• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    On Locally Primitive Graphs of Order 18p?

    2015-06-06 06:21:20HuaHANZaipingLU

    Hua HAN Zaiping LU

    1 Introduction

    All graphs in this paper are assumed to be finite and simple.

    LetΓbe a graph.We useV Γ,EΓand AutΓto denote the vertex set,the edge set and the automorphism group ofΓ,respectively.Then the graphΓis said to be vertex-transitive or edge-transitive if some subgroupGof AutΓ(denoted byG≤AutΓ)acts transitively onV ΓorEΓ,respectively.Recall that an arc inΓis an ordered pair of adjacent vertices.Then the graphΓis called arc-transitive if someG≤AutΓacts transitively on the set of arcs ofΓ.The graphΓis said to be locally primitive if for some subgroupG≤AutΓand eachv∈V Γ,the stabilizerGvinduces a primitive permutation groupon the neighborhoodΓ(v),the set of neighbors,ofvinΓ.For convenience,such subgroupsGare called vertex-transitive,edge-transitive,arc-transitive and locally primitive groups ofΓ,respectively.

    The study of locally primitive graphs is one of the main themes in algebraic graph theory,which stems from a conjecture on bonding the stabilizers of locally primitive arc-transitive graphs(see[32,Conjecture 12]).The reader may consult[4,9–12,14,21–24,28–29,31]for some known results in this area.

    In this paper,we aim at determining the arc-transitivity of certain locally primitive graphs.LetΓbe a connected graph andGbe a locally primitive group onΓ.It is easily shown thatGacts transitively onEΓ,soΓis edge-transitive.IfGis vertex-transitive,thenΓis necessarily an arc-transitive graph.Thus,for our purpose,we always assume thatΓis regular,butGis not vertex-transitive.ThenΓis a bipartite graph with two bipartition subsets being theG-orbits onV Γ.Giudici et al.[14]established a reduction for studying locally primitive bipartite graphs,which was successfully applied in[23]to the characterization of locally primitive graphs of order twice a prime power.In this paper,we concentrate our attention on analyzing the locally primitive graphs of order 18p.Our main result is stated as follows.

    Theorem 1.1Let Γ be a connected regular graph of order18p,where p is a prime.Assume that Γis locally primitive.Then Γis either arc-transitive or isomorphic to one of the Gray graph and the Tutte12-cage.

    2 Preliminaries

    LetΓbe a graph and letG≤AutΓ.Assume thatGis edge-transitive but not vertextransitive;in this case,we callGsemisymmetric ifΓis regular.ThenΓis a bipartite graph with two bipartition subsets being theG-orbits onV Γ.Moreover,Γis arc-transitive provided thatΓhas an automorphism interchanging two of its bipartition subsets.For a given vertexu∈V Γ,the stabilizerGuacts transitively onΓ(u).Takew∈Γ(u).Then each vertex ofΓcan be written asugorwgfor someg∈G.Then two verticesugandwhare adjacent inΓif and only ifuandare adjacent,i.e.,hg?1∈GwGu.Moreover,it is well-known and easily shown thatΓis connected if and only if,=G.In particular,the next simple fact follows.

    Lemma 2.1Let Γbe a connected graph and G≤ AutΓ.Assume that G is edge-transitive but not vertex-transitive.Let{u,w}be an edge of Γ.Then

    (1)Guand Gwcontain no nontrivial normal subgroups in common.

    (2)r≤max{|Γ(u)|,|Γ(w)|}for each prime divisor r of|Gu|.

    Moreover,Γ is arc-transitive if one of the following conditions holds:

    (3)G has an automorphism σof order2with=Gw.

    (4)G has an abelian subgroup acting regularly on both bipartition subsets of Γ.

    ProofSinceΓis connected,,=G≤AutΓ.Then(1)follows.

    Letrbe a prime divisor of|Gu|withr>max{|Γ(u)|,|Γ(w)|},and letRbe a Sylowrsubgroup ofGu.ThenRfixesΓ(u)point-wise,and soR≤for each∈Γ(u).TakeQto be a Sylowr-subgroup ofGwwithQ≥R.ThenQfixesΓ(w)point-wise,and henceQ≤Gu.ThusR=Q.By the connectedness ofΓ,for eachv∈V Γ,it is easily shown thatRis a Sylowr-subgroup ofGv.ThusRfixesV Γpoint-wise,and soR=1 asR≤AutΓ.Then(2)follows.

