• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Cyclic Covers over Strongly Liftable Schemes?

    2015-06-06 06:21:32QihongXIE

    Qihong XIE

    1 Introduction

    Throughout this paper,we always work over an algebraically closed fieldkof characteristicp>0 unless otherwise stated.A smooth schemeXis said to be strongly liftable overW2(k),ifXand all prime divisors onXcan be lifted simultaneously overW2(k).This notion was first introduced in[5]to study the Kawamata-Viehweg vanishing theorem in positive characteristic,and furthermore,many examples and properties of strongly liftable schemes were given in[5–7].

    Before stating the main theorem,let us fix some notations and assumptions.

    LetXbe a smooth projective variety,andLbe an invertible sheaf onX.LetNbe a positive integer prime top,0s∈H0(X,LN),andD=div0(s)be the ef f ective divisor of zeros ofs.LetA=Y=SpecA,andπ:Y?→Xbe the cyclic cover obtained by taking theN-th root out ofs.

    Assume thatXis strongly liftable overW2(k),H1=0 and Sing(Dred)=?.By[6,Theorem 4.1 and Corollary 4.3],Xhas a liftingoverW2(k),Lhas a liftingshas a liftingandYis a smooth projective scheme which is liftable overW2(k).

    In this paper,we give a criterion for those cyclic covers over strongly liftable schemes that are still strongly liftable(see Sections 3–4 for more details).

    Theorem 1.1With the same notations,assumptions and liftingsandas above,assume further that for any prime divisor E on X which is not contained inSupp(D),there exists a liftingof E?X,such that∈H0is a divisible lifting of s|E∈H0(E,LN|E).Then Y is strongly liftable over W2(k).

    As a consequence of Theorem 1.1,we have the following corollaries.

    Corollary 1.1Let X be a smooth projective variety satisfying the Hi-vanishing condition for i=1,2.Then X is strongly liftable over W2(k).Let L be an invertible sheaf on X,N be a positive integer prime to p,and D be an ef f ective divisor on X with LN=OX(D)andSing(Dred)=?.Let π:Y?→X be the cyclic cover obtained by taking the N-th root out of D.Then Y is a smooth projective scheme which is strongly liftable over W2(k).

    Corollary 1.2Letwith n≥3,and L be an invertible sheaf on X.Let N be a positive integer prime to p,and D be an ef f ective divisor on X with LN=OX(D)andSing(Dred)=?.Let π:Y?→X be the cyclic cover obtained by taking the N-th root out of D.Then Y is a smooth projective scheme which is strongly liftable over W2(k).

    In Section 2,we recall some definitions and preliminary results of strongly liftable schemes.In Section 3,we give some preliminary results of cyclic covers.The main theorem will be proved in Section 4.For the necessary notions and results on the cyclic cover trick,we refer the reader to[2].

    Notation 1.1We useto denote the round-down(resp.round-up,fractional part)of awhere for a real numberb,We use Sing(Dred)(resp.Supp(D))to denote the singular locus of the reduced part(resp.the support)of a divisorD.

    2 Preliminaries on Strongly Liftable Schemes

    Definition 2.1Let W2(k)be the ring of Witt vectors of length two of k.Then W2(k)is flat overand W2The following definition(see[2,Definition8.11])generalizes the definition in[1,Subsection1.6]of liftings of k-schemes over W2(k).

    Let X be a Noetherian scheme over k,andbe a reduced Cartier divisor on X.A lifting of(X,D)over W2(k)consists of a schemeand closed subschemesall de fined and flat over W2(k),such that X=×Speck and×Speck.We writeand say thatis a lifting of(X,D)over W2(k),if no confusion is possible.

    Let L be an invertible sheaf on X.A lifting of(X,L)consists of a lifting of X over W2(k)and an invertible sheafonsuch that=L.For simplicity,we say thatis a lifting of L onif no confusion is possible.

    Letbe a lifting ofXoverW2(k).Thenis flat overW2(k),and hence flat overNote that there is an exact sequence ofmodules

    and amodule isomorphismp:?→Tensoring the above bywe obtain an exact sequence of-modules

    and an-module isomorphism

    whereris the reduction modulopsatisfyingp(x)==xforx

    Definition 2.2Let X be a smooth scheme over k.X is said to be strongly liftable over W2(k),if there is a liftingof X over W2(k),such that for any prime divisor D on X,(X,D)has a liftingover W2(k)as in Definition2.1,whereis fixed for all liftings

    LetXbe a smooth scheme overk,be a lifting ofXoverW2(k),Dbe a prime divisor onX,andLD=OX(D)be the associated invertible sheaf onX.Then there is an exact sequence of abelian sheaves

    whereq(x)=p(x)+1 forx∈OX,p:OX?→pis the isomorphism(2.2)andris the reduction modulop.The exact sequence(2.3)gives rise to an exact sequence of cohomology groups

    Ifr:H1is surjective,thenLDhas a liftingWe combine(2.1)and(2.2)to obtain an exact sequence of-modules

    Tensoring(2.5)bywe have an exact sequence of-modules

    which gives rise to an exact sequence of cohomology groups

    There is a criterion for strong liftability overW2(k)(see[6,Proposition 2.5]).

    Proposition 2.1Let X be a smooth scheme over k,andbe a lifting of X over W2(k).If for any prime divisor D on X,there is a liftingof LD=OX(D)onsuch that the natural map r:?→H0(X,LD)is surjective,then X is strongly liftable over W2(k).

    3 Preliminaries on Cyclic Covers

    For convenience of citation,we recall the following result(see[6,Theorem 4.1 and Corollary 4.3])with a sketch of the proof.

