• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Conditional Quantile Estimation with Truncated,Censored and Dependent Data?

    2015-06-06 06:21:48HanyingLIANGDeliLITianxuanMIAO

    Hanying LIANGDeli LITianxuan MIAO

    1 Introduction

    In medical follow-up or engineering life testing studies,one may not be able to observe the variable of interest,referred to hereafter as the lifetime.In this paper,we focus on the lifetime data with multivariate covariates which are subject to both left truncation and right censorship.Let(X,Y,T,W)be a random vector,whereYis the random lifetime with the distribution function(df)F,Tis the random left truncation time with the dfL,Wdenotes the random right censoring time with dfGandXis anvalued random vector of covariates related withY.Assume thatXadmits the dfM(·)and densitym(·).

    In the random left truncation and the right censoring(LTRC)model,one observes(X,Z,T,δ)ifZ≥T,whereZ=min(Y,W)andδ=I(Y≤W);whenZ0.If(Xi,Zi,Ti,δi),fori=1,2,···,n,is a stationary random sample from(X,Z,T,δ)which one observes,then(Ti≤Zi,?i).Without loss of generality,we assume thatY,TandWare nonnegative random variables as are usual in survival analysis.Following the idea of Iglesias-Pérez and González-Manteiga[13],we define a generalized product-limit estimator(GPLE)of the conditional distribution functionF(y|x)ofY,givenfor the LTRC data by

    whereBni(x)K(·)denotes a kernel function onand 0

    One characteristic of the conditional distribution functionF(y|x)that is of interest is the conditional quantile function.It plays an important role in various statistical applications,especially in data modeling,reliability,and medical studies.Letξp(x)=infforp∈(0,1)be the conditional quantile function ofF(y|x).We focus here on estimatingbased on the LTRC data.A natural estimator ofis given by(x)=infIglesias-Pérez[14] first derived an almost sure representation and the asymptotic normality ofunder i.i.d.assumptions and the cased=1.

    Asymptotic properties for di ff erent quantile estimators with censored and/or truncated data have been studied by many authors.In the absence of covariables,representations of the product-limit quantile estimator were obtained by Lo and Singh[21]for censored data,by Gürler et al.[10]for truncated data;asymptotic normality and a Berry-Esseen-type bound for the kernel quantile estimator were derived by Zhou et al.[31]for jointly censored and truncated data.In the presence of covariables,we cite the representations derived by Dabrowska[6]and Van Keilegom and Veraverbeke[28]for conditional quantile estimators with censored data,the strong uniform convergence with rate for a kernel estimator of the conditional quantile established by Ould-Sa?d[23]for censored data,and the asymptotic properties of the kernel conditional quantile estimator for the left-truncated model studied by Lemdani et al.[16].In all of these papers,it is assumed that the observations are independent.

    However,the dependent data scenario is an important one in a number of applications with survival data.When sampling clusters of individuals(family members,or repeated measurements on the same individual,for example),lifetimes within clusters are typically correlated(see[3,15]).There has been some literature devoted to the study of the conditional quantile estimation under dependence.To mention some examples,Cai[4]investigated the asymptotic normality of a weighted Nadaraya-Watson conditional quantile estimator for theα-mixing time series.Honda[12]dealt withα-mixing processes and proved the uniform convergence and asymptotic normality of an estimate ofξp(x)for the cased=1 using the local polynomial fitting method.Ferraty et al.[8]considered quantile regression under dependence when the conditioning variable is in finite dimensional.A nice extension of the conditional quantile process theory to set-indexed processes under strong mixing was establish in[26].Ould-Sa?d et al.[24]recently discussed strong uniform convergence with rate of the kernel conditional quantile estimator with left-truncated and dependent data.Liang and de Un?a-lvarez[18]proved the strong uniform convergence and asymptotic normality for the kernel estimator of the conditional quantile under censored and dependent assumptions.The asymptotic normality of the conditional quantile estimator with auxiliary information for left-truncated and dependent data was discussed by Liang and de U?a-álvarez[19].However,to the best of our knowledge,the asymptotic properties of the conditional quantile estimator with dependent data for the LTRC model have not yet been investigated.

    In this paper,we study the strong convergence with rate,strong representation as well as asymptotic normality of the conditional quantile estimatorwhen the observations with multivariate covariates form a stationaryα-mixing sequence.Also,a Berry-Esseen-type bound for the estimator is established;this result is new,even for independent data.The finite sample behavior of the estimator is also investigated via simulations.

    In the sequel,{(Xi,Zi,Ti,δi),1≤i≤n}is assumed to be a stationaryα-mixing sequence of random vectors.Recall that a sequence{ζk,k≥1}is said to beα-mixing if theα-mixing coefficient

    converges to zero asn→∞,wheredenotes theσ-algebra generated bywithl≤m.Among various mixing conditions used in the literature,αmixing is reasonably weak and known to be ful filled for many stochastic processes including many time series models.Withers[29]derived conditions under which a linear process isαmixing.In fact,under very mild assumptions,linear autoregressive and more generally bilinear time series models are strongly mixing with mixing coefficients decaying exponentially,i.e.,α(k)=O(ρk)for some 0<ρ<1.See[7,p.99],for more details.We mention thatα-mixing has been used in applications with clustered survival data;see,for instance,Cai and Kim[5].

    In the sequel,for any dfQ(y)=P(η≤y),we denote its density function byq(y),and the left and right support endpoints byaQ=inf{y:Q(y)>0}andbQ=sup{y:Q(y)<1},respectively.Forxde fineθ(x)=P(T≤Z|X=x),

    Also,we de fineQ(y|x)=P(η≤y|X=x)andQ?(y)=P(η≤y|T≤Z),while their density functions are denoted byq(y|x)andq?(y),respectively.ThusM?(x)=P(X≤x|T≤Z),and its density function ism?(x).

    Remark 1.1It is easy to verify thatm?(x)=θ?1θ(x)m(x).Assuming thatY,TandWare conditionally independent atX=x,andF(·|x)andG(·|x)are continuous,thenC(y|x)=θ?1(x)L(y|x)(1?G(y|x))(1?F(y|x))=θ?1(x)L(y|x)(1?H(y|x)),and=which gives=θ?1(x)L(y|x)(1?G(y|x))f(y|x).

    De fine estimators of(·|x),C(·|x)andm?(x)respectively as follows:

    and

    The rest of this paper is organized as follows.The main results are described in Section 2.A simulation study is presented in Section 3.All proofs are given in Section 4.Some preliminary lemmas,which are used in the proofs of the main results,are collected in Appendix.

    2 The Main Results

    Throughout this paper,x=(x1,···,xd)For(i,j)=(i1,···,id,j)putf(i,j)(y|x):=LetC,C1,···andc0,c1,···denote generic finite positive constants,whose values may change from line to line,and let Φ(u)stand for the standard normal distribution function and[t]be the integer part oft.The notationAn=O(Bn)meansandU(x)represents a neighborhood ofx.LetIbe a compact set ofwhich is included inD={x|m(x)>0,θ(x)>0}.Sete=(e1,···,ed)for smallei>0,andIe={x±e,x∈I}with{m(x),θ(x)}≥δ0>0.

