• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    OD-Characterization of Alternating and Symmetric Groups of Degree p+5?

    2015-06-06 06:22:02YanxiongYANHaijingXUGuiyunCHEN

    Yanxiong YANHaijing XUGuiyun CHEN

    1 Introduction

    Throughout this paper,groups under consideration are finite and simple groups that are non-Abelian.For any groupG,we useπe(G)to denote the set of orders of its elements and denote byπ(G)the set of prime divisors of|G|.We associate toπ(G)a graph ofG,denoted by Γ(G)(see[1]).The vertex set of this graph isπ(G),and two distinct verticesp,qare adjacent by an edge if and only ifpq∈πe(G).In this case,we writep~q.We also denote byπ(n)the set of all primes dividingn,wherenis a positive integer.

    In this article,we use the following symbols.For a finite groupG,the socle ofGis de fined as the subgroup generated by minimal normal subgroups ofG,denoted as Soc(G).Sylp(G)denotes the set of all Sylowp-subgroups ofG,wherep∈π(G),andPrdenotes a Sylowrsubgroup ofGforr∈π(G).Furthermore,the symmetric and alternating groups of degreenare denoted bySnandAn,respectively.Letqbe a prime,and we use Exp(m,q)to denote the exponent of the largest power of a primeqin the factorization of a positive integerm(>1).All further unexplained symbols and notations are standard and can be found in[2],for instance.

    Definition 1.1(see[3])Let G be a finite group and|G|=where pis areprimes and αis are integers.For p∈π(G),letdeg(p):=|{q∈π(G)|p~q}|,which we call the degree of p.We also de fine D(G):=(deg(p1),deg(p2),...,deg(pk)),where p1

    Definition 1.2(see[3])A group M is called k-fold OD-characterizable if there exist exactly k non-isomorphic groups G such that(1)|G|=|M|and(2)D(G)=D(M).Moreover,a1-fold OD-characterizable group is simply called an OD-characterizable group.

    It is an interesting and difficult topic to determine the structure of finite groups by their orders and degree patterns.This topic is related to the following open problem.

    Open problem(see[3]) LetGandMbe finite groups satisfying the conditions(1)|G|=|M|and(2)D(G)=D(M).Then

    (i)How far do these conditions af f ect the structure ofG?

    (ii)Does the number of non-isomorphic groups satisfy(1)and(2)finite?

    At present,we mention that the problem is still unsolved completely and till now we may not be able to provide a suitable answer for the above questions.This topic was studied in several articles.For example,in a series of articles(see[3–20]),it was shown that many finite almostsimple groups arem-foldOD-characterizable,wheremis a positive integer andm≥1.For convenience,we summarize some results of these articles in the following Propositions 1.1–1.4.

    Proposition 1.1(see[3–12])Let p be a prime.A finite group G is OD-characterizable if G is isomorphic to one of the following groups:

    (1)The alternating groups Ap,Ap+1and Ap+2;

    (2)the alternating groups Ap+3,where7p∈π(100!);

    (3)all finite almost simple K3-groups exceptAut(A6)andAut(U4(2));

    (4)the symmetric groups Spand Sp+1;

    (5)all finite simple K4-groups except A10;

    (6)all finite simple C2,2-groups;

    (7)the simple groups of Lie type L2(q),L3(q),U3(q),2B2(q)and2G2(q)for certain prime power q;

    (8)all sporadic simple groups and their automorphism groups exceptAut(J2)andAut(McL);

    (9)the almost simple groups:Aut(F4(2)),Aut((2))andAut();

    (10)almost simple group L2(49)·2i(i=1,2,3);

    (11)projective general linear group PGL(2,q)for certain odd prime power q;

    (12)all finite simple groups whose orders are less than108except for A10and U4(2).

    Proposition 1.2(see[13–16])A finite group G is2-fold OD-characterizable if G is one of the following groups:A10,U4(2),S6(3),O7(3),B2(q),Cp(3),almost simple groups2·F4(2),Aut(J2)andAut(McL).

    Proposition 1.3(see[17–20])A finite group G is3-fold OD-characterizable if G is one of the following groups:

    (1)The almost simple groups of U3(5)·3and U6(2)·3;

    (2)the symmetric groups Sn,where n≤100and n10,p,p+1.

    Proposition 1.4(see[13])Let G be a finite group with|G|=|S10|and D(G)=D(S10),then G is8-fold OD-characterizable.

    2 Main Results

    According to Proposition 1.1(1),the alternating groupsAp,Ap+1andAp+2areOD-characterizable,andAp+3with 7p∈π(100!)isOD-characterizable.Proposition 1.2 says that the alternating groupA10is 2-foldOD-characterizable.Now,omitting all the above alternating groups exceptA10,there remain the following alternating groups:

    By[1],it is easy to check that all the groups in(2.1)have the connected prime graph.By Proposition 1.1,we see that it is difficult to investigate how many-foldOD-characterization of alternating groups are.In this paper,we continue to investigate this topic and get the following theorem.

    Theorem 2.1All alternating groups Ap+5,where p+4is a composite number and p+6is a prime andp∈π(1000!),are OD-characterizable.

    Proposition 1.2 says thatA10is 2-foldOD-characterizable.It is worth mentioning thatA10is the first alternating group which has not been considered asOD-characterizable.Up to now,we have not found an alternating groupAn(n10)which is notOD-characterizable.Hence,we put forward the following question.

    Question 2.1Are the alternating groupsAn(n10)OD-characterizable?

    In fact,Theorem 2.1 and Proposition 1.1(1)–(3)imply the following corollary.

    Corollary 2.1Let Anbe an alternating group of degree n.Assume that one of the following conditions is fulfilled:

    (1)n=p,p+1or p+2,where p is a prime;

    (2)n=p+3,where7p∈π(100!);

    (3)n=p+5,where p+4is a composite number and p+6is a prime and5p∈π(1000!).Then Anis OD-characterizable.

    In this article,we will also show the following theorem.

    Theorem 2.2All symmetric groups Sp+5,where p+4is a composite number and p+6is a prime and5p∈π(1000!),are3-fold OD-characterizable.