    Theorem 3.1Let X be a smooth projective variety,and L be an invertible sheaf on X.Let N be a positive integer prime to p,0s∈H0(X,LN),and D=div0(s)be the divisor ofzeros of s.LetY=SpecA,and π:Y?→X be the cyclic cover obtainedby taking the N-th root out of s.Assume that X is strongly liftable over W2(k),H1(X,LN)=0andSing(Dred)=?.Then X has a liftingover W2(k),L has a liftings has a liftingand Y is a smooth projective scheme,which is liftable over W2(k).

    ProofSinceXis strongly liftable overW2(k),there is a liftingofXand a liftingofLonSinceH1(X,LN)=0,the exact sequence(2.6)gives rise to a surjectionH0(X,LN),and henceshas a lifting∈H0Let=div0Thenis a lifting ofD.Letand=SpecThenis a lifting ofY.ThusYis a smooth projective scheme,which is liftable overW2(k).

    The above result says that cyclic covers over strongly liftable schemes are liftable overW2(k)under certain conditions,however,in general,they are not strongly liftable overW2(k)(see[6,Remark 4.6]for more details).In order to prove Theorem 1.1,some elementary results on cyclic covers over integral schemes are needed.First of all,we recall an easy lemma in[2,Lemma 3.15(a)].

    Lemma 3.1Let X be an integral scheme,and L be an invertible sheaf on X.Let N be a positive integer prime to p,0s∈H0(X,LN),and D=div0(s)be the divisor of zeros of s.LetY=SpecA,and π:Y?→X be the cyclic cover obtained by takingthe N-th root out of s.Then Y is reducible if and only if there is an integer μ>1dividing N and a section t∈H0(X,LN/μ),such that s=

    ProofWe can consider the problem over a dense open subset SpecSinceH0we may assume thatcorresponds to an elementu∈B.Since Specis a dense open subset ofY,Yis reducible if and only ifxN?uis reducible inB[x],which is equivalent to the existence of somev∈Bwithu=vμ.

    Definition 3.1Let X be a scheme,L be an invertible sheaf on X,N be a positive integer,and0s∈H0(X,LN).The section s is said to be μ-divisible,if μ>0divides N and there exists a section t∈H0(X,LN/μ),such that s=The section s is said to be maximally μ-divisible,if s is μ-divisible,and if s is also ν-divisible,then ν≤μ.

    Lemma 3.2With the notation and assumptions as in Lemma3.1,Y then has exactly μ irreducible components if and only if the section s is maximally μ-divisible.

    ProofFirst of all,we prove that ifsisμ-divisible,thenYhas at leastμirreducible components.Indeed,assume thatsisμ-divisible,then there is a sectiont∈H0(X,LN/μ),such thats=andD=μD1,whereD1=div0(t).It follows from a direct calculation thatπ:Y?→Xfactorizes into the composition of two cyclic covers:whereπ1:Y1?→Xis the cyclic cover obtained by taking theμ-th root out of 1∈H0H0(X,OX),andπ2:Y?→Y1is the cyclic cover obtained by taking theN/μ-th root out ofSinceπ1is unrami fied,Y1has at leastμirreducible components,and so doesY.

    If the sectionsis maximallyμ-divisible,thenYhas at leastμirreducible components by the above argument.IfYhas exactlyνirreducible components withν>μ,then by the proof of Lemma 3.1,sis alsoν-divisible withν>μ,which is absurd.Conversely,ifYhas exactlyμirreducible components,thensisμ-divisible by the proof of Lemma 3.1,and furthermore,sis maximallyμ-divisible by the above argument.

    Definition 3.2With the notation and assumptions as in Definition3.1,assume furtherthat X has a liftingover W2(k),and L has a liftingonA sectionH0is called a divisible lifting of s∈H0(X,LN),if the following conditions hold:

    (i)is a lifting of s,i.e.,=s.

    (ii)If there is an integer μ>0dividing N and a section t∈H0(X,LN/μ),such that s=t?μ,then there exists a sectionlifting t,such that

    It is easy to see that if s is maximally μ-divisible andis a divisible lifting of s,thenis also maximally μ-divisible.

    Lemma 3.3With the notation and assumptions as in Lemma3.1,assume further that X has a liftingover W2(k),L has a liftingand s has a liftingH0Let=and=SpecIf s is maximally μ-divisible andis adivisible lifting of s,thenhas exactly μ irreducible components.

    ProofBy factorizinginto the composition of two cyclic covers,we can prove thathas at leastμirreducible components,whose proof is almost identical to the argument given in the proof of Lemma 3.2 by changing the usual data into the lifted ones.Assume thathas exactlyνirreducible components withν>μ.SinceSpeck=Yand irreducible components ofhave distinct underlying topological spaces,Yhas at leastνirreducible components withν>μ,which contradicts Lemma 3.2.Thushas exactlyμirreducible components.

    Lemma 3.4With the notation and assumptions as in Lemma3.1,let E be a primedivisor on X,which is not contained inSupp(D),B=and A|E=be the restriction of A to E.Then there is a natural finite surjective morphismτE:SpecB?→SpecA|E.

    ProofIt is easy to see thatholds for anyi≥0 andm≥1.Thus there areinjective homomorphisms for all 0≤i≤N?1,which induce a natural injective homomorphism ofOE-algebras:By[4,Subsection 6.D,Lemma 2],there is a natural dominant morphismτE:SpecB?→SpecA|E,which f its into a commutative diagram

    where:SpecA|E=E×XY=π?1(E) ?→Eis the restriction ofπtoπ?1(E)overE,andσ:SpecB?→Eis the cyclic cover obtained by taking theN-th root out ofSinceBis a finiteOE-module,a finiteA|E-module,τEis finite.Since a finite morphism is closed(see[3,Exercise II.3.5]),τEis surjective.