    Throughout this paper,we assume thatα(k)=O(k?λ)for someλ>0.We first list the following basic assumptions:

    (A1)(i)K(·)is a Lipschitz-continuous density function with compact support on

    (ii)K(x)dx=0 for non-negative integersi1,···,idwithi1+···+id≤r0?1.

    (A1’)(i)K(·)is a bounded density function with compact support on

    (ii)K(x)dx=0 for non-negative integersi1,···,idwithi1+···+id≤r0?1.

    (A2)(i)Y,TandWare conditionally independent atX=sfors

    (ii)τ1andτ2are two real numbers such thataL(·|x)<τ1≤τ2

    (A2’)(i)Y,TandWare conditionally independent atX=sfors∈U(x);

    (ii)τ1andτ2are two real numbers such thataL(·|x)<τ1≤τ2

    (A3)The firstr0partial derivatives of functionsθ(s)andm(s)are bounded fors∈Ie,and the firstr0partial derivatives with respect tosof functionsL(y|s),G(y|s),F(y|s),l(y|s),g(y|s)andf(y|s)are bounded for(s,y)∈Ie×

    (A3’)The firstr0partial derivatives of functionsθ(s)andm(s)are bounded fors∈U(x),and the firstr0partial derivatives with respect tosof functionsL(y|s),G(y|s),F(y|s),l(y|s),g(y|s)andf(y|s)are bounded for(s,y)∈U(x)×

    (A4)For all integersj≥1,the joint conditional density(·,·)ofX1andXj+1exists onand satis fies(s1,s2)≤C1for(s1,s2)∈Ie×Ie.

    (A4’)For all integersj≥1,the joint conditional density(·,·)ofX1andXj+1exists onand satis fiesfor(s1,s2)∈U(x)×U(x).

    (B2)For all integersj≥1,the joint conditional density(·,·,·,·)ofexists on×[0,1]×[0,1]and satisfies(s1,s2,y1,y2)≤C3for(s1,s2,y1,y2)∈U(x)×U(x)×[0,1]×[0,1].

    Remark 2.1(a)(i)and(ii)in(B3)imply(i)and(ii)in(A5’),respectively.

    (b)Similar conditions as(A1)–(A3),(A1’)–(A3’)and(B1)have been used commonly in the literature,see,e.g.,Iglesias-Pérez and González-Manteiga[13]in the casesd=1 andr0=2.The role of conditionin(A2)and(A2’)is to avoid the problem that the conditional functionC(y|x)may vanish.The conditions(A3)and(A3’)allow us to apply Taylor expansions in the proofs to determine the order of convergence of the estimators.Conditions(A4),(A4’)and(B2)are mainly technical,which are employed to simplify the calculations of covariances in the proofs,and are otherwise redundant for the independent setting.

    (c)Assumptions(A5),(A5’)and(B3)imply restrictions on the degree of dependence of the observable sequence;as we discuss now,the message under these assumptions is that one must prevent strongly dependent data.Indeed,all these conditions are satis fied by appropriately choosing the bandwidthhnwhenλis large enough.Note that,if the exponential decayα(k)=O(ρk)for some 0<ρ<1,which has been used by some authors(see[7]),we replaceα(k)=O(k?λ),and thenλcan be arbitrarily large.

    In order to give the strong convergence with rates of(x),we need the following additional assumptions:

    (D1)For each fixedp∈ (0,1),the function(x)satis fies that for any>0 and any functionηp(x),there existsβ>0 such thatimplies that

    (D1’)For each fixedp∈(0,1),the functionξp(x)satis fies that for any0 and any functionηp(x),there existsβ>0 such that|ξp(x)?ηp(x)|≥implies that|F(ξp(x)|x)?F(ηp(x)|x)|≥β.

    (D2)There existsγ1>0 such that

    (D2’)There existsγ1>0 such that

    Theorem 2.1Let α(n)=O(n?λ)for some λ>2.

    (a)Let0

    (b)Letx∈D and0

    In order to formulate the strong representation and asymptotic normality of(x),we need to impose the following additional assumptions:

    (E1)f(0,1)(y|x)is bounded fory∈[τ1,τ2].

    (E2)The sequenceα(n)satis fies for positive integersq:=qnthatq=and

    (E3)→0.

    Theorem 2.2Set ξ(Z,T,δ,y,x)=(t|x).Let α(n)=O(n?λ)for some λ>6,letx∈D and0

    where for i=1,2,a.s.when(B3)(i)holds;|Rni(ξp(x)|x)|=Opwhen(i)and(B3)(ii)hold.

    Theorem 2.3Let α(n)=O(n?λ)for some λ>6,letx∈D and0

    where

    In order to give a Berry-Esseen-type bound for(x)which will assess the quality of the normal approximation in Theorem 2.3,we need the following additional assumption.

    (Q)p:=pnandq:=qnare positive integers such thatp+q≤n,0 andqp?1→0.

    Theorem 2.4Let α(n)=O(n?λ)for some λ>withand letx∈D and0

    Remark 2.2The assumptionsγin→0(i=1,···,5)in Theorem 2.4 can be satis fied by appropriate choice ofhn,pandq,whenλis large enough(note that if we replaceα(n)=O(n?λ)by the exponential decayα(n)=O(ρn)for some 0<ρ<1,thenλcan be arbitrarily large).In particular,choosingp=[ns]andq=for someandmaxthenγin→0(i=1,···,5),qp?1→0,pn?1→0,and(B3)(i)holds.

    3 Simulation Study

    In this section,we investigate with simulated data the finite sample performance of the proposed estimator(x)withp=0.5 in the cased=1.In particular,we calculate the mean squared error(MSE),plot the Boxplots of the estimatoratx=0.5,and explore the estimator’s graphical f it to the true underlying curve.We also investigate the goodness-of-f it to the normal distribution which is expected from our theoretical results in Section 2.At the same time,we check the influence of the dependence of the observations on the estimator.In order to obtain anα-mixing observed sequence{Xi,Zi,Ti,δi},we generate the observed data as follows.

    (1)Drawing of the first observation(X1,Z1,T1,δ1)in the final sample.

    Step 1Drawe1~N(0,1),and takeX1=0.5e1;

    Step 2ComputeY1andW1,respectively,from the modelY1=sin(πX1)+φ1(1+0.3cos(πX1)),andW1=sin(πX1)+0.5φ2(1+0.3cos(πX1))+φ3(1+0.3cos(πX1))where bothandareN(0,1)random variables,andX1are mutually independent,andφi(i=1,2,3)are chosen(see below)to control the percentage of censoring.TakeZ1=min(Y1,W1),δ1=I(Y1≤W1);

    Step 3Draw independentlyT1~N(μ,1),whereμis adapted in order to get different values ofθ.IfZ1

    (2)Drawing of the second observation(X2,Z2,T2,δ2)in the final sample.