    3 Preliminaries

    In this section,we give some results which will be applied for our further investigations.We shall utilize the following Lemma 3.1 concerning the set of elements of the alternating and symmetric groups(see[21]).

    Lemma 3.1(see[21])The group Sn(or An)has an element of order m=where p1,p2,···,psare distinct primes and α1,α2,···αsare natural numbers,if and only if≤n for m odd,andfor m even).

    As an immediate corollary of Lemma 3.1,we have the following lemma.

    Lemma 3.2Let An(or Sn)be an alternating group(or a symmetric group)of degree n.Then the following assertions hold:

    (1)Let p,q∈π(An)be odd primes.Then p~q if and only if p+q≤n.

    (2)Let p∈π(An)be an odd prime.Then2~p if and only if p+4≤n.

    (3)Let p,q∈π(Sn).Then p~q if and only if p+q≤n.

    Lemma 3.3(see[22])Let G be a finite solvable group,all of whose elements are of prime power order.Then|π(G)|≤ 2.

    Lemma 3.4Let Ap+5be an alternating group of degree p+5,where p is a prime,and p+2and p+4are composite numbers.Suppose that|π(Ap+5)|=d.Then the following assertions hold:

    (1)deg(2)=d?1.Particularly,2~r for each r∈π(Ap+5).

    (2)deg(3)=deg(5)=d?1,i.e.,3~r and5~r for each r∈π(Ap+5).

    (3)deg(p)=3.In other words,p~r,where r∈ π(Ap+5),if and only if r=2,r=3or r=5.

    (4)Exp(|Ap+5|,2)=In particular,Exp(|Ap+5|,2)

    (5)Exp(|Ap+5|,r)=for each r∈π(A){2}.Furthermore,Exp(|A|,r)thenExp(|Ap+5|,r)=1.

    ProofBy Lemma 3.2,one has that 2p∈ πe(Ap+5).Clearly,sincer+4≤p+5 for anyr∈π(Ap+5){p},it follows that 2~r,so deg(2)=d?1.Similarly,we have deg(3)=deg(5)=d?1.Forr∈π(Ap+5){2,p},by Lemma 3.2,it is easy to check thatp~rif and only ifr≤5.Hencer=2,3 or 5.Thus deg(p)=3.Till now we have proved that(1)–(3)hold.

    By the definition of Gauss’s integer function,we have that

    Hence Exp(|Ap+5|,2)

    Again,using Gauss’s integer function,we have that Exp(|Ap+5|,r)=Therefore Exp(|Ap+5|,r)then Exp(|Ap+5|,r)=1.Hence(5)follows.This completes the proof of Lemma 3.4.

    Lemma 3.5(see[23])Let a be an arbitrary integer and m a positive integer.If(a,m)=1,then the equation ax≡1(modm)has solutions.Moreover,if the order of a modulo m is h(a),then h(a)|?(m),where ?(m)is an Euler’s function of m.

    Lemma 3.6Let Ap+5be an alternating group of degree p+5,where p+4is a composite number,p+6is a prime and100

    (i)where s(q)=Exp(|Ap+5|,q).

    (ii)If p∈{131,167,173,233,251,257,263,373,383,433,503,541,557,563,587,607,647,677,727,733,941,977},then p|NG(Q)|.

    (iii)If p∈{157,271,331,353,367,443,571,593,601,653,751,947,971},then there exists at least a prime number,say r,such that the order of r modulo p is less than p?1,where7≤r

    ProofObviously,the equationqx≡1(modp)has solutions by Lemma 3.5.Suppose that the order ofqmodulopish(q).Ifh(q)=p?1,then we callqa primitive root of modulop.By hypothesis,it is easy to check that there are only 35 such groups satisfying the conditions thatp+4 is a composite number,p+6 is a prime number and 100

    Table 1 (p and h(q))

    Now,using the N-C theorem,the factor groupNG(P)/CG(P)Aut(P)Hence,|NG(P)/CG(P)||(p?1).By Lemma 3.4(3),one has thatπ(NG(P))?{2,3,5}∪π(p?1).By Table 1,if there exists a prime,sayq,where 7≤q

    Assume thatp∈{131,167,173,233,251,257,263,373,383,433,503,541,557,563,587,607,647,677,727,733,941,977}.Ifp||NG(Q)|,by Table 1 and Exp(|Ap+5|,q)<

    Lemma 3.7(see[2,24])Let M be a finite non-Abelian simple group with order having prime divisors at most997.Then M is isomorphic to one of the simple groups listed in Tables1–3in[24].Particularly,if|π(Out(M))1,then π(Out(M))?{2,3,5,7}.

    Lemma 3.8(see[25])Let S=P1×P2×···×Pr,where Pi(i=1,2,···,r)are isomorphic non-Abelian simple groups.ThenAut(S)=(Aut(P1)×Aut(P2)×···×Aut(Pr))Sr,where Sris a symmetric group of degree r.

    4 OD-Characterization of the Alternating Group Ap+5

    In this section,we will prove the following Theorem 2.1.It is worth mentioning that this result not only generalizes the results in[4]but also gives an affirmative answer to the Question 1.1 of this article for the alternating groupAp+5.

    Proof of Theorem 2.1LetGbe a finite group satisfying the conditions that(1)|G|=|Ap+5|and(2)D(G)=D(Ap+5),wherep+4 is a composite number,p+6 is a prime andp∈π(1000!).By[17],we only need to discuss the alternating groupsAp+5,wherep+4 is a composite number,p+6 is a prime and 100p+5}∩πe(G)=?,where 2r,s∈π(G).By Lemma 3.4,the prime graph ofGis connected since deg(2)=|π(G)|? 1.Moreover,by the structure of the degree patternD(G),it is easy to check by Magma of computation group software that Γ(G)= Γ(Ap+5).In the following,we shall prove thatFor convenience,we divide the proof of Theorem 2.1 into three separate cases.

    Case 1LetKbe the maximal normal solvable subgroup ofG.ThenKis a{2,3,5}-group.In particular,Gis a nonsolvable group.