    Corollary 3.1With the notation and assumptions as in Lemma3.4,assume further that E is smooth.Then τE:SpecB?→SpecA|Eis the normalization morphism ofSpecA|E.

    ProofDenote=Then there are natural injective homomorphisms ofOE-algebras:B,which induce morphisms:SpecB?→Spec?→SpecSinceEis smooth andSpecB?→Eis the cyclic cover obtained by taking theN-th root out ofs|E,by[2,Subsections 3.5 and 3.10],SpecBis the normalization ofSpecand hence ofSpecA|E.

    Lemma 3.5With the notation and assumptions as in Lemma3.3,let E be a prime divisor on X,which is not contained inSupp(D),?be a lifting of E?X,=be the restriction oftoThen thereis a natural finite surjective morphism:Spec?→Specwhich is a lifting of τE:SpecB?→SpecA|Econstructed as in Lemma3.4.

    ProofIt is similar to that of Lemma 3.4.

    We give a simple example to show the dif f erence betweenSpecBandSpecA|Edefined as in Lemma 3.4.

    Example 3.1LetX==Projk[x,y,z],L=OX(1),N=2,ands=x2?yz∈H0(X,LN)withD=(x2?yz=0),char(k)=p≥3 andE=(y=0).Consider the cyclic coverπ:Y?→Xobtained by taking the square root out ofs.Look atπover the affine piece=Speck[u,v],whereu=andv=ThenYis defined by the equationt2=u2?v,andEis defined by the equationv=0.It is easy to see thatπ?1(E)consists of two irreducible components,i.e.,E1andE2,which are defined by the equationst+u=0 andt?u=0,respectively.ThusE1andE2are smooth,intersect transversally and map isomorphically ontoE.

    Sinces|E,the restriction ofstoE,is defined byx2=0 onE=Projk[x,z],we haveD|E=2Q,whereQis the point[0:1]onE.Therefore,OE-algebrasB=By assumption,SpecA|E=E×XY=π?1(E)=E1+E2,whereas by Corollary 3.1,SpecB=Specis a disjoint union ofF1andF2,such thatτE:F1F2?→E1+E2is the normalization morphism.

    4 Proof of the Main Theorem

    In this section,we prove the main theorem as follows.

    Theorem 4.1With the notation and assumptions as in Theorem3.1, fix such liftingsandas in Theorem3.1.Assume further that for any prime divisor E on X,which is not contained inSupp(D),there exists a liftingof E?X,such that∈H0is a divisible lifting of s|E∈H0(E,LN|E).Then Y is strongly liftable over W2(k).

    Before proving Theorem 4.1,we use Example 3.1 to illustrate the meaning of the further assumption made in Theorem 4.1.

    Example 4.1With the notation and assumptions as in Example 3.1,take liftings ofX,L,s,DandEas follows:==ProjW2(k)[x,y,z],=(1),=x2?yz∈=(x2?yz=0)and=(y?pz=0).Denote=Specand:?→to be the induced morphism.Look atover the affine piece=SpecW2(k)[u,v],whereu=andv=is defined byt2=u2?v,andis defined byv=p.It is easy to see thatis defined byt2=u2?p,which is irreducible.Hence by[6,Lemma 2.2],is not a lifting ofE1orE2orE1+E2.

    The further assumption made in Theorem 4.1 guarantees that the choices of liftingsofEare so adequate that the above situation can be avoided.In our example,s|Eis maximally 2-divisible,if we can choose a liftingofE,such thatis a divisible lifting ofs|E(sois also maximally 2-divisible),and then we have a liftingSpecofSpecB=F1such thatis a lifting ofFifori=1,2.LetThenis a lifting ofEifori=1,2,sinceis a lifting of

    Proof of Theorem 4.1Consider the following Cartesian square,whereis the natural projection induced by the definition ofin the proof of Theorem 3.1:

    LetEYbe a prime divisor onY,andE=π?(EY)be the induced prime divisor onX.

    IfE?Supp(D),then letSupp()be the corresponding lifting ofE.We can take an irreducible componentofsuch that×=EY,i.e.,is a lifting ofEY.

    IfESupp(D),thenπ?1(E)may be reducible.Assume thatπ?1(E)=withE1=EY.SinceESupp(D),0s|E∈H0(E,LN|E)determines the ef f ective divisorD|EonE.LetτE:SpecB=?→SpecA|E=π?1(E)=be the natural morphism defined as in Lemma 3.4,whereFjare distinct irreducible components.SinceτEis finite and surjective,we may assume thatτE(F1)=E1.SinceSpecB=?→Eis the cyclic cover obtained by taking theN-th root out ofs|E,by Lemma 3.2,the sectionis maximallyμdivisible.Thus there exists a sectionsuch thatBy assumption,there is a liftingofE?X,such thatis a divisible lifting ofs|E,i.e.,there is a sectionliftingtE,such that

    Consider:Spec?→Specdefined as in Lemma 3.5,whereSpec?→is the cyclic cover obtained by taking theN-th root out ofandSpecSinces|Eis maximallyμ-divisible andis a divisible lifting ofs|E,by Lemma 3.3,we may assume thatSpecwhereare distinct irreducible components,and hencehave distinct underlying topological spaces.SinceSpecSpeck=SpecB=Speckare distinct,up to permutation of indices,we can assume thatSpeck=Fjfor any 1≤j≤μ.