    Step 4DrawX2according to the AR(1)modelX2=ρX1+0.5e2,wheree2~N(0,1)is independent ofX1,and|ρ|<1 is some constant,which is chosen to control the dependence of the observations;

    Step 5ComputeY2andW2,respectively,from the modelY2=sin(πX2)+φ1(1+0.3cos(πX2))andW2=sin(πX2)+0.5φ2(1+0.3cos(πX2))+φ3(1+0.3cos(πX2))where bothandareN(0,1)random variables,andandX2are mutually independent.TakeZ2=min(Y2,W2),andδ2=I(Y2≤W2);

    Step 6Draw independentlyIfZ2

    By replicating the process(2)above,we generate the observed data(Xi,Zi,Ti,δi),i=1,···,n.The generating process shows thatXi=ρXi?1+0.5ei,Yi=sin(πXi)+φ1(1+0.3cos(πXi))i,Wi=sin(πXi)+0.5φ2(1+0.3cos(πXi))+φ3(1+0.3cos(πXi))Zi=min(Yi,Wi),andδi=I(Yi≤Wi),whereei~N(0,1),~N(0,1),andTi~N(μ,1);everything is distributed conditionally onZi≥Ti.Note that theα-mixing property of the observableXiis immediately transferred to the(Xi,Zi,Ti,δi).Also note that(sin(πx),(1+0.3cos(πx))2),which shows that the conditional quantile functionξ0.5(x)=sin(πx).For the proposed estimators,we employ the kernelK(x)=1).

    In addition,the parametersφi(i=1,2,3)allow for the control of the percentage of censoring(PC)which is given by

    In the simulation below,we takeφ1=φ3=0.3.

    3.1 Consistency

    In this subsection,we draw random samples with sample sizesn=200,350 and 500,respectively,andρ=0.1,0.3 and 0.5,respectively,from the above model.In Table 1,we report the MSE of the estimatorwithp=0.5 atx=0.5,for several truncation rates,percentage of censoring,and choice of bandwidth based onM=1000 replications.

    Table 1 Mean squared errors(MSEs)ofwith p=0.5 at x=0.5 along M=1000 Monte Carlo trials,for several truncation rates and percentage of censoring(PC).

    Table 1 Mean squared errors(MSEs)ofwith p=0.5 at x=0.5 along M=1000 Monte Carlo trials,for several truncation rates and percentage of censoring(PC).

    ρθPCn hn=0.3 hn=0.35 hn=0.4 0.1 30% 10% 200 0.7569×10?2 1.0060×10?2 1.3393×10?2 350 0.6330×10?2 0.8714×10?2 1.2988×10?2 500 0.5296×10?2 0.8240×10?2 1.2279×10?2 15% 200 0.7652×10?2 1.0360×10?2 1.3612×10?2 350 0.6173×10?2 0.8544×10?2 1.2915×10?2 500 0.5267×10?2 0.8128×10?2 1.1961×10?2 30% 200 0.8009×10?2 1.0503×10?2 1.3777×10?2 350 0.6018×10?2 0.8430×10?2 1.1996×10?2 500 0.5227×10?2 0.7935×10?2 1.1153×10?2 60% 10% 200 0.7349×10?2 0.9612×10?2 1.2418×10?2 350 0.5631×10?2 0.8356×10?2 1.1839×10?2 500 0.5183×10?2 0.8090×10?2 1.1085×10?2 15% 200 0.7542×10?2 0.9762×10?2 1.2800×10?2 350 0.5549×10?2 0.8325×10?2 1.1601×10?2 500 0.5096×10?2 0.7807×10?2 1.1025×10?2 30% 200 0.7628×10?2 1.0204×10?2 1.2688×10?2 350 0.5473×10?2 0.8273×10?2 1.1345×10?2 500 0.5028×10?2 0.7543×10?2 1.0329×10?2 90% 10% 200 0.7149×10?2 0.9355×10?2 1.1969×10?2 350 0.5471×10?2 0.7639×10?2 1.1414×10?2 500 0.4975×10?2 0.7385×10?2 1.0816×10?2 15% 200 0.7291×10?2 0.9478×10?2 1.2218×10?2 350 0.5509×10?2 0.7886×10?2 1.1160×10?2 500 0.5076×10?2 0.7317×10?2 1.0550×10?2 30% 200 0.7301×10?2 0.9537×10?2 1.2277×10?2 350 0.5722×10?2 0.7453×10?2 1.0503×10?2 500 0.4738×10?2 0.7159×10?2 0.9987×10?2 0.3 90% 30% 200 0.7368×10?2 0.9551×10?2 1.2312×10?2 350 0.5830×10?2 0.7719×10?2 1.0861×10?2 500 0.5047×10?2 0.7336×10?2 1.0107×10?2 0.5 90% 30% 200 0.7498×10?2 0.9797×10?2 1.2419×10?2 350 0.5983×10?2 0.8019×10?2 1.1099×10?2 500 0.5248×10?2 0.7496×10?2 1.0410×10?2

    From Table 1,it is seen that(i)the MSE decreases as the sample sizenincreases;(ii)the accuracy of the estimator is greatly af f ected by the choice of the bandwidthhn,i.e.,higher values forhngive bad estimators;(iii)for the same sample size,the performance of the estimator is af f ected slightly by the percentage of truncated data 1?θand the percentage of censoring PC;(iv)the values of the MSE become bigger as the dependence of the observations increases,i.e.,the value ofρincreases.

    In Figures 1–3,we plot the Boxplots of the MSE for the estimatorwithp=0.5 andhn=0.3 atx=0.5,alongM=1000 Monte Carlo trials,forθ=90%,PC=30%,n=200,350 and 500;θ=90%,n=350,PC=10%,15%and 30%;PC=30%,n=350,θ=30%,60%and 90%,respectively.

    Figure 1 shows that the quality of f it increases as the sample sizenincreases.

    Figure 1 Boxplots ofwith p=0.5 and hn=0.3 at x=0.5 along M=1000 Monte Carlo trials,for θ=90%,PC=30%,n=200,350 and 500,respectively.

    Figure 2 Boxplots ofwith p=0.5 and hn=0.3 at x=0.5 along M=1000 Monte Carlo trials,for θ=90%,n=350,PC=10%,15%and 30%,respectively.

    From Figures 2–3,it can be seen that for the same sample size,the quality of the estimator does not seem to be af f ected by the percentage of truncated data 1?θand the percentage of censoring.

    In Figure 4,we plot the averages of the curvesξp(x)=sin(πx)and its estimatorwithp=0.5 andhn=based on 100 replications forθ=90%,PC=10%,n=150,300 and 500,respectively.Figure 4 shows again that the quality of f it of the estimator increases as the sample sizenincreases.

    3.2 Asymptotic normality

    In this subsection,we examine how good is the asymptotic normality of the estimatorwithp=0.5 atx=0.5 by comparing the histograms and Normal-Probability-plots with the normal distribution.We drawMindependentn-samples.In Figures 5–6,we plot the histograms and Normal-Probability-plots forθ=90%,PC=10%andbased onM=1000 replications with sample sizesn=300 and 600,respectively.From Figures 5–6,it is seen that the sampling distribution of the estimator f its the normal distribution reasonably well;this f it being better when increasing the sample size.