    We first show thatKis a-group.Assume to the contrary,and letpdivide the order ofK.SetP∈Sylp(G).By Lemma 3.6(i),we haveqs(q)|NG(P)|for anyq∈π(G)and 7≤qp,so thenrq.SinceKis solvable,it possesses a Hall{p,q,r}-subgroupT.It follows thatTis solvable.Since there exists no edge between any two distinct vertices ofp,qandrin Γ(G),all elements inTare of prime power order.Hence|π(T)|≤ 2 by Lemma 3.3,a contradiction.HenceKis a-group.

    We shall argue next thatKis a-group for anyq∈ π(G){2,3,5,p}.SetQ∈Sylq(K),whereq∈π(K).Suppose that the order ofqmodulopish(q).By the Frattini argument,G=KNG(Q),and hencepdivides the order ofNG(Q).By Lemma 3.6(ii)–(iii),it follows thatpcan only be equal to one of the primes:157,271,331,353,367,443,571,593,601,653,751,947 and 971.In this case,there necessarily exists at least a prime,sayq,such thath(q)

    Subcase 1.1To prove the case follows ifp=157.

    By Table 1,If there exists a primeqsuch thatp||NG(Q)|,whereQ∈Sylq(G),thenq=13.By the N-C theorem,Aut(Q).By Lemma 3.4(5),we have Exp(|G|,13)=12,and thus|NG(Q)/CG(Q)||1366·(13i?1).By Magma,it is easy to check that 1511366·(13i?1).If 151||NG(Q)|,then 151∈π(CG(Q)).Thus 13~ 151,a contradiction.Hence 151∈π(K).SinceKis solvable,it possesses a Hall{13,151}-subgroupHof order 1312·151.Clearly,His nilpotent,so 13~ 151,a contradiction.

    Subcase 1.2To prove the case follows ifp=271.

    In this case,we know that there exists a prime,sayq,such thatp||NG(Q)|,whereQ∈Sylq(G).Thenq=29 by Table 1.On the other hand,the factor groupNG(Q)/CG(Q)is isomorphic to a subgroup of Aut(Q)by N-C theorem and Exp(|G|,29)=9 by Lemma 3.4,so|NG(Q)/CG(Q)||2936·(29i?1).It is easy to check that 2692936·(29i?1).If 269||NG(Q)|,then 269∈ π(CG(Q)).Thus 269~29,a contradiction.Hence 269∈ π(K).SinceKis solvable,it possesses a Hall{29,269}-subgroupHof order 299·269.Clearly,His Abelian,so 29~269,a contradiction.

    Subcase 1.3To prove the case follows ifp=331.

    In the case,there exists a prime,sayq,such thatp||NG(Q)|,whereQ∈Sylq(G).Thenq=31 by Table 1.On the other hand,we have thatNG(Q)/CG(Q)Aut(Q)by the N-C theorem and Exp(|G|,31)=10 by Lemma 3.4,so|NG(Q)/CG(Q)||3145·(31i?1).It is easy to compute thatIf 47||NG(Q)|,then 47∈π(CG(Q)).SetN=NG(Q),C=CG(Q)andK47∈Syl47(CG(Q)).By Lemma 3.4,we have Exp(|G|,47)=7.Again,by the Frattini argument,we have thatN=CNN(K47)and henceNN(K47)|.Thusp||CG(Q)|,so deg(p)≥4,a contradiction.Therefore 47|NG(Q)|and 47∈π(K).SetP47∈Syl47(K).SinceG=KNG(P47),thenp||NG(P47)|.It is easy to check by Table 1 that there exists no such a primepsuch thatp||NG(P47)|,a contradiction.

    Till now we have proved thatKis a-group whilep=157,271 or 331.Assume thatp∈{353,367,443,571,593,601,653,751,947,971}.Now,we have to discuss ten cases.IfKis aq-group for everyq∈π(G){2,3,5,p},it is easy to know that this is impossible by checking each choice ofpone by one.Since the methods used below are the same as in Subcase 1.3,we omit the detailed processes.ThereforeKis a{2,3,5}-group.Sinceit follows at once thatGis nonsolvable.This completes the proof of Case 1.

    Case 2The quotient groupG/Kis an almost simple group.In other words,there exists a non-Abelian simple groupSsuch that

    ProofLet:=G/KandS:=ThenS=B1×B2×B3×···×Bn,whereBj(j=1,2,···,n)are non-Abelian simple groups andAut(S).We assert thatn=1 andS=B1.

    Suppose thatn≥2.We first show thatpdoes not divide the order ofS.If not,there exists a primersuch thatr∈ π(S)andr∈/π(K).Hence deg(p)≥4,a contradiction.Therefore,for eachj,one has thatBj∈Fp.On the other hand,by Lemma 3.7,we see thatp∈π(Aut(S)).Thuspdivides the order of Out(S).But Out(S)=Out(S1)×Out(S2)×···×Out(Sr),where the groupsSjare direct products of all isomorphicssuch thatS=S1×S2×···×Sr.Therefore for somei,pdivides the order of an outer automorphism group of a direct productSiofmisomorphic simple groupsBjfor some 1≤j≤n.SinceBj∈Fp,it follows that|Out(Bj)|is not divided bypby Lemma 3.7.Now,by Lemma 3.8,we obtain|Aut(Si)|=|Aut(Bj)|m·m!.Thereforem≥pand so 22pmust divide the order ofG.However,Exp(|Ap+5|,2)

    Case 3In other words,Ap+5isOD-characterizable.

    ProofBy Lemma 3.7 and Case 1,assume that·2α1·3α2·5α3,where 2≤α1≤|G|2=Exp(|Ap+5|,2)=u1,1≤α2≤|G|3=Exp(|Ap+5|,3)=u2,1≤α3≤|G|5=Exp(|Ap+5|,5)=u3.Letp1,p2,p3,···,psbe distinct consecutive prime numbers and 2=p1<3=p2<5=p3<···

    IfSAp,thenHence,3·pa contradiction.

    For the same reason,orAp+2.Therefore,Sis isomorphic to one of the simple groups:Ap+3,Ap+4andAp+5.