    By Lemma 3.5,is finite and surjective,so there is an irreducible component ofi.e.,such that:?→is surjective.Sinceis a lifting ofτE,we haveSpeck=E1.Finally,we show thatis flat overW2(k),whenceis a lifting ofE1=EY,and thusYis strongly liftable overW2(k).

    SinceW2(k)is an Artin local ring,to prove thatis flat overW2(k),by the local criteria of flatness in[4,Subsection 20.C,Theorem 49],it suffices to show Tor=0.LetZ=π?1(E),Ibe the ideal sheaf ofE1inZ,andbe the ideal sheaf ofinThen the structure sheaf ofiswhich is locally free overandis flat overW2(k),sois flat overW2(k)andSpeck=Z.Locally,E1is defined by one of the factors of the equationxN=s|E,andis defined by one of the factors of the equationSinceis a divisible lifting ofs|E,we have that the reductions of the defining equations ofmodulopare just the defining equations ofE1,soSpeck=Iholds.Considering the following exact sequence:

    and taking its long exact sequence for?we obtain an exact sequence

    which impliessincek=Iand 0?→I?→OZ?→OE1?→0 is exact.

    Definition 4.1A Noetherian scheme X is said to satisfy the Hi-vanishing condition,if Hi(X,L)=0holds for any invertible sheaf L on X.For example,the projective spacesatis fies the Hi-vanishing condition for any1≤i≤n?1.

    Corollary 4.1Let X be a smooth projective variety satisfying the Hi-vanishing condition for i=1,2.Then X is strongly liftable over W2(k),and for any cyclic cover π:Y?→X constructed as in Theorem3.1,Y is also strongly liftable over W2(k).

    ProofFrom the exact sequences(2.4)and(2.6)and Proposition 2.1,it follows thatXis strongly liftable.By Theorem 4.1,we only have to show that for any prime divisorEonX,there exists a liftingofE?X,such thatis a divisible lifting ofs|E.

    Assume thats|E∈H0(E,LN|E)isμ-divisible.Thus there is a sectiontE∈H0(E,),such thats|E=Take an arbitrary liftingofE?Xand consider the following commutative diagram:

    where the surjectivity of the upper horizontal maprand the right vertical mapqEfollows from theH1-vanishing condition forXby observing the exact sequence(2.6)and the following exact sequence:

    Thus fortE∈H0(E,),there exists a sectionH0(),such thatqE=tE.Let=Then∈H0()is a lifting oftE.

    The exact sequence(4.1)gives rise to an exact sequence of cohomology groups

    so we haveH1(E,OE)=0.Taking cohomology groups of the following exact sequence,which is the exact sequence(2.3)for

    we have an exact sequence of cohomology groups

    which implies thatif and only ifL1L2,whereare invertible sheaves onandLi=fori=1,2.

    Sincethere exists a unitsuch that=1 andSincepN,we havepμ,and hence there exists a unit∈such that=and=1.Redefinebyso thenis a lifting oftEand=isμ-divisible.

    Corollary 4.2Let X=with n≥3,and L be an invertible sheaf on X.Let N be a positive integer prime to p,and D be an ef f ective divisor on X with LN=OX(D)andSing(Dred)=?.Let π:Y?→X be the cyclic cover obtained by taking the N-th root out of D.Then Y is a smooth projective scheme which is strongly liftable over W2(k).

    ProofSince the projective space(n≥3)satisfies theHi-vanishing condition fori=1,2,the conclusion follows from Corollary 4.1.

    By means of Corollary 4.2,we can construct many strongly liftable varieties of the general type.

    Example 4.2LetX=L=OX(1),andNbe a positive integer such thatn≥3,(N,p)=1 andN>n+2.LetHbe a general element in the linear system ofOX(N).ThenHis a smooth irreducible hypersurface of degreeNinXwithLN=OX(H).Letπ:Y?→Xbe the cyclic cover obtained by taking theN-th root out ofH.Then by Corollary 4.2,Yis a strongly

    liftable smooth pro jective variety.By Hurwitz’s formula,we haveSince the degree ofHisN?(n+2)>0,KYis an ample divisor onY,and henceYis of the general type.

    Obviously,theHi-vanishing condition fori=1,2 is too strong to give more applications.Although there are no further evidences besides Corollary 4.2,we would like to put forward the following conjecture,i.e.,cyclic covers over toric varieties should be strongly liftable overW2(k),whereas the liftability has already been proved in[6,Corollary 4.4].

    Conjecture 4.1Let X be a smooth projective toric variety,and L be an invertible sheaf on X.Let N be a positive integer prime to p,and D be an e ff ective divisor on X with LN=OX(D)andSing(Dred)=?.Let π:Y?→X be the cyclic cover obtained by taking the N-th root out of D.Then Y is a smooth projective scheme which is strongly liftable over W2(k).

    AcknowledgementsThe author would like to express his gratitude to Professor Luc Illusie,Professor Hél`ene Esnault and the referees for many useful comments,which make this paper more readable.

    [1]Deligne,P.and Illusie,L.,Rel`evements modulop2et décomposition du complexe de de Rham,Invent.Math.,89,1987,247–270.

    [2]Esnault,H.and Viehweg,E.,Lectures on Vanishing Theorems,DMV Seminar,20,Birkh?user,Basel,1992.

    [3]Hartshorne,R.,Algebraic Geometry,Springer-Verlag,New York,1977.

    [4]Matsumura,H.,Commutative Algebra,Benjamin,New York,1980.