    Figure 3 Boxplots ofwith p=0.5 and hn=0.3 at x=0.5 along M=1000 Monte Carlo trials,for PC=30%,n=350,θ=30%,60%and 90%,respectively.

    Figure 4 Function ξp(x)and its estimatorwith p=0.5 and hn=along M=100 Monte Carlo trials,for θ=90%,PC=10%,n=150,300 and 500,respectively.

    Figure 5 Histogram and Normal-Probability-plot ofwith p=0.5 and hn=at x=0.5 along M=1000 Monte Carlo trials,for θ=90%,PC=10%,n=300.

    To study the influence of the dependence of the observations,we consider different degrees of dependence;specifically we choose in Figure 7,ρ=0.1,0.3,0.5,respectively,and plot the Normal-Probability-plots ofwithp=0.5 andhn=atx=0.5 based onM=1000 replications withθ=90%,PC=30%,andn=400.Figure 7 shows that as the dependence of the observations increases,the quality of f it decreases.

    Figure 6 Histogram and Normal-Probability-plot ofwith p=0.5 and hn=at x=0.5 along M=1000 Monte Carlo trials,for θ=90%,PC=10%,n=600.

    Figure 7 Normal-Probability-plots ofwith p=0.5 and hn=at x=0.5 along M=1000 Monte Carlo trials,for θ =90%,PC=30%,n=400,ρ =0.1,0.3 and 0.5,respectively.

    4 Proofs of the Main Results

    Lemma 4.1Letx∈D and α(n)=O(n?λ)for some λ>6.Suppose that conditionsand(B1)–(B2)hold,and that τ1

    (a)If(B3)(i)holds,then

    (b)If(B3)(ii)holds,then

    Proof of Lemma 4.1We prove only(a);the proof of(b)is similar.From Lemma 5.2,we have

    Note that

    Therefore

    Note thatC(y|x)=θ?1(x)L(y|x)(1?G(y|x))(1?F(y|x))and=θ?1(x)(1?G(t|x))f(t|x)dt.ThenC(0,1)(y|x)andare bounded fory∈[τ1,τ2]from(A3’).Hence,using Lemmas 5.1–5.2,it follows that

    Similarly,

    and

    Therefore,from(4.3)it follows that

    Using Lemma 5.1,from(4.2)one can verify thata.s.

    Therefore,

    whereris betweensandt.Thus,the conclusion follows from(4.1)and(4.4)–(4.5).

    Proof of Theorem 2.1We prove only(a);the proof of(b)is similar.Observe that

    SinceF(·|x)is continuous,F(ξp(x)|x)=p.Then from the definition ofwe have

    wherestands for the left-hand limit of

    Since 0

    Then,the first part of the theorem follows from Lemma 5.1 and(D1).Note that

    where(x)is betweenξp(x)and(x).Then,by(4.8),we have

    Thus,the second part of the theorem follows from Lemma 5.1 and(D2).

    Proof of Theorem 2.2We prove only the conclusion in the case

    fori=1,2.

    Since=O(1),(b)in Theorem 2.1 ensures that

    Therefore,using a Taylor expansion,it follows that

    where(x)is between(x)andξp(x),and(ξp(x)|x)|=a.s.by Lemma 4.1.Hence fromf(ξp(x)|x)>0 andwe have

    Note that(E1)implies thatis bounded.Then,according toa.s.from(b)in Theorem 2.1,it follows that

    In addition,using Lemma 5.2 andF(ξp(x)|x)=p,we can write(4.9)as

    a.s.from(D2’).

    Proof of Theorem 2.3Note that→0 implies that→0.Then from Theorem 2.2 andF(ξp(x)|x)=p,we have

    Therefore,from Lemma 5.3 it follows that

    Proof of Theorem 2.4From Theorem 2.2 we write

    LetThen,using Lemma 5.4 we have

    From Lemma 5.1,it follows that

    Lemma 5.1 and Theorem 2.2 ensure that

    Let Λ(u)=E(ξ(Z,T,δ,ξp(x),x)|X=u,T≤Z).Then

    Obviously,Λ(x)=0 and the function Λ has bounded the firstr0partial derivatives inU(x)from(A3’).Hence we have

    Note thatThen from(4.10)–(4.13),it suffices to verify that

    In fact,letw=and(Zi,Ti,δi,ξp(x),x).De fineymn(x),(x),(x)as follows:

    wherekm=(m?1)(p+q)+1,lm=(m?1)(p+q)+p+1.Then

    LetBy applying Lemma 5.4,it follows that

    Then,to verify(4.14),we only need to prove that

    and

    (i)We verify(4.15).Note that

    From(A1’)and(A3’),we get

    Using(A1’)and(A4’),from the proof in(4.13)fori

    On the other hand,from Lemma 5.5(takingp=q=20λ),it follows that

    andE|ηi(x)|20λ≤=K20λ(s)m?(x?hns)ds =which yield|Cov(ηi(x),ηj(x))|≤C[α(j?i)]1?Letcn=for≤ρ<1.Then

    Using Lemma 5.5 again,we have

    From(4.17)–(4.20),we obtain(x))2=O(qp?1++γ3n)=O(τ1n)and

    (ii)We prove(4.16).Letπmn(x),m=1,2,···,wbe independent random variables,where the distribution ofπmnis the same as that ofymn(x)form=1,2,···,w.PutUn=(x)and(x).Then

    Note that

    Then,in view ofm?(s)=θ?1θ(s)m(s),=θ?1(s)L(y|s)(1?G(y|s))f(y|s),andC(y|s)=θ?1(s)L(y|s)(1?G(y|s))(1?F(y|s)),from(A1’),(A3’)and(4.13),we have

    Then,from(4.18)–(4.19)and(4.22),it follows that

    which implies that→1 and

    By the Berry-Esseen inequality(see[25,p.154,Theorem 5.7]),forl>2,there exists some constantC>0 such that

    Takingl=2(1+β)andμ=δ?2β,we havel+μ=2+δ.Note thatβ≤implies thatλ≥Then,using Lemma 5.6(takep=landq=l+μ)andE|η1(x)|2+δ≤we have

    which,together with(4.24),yields

    Let?(t)andψ(t)be the characteristic functions ofandrespectively.By the Esseen inequality(see[25,p.146,Theorem 5.3]),for any Γ>0,

    Using Lemma 5.7,we have

    From(4.13)and|Cov(ηi(x),ηj(x))|≤Cminwe have

    ThusH1n=From(4.25),we have

    which yields thatH2n=Choose Γ=Then from(4.26),we have

    Therefore,from(4.21),(4.23),(4.25)and(4.27),we have

    5 Appendix

    In this section,we list some preliminary lemmas which have been used in the proofs of the main results in Section 4.Let{χi,i≥1}be a stationaryα-mixing sequence of real random variables with mixing coefficients{α(k)}.

