| 少妇的逼好多水| 亚洲在线观看片| 国产成人免费观看mmmm| 午夜精品国产一区二区电影 | 成人漫画全彩无遮挡| 可以在线观看毛片的网站| 97超视频在线观看视频| 一级av片app| 亚洲真实伦在线观看| 精品久久久精品久久久| 少妇高潮的动态图| 国产精品爽爽va在线观看网站| 亚洲av成人精品一区久久| 一区二区av电影网| 亚洲精品中文字幕在线视频 | 大片免费播放器 马上看| 91狼人影院| 在线观看三级黄色| 久久久久久久久久久丰满| 久久精品久久久久久噜噜老黄| 韩国高清视频一区二区三区| 久久久久久九九精品二区国产| 久久国内精品自在自线图片| 黄色日韩在线| av在线天堂中文字幕| 国产免费又黄又爽又色| 亚洲怡红院男人天堂| 男人狂女人下面高潮的视频| 汤姆久久久久久久影院中文字幕| 亚洲aⅴ乱码一区二区在线播放| 97超碰精品成人国产| 大片电影免费在线观看免费| 亚洲av成人精品一区久久| 久久久久久久久大av| 内地一区二区视频在线| 婷婷色麻豆天堂久久| 久久精品夜色国产| 大陆偷拍与自拍| 18禁在线播放成人免费| 欧美高清成人免费视频www| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 熟妇人妻不卡中文字幕| 国产黄色免费在线视频| 99久久精品国产国产毛片| 国产精品久久久久久久电影| 王馨瑶露胸无遮挡在线观看| 国产成人freesex在线| 欧美日韩视频高清一区二区三区二| 秋霞伦理黄片| 免费电影在线观看免费观看| 亚洲天堂国产精品一区在线| 亚洲怡红院男人天堂| 直男gayav资源| 久久久久久伊人网av| videos熟女内射| 亚洲一级一片aⅴ在线观看| 中文字幕人妻熟人妻熟丝袜美| 日韩精品有码人妻一区| 精品99又大又爽又粗少妇毛片| 亚洲欧洲国产日韩| av在线app专区| 久久久成人免费电影| 97在线人人人人妻| 日本wwww免费看| 尤物成人国产欧美一区二区三区| 九九久久精品国产亚洲av麻豆| av线在线观看网站| 日本wwww免费看| 国产日韩欧美亚洲二区| 亚洲av免费在线观看| 国产探花在线观看一区二区| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲欧美日韩卡通动漫| 国产白丝娇喘喷水9色精品| 亚洲国产精品成人综合色| 精品少妇黑人巨大在线播放| 黄色怎么调成土黄色| 免费大片黄手机在线观看| 丝袜美腿在线中文| 久久久久国产网址| 免费观看性生交大片5| 国产探花极品一区二区| 成人欧美大片| 有码 亚洲区| 久久精品熟女亚洲av麻豆精品| 九色成人免费人妻av| 可以在线观看毛片的网站| 97超视频在线观看视频| 日韩视频在线欧美| 2018国产大陆天天弄谢| 久久这里有精品视频免费| 国产视频首页在线观看| 国产午夜精品一二区理论片| 在线观看国产h片| 日本熟妇午夜| 国产精品久久久久久av不卡| 高清午夜精品一区二区三区| 99久国产av精品国产电影| 精品人妻偷拍中文字幕| 51国产日韩欧美| 自拍偷自拍亚洲精品老妇| 在线亚洲精品国产二区图片欧美 | 我要看日韩黄色一级片| 国产探花极品一区二区| 69av精品久久久久久| 插逼视频在线观看| 精品一区二区三区视频在线| 男人舔奶头视频| 韩国高清视频一区二区三区| 精华霜和精华液先用哪个| 国产久久久一区二区三区| 99热网站在线观看| 国产日韩欧美在线精品| 97在线视频观看| 尾随美女入室| 校园人妻丝袜中文字幕| 伦理电影大哥的女人| 一区二区三区乱码不卡18| 两个人的视频大全免费| 少妇 在线观看| 日韩欧美精品v在线| 亚洲精品国产av蜜桃| 少妇人妻久久综合中文| 国产一区有黄有色的免费视频| 精品久久久久久久久av| 亚洲精品一二三| 日本爱情动作片www.在线观看| 三级经典国产精品| 久久韩国三级中文字幕| 欧美日韩一区二区视频在线观看视频在线 | 久久久精品欧美日韩精品| 亚洲在久久综合| 91精品伊人久久大香线蕉| 你懂的网址亚洲精品在线观看| 久久久久精品性色| 日日啪夜夜撸| 一级av片app| 搡女人真爽免费视频火全软件| 日本一本二区三区精品| 国产黄a三级三级三级人| 午夜视频国产福利| 成人漫画全彩无遮挡| 国产欧美亚洲国产| 一本久久精品| 日韩人妻高清精品专区| 婷婷色av中文字幕| 亚洲欧美成人综合另类久久久| videos熟女内射| 夫妻午夜视频| 伦精品一区二区三区| 精品久久久久久久末码| 午夜福利网站1000一区二区三区| 一级黄片播放器| 免费看a级黄色片| 亚洲不卡免费看| 高清av免费在线| 久久久久久久久久成人| 欧美xxxx黑人xx丫x性爽| 三级国产精品欧美在线观看| 97精品久久久久久久久久精品| 国产 一区精品| 尤物成人国产欧美一区二区三区| 国产黄a三级三级三级人|