    [5]Xie,Q.H.,Strongly liftable schemes and the Kawamata-Viehweg vanishing in positive characteristic,Math.Res.Lett.,17,2010,563–572.

    [6]Xie,Q.H.,Strongly liftable schemes and the Kawamata-Viehweg vanishing in positive characteristic II,Math.Res.Lett.,18,2011,315–328.

    [7]Xie,Q.H.and Wu,J.,Strongly liftable schemes and the Kawamata-Viehweg vanishing in positive characteristic III,J.Algebra,395,2013,12–23.

    男女视频在线观看网站免费 | 国产麻豆成人av免费视频| 国产在线观看jvid| 亚洲全国av大片| 午夜两性在线视频| 亚洲国产日韩欧美精品在线观看 | 欧美 亚洲 国产 日韩一| 欧美3d第一页| 欧美黑人巨大hd| 欧美性猛交╳xxx乱大交人| av欧美777| 精品久久久久久久人妻蜜臀av| 国产精品美女特级片免费视频播放器 | 禁无遮挡网站| 亚洲男人天堂网一区| av中文乱码字幕在线| 女同久久另类99精品国产91| 91九色精品人成在线观看| 丁香六月欧美| 亚洲天堂国产精品一区在线| 欧美成人免费av一区二区三区| 久99久视频精品免费| www.www免费av| 18禁美女被吸乳视频| 午夜福利免费观看在线| 欧美黑人欧美精品刺激| 欧美在线黄色| 大型黄色视频在线免费观看| 国产精品98久久久久久宅男小说| 看黄色毛片网站| 国产aⅴ精品一区二区三区波| 久久草成人影院| 在线观看免费午夜福利视频| 久久精品成人免费网站| 在线观看美女被高潮喷水网站 | 美女扒开内裤让男人捅视频| 又大又爽又粗| 人成视频在线观看免费观看| 国产亚洲精品久久久久5区| 亚洲国产欧洲综合997久久,| 国产蜜桃级精品一区二区三区| 一a级毛片在线观看| 欧美av亚洲av综合av国产av| 日韩欧美国产一区二区入口| 少妇粗大呻吟视频| ponron亚洲| 免费在线观看影片大全网站| 999精品在线视频| 亚洲成人免费电影在线观看| 麻豆成人av在线观看| 亚洲色图av天堂| 国产乱人伦免费视频| 国产精品1区2区在线观看.| 亚洲国产精品合色在线| 欧美日韩瑟瑟在线播放| 欧美日韩国产亚洲二区| 一级毛片精品| 亚洲欧美日韩高清在线视频| 欧美久久黑人一区二区| 最近最新中文字幕大全电影3| 亚洲第一电影网av| 久久久久精品国产欧美久久久| 亚洲av电影不卡..在线观看| 国产69精品久久久久777片 | 国产成人影院久久av| a级毛片在线看网站| 搡老妇女老女人老熟妇| 久久中文字幕一级| 极品教师在线免费播放| 久久中文字幕人妻熟女| or卡值多少钱| 亚洲熟妇中文字幕五十中出| 99热只有精品国产| 免费在线观看完整版高清| 国产91精品成人一区二区三区| 免费在线观看完整版高清| 久久久久久久久久黄片| 亚洲美女视频黄频| 一区福利在线观看| 色噜噜av男人的天堂激情| 久久精品夜夜夜夜夜久久蜜豆 | 亚洲美女视频黄频| 国产在线观看jvid| 巨乳人妻的诱惑在线观看| 女人高潮潮喷娇喘18禁视频| 天天躁夜夜躁狠狠躁躁| 99热这里只有是精品50| 精品一区二区三区四区五区乱码| 国产精品自产拍在线观看55亚洲| 黄片小视频在线播放| 午夜福利欧美成人| 久久精品夜夜夜夜夜久久蜜豆 | 亚洲精品粉嫩美女一区| 深夜精品福利| 1024香蕉在线观看| 91麻豆精品激情在线观看国产| 亚洲国产看品久久| 男女下面进入的视频免费午夜| 亚洲国产看品久久| av在线播放免费不卡| 国产欧美日韩一区二区三| 国产欧美日韩一区二区三| 18禁国产床啪视频网站| 在线免费观看的www视频| 一进一出好大好爽视频| 国产一区二区在线观看日韩 | 国产不卡一卡二| 日韩 欧美 亚洲 中文字幕| 国产主播在线观看一区二区| 搡老岳熟女国产| 99久久久亚洲精品蜜臀av| 又粗又爽又猛毛片免费看| av天堂在线播放| 天天躁狠狠躁夜夜躁狠狠躁| av天堂在线播放| 日韩欧美精品v在线| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲国产精品sss在线观看| 国产精品久久久av美女十八| www.