    Lemma 5.1(see[20])Let α(n)=O(n?λ)for some λ>2,and let τ be a finite positiveconstant.SetΓ1n=max

    (a)Suppose that(A1)–(A4)are satis fied.If(A5)(i)holds,thenO(Γ1n)a.s.If(A5)(ii)holds,then

    (b)Letx∈D.Suppose thatare satisfied.If(i)holds,then(y|x)?F(y|x)|=Op(Γ1n).

    If(ii)holds,thenOp(Γ1n),and(y|x)?C(y|x)|=Op(Γ1n).

    Lemma 5.2(see[20])Set ξ(Z,T,δ,y,x)=Letx∈Dand α(n)=O(n?λ)for some λ>0.Suppose that conditionsand(B1)–(B2)hold,and that

    (a)Let λ>6and τ1

    where|Qn(y|x)|=O(Γ2n)a.s.when(B3)(i)holds;|Qn(y|x)|=Op(Γ2n)when(B3)(ii)holds.

    (b)Let λ>4.If(B3)(i)holds,then

    If(B3)(ii)holds,then

    Lemma 5.3(see[20])Letx∈D and α(n)=O(n?λ)for some λ>6.Suppose that conditions(B1)–(B2),(B3)(ii)and(E2)–(E3)hold.If τ1

    Lemma 5.4Let X,V and Y1,···,Ymbe random variables,and then for positive numbers a,w1,···,wm,we have|P(X≤uV)?Φ(u)|≤|P(X≤u)?Φ(u)|+P(|V?1|>a)+a and

    ProofThe first inequality is a consequence of Michel and Pfanzagl[22]and the second one follows from Lemma 3.1 of Liang and Fan[17].

    Lemma 5.5(see[11,Corollary A.2,p.278])Suppose that X and Y are random variables such that E|X|p<∞,E|Y|q<∞,where p,q>1,p?1+q?1<1.Then

    Lemma 5.6(see[27,Theorem 4.1])Let20.Then there exists Q=Q(p,q,γ)<∞such that

    Lemma 5.7(see[30])Let p and q be positive integers.1≤r≤w.If s>0,r>0withthen there exists a constant C>0such that

    [1] Akritas,M.G.and LaValley,M.P.,A generalized product-limit estimator for truncated data,J.Nonparametric Statist.,17,2005,643–663.

    [2] Beran,R.,Nonparametric regression with randomly censored survival data,Technical Report,Department of Statistics,University of California,Berkeley,1981.

    [3] Cai,T.,Wei,L.J.and Wilcox,M.,Semiparametric regression analysis for clustered survival data,Biometrika,87,2000,867–878.

    [4] Cai,Z.W.,Regression quantiles for time series,Econometric Theory,18,2002,169–192.

    [5] Cai,J.and Kim,J.,Nonparametric quantile estimation with correlated failure time data,Lifetime Data Analysis,9,2003,357–371.

    [6] Dabrowska,D.,Nonparametric quantile regression with censored data,Sankhy,Ser.A,54,1992,252–259.

    [7] Doukhan,P.,Mixing:Properties and Examples,Lecture Notes in Statistics,Vol.85,Springer-Verlag,Berlin,1994.

    [8] Ferraty,F.,Rabhi,A.and Vieu,P.,Conditional quantiles for dependent functional data with application to the climaticEl Niophenomenon,Sankhy,67,2005,378–398.

    [9] González-Manteiga,W.and Cadarso-Suárez,Z.,Asymptotic properties of a generalized Kaplan-Meier estimator with some applications,J.Nonparametric Statist.,4,1994,65–78.

    [10]Gürler,ü.,Stute,W.and Wang,J.L.,Weak and strong quantile representations for randomly truncated data with applications,Statist.Probab.Lett.,17,1993,139–148.

    [11]Hall,P.and Heyde,C.C.,Martingale Limit Theory and Its Application,Academic Press,New York,1980.

    [12]Honda,T.,Nonparametric estimation of a conditional quantile forα-mixing processes,Ann.Inst.Statist.Math.,52,2000,459–470.

    [13]Iglesias-Pérez,C.and González-Manteiga,W.,Strong representation of a generalized product-limit estimator for truncated and censored data with some applications,J.Nonparametric Statist.,10,1999,213–244.

    [14]Iglesias-Pérez,C.,Strong representation of a conditional quantile function estimator with truncated and censored data,Statist.Probab.Lett.,65(2),2003,79–91.

    [15]Kang,S.S.and Koehler,K.J.,Modification of the Greenwood formula for correlated failure times,Biometrics,53,1997,885–899.

    [16]Lemdani,M.,Ould-Sa?d,E.and Poulin,N.,Asymptotic properties of a conditional quantile estimator with randomly truncated data,J.Multivar.Analysis,100,2009,546–559.

    [17]Liang,H.Y.and Fan,G.L.,Berry-Esseen-type bounds of estimators in a semiparametric model with linear process errors,J.Multivar.Analysis,100,2009,1–15.

    [18]Liang,H.Y.and de U?a-álvarez,J.,Asymptotic properties of conditional quantile estimator for censored dependent observations,Ann.Inst.Statist.Math.,63,2011,267–289.

    [19]Liang,H.Y.and de U?a-álvarez,J.,Conditional quantile estimation with auxiliary information for lefttruncated and dependent data,J.Statist.Plan.Inference,141,2011,3475–3488.

    [20]Liang,H.Y.,de U?a-álvarez,J.and Iglesias-Pérez,C.,Asymptotic properties of conditional distribution estimator with truncated,censored and dependent data,Test,21(4),2012,790–810.

    [21]Lo,S.and Singh,K.,The product-limit estimator and the bootstrap:Some asymptotic representations,Probab.Theory Related Fields,71,1985,455–465.

    [22]Michel,R.and Pfanzagl,J.,The accuracy of the normal approximation for minimum constrast estimates,Z.Wahrsch.Verw.Gebiete,18,1971,73–84.

    [23]Ould-Sa?d,E.,A strong uniform convergence rate of kernel conditional quantile estimator under random censorship,Statist.Probab.Lett.,76,2006,579–586.

    [24]Ould-Sa?d,E.,Yahia,D.and Necir,A.,A strong uniform convergence rate of a kernel conditional quantile estimator under random left-truncation and dependent data,Electronic J.Statist.,3,2009,426–445.

    [25]Petrov,V.V.,Limit Theorems of Probability Theory,Oxford Univ.Press Inc.,New York,1995.

    [26]Polonik,W.and Yao,Q.,Set-indexed conditional empirical and quantile processes based on dependent data,J.Multivar.Analysis,80,2002,234–255.

    [27]Shao,Q.and Yu,H.,Weak convergence for weighted empirical processes of dependent sequences,Ann.Probab.,24,1996,2098–2127.

    [28]Van Keilegom,I.and Veraverbeke,N.,Bootstrapping quantiles in a fixed design regression model with censored data,J.Statist.Plan.Inference,69,1998,115–131.

    [29]Withers,C.S.,Conditions for linear processes to be strong mixing,Z.Wahrsch.Verw.Gebiete,57,1981,477–480.