    Letqbe an odd prime and 5

    Table 2 E(q,p)

    Ifp∈{131,173,167,233,257,263,271,331,353,367,373,433,443,503,541,557,563,571,653,587,607,677,733,941,947,977},by Table 2,Scan not be isomorphic to the simple groupAp+3orAp+4.Otherwise,there exists at least a primeqwith 5

    Ifp∈{157,251,383,593,601,647,727,751,971},by Table 2 and Case 1,Kis a{2,3}-group.Inthis case,wherem=p+3 orp+4.By Case 2,we have thatAm≤G/K≤Aut(Am)But 5·p∈πe(G/K)πe(Sn),a contradiction.

    Hence,By Case 2,one has thatAp+5Aut(Ap+5)Since|G|=|Ap+5|,IfG/KAp+5,then by comparing the orders we deduce thatAp+5,which completes the proof of Case 3 and also the proof of Theorem 2.1.

    In 1989,Shi W.J.put forward the following conjecture.

    Corollary 4.1(see[26])Let G be a group and M a finite simple group.Then GM if and only if(1)|G|=|M|and(2)πe(G)=πe(M).

    The above conjecture was proved by joint works of many mathematicians and the last part of the proof was given by Mozurov V.D.etc.in[27].That is,the following theorem holds.

    Theorem 4.1(see[27])Let G be a group and M a finite simple group.Then if and only if(1)|G|=|M|and(2)πe(G)=πe(M).

    About the relation of Theorem 4.1 andOD-characterizable groups,we have the following facts:For two finite groupsGandM,ifπe(G)=πe(M),thenGandMmust have the same prime graph.Hence they have the same degree pattern.Therefore,we can get the following corollary by Theorem 2.1.

    Corollary 4.2If G is a finite group such that(1)|G|=|Ap+5|and(2)πe(G)=πe(Ap+5),where5p∈π(1000!),

    5 OD-Characterization of the Symmetric Group Sp+5

    As we already mentioned,the symmetric groupsSpandSp+1,wherepis a prime,areOD-characterizable.Proposition 1.5 says that the symmetric groupsSnwithn≤100 andp,p+1 are 3-foldOD-characterizable.On the other hand,according to Proposition 1.6,S10is 8-foldOD-characterizable,andS10is the first symmetric group which is notOD-characterizable.Till now,we have not found a symmetric groupSn(np,p+1),exceptS10,which is not 3-foldOD-characterizable.Hence,it is an interesting and difficult topic to investigate how many-foldOD-characterization of symmetric groups are.Therefore,the first author of this article put forward the following conjecture.

    Conjecture 5.1All the symmetric groupsSn(np,p+1),exceptS10,are 3-foldOD-characterizable.

    In this section,we are going to give an affirmative answer to this conjecture for the symmetric groupSp+5.In other words,we will prove Theorem 2.2.

    Proof of Theorem 2.2LetGbe a finite group satisfying|G|=|Sp+5|andD(G)=D(Sp+5),wherep+4 is a composite number,p+6 is a prime and 5p∈π(1000!).By[17],we only need to discuss the primespsuch thatp+4 is a composite number,p+6 is a prime and 100p+5}∩πe(G)=?,wherer,s∈π(G).By Lemma 3.4(2),deg(2)=|π(G)|? 1,so the prime graph ofGis connected.By the structure ofD(G),it is easy to check by the Magma software that Γ(G)= Γ(Sp+5).

    LetKdenote the maximal normal solvable subgroup ofG.For the similar reason as the proof of Theorem 2.1,Kis a{2,3,5}-group andAut(Ap+5)Sp+5.HenceG/KAp+5orSp+5.IfG/Kthen by comparing the order we get thatIfG/KAp+5,then|K|=2 andK≤∩Z(G).ThereforeGis a central extension ofZ2byAp+5.IfGis a non-split extension ofZ2byAp+5,thenIfGis a split extension ofZ2byAp+5,then

    We omit the details forSp+5because the arguments are quite similar to those forAp+5.We only mention that the non-isomorphic groupsZ2·Ap+5andZ2×Ap+5have the same order and the degree pattern asSp+5.HenceSp+5is 3-foldOD-characterizable,which completes the proof of Theorem 2.2.

    AcknowledgementThe authors would like to express his deep gratitude to the referee for his or her invaluable comments and suggestions which helped to improve the paper.

    [1]Williams,J.S.,Prime graph components of finite groups,J.Algebra,69(2),1981,487–513.

    [2]Conway,J.H.,Curtis,R.T.,Norton,S.P.,et al.,Atlas of Finite Groups,Clarendon Press,Oxford,London,New York,1985.

    [3]Moghaddamfar,A.R.,Zokayi,A.R.and Darafsheh,M.R.,A characterization of finite simple groups by the degrees of vertices of their prime graphs,Algebra Colloq.,12(3),2005,431–442.

    [4]Hoseini,A.A.and Moghaddamfar,A.R.,Recognizing alternating groupsAp+3for certain primespby their orders and degree patterns,Front.Math.China,5(3),2010,541–553.

    [5]Moghaddamfar,A.R.and Zokayi,A.R.,Recognizing finite groups through order and degree pattern,Algebra Colloq.,15(3),2008,449–456.

    [6]Zhang,L.C.and Shi,W.J.,OD-characterization of simpleK4-groups,Algebra Colloq.,16(2),2009,275–282.

    [7]Zhang,L.C.and Shi,W.J.,OD-characterization of all nonabelian simple groups whose orders are less than 108,Front.Math.China,3(3),2008,461–474.

    [8]Zhang,L.C.and Liu,X.,OD-Characterization of the projective general linear groupsPGL(2,q)by their orders and degree patterns,International Journal of Algebra and Computation,19(7),2009,873–889.

    [9]Zhang,L.C.and Shi,W.J.,OD-Characterization of almost simple groups related toL2(49),Archivum Mathematicum(BRNO),44,2008,191–199.

    [10]Yan,Y.X.,OD-characterization of certain symmetric groups having connected prime graphs,J.Southwest Univ.,36(5),2011,110–114.