自偷自拍.com| av中文乱码字幕在线| 亚洲精品一区av在线观看| 国产精品久久久久久亚洲av鲁大| 国产爱豆传媒在线观看 | 国产亚洲av嫩草精品影院| 别揉我奶头~嗯~啊~动态视频| 国产真人三级小视频在线观看| 亚洲av五月六月丁香网| 久久久久国产精品人妻aⅴ院| 手机成人av网站| 两性午夜刺激爽爽歪歪视频在线观看 | 人人妻人人看人人澡| 国产1区2区3区精品| 波多野结衣巨乳人妻| 国产亚洲精品一区二区www| 欧美激情久久久久久爽电影| 又黄又粗又硬又大视频| 特级一级黄色大片| 手机成人av网站| 色哟哟哟哟哟哟| av天堂在线播放| 亚洲成人中文字幕在线播放| 国产高清激情床上av| 18禁国产床啪视频网站| 亚洲国产欧洲综合997久久,| 亚洲国产欧洲综合997久久,| 亚洲九九香蕉| 99国产精品一区二区蜜桃av| a在线观看视频网站| 国产熟女午夜一区二区三区| av片东京热男人的天堂| 成人三级做爰电影| 伦理电影免费视频| 可以在线观看毛片的网站| 亚洲av中文字字幕乱码综合| 国内精品久久久久精免费| 麻豆一二三区av精品| 久久精品亚洲精品国产色婷小说| 亚洲自偷自拍图片 自拍| 国产精品一区二区三区四区免费观看 | 搡老妇女老女人老熟妇| 日韩 欧美 亚洲 中文字幕| 国产一区二区激情短视频| 亚洲国产精品sss在线观看| 亚洲自拍偷在线| 99热这里只有是精品50| 最新美女视频免费是黄的| 啦啦啦观看免费观看视频高清| 国产亚洲精品av在线| 欧美精品啪啪一区二区三区| 久久香蕉精品热| 日本免费一区二区三区高清不卡| 97碰自拍视频| 亚洲欧美日韩无卡精品| 亚洲精品久久成人aⅴ小说| 999精品在线视频| 成人av一区二区三区在线看| 激情在线观看视频在线高清| 精品一区二区三区视频在线观看免费| 国内少妇人妻偷人精品xxx网站 | 午夜两性在线视频| 亚洲一区二区三区色噜噜| 久久欧美精品欧美久久欧美| 国产野战对白在线观看| 国产欧美日韩一区二区三| 搡老岳熟女国产| 亚洲成人免费电影在线观看| 91字幕亚洲| 午夜a级毛片| 亚洲成人国产一区在线观看| 免费高清视频大片| 少妇裸体淫交视频免费看高清 | 亚洲五月天丁香| 别揉我奶头~嗯~啊~动态视频| 欧美一级毛片孕妇| 一卡2卡三卡四卡精品乱码亚洲| 午夜久久久久精精品| 国产亚洲精品综合一区在线观看 | 亚洲精品美女久久av网站| 久久精品综合一区二区三区| 国产成人精品无人区| 成年人黄色毛片网站| 国内精品久久久久久久电影| 丰满人妻熟妇乱又伦精品不卡| 一级毛片精品| 欧美 亚洲 国产 日韩一| 中文亚洲av片在线观看爽| 午夜免费成人在线视频| 国产精品久久久人人做人人爽| 变态另类丝袜制服| 成人午夜高清在线视频| 国产欧美日韩一区二区精品| 国产视频内射| 99热这里只有是精品50| 又黄又粗又硬又大视频| 欧美成人午夜精品| 亚洲精品一区av在线观看| 一进一出好大好爽视频| 床上黄色一级片| 午夜亚洲福利在线播放| 好男人在线观看高清免费视频| 欧美极品一区二区三区四区| 午夜久久久久精精品| 韩国av一区二区三区四区| 欧美精品亚洲一区二区| 国内少妇人妻偷人精品xxx网站 | 日本熟妇午夜| 国产99白浆流出| 动漫黄色视频在线观看| 久久人人精品亚洲av| 亚洲中文av在线| 久久久久国内视频| 国产成人欧美在线观看| 亚洲欧美日韩高清在线视频| 国语自产精品视频在线第100页| 国产亚洲精品第一综合不卡| 一二三四社区在线视频社区8| 一级片免费观看大全| 亚洲一区高清亚洲精品| 日韩大尺度精品在线看网址| 一区二区三区激情视频| 在线视频色国产色| 99精品欧美一区二区三区四区| 国产精品久久视频播放| 欧美一级毛片孕妇| 国产亚洲精品av在线| 男人舔奶头视频| 黄色视频不卡| 十八禁人妻一区二区| 高清在线国产一区| 久久精品亚洲精品国产色婷小说| 此物有八面人人有两片| 美女高潮喷水抽搐中文字幕| 香蕉丝袜av| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲欧洲精品一区二区精品久久久| 欧美性长视频在线观看| 婷婷精品国产亚洲av在线| 宅男免费午夜| 欧美性猛交黑人性爽| 国产精品自产拍在线观看55亚洲| 哪里可以看免费的av片| 午夜福利在线观看吧| 母亲3免费完整高清在线观看| 国产亚洲av嫩草精品影院| 午夜精品在线福利| 国产成人av教育| www.