    [30]Yang,S.C.and Li,Y.M.,Uniformly asymptotic normality of the regression weighted estimator for strong mixing samples,Acta Math.Sinica,49(5),2006,1163–1170.

    [31]Zhou,X.,Sun,L.Q.and Ren,H.,Quantile estimation for left truncted and right censored data,Statist.Sinica,10,2000,1217–1229.

    女同久久另类99精品国产91| 在现免费观看毛片| 亚洲av电影不卡..在线观看| 大香蕉久久网| eeuss影院久久| 十八禁网站免费在线| 毛片一级片免费看久久久久| 级片在线观看| av福利片在线观看| 午夜a级毛片| 日本免费a在线| 99热全是精品| 少妇的逼水好多| 亚洲成人久久性| 免费电影在线观看免费观看| 一本一本综合久久| 日日摸夜夜添夜夜添小说| 欧美日韩一区二区视频在线观看视频在线 | av天堂中文字幕网| 日日撸夜夜添| 国产精品嫩草影院av在线观看| 中文字幕人妻熟人妻熟丝袜美| 看免费成人av毛片| 少妇被粗大猛烈的视频| 欧美激情在线99| 亚洲精品456在线播放app| 搡老熟女国产l中国老女人| 日韩av不卡免费在线播放| 国产欧美日韩精品亚洲av| 日本一二三区视频观看| 成人综合一区亚洲| 日韩人妻高清精品专区| 淫秽高清视频在线观看| 成年女人毛片免费观看观看9| 中文资源天堂在线| 97人妻精品一区二区三区麻豆| 亚洲性夜色夜夜综合| 狂野欧美白嫩少妇大欣赏| 免费观看精品视频网站| 亚洲精品日韩在线中文字幕 | 国内精品宾馆在线| 国产欧美日韩精品一区二区| 国产高清视频在线播放一区| 狂野欧美激情性xxxx在线观看| 成人av在线播放网站| 黄色欧美视频在线观看| 91午夜精品亚洲一区二区三区| 国产国拍精品亚洲av在线观看| 99久国产av精品国产电影| 观看免费一级毛片| 午夜福利高清视频| 91久久精品国产一区二区三区| 亚洲人与动物交配视频| 午夜视频国产福利| 日日啪夜夜撸| 久久人人爽人人爽人人片va| 日本欧美国产在线视频| 国产av麻豆久久久久久久| 1000部很黄的大片| 国产av不卡久久| 精品欧美国产一区二区三| 亚洲在线自拍视频| 日韩人妻高清精品专区| 日本a在线网址| 如何舔出高潮| 亚洲经典国产精华液单| 亚洲av成人av| 久久99热6这里只有精品| 国产伦在线观看视频一区| 亚洲乱码一区二区免费版| 有码 亚洲区| 午夜爱爱视频在线播放| 国产免费男女视频| 日韩欧美一区二区三区在线观看| 久久久久九九精品影院| av专区在线播放| 午夜福利高清视频| 日本爱情动作片www.在线观看 | 国产精品免费一区二区三区在线| 精品一区二区三区视频在线| a级一级毛片免费在线观看| 天天躁夜夜躁狠狠久久av| 男女边吃奶边做爰视频| 蜜桃亚洲精品一区二区三区| 亚洲最大成人中文| 香蕉av资源在线| 最近手机中文字幕大全| 国产精品野战在线观看| 久久人人精品亚洲av| 国产精品三级大全| 少妇的逼好多水| 国产白丝娇喘喷水9色精品| 三级经典国产精品| 成人av一区二区三区在线看| 亚洲成人精品中文字幕电影| 男人舔女人下体高潮全视频| 欧美精品国产亚洲| 一个人免费在线观看电影| 晚上一个人看的免费电影| 伦理电影大哥的女人| www.色视频.com| 国产精华一区二区三区| 午夜免费男女啪啪视频观看 | 狂野欧美白嫩少妇大欣赏| 免费av观看视频| 午夜福利18| 狠狠狠狠99中文字幕| 精品久久久久久成人av| av.在线天堂| 久久精品影院6| 国产黄色视频一区二区在线观看 | 人妻丰满熟妇av一区二区三区| 成人av一区二区三区在线看| 日本a在线网址| 亚洲图色成人| 国内少妇人妻偷人精品xxx网站| 舔av片在线| 免费看av在线观看网站| 亚洲色图av天堂| 国产精品一及| 国产中年淑女户外野战色| 伊人久久精品亚洲午夜| 国产精品免费一区二区三区在线| 久久精品国产亚洲网站| 免费av不卡在线播放| 久久久久久久久久黄片| 久久精品国产亚洲网站| 女同久久另类99精品国产91| 日韩强制内射视频| 直男gayav资源| 日本-黄色视频高清免费观看| 床上黄色一级片| 精品一区二区三区视频在线| 久久鲁丝午夜福利片| 精品一区二区免费观看| 精品人妻熟女av久视频| 欧美不卡视频在线免费观看| 免费不卡的大黄色大毛片视频在线观看 | 97超碰精品成人国产| 深夜a级毛片| videossex国产| 精品国内亚洲2022精品成人| 亚洲精品日韩av片在线观看| 久久九九热精品免费| 看黄色毛片网站| 美女大奶头视频| 亚洲高清免费不卡视频| 看片在线看免费视频| 日本色播在线视频| 在线观看午夜福利视频| 在线国产一区二区在线| 欧美bdsm另类| 国产淫片久久久久久久久| 日韩在线高清观看一区二区三区| 男女做爰动态图高潮gif福利片| 亚洲av免费高清在线观看| 成人精品一区二区免费| 99热网站在线观看| 日本撒尿小便嘘嘘汇集6| 亚洲国产精品合色在线| 天堂√8在线中文| 日本撒尿小便嘘嘘汇集6| 国产白丝娇喘喷水9色精品| 国产成年人精品一区二区| 欧美xxxx性猛交bbbb| 熟妇人妻久久中文字幕3abv| 亚洲av美国av| 最新在线观看一区二区三区| 免费观看在线日韩| 精品免费久久久久久久清纯| 免费观看精品视频网站| 亚洲美女视频黄频| 精品无人区乱码1区二区| 亚洲最大成人中文| 国国产精品蜜臀av免费| 日本三级黄在线观看| 国产高潮美女av| 校园人妻丝袜中文字幕| 大又大粗又爽又黄少妇毛片口| 欧美+亚洲+日韩+国产| 成人午夜高清在线视频| 人妻丰满熟妇av一区二区三区| 色在线成人网| 国产真实乱freesex| 日韩,欧美,国产一区二区三区 | 国产高清激情床上av| 在线免费十八禁| 日日摸夜夜添夜夜添av毛片| 免费av毛片视频| 最近2019中文字幕mv第一页| 