    [11]Yan,Y.X.and Chen,G.Y.,OD-characterization of the automorphism groups of(2),Indian J.Pure Appl.Math.,43(3),2012,183–195.

    [12]Yan,Y.X.,Xu,H.J.and Chen,G.Y.,OD-characterization of the automorphism groups of simpleK3-groups,J.Ineq.and Appl.,95,2013,1–12.

    [13]Moghaddamfar,A.R.and Zokayi,A.R.,OD-Characterizability of certain finite groups having connected prime graphs,Algebra Colloq.,17(1),2010,121–130.

    [14]Akbari,M.and Moghaddamfar,A.R.,Simple groups which are 2-foldOD-characterizable,Bull.Malays.Math.Sci.Soc.,35(2),2012,65–77.

    [15]Zhang,L.C.,Shi,W.J.,Yu,D.P.and Wang,J.,Recognition of finite simple groups whose first prime graph components arer-regular,Bull.Malays.Math.Sci.Soc.,36(1),2013,131–142.

    [16]Yan,Y.X.,OD-characterization of almost simple groups related to the chevalley groupF4(2),J.Southwest Univ.,33(5),2011,112–115.

    [17]Koganni-Moghaddam,R.and Moghaddamfar,A.R.,Groups with the same order and degree pattern,Science China Mathematics,55(4),2012,701–720.

    [18]Moghaddamfar,A.R.and Zokayi,A.R.,OD-Characterization of alternating and symmetric groups of degrees 16 and 22,Front.Math.China,4(4),2009,669–680.

    [19]Zhang,L.C.and Shi,W.J.,OD-Characterization of almost simple groups related toU3(5),Acta Mathematica Sinica Ser.B,26(1),2010,161–168.

    [20]Zhang,L.C.and Shi,W.J.,OD-Characterization of almost simple groups related toU6(2),Acta Mathematica Scientia Ser.B,31(2),2011,441–450.

    [21]Zavarnitsine,A.and Mazurov,V.D.,Element orders in covering of symmetric and alternating groups,Algrbra and Logic,38(3),1999,159–170.

    [22]Higman,G.,Finite groups in which every element has prime power order,J.London Math.Soc.,32,1957,335–342.

    [23]Wang,G.M.,Elementary Number Theory(in Chinese),People’s Education Press,Beijing,2008.

    [24]Zavarnitsine,A.V.,Finite simple groups with narrow prime spectrum,Siberian Electronic Mathematical Reports,6,2009,1–12.

    [25]Zavarnitsin,A.V.,Recognition of alternating groups of degreesr+1 andr+2 for primerand the group of degree 16 by their element order sets,Algebra and Logic,39(6),2000,370–477.

    [26]Shi,W.J.,A new characterization of some simple groups of Lie type,Contemporary Math.,82,1989,171–180.

    [27]Vasil’ev,A.V.,Grechkoseeva,M.A.and Mazurov,V.D.,Characterization of finite simple groups by spectrum and order,Algebra and Logic,48(6),2009,385–409.