精华液| 亚洲精品国产一区二区精华液| 日韩大码丰满熟妇| 国产精品自产拍在线观看55亚洲| 亚洲aⅴ乱码一区二区在线播放 | 最新在线观看一区二区三区| 国产激情久久老熟女| 免费观看精品视频网站| 日韩国内少妇激情av| 国产精品亚洲一级av第二区| 成人国产一区最新在线观看| 成人三级黄色视频| 男女下面进入的视频免费午夜| 哪里可以看免费的av片| 国产精品九九99| 国产成人精品无人区| 香蕉国产在线看| 日韩有码中文字幕| 91av网站免费观看| АⅤ资源中文在线天堂| 亚洲美女视频黄频| 成人国产综合亚洲| 老司机在亚洲福利影院| 精华霜和精华液先用哪个| 亚洲无线在线观看| 久久精品国产亚洲av高清一级| 久久久久国内视频| 在线观看免费日韩欧美大片| 欧美一级毛片孕妇| 中文字幕av在线有码专区| 国产亚洲精品一区二区www| 亚洲午夜理论影院| 老司机在亚洲福利影院| 中文亚洲av片在线观看爽| 亚洲精品中文字幕在线视频| 久久久国产欧美日韩av| 亚洲精品粉嫩美女一区| 这个男人来自地球电影免费观看| 一进一出抽搐动态| 女警被强在线播放| 国产v大片淫在线免费观看| 香蕉国产在线看| 老司机午夜福利在线观看视频| 一本精品99久久精品77| 啦啦啦观看免费观看视频高清| 日韩国内少妇激情av| 久热爱精品视频在线9| 悠悠久久av| 男女午夜视频在线观看| 美女黄网站色视频| 久久久国产精品麻豆| a级毛片a级免费在线| 十八禁人妻一区二区| 可以免费在线观看a视频的电影网站| 在线播放国产精品三级| 韩国av一区二区三区四区| 白带黄色成豆腐渣| 日韩精品青青久久久久久| 亚洲熟妇中文字幕五十中出| 老鸭窝网址在线观看| 午夜老司机福利片| 最近最新中文字幕大全电影3| 两性午夜刺激爽爽歪歪视频在线观看 | 在线观看日韩欧美| 久久精品国产99精品国产亚洲性色| 中文字幕久久专区| 一区二区三区国产精品乱码| 久久久精品大字幕| 国产免费男女视频| 一二三四在线观看免费中文在| 午夜福利高清视频| 国产野战对白在线观看| 亚洲美女视频黄频| 香蕉丝袜av| 日本一区二区免费在线视频| 欧美中文综合在线视频| 国产免费男女视频| 日韩精品青青久久久久久| 久久精品aⅴ一区二区三区四区| 久久久久久国产a免费观看| 国产伦人伦偷精品视频| 亚洲五月婷婷丁香| 亚洲一卡2卡3卡4卡5卡精品中文| 国产v大片淫在线免费观看| 麻豆一二三区av精品| 小说图片视频综合网站| 色哟哟哟哟哟哟| 亚洲中文字幕一区二区三区有码在线看 | 国产精品久久视频播放| 国产av又大| 99国产精品一区二区蜜桃av| 久久久久性生活片| 亚洲成人久久爱视频| 99久久精品国产亚洲精品| 国产aⅴ精品一区二区三区波| 亚洲av成人一区二区三| 国产伦一二天堂av在线观看| 色哟哟哟哟哟哟| 人人妻,人人澡人人爽秒播| 国产精品九九99| 一边摸一边抽搐一进一小说| av有码第一页| 免费一级毛片在线播放高清视频| 成人18禁在线播放| 国产成人av激情在线播放| 少妇熟女aⅴ在线视频| 波多野结衣高清无吗| 免费av毛片视频| 叶爱在线成人免费视频播放| 1024视频免费在线观看| 亚洲欧美激情综合另类| 日韩欧美国产在线观看| 又黄又粗又硬又大视频| 老司机靠b影院| 国内揄拍国产精品人妻在线| videosex国产| 精品免费久久久久久久清纯| bbb黄色大片| 国产精品永久免费网站| 国产亚洲欧美98| 亚洲中文日韩欧美视频| 两性午夜刺激爽爽歪歪视频在线观看 | 国产高清videossex| 久久伊人香网站| 天堂av国产一区二区熟女人妻 | 久久精品国产综合久久久| 黄色成人免费大全| 国产亚洲精品av在线| 亚洲 欧美 日韩 在线 免费| 老司机靠b影院| 亚洲国产精品999在线| 床上黄色一级片| 一个人观看的视频www高清免费观看 | 亚洲精品久久国产高清桃花| 久久久国产成人免费| 亚洲男人的天堂狠狠| 麻豆一二三区av精品| 亚洲精品中文字幕在线视频| 国产精品香港三级国产av潘金莲| 国产精品,欧美在线| 久久中文字幕一级| 久久性视频一级片| xxx96com| 国产乱人伦免费视频| 一级a爱片免费观看的视频| 九九热线精品视视频播放| 18禁黄网站禁片午夜丰满| 精品一区二区三区av网在线观看| 一级毛片高清免费大全| 免费在线观看影片大全网站| 男女下面进入的视频免费午夜| 精品免费久久久久久久清纯| 久久久精品国产亚洲av高清涩受| 久久 成人 亚洲| 久久久久久免费高清国产稀缺| 丰满人妻一区二区三区视频av | www.精华液| 天天一区二区日本电影三级| 男人舔奶头视频| 免费看美女性在线毛片视频| 精品一区二区三区四区五区乱码| 夜夜躁狠狠躁天天躁| 欧美日韩精品网址| 亚洲国产精品sss在线观看| 亚洲18禁久久av| 精品欧美国产一区二区三| 级片在线观看| 中文亚洲av片在线观看爽| 午夜a级毛片| 99久久无色码亚洲精品果冻| 又爽又黄无遮挡网站| 色尼玛亚洲综合影院| 麻豆一二三区av精品| 老汉色∧v一级毛片| 国产又色又爽无遮挡免费看| 性色av乱码一区二区三区2| 国产成人一区二区三区免费视频网站| 亚洲人成网站在线播放欧美日韩| 成人国语在线视频| 啦啦啦韩国在线观看视频| 久久 成人 亚洲| 搡老岳熟女国产| 哪里可以看免费的av片| 操出白浆在线播放| 成人欧美大片| 