精品不卡国产一区二区三区| 99九九线精品视频在线观看视频| 成人美女网站在线观看视频| 国产不卡一卡二| 国产片特级美女逼逼视频| 亚洲国产欧美人成| 内地一区二区视频在线| 欧美区成人在线视频| 久久久精品94久久精品| 干丝袜人妻中文字幕| 不卡视频在线观看欧美| av国产免费在线观看| 欧美zozozo另类| 国产乱人偷精品视频| 色综合色国产| 国产私拍福利视频在线观看| 免费人成视频x8x8入口观看| 国产大屁股一区二区在线视频| 全区人妻精品视频| 日本精品一区二区三区蜜桃| 一区二区三区四区激情视频 | 内地一区二区视频在线| 三级经典国产精品| 国产伦精品一区二区三区视频9| 性插视频无遮挡在线免费观看| 日本三级黄在线观看| av天堂中文字幕网| 我的女老师完整版在线观看| 春色校园在线视频观看| 国产 一区 欧美 日韩| 日本黄大片高清| 亚洲内射少妇av| 三级毛片av免费| 亚洲av中文字字幕乱码综合| 国产精品福利在线免费观看| 免费人成视频x8x8入口观看| 国产午夜精品论理片| 99热只有精品国产| 欧洲精品卡2卡3卡4卡5卡区| av天堂在线播放| 久久久久九九精品影院| 亚洲av五月六月丁香网| 男女边吃奶边做爰视频| 久久久精品大字幕| 国产 一区精品| 精品欧美国产一区二区三| 黄色一级大片看看| av在线天堂中文字幕| 精品久久久久久久久久免费视频| 成人国产麻豆网| 亚洲人与动物交配视频| 国内精品美女久久久久久| 一区二区三区四区激情视频 | 亚洲精品日韩在线中文字幕 | 亚洲人成网站高清观看| 成人三级黄色视频| 日韩 亚洲 欧美在线| 波野结衣二区三区在线| 国产一区二区在线av高清观看| 简卡轻食公司| 亚洲三级黄色毛片| av中文乱码字幕在线| a级毛片a级免费在线| 能在线免费观看的黄片| 日韩在线高清观看一区二区三区| 国产精品无大码| 亚洲国产精品成人综合色| av黄色大香蕉| 日本-黄色视频高清免费观看| АⅤ资源中文在线天堂| 国产成人aa在线观看| 97超碰精品成人国产| 美女免费视频网站| 18禁在线无遮挡免费观看视频 | 国产精品,欧美在线| 99久国产av精品国产电影| 天堂av国产一区二区熟女人妻| 国产真实伦视频高清在线观看| 国产高清有码在线观看视频| 日韩欧美国产在线观看| 麻豆久久精品国产亚洲av| 99九九线精品视频在线观看视频| 国产精品野战在线观看| 天堂√8在线中文| 成人二区视频| 久久精品91蜜桃| 看黄色毛片网站| 在线a可以看的网站| 亚洲自拍偷在线| 色综合站精品国产| 干丝袜人妻中文字幕| 中国美白少妇内射xxxbb| 神马国产精品三级电影在线观看| 亚洲av美国av| 久久久色成人| 午夜精品一区二区三区免费看| 成人毛片a级毛片在线播放| av卡一久久| 日韩欧美国产在线观看| 大型黄色视频在线免费观看| 久久综合国产亚洲精品| 国产久久久一区二区三区| 久久精品91蜜桃| 亚洲av第一区精品v没综合| av在线老鸭窝| 中文字幕av成人在线电影| 亚洲无线在线观看| 人妻久久中文字幕网| ponron亚洲| 免费看美女性在线毛片视频| 亚洲久久久久久中文字幕| 亚洲成人av在线免费| 97超视频在线观看视频| 精品人妻熟女av久视频| 全区人妻精品视频| 亚洲欧美成人综合另类久久久 | 亚洲最大成人中文| 在线观看一区二区三区| 亚洲四区av| 亚洲性久久影院| 国产精品一及| 黄色视频,在线免费观看| 日本一本二区三区精品| 91午夜精品亚洲一区二区三区| 免费看美女性在线毛片视频| 成熟少妇高潮喷水视频| 一个人看视频在线观看www免费| 亚洲18禁久久av| 国产欧美日韩一区二区精品| 国产伦在线观看视频一区| 精品乱码久久久久久99久播| 三级毛片av免费| 夜夜看夜夜爽夜夜摸| а√天堂www在线а√下载| 国产在视频线在精品| 国产爱豆传媒在线观看| 岛国在线免费视频观看| 成人一区二区视频在线观看| 国产女主播在线喷水免费视频网站 | 性插视频无遮挡在线免费观看| 国产精品不卡视频一区二区| 亚洲18禁久久av| 日韩欧美精品免费久久| 中文字幕人妻熟人妻熟丝袜美| 日本免费一区二区三区高清不卡| 欧美xxxx黑人xx丫x性爽| 午夜精品一区二区三区免费看| 亚洲精品日韩在线中文字幕 | 免费高清视频大片| 非洲黑人性xxxx精品又粗又长| h日本视频在线播放| 亚洲国产欧美人成| 亚洲av电影不卡..在线观看| 1000部很黄的大片| 亚洲av第一区精品v没综合| 精品久久久噜噜| 亚洲精品日韩av片在线观看| 毛片女人毛片| 人妻制服诱惑在线中文字幕| 国产一区亚洲一区在线观看| 国产日本99.免费观看| 插逼视频在线观看| 成人漫画全彩无遮挡| 精品人妻一区二区三区麻豆 | 国产一区二区三区在线臀色熟女| 亚洲av中文字字幕乱码综合| 亚洲无线在线观看| 中文资源天堂在线| 亚洲av第一区精品v没综合| 欧美+日韩+精品| 国产精品三级大全| 亚洲精华国产精华液的使用体验 | 久久人人爽人人片av| 寂寞人妻少妇视频99o| 久久6这里有精品| 人妻丰满熟妇av一区二区三区| 国内精品美女久久久久久| 国产国拍精品亚洲av在线观看| 午夜爱爱视频在线播放| 插逼视频在线观看| 欧美一区二区亚洲| 色av中文字幕| 国产亚洲精品久久久久久毛片| 国产一区二区亚洲精品在线观看| 韩国av在线不卡| av天堂中文字幕网| 国产精品爽爽va在线观看网站| 午夜久久久久精精品| 日本五十路高清| 久久国内精品自在自线图片| 一个人看视频在线观看www免费| 国产亚洲91精品色在线| 日本撒尿小便嘘嘘汇集6| 寂寞人妻少妇视频99o| 亚洲高清免费不卡视频| 看免费成人av毛片| 我要搜黄色片| 成人精品一区二区免费| 五月玫瑰六月丁香| 人妻久久中文字幕网| 国产爱豆传媒在线观看| 国产精品久久久久久av不卡| 中文资源天堂在线| 欧美精品国产亚洲| 亚洲不卡免费看| 2021天堂中文幕一二区在线观| 美女cb高潮喷水在线观看| 特级一级黄色大片| 国产国拍精品亚洲av在线观看| 日本在线视频免费播放| 久久久午夜欧美精品| 