    日本五十路高清| 久久亚洲真实| 91麻豆av在线| 成人永久免费在线观看视频| 在线观看av片永久免费下载| 天堂√8在线中文| 日韩高清综合在线| 一本精品99久久精品77| 亚洲成人免费电影在线观看| 色综合亚洲欧美另类图片| 一级毛片久久久久久久久女| 蜜桃亚洲精品一区二区三区| 成人高潮视频无遮挡免费网站| 精品人妻1区二区| 精品久久国产蜜桃| 简卡轻食公司| 欧美一级a爱片免费观看看| 欧美最新免费一区二区三区| 色综合亚洲欧美另类图片| 少妇猛男粗大的猛烈进出视频 | 欧美xxxx黑人xx丫x性爽| 欧美成人免费av一区二区三区| netflix在线观看网站| 精品人妻偷拍中文字幕| 亚洲最大成人av| 人妻少妇偷人精品九色| 午夜免费男女啪啪视频观看 | 床上黄色一级片| 午夜福利视频1000在线观看| 国产aⅴ精品一区二区三区波| 免费av不卡在线播放| 少妇被粗大猛烈的视频| 天天躁日日操中文字幕| 精品久久久久久久久久久久久| 亚洲av五月六月丁香网| 黄色女人牲交| 国产成人影院久久av| 国内久久婷婷六月综合欲色啪| 国产精品一区二区三区四区免费观看 | 麻豆久久精品国产亚洲av| 免费av毛片视频| 国产精品久久久久久av不卡| 乱码一卡2卡4卡精品| 国产精品98久久久久久宅男小说| 日本 av在线| av视频在线观看入口| 国产亚洲精品久久久com| 免费在线观看成人毛片| 欧美潮喷喷水| 婷婷亚洲欧美| 亚洲综合色惰| 国产亚洲精品久久久com| 又黄又爽又刺激的免费视频.| 精品不卡国产一区二区三区| 五月玫瑰六月丁香| 禁无遮挡网站| 日韩一区二区视频免费看| 12—13女人毛片做爰片一| 天堂√8在线中文| 99在线视频只有这里精品首页| 亚洲人成网站高清观看| 永久网站在线| 九色成人免费人妻av| 久久久午夜欧美精品| 国产一区二区激情短视频| 午夜爱爱视频在线播放| 亚洲性久久影院| 2021天堂中文幕一二区在线观| 欧美性猛交╳xxx乱大交人| 一级黄片播放器| 人人妻人人看人人澡| 身体一侧抽搐| 噜噜噜噜噜久久久久久91| 国产中年淑女户外野战色| 少妇的逼水好多| 又粗又爽又猛毛片免费看| 男女边吃奶边做爰视频| 欧美xxxx性猛交bbbb| 国产精品人妻久久久久久| 成人国产一区最新在线观看| 国产黄色小视频在线观看| 成年女人毛片免费观看观看9| 日韩,欧美,国产一区二区三区 | 国产综合懂色| 中文字幕av成人在线电影| 精品久久国产蜜桃| 99久国产av精品| 成人国产综合亚洲| 九九久久精品国产亚洲av麻豆| 欧美成人a在线观看| 久久久久精品国产欧美久久久| 在线天堂最新版资源| 亚洲一级一片aⅴ在线观看| 男人的好看免费观看在线视频| 男女那种视频在线观看| 神马国产精品三级电影在线观看| 亚洲av第一区精品v没综合| 特大巨黑吊av在线直播| 亚洲人成网站在线播放欧美日韩| a级毛片免费高清观看在线播放| 国产中年淑女户外野战色| av在线亚洲专区| 97人妻精品一区二区三区麻豆| 校园人妻丝袜中文字幕| 观看免费一级毛片| 国产精品一区二区性色av| 精品久久久久久久久av| 成人二区视频| 亚洲成人免费电影在线观看| 亚洲狠狠婷婷综合久久图片| 久久久国产成人精品二区| 成人高潮视频无遮挡免费网站| 国产精品av视频在线免费观看| 色精品久久人妻99蜜桃| 免费一级毛片在线播放高清视频| 国产真实伦视频高清在线观看 | 国产精品一区二区性色av| 国产一区二区激情短视频| 免费在线观看成人毛片| 亚洲最大成人中文| 国产精品一及| 亚洲人与动物交配视频| 人妻制服诱惑在线中文字幕| 天堂动漫精品| 久久精品国产99精品国产亚洲性色| 欧美激情久久久久久爽电影| 深夜精品福利| 性欧美人与动物交配| 婷婷亚洲欧美| 国产主播在线观看一区二区| 黄色视频,在线免费观看| 午夜亚洲福利在线播放| 可以在线观看的亚洲视频| 亚洲在线自拍视频| 免费av不卡在线播放| 成人永久免费在线观看视频| 午夜福利欧美成人| 69av精品久久久久久| 午夜福利成人在线免费观看| 国产精品电影一区二区三区| 一个人看的www免费观看视频| 男女做爰动态图高潮gif福利片| 国产一区二区三区在线臀色熟女| 别揉我奶头~嗯~啊~动态视频| 特大巨黑吊av在线直播| 日韩欧美在线乱码| 免费观看在线日韩| av国产免费在线观看| 男女边吃奶边做爰视频| 日韩欧美精品免费久久| 中出人妻视频一区二区| 国产精品野战在线观看| 又紧又爽又黄一区二区| 国产 一区精品| 久久精品综合一区二区三区| 国模一区二区三区四区视频| 夜夜夜夜夜久久久久| 亚洲av成人精品一区久久| 伦理电影大哥的女人| 国产一区二区三区av在线 | 极品教师在线免费播放| 精品久久久久久成人av| 日韩欧美国产一区二区入口| 日日干狠狠操夜夜爽| 午夜福利成人在线免费观看| 伦精品一区二区三区| 日韩中字成人| 日韩av在线大香蕉| 亚洲av不卡在线观看| 成人特级黄色片久久久久久久| 国产黄a三级三级三级人| 久久精品国产亚洲网站| 成年女人看的毛片在线观看| 日日干狠狠操夜夜爽| 国产高清三级在线| 99国产极品粉嫩在线观看| 色播亚洲综合网| 天堂网av新在线| 村上凉子中文字幕在线| 国产亚洲av嫩草精品影院| 亚洲午夜理论影院| 91午夜精品亚洲一区二区三区 | 亚洲精品乱码久久久v下载方式| 国内精品一区二区在线观看| 一a级毛片在线观看| 亚洲欧美日韩卡通动漫| 干丝袜人妻中文字幕| 欧美最黄视频在线播放免费| 又紧又爽又黄一区二区| www日本黄色视频网| 乱人视频在线观看| 可以在线观看的亚洲视频| 99热精品在线国产| 亚洲成人免费电影在线观看| 国产主播在线观看一区二区| 亚洲av成人av| a在线观看视频网站| 直男gayav资源| 黄色一级大片看看| 日本五十路高清| 欧美日韩中文字幕国产精品一区二区三区| av女优亚洲男人天堂| 91在线观看av| 免费高清视频大片| 