亚洲国产高清在线一区二区三| 男人舔女人下体高潮全视频| 嫩草影院精品99| 久久久精品国产亚洲av高清涩受| 国内精品久久久久精免费| 欧美日韩黄片免| 他把我摸到了高潮在线观看| 久久中文字幕一级| 桃色一区二区三区在线观看| 男女那种视频在线观看| 69av精品久久久久久| 国产一区二区在线av高清观看| 一个人免费在线观看电影 | 超碰成人久久| 午夜福利在线在线| 九九热线精品视视频播放| 男插女下体视频免费在线播放| aaaaa片日本免费| netflix在线观看网站| 12—13女人毛片做爰片一| 国产精品免费一区二区三区在线| www.www免费av| 日本撒尿小便嘘嘘汇集6| 男男h啪啪无遮挡| 全区人妻精品视频| 床上黄色一级片| 99久久无色码亚洲精品果冻| 一进一出抽搐动态| 色尼玛亚洲综合影院| 全区人妻精品视频| 久久精品aⅴ一区二区三区四区| 母亲3免费完整高清在线观看| 夜夜夜夜夜久久久久| 国产精品乱码一区二三区的特点| 久久精品人妻少妇| 婷婷六月久久综合丁香| 一边摸一边抽搐一进一小说| 欧美久久黑人一区二区| 午夜两性在线视频| 国产精品一及| 亚洲九九香蕉| 成年女人毛片免费观看观看9| 午夜激情av网站| 1024香蕉在线观看| 1024手机看黄色片| 色综合婷婷激情| 久久国产乱子伦精品免费另类| 九九热线精品视视频播放| 18禁黄网站禁片午夜丰满| 九色国产91popny在线| 悠悠久久av| 麻豆国产97在线/欧美 | √禁漫天堂资源中文www| 特级一级黄色大片| 国产真人三级小视频在线观看| 午夜亚洲福利在线播放| √禁漫天堂资源中文www| 国产精品98久久久久久宅男小说| 国产av一区二区精品久久| 亚洲一码二码三码区别大吗| 国产精品永久免费网站| 日本黄大片高清| 久久婷婷人人爽人人干人人爱| 18禁裸乳无遮挡免费网站照片| 一卡2卡三卡四卡精品乱码亚洲| 成人特级黄色片久久久久久久| 一个人观看的视频www高清免费观看 | 亚洲人成电影免费在线| 窝窝影院91人妻| 免费在线观看完整版高清| 夜夜夜夜夜久久久久| 一级毛片精品| 久久精品国产亚洲av香蕉五月| 狂野欧美白嫩少妇大欣赏| 成人永久免费在线观看视频| 午夜免费成人在线视频| 别揉我奶头~嗯~啊~动态视频| 熟妇人妻久久中文字幕3abv| 国产真人三级小视频在线观看| 1024手机看黄色片| 脱女人内裤的视频| 香蕉av资源在线| 两人在一起打扑克的视频| 国内精品一区二区在线观看| 国产一区二区在线观看日韩 | 久久久久久大精品| 久久性视频一级片| 国产69精品久久久久777片 | 大型av网站在线播放| 欧美日韩中文字幕国产精品一区二区三区| 九色成人免费人妻av| 很黄的视频免费| 国产伦在线观看视频一区| 男人舔女人下体高潮全视频| 欧美乱妇无乱码| 女人爽到高潮嗷嗷叫在线视频| 伊人久久大香线蕉亚洲五| 给我免费播放毛片高清在线观看| 日日爽夜夜爽网站| 久久婷婷人人爽人人干人人爱| 女警被强在线播放| 亚洲专区字幕在线| 十八禁网站免费在线| 免费在线观看亚洲国产| 老司机在亚洲福利影院| 岛国视频午夜一区免费看| 婷婷丁香在线五月| 国产亚洲av嫩草精品影院| 国产99久久九九免费精品| 中文字幕人成人乱码亚洲影| 在线观看午夜福利视频| 亚洲色图av天堂| 国产高清视频在线观看网站| 精品日产1卡2卡| 日韩精品青青久久久久久| 欧美成人性av电影在线观看| 久久热在线av| 日韩精品青青久久久久久| 麻豆av在线久日| 黑人操中国人逼视频| 亚洲18禁久久av| 精品久久久久久成人av| 老熟妇乱子伦视频在线观看| 岛国视频午夜一区免费看| 亚洲第一欧美日韩一区二区三区| 亚洲精品中文字幕在线视频| 免费搜索国产男女视频| 亚洲欧美日韩高清在线视频| 久久久国产欧美日韩av| 1024手机看黄色片| АⅤ资源中文在线天堂| 变态另类丝袜制服| 欧美色视频一区免费| 亚洲专区字幕在线| 亚洲18禁久久av| 色综合欧美亚洲国产小说| 嫩草影视91久久| 一本久久中文字幕| 777久久人妻少妇嫩草av网站| 欧美成人性av电影在线观看| 最新美女视频免费是黄的| 巨乳人妻的诱惑在线观看| 欧美日韩一级在线毛片| 成人高潮视频无遮挡免费网站| 亚洲性夜色夜夜综合| 国产久久久一区二区三区| 人人妻人人澡欧美一区二区| 国产熟女午夜一区二区三区| 日韩欧美 国产精品| 亚洲精品久久国产高清桃花| 久久久精品大字幕| АⅤ资源中文在线天堂| 亚洲第一电影网av| 久久久国产欧美日韩av| 老司机福利观看| 2021天堂中文幕一二区在线观| cao死你这个sao货| 一二三四在线观看免费中文在| 国产精品精品国产色婷婷| 免费观看精品视频网站| 久久婷婷人人爽人人干人人爱| 国产久久久一区二区三区| 国产精品久久久av美女十八|