免费观看的影片在线观看| 不卡视频在线观看欧美| 欧美一区二区国产精品久久精品| av黄色大香蕉| www日本黄色视频网| 秋霞在线观看毛片| 国内精品美女久久久久久| 性插视频无遮挡在线免费观看| 中文资源天堂在线| 精品久久久久久久久av| 国产av一区在线观看免费| 日韩欧美精品v在线| 麻豆国产av国片精品| 白带黄色成豆腐渣| 欧美性感艳星| 国产精品电影一区二区三区| 国产精品国产三级国产av玫瑰| 国产精品一二三区在线看| 久久久久久九九精品二区国产| 亚洲高清免费不卡视频| 国产亚洲精品综合一区在线观看| 男女做爰动态图高潮gif福利片| 欧美色欧美亚洲另类二区| 全区人妻精品视频| 日日摸夜夜添夜夜爱| 久久久久免费精品人妻一区二区| 欧美精品国产亚洲| 中文在线观看免费www的网站| 国产真实伦视频高清在线观看| 最近2019中文字幕mv第一页| 免费观看在线日韩| 国产精品久久视频播放| 一个人看视频在线观看www免费| 露出奶头的视频| 男女那种视频在线观看| 热99在线观看视频| 欧美3d第一页| 又粗又爽又猛毛片免费看| 18禁在线无遮挡免费观看视频 | 日韩欧美免费精品| 18+在线观看网站| 有码 亚洲区| 美女被艹到高潮喷水动态| 波多野结衣高清作品| av在线老鸭窝| 成年女人永久免费观看视频| 不卡视频在线观看欧美| 亚洲va在线va天堂va国产| 免费在线观看影片大全网站| aaaaa片日本免费| av国产免费在线观看| 99久久成人亚洲精品观看| 免费高清视频大片| 国产伦在线观看视频一区| 99久久无色码亚洲精品果冻| 免费观看在线日韩| 久久久久性生活片| 亚洲美女视频黄频| 99精品在免费线老司机午夜| 少妇裸体淫交视频免费看高清| 白带黄色成豆腐渣| 欧美色视频一区免费| 国产男靠女视频免费网站| 欧美另类亚洲清纯唯美| 国产成年人精品一区二区| 97超碰精品成人国产| 日本免费a在线| 波野结衣二区三区在线| 国产人妻一区二区三区在| 无遮挡黄片免费观看| 亚洲第一电影网av| 国产黄a三级三级三级人| 免费av观看视频| 91久久精品国产一区二区成人| 国产伦在线观看视频一区| 美女xxoo啪啪120秒动态图| av在线亚洲专区| 偷拍熟女少妇极品色| 日韩在线高清观看一区二区三区| 有码 亚洲区| 国产探花在线观看一区二区| 免费高清视频大片| 级片在线观看| 男女做爰动态图高潮gif福利片| 欧美极品一区二区三区四区| 国产 一区精品| 久久久国产成人精品二区| 99国产极品粉嫩在线观看| 亚洲人与动物交配视频| 国产精品综合久久久久久久免费| 禁无遮挡网站| 在线天堂最新版资源| 午夜免费激情av| 成人亚洲欧美一区二区av| 在线观看午夜福利视频| av天堂中文字幕网| 亚洲精品国产av成人精品 | 日本精品一区二区三区蜜桃| 亚洲在线观看片| 亚洲av美国av| 国产又黄又爽又无遮挡在线| 国产精品一及| 国产 一区 欧美 日韩| 97超视频在线观看视频| 天堂网av新在线| 18禁在线播放成人免费| 九九在线视频观看精品| 国产日本99.免费观看| 菩萨蛮人人尽说江南好唐韦庄 | 别揉我奶头~嗯~啊~动态视频| 国产精品无大码| 国产 一区 欧美 日韩| 久久久精品欧美日韩精品| 免费av不卡在线播放| 最近2019中文字幕mv第一页| 成人国产麻豆网| 日韩一区二区视频免费看| 嫩草影院新地址| 你懂的网址亚洲精品在线观看 | 国产片特级美女逼逼视频| 精品人妻视频免费看| 国产综合懂色| 美女xxoo啪啪120秒动态图| 欧美区成人在线视频| 国产日本99.免费观看| 丰满的人妻完整版| 人人妻人人看人人澡| 亚洲婷婷狠狠爱综合网| 久久欧美精品欧美久久欧美| 又爽又黄a免费视频| 舔av片在线| 熟女电影av网| 干丝袜人妻中文字幕| 黑人高潮一二区| 国产探花极品一区二区| 午夜免费激情av| 国产午夜精品久久久久久一区二区三区 | 白带黄色成豆腐渣| 51国产日韩欧美| 成人国产麻豆网| 小蜜桃在线观看免费完整版高清| 亚洲高清免费不卡视频| 人人妻,人人澡人人爽秒播| 在线播放国产精品三级| 国产一区二区三区在线臀色熟女| 99视频精品全部免费 在线| 在线看三级毛片| 久久中文看片网| 久久久久免费精品人妻一区二区| 午夜福利视频1000在线观看| 午夜福利18| 欧美一级a爱片免费观看看| 国产高清有码在线观看视频| 91久久精品电影网| 欧美高清性xxxxhd video| 亚洲精品国产成人久久av| 亚洲成人av在线免费| 色视频www国产| 亚洲18禁久久av| 久久久久国产网址| 别揉我奶头~嗯~啊~动态视频| 日本 av在线| 免费av观看视频| 午夜福利视频1000在线观看| 日本色播在线视频| 日韩一区二区视频免费看| 亚洲婷婷狠狠爱综合网| 日本与韩国留学比较| 精品久久久噜噜| 丝袜美腿在线中文| 日韩精品青青久久久久久| 中文在线观看免费www的网站| 综合色丁香网| av在线蜜桃| 成熟少妇高潮喷水视频| 久久久久久大精品| 亚洲人成网站在线播放欧美日韩| 国产精品伦人一区二区| 成年女人永久免费观看视频| 精品不卡国产一区二区三区| 女人被狂操c到高潮| 亚洲av成人av| 黄色日韩在线| 最新在线观看一区二区三区| 久久人人爽人人爽人人片va| 欧美日本视频| 免费人成视频x8x8入口观看| 夜夜看夜夜爽夜夜摸| 1024手机看黄色片| 日韩一本色道免费dvd| 桃色一区二区三区在线观看| 日本色播在线视频| 久久久久久久亚洲中文字幕| 国产精品三级大全| 国产精品乱码一区二三区的特点| 亚洲va在线va天堂va国产| 天天躁夜夜躁狠狠久久av| a级毛色黄片| 看非洲黑人一级黄片| 亚洲在线自拍视频| av在线天堂中文字幕| 人人妻人人澡人人爽人人夜夜 | 51国产日韩欧美| 最新中文字幕久久久久| 淫妇啪啪啪对白视频| 黄色视频,在线免费观看| 亚洲精品一卡2卡三卡4卡5卡| 能在线免费观看的黄片| 亚洲成人中文字幕在线播放| 亚洲av成人精品一区久久| 俄罗斯特黄特色一大片| 老熟妇乱子伦视频在线观看| 亚洲最大成人手机在线| 人人妻人人澡欧美一区二区|