直男gayav资源| 日韩精品青青久久久久久| 亚洲黑人精品在线| 99久久精品一区二区三区| 男人舔女人下体高潮全视频| xxxwww97欧美| 九九在线视频观看精品| 亚洲av熟女| 亚洲欧美日韩高清在线视频| 男女做爰动态图高潮gif福利片| 日韩 亚洲 欧美在线| 国产精品一区二区三区四区免费观看 | 亚洲国产欧美人成| 观看免费一级毛片| 国内揄拍国产精品人妻在线| 非洲黑人性xxxx精品又粗又长| 国产精品98久久久久久宅男小说| 少妇裸体淫交视频免费看高清| 国产综合懂色| avwww免费| 欧美xxxx性猛交bbbb| 亚洲精品一卡2卡三卡4卡5卡| 国产一区二区激情短视频| 九九爱精品视频在线观看| 亚洲 国产 在线| 99久久无色码亚洲精品果冻| 中国美白少妇内射xxxbb| 色吧在线观看| 亚洲美女搞黄在线观看 | a级毛片免费高清观看在线播放| 日本在线视频免费播放| 国内少妇人妻偷人精品xxx网站| 国产亚洲91精品色在线| 好男人在线观看高清免费视频| 国产久久久一区二区三区| 婷婷亚洲欧美| 国产三级在线视频| 久久久久久国产a免费观看| 熟女人妻精品中文字幕| 天堂网av新在线| 日韩一本色道免费dvd| 亚洲自偷自拍三级| 男插女下体视频免费在线播放| 国内久久婷婷六月综合欲色啪| 亚洲经典国产精华液单| 国产高清激情床上av| 99久久无色码亚洲精品果冻| 亚洲国产精品久久男人天堂| 欧美激情久久久久久爽电影| 少妇丰满av| 欧美成人a在线观看| 国产精品永久免费网站| 99视频精品全部免费 在线| 免费av毛片视频| 在线免费十八禁| 尾随美女入室| 午夜a级毛片| 男人的好看免费观看在线视频| 国产探花极品一区二区| 国产黄a三级三级三级人| 亚洲不卡免费看| 自拍偷自拍亚洲精品老妇| 成年人黄色毛片网站| 日本熟妇午夜| 国产精品精品国产色婷婷| 天堂网av新在线| www日本黄色视频网| 久久午夜福利片| 在线免费十八禁| 天美传媒精品一区二区| 99热6这里只有精品| 国内精品久久久久精免费| 国产免费一级a男人的天堂| 有码 亚洲区| 无人区码免费观看不卡| 真人做人爱边吃奶动态| 亚洲一区二区三区色噜噜| 99在线人妻在线中文字幕| 1024手机看黄色片| 国产精品电影一区二区三区| 无遮挡黄片免费观看| 夜夜爽天天搞| 中文字幕人妻熟人妻熟丝袜美| 精品人妻偷拍中文字幕| 国产精品自产拍在线观看55亚洲| 欧美丝袜亚洲另类 | 91av网一区二区| av视频在线观看入口| 久久久国产成人精品二区| 国产精品98久久久久久宅男小说| 亚洲一级一片aⅴ在线观看| 久久久色成人| 久久精品国产亚洲av涩爱 | 国产成人a区在线观看| 免费观看在线日韩| 欧美一区二区亚洲| 精品无人区乱码1区二区| 亚洲va日本ⅴa欧美va伊人久久| 久久香蕉精品热| 亚洲精品在线观看二区| 亚洲最大成人av| 日本欧美国产在线视频| 国产又黄又爽又无遮挡在线| 国产乱人视频| 嫩草影院新地址| 又爽又黄a免费视频| 亚洲成人久久性| 中文字幕熟女人妻在线| 老司机福利观看| 成人特级黄色片久久久久久久| 九色成人免费人妻av| 干丝袜人妻中文字幕| 欧美日韩综合久久久久久 | 午夜免费激情av| 日韩,欧美,国产一区二区三区 | 久久久久久久精品吃奶| 亚洲国产精品久久男人天堂| 大型黄色视频在线免费观看| 黄色视频,在线免费观看| 中文字幕免费在线视频6| 成人特级黄色片久久久久久久| 一级毛片久久久久久久久女| 国内久久婷婷六月综合欲色啪| 在线观看免费视频日本深夜| 天堂√8在线中文| 又爽又黄无遮挡网站| 精品福利观看| 18禁黄网站禁片免费观看直播| 色哟哟·www| 国产日本99.免费观看| 欧美日韩国产亚洲二区| 男女下面进入的视频免费午夜| 97热精品久久久久久| 伦精品一区二区三区| 日韩欧美一区二区三区在线观看| 亚洲国产色片| 看免费成人av毛片| 亚洲av日韩精品久久久久久密| 欧美另类亚洲清纯唯美| 全区人妻精品视频| 亚洲内射少妇av| 国产69精品久久久久777片| h日本视频在线播放| 精品久久久久久久久av| 亚洲一区高清亚洲精品| 一个人看视频在线观看www免费| 国产私拍福利视频在线观看| 乱码一卡2卡4卡精品| www.色视频.com| 九九爱精品视频在线观看| 国产不卡一卡二| 如何舔出高潮| 一区福利在线观看| 99久久成人亚洲精品观看| 国产蜜桃级精品一区二区三区| 一卡2卡三卡四卡精品乱码亚洲| av国产免费在线观看| 老司机午夜福利在线观看视频| 2021天堂中文幕一二区在线观| aaaaa片日本免费| 国产三级中文精品| 欧美色欧美亚洲另类二区| 午夜免费成人在线视频| 久久久国产成人精品二区| 国产一区二区三区av在线 | 在线免费十八禁| 国产高潮美女av| 午夜精品久久久久久毛片777| 国产女主播在线喷水免费视频网站 | 一个人免费在线观看电影| 成年女人毛片免费观看观看9| 好男人在线观看高清免费视频| 99久久精品一区二区三区| 午夜a级毛片| 男人的好看免费观看在线视频| 中文字幕高清在线视频| 热99在线观看视频| 人妻少妇偷人精品九色| 伦理电影大哥的女人| 亚洲熟妇熟女久久| 中文字幕免费在线视频6| 男人舔奶头视频| 久久久久九九精品影院| 特级一级黄色大片| АⅤ资源中文在线天堂| 精品日产1卡2卡| 日韩人妻高清精品专区| 免费人成视频x8x8入口观看| 窝窝影院91人妻| 国产伦精品一区二区三区视频9| 国产中年淑女户外野战色| 中文亚洲av片在线观看爽| 国产成人福利小说| 色综合站精品国产| 国产aⅴ精品一区二区三区波| 亚洲精品成人久久久久久| 国产真实乱freesex| 又紧又爽又黄一区二区| 一级毛片久久久久久久久女| 午夜视频国产福利| 亚州av有码| 一本精品99久久精品77| 久久精品夜夜夜夜夜久久蜜豆| 干丝袜人妻中文字幕| 亚洲av中文av极速乱 | netflix在线观看网站| 亚洲av成人av| 国产色爽女视频免费观看| 99久久久亚洲精品蜜臀av| 欧美黑人巨大hd| 99久久精品一区二区三区| 丰满人妻一区二区三区视频av| 老司机午夜福利在线观看视频| 亚洲av中文av极速乱 | 麻豆久久精品国产亚洲av| 一个人观看的视频www高清免费观看| 日日摸夜夜添夜夜添小说| 久久精品久久久久久噜噜老黄 | 一进一出好大好爽视频| 啦啦啦观看免费观看视频高清| 琪琪午夜伦伦电影理论片6080| 欧美日本视频| 免费人成视频x8x8入口观看| av.在线天堂| 精品欧美国产一区二区三| 日韩一本色道免费dvd| 夜夜夜夜夜久久久久| 3wmmmm亚洲av在线观看| 精品人妻一区二区三区麻豆 | 欧美性猛交╳xxx乱大交人| 一个人看视频在线观看www免费| 色播亚洲综合网| 国产熟女欧美一区二区| 国产美女午夜福利| 美女大奶头视频| 日本三级黄在线观看| 丰满人妻一区二区三区视频av| 波多野结衣高清作品| 国产aⅴ精品一区二区三区波| 国产亚洲91精品色在线| 美女高潮的动态| 欧美不卡视频在线免费观看| 黄色一级大片看看| 身体一侧抽搐| 亚洲七黄色美女视频| 免费在线观看日本一区| 亚洲18禁久久av| 级片在线观看| 日本 av在线| 成年免费大片在线观看| 日韩中文字幕欧美一区二区| 99国产精品一区二区蜜桃av| 韩国av一区二区三区四区| 国产精品人妻久久久影院| 99热这里只有精品一区| 亚洲精品日韩av片在线观看| 麻豆精品久久久久久蜜桃| 一进一出抽搐gif免费好疼| 亚洲四区av| 欧美日韩综合久久久久久 | 性色avwww在线观看| 亚洲无线观看免费| 哪里可以看免费的av片| av黄色大香蕉| 少妇丰满av| 又爽又黄无遮挡网站| 欧美一区二区精品小视频在线| 男女视频在线观看网站免费| 老司机深夜福利视频在线观看| 最近中文字幕高清免费大全6 | 国产黄色小视频在线观看| 亚洲经典国产精华液单| 成人av在线播放网站| 国产精品无大码| 日韩欧美在线二视频| 波多野结衣高清作品| 麻豆一二三区av精品| 一本久久中文字幕| 黄色一级大片看看| 嫁个100分男人电影在线观看| 日本免费一区二区三区高清不卡| 精品午夜福利视频在线观看一区| 亚洲av免费在线观看| 国产精品人妻久久久久久| 久久久久久久精品吃奶| 亚洲一区二区三区色噜噜| 精品无人区乱码1区二区| 亚洲成人中文字幕在线播放| 乱码一卡2卡4卡精品| 欧美性猛交黑人性爽| 少妇熟女aⅴ在线视频| 99久久精品国产国产毛片| 欧美又色又爽又黄视频| 日本在线视频免费播放| 国产一区二区亚洲精品在线观看| 欧美激情久久久久久爽电影| 最近在线观看免费完整版| 婷婷精品国产亚洲av在线| 欧美另类亚洲清纯唯美| 少妇的逼好多水| 欧美激情国产日韩精品一区| 国产精华一区二区三区| 欧美日本亚洲视频在线播放| 老师上课跳d突然被开到最大视频| 久久久久久国产a免费观看| 亚洲国产精品合色在线| 久9热在线精品视频| 91av网一区二区| 亚洲av成人精品一区久久| 99九九线精品视频在线观看视频| 欧美区成人在线视频| 亚洲人成伊人成综合网2020| 日韩欧美一区二区三区在线观看| 中文字幕高清在线视频| 久久天躁狠狠躁夜夜2o2o| 我的老师免费观看完整版| 91精品国产九色| 精品午夜福利在线看| 特级一级黄色大片| 亚洲四区av| 少妇人妻一区二区三区视频| 亚洲人成网站高清观看| 深爱激情五月婷婷| 亚洲人成网站在线播放欧美日韩| xxxwww97欧美| 99久久中文字幕三级久久日本| 亚洲成av人片在线播放无| 97热精品久久久久久| 日韩一本色道免费dvd| 亚洲精品乱码久久久v下载方式| 国产精品三级大全| 国产毛片a区久久久久| 成人av在线播放网站| 国产不卡一卡二| 国产欧美日韩精品一区二区| 欧美激情在线99| ponron亚洲| 亚洲不卡免费看| 欧美日韩中文字幕国产精品一区二区三区| 国产精品98久久久久久宅男小说| 午夜激情福利司机影院| 久久久久久伊人网av| 午夜免费男女啪啪视频观看 | 又爽又黄无遮挡网站| 色噜噜av男人的天堂激情| 亚洲美女搞黄在线观看 | 九九爱精品视频在线观看| 国产一区二区三区av在线 | 露出奶头的视频| h日本视频在线播放| 51国产日韩欧美| 丰满的人妻完整版| 91狼人影院| 日本欧美国产在线视频| 黄片wwwwww| 天堂av国产一区二区熟女人妻| 欧美在线一区亚洲| 91午夜精品亚洲一区二区三区 | 亚洲精品粉嫩美女一区| 婷婷精品国产亚洲av| 99热6这里只有精品| 国产精品,欧美在线| 熟妇人妻久久中文字幕3abv| 久久久国产成人免费| 午夜a级毛片| 色综合婷婷激情| 国产成人影院久久av| 深夜a级毛片| 成人一区二区视频在线观看| 夜夜爽天天搞| 国产男靠女视频免费网站| 精品久久久久久久久久免费视频| 亚洲av熟女| 嫩草影视91久久| 亚洲天堂国产精品一区在线| 校园人妻丝袜中文字幕| 国内少妇人妻偷人精品xxx网站| 久久久久久久久久久丰满 | 联通29元200g的流量卡| 99久久无色码亚洲精品果冻| 97碰自拍视频| 又黄又爽又刺激的免费视频.| 少妇裸体淫交视频免费看高清| 1000部很黄的大片| 色尼玛亚洲综合影院| 国内毛片毛片毛片毛片毛片| 我的老师免费观看完整版| 久久精品国产亚洲av天美| 俄罗斯特黄特色一大片| 1000部很黄的大片| 在线播放国产精品三级| 欧美日韩乱码在线| 国内精品美女久久久久久| 亚洲美女搞黄在线观看 | 免费看日本二区| 久久久久久国产a免费观看| 熟女电影av网| 亚洲av电影不卡..在线观看| 亚洲精品粉嫩美女一区| 99视频精品全部免费 在线| 性欧美人与动物交配| 有码 亚洲区| 久久香蕉精品热| 特大巨黑吊av在线直播| 亚洲最大成人av| 精品一区二区三区人妻视频| 内地一区二区视频在线| 免费大片18禁| 亚洲专区中文字幕在线| 真实男女啪啪啪动态图| 少妇猛男粗大的猛烈进出视频 |