    Suppose thatGhas an automorphismσof order 2 with=Gw.Define a bijectionι:V ?!鶹 Γby(ug)ι=and(wh)ι=It is easy to check thatι∈AutΓandιinterchanges two bipartition subsets ofΓ.This implies thatΓis arc-transitive.

    Suppose thatGhas a subgroupR,which is regular on both bipartition subsets ofΓ.Then each vertex inV Γcan be written uniquely asuxorwyfor somex,y∈R.SetS={s∈R|ws∈Γ(u)}.Thenuxandwyare adjacent if and only ifyx?1∈S.IfRis abelian,then it is easy to show thatux,wx,?x∈Ris an automorphism ofΓ,which leads to the arc-transitivity ofΓ.

    LetGbe a finite transitive permutation group on a set Ω.The orbits ofGon the cartesian product Ω×Ω are the orbitals ofG,and the diagonal orbital{(α,α)g|g∈G}is said to be trivial.For aG-orbital Δ andα∈Ω,the set Δ(α)={β|(α,β)∈Δ}is aGα-orbit on Ω,called a suborbit ofGatα.The rank ofGon Ω is the number ofG-orbitals,which equals the number ofGα-orbits on Ω for any givenα∈Ω.AG-orbital Δ is called self-paired if(β,α)∈Δ for some(α,β)∈Δ,while the suborbit Δ(α)is said to be self-paired.For aG-orbital Δ,the paired orbital Δ?is defined as{(β,α)|(α,β)∈Δ}.Then aG-orbital Δ is self-paired if and only if Δ?= Δ.For a non-trivialG-orbital Δ,the orbital bipartite graphB(G,Ω,Δ)is the graph on two copies of Ω,say Ω×{1,2},such that{(α,1),(β,2)}is an edge if and only if(α,β)∈Δ.ThenB(G,Ω,Δ)isG-semisymmetric,whereGacts on Ω×{1,2}as follows:

    If Δ is self-paired,then(α,1) ? (α,2),α∈Ω gives an automorphism ofB(G,Ω,Δ),which yields thatB(G,Ω,Δ)isG-arc-transitive.The next lemma indicates the possibility thatB(G,Ω,Δ)is arc-transitive even if Δ is not self-paired.

    Lemma 2.2Let X be a permutation group onΩ,and G be a transitive subgroup of X with index|X:G|=2.LetΔbe a G-orbital.IfΔ∪Δ?is an X-orbital,then B(G,Ω,Δ)is arc-transitive.

    ProofAssume that Δ∪Δ?is anX-orbital.To show thatΓ:=B(G,Ω,Δ)is arc-transitive,it suffices to find an automorphism ofΓ,which interchanges two bipartition subsets ofΓ.Takex∈XG.It is easily shown that Δx= Δ?and(Δ?)x= Δ.Define:Ω×{1,2} →Ω×{1,2};(α,1)(αx,2),(β,2)(βx,1).It is easy to check∈AutΓ,so Lemma 2.2 follows.

    Moreover,the next lemma is easily shown(see also[14]).

    Lemma 2.3Assume that Γ is a connected G-semisymmetric graph of valency at least2with bipartition subsets U and W,and that,for an edge{u,w}∈EΓ,two stabilizers Guand Gware conjugate in G.Then there is a bijection ι:U?W,such that Gu=Gι(u)and{u,ι(u)}EΓfor all u∈U.Moreover,Δ ={(u,ι?1(w))|{u,w}∈EΓ,u∈U,w∈W}is a G-orbital on U.In particular,ΓB(G,U,Δ),and ι extends to an automorphism of Γif and only ifΔis self-paired.

    Remark 2.1LetΓandG≤AutΓbe as in Lemma 2.3.Then{Gu|u∈U}={Gw|w∈W},soGw=1 asG≤AutΓ.ThusGis faithful on both parts ofΓ.Takeu∈Uandw∈WwithGu=Gw.Thenug?wg,g∈Ggives a bijection meeting the requirement of Lemma 2.3.Thus one can definel2bijectionsι,wherelis the number of the points inUfixed by a stabilizerGu.By[7,Theorem 4.2A],l=|NG(Gu):Gu|.

    LetGbe a finite transitive permutation group on Ω.LetN={x1=1,x2,···,xn}be a group of ordernlying in the centerZ(G)ofG.ThenNis normal inG,andNis semi-regular on Ω,that is,Nα=1 for allα∈Ω.Denote bytheN-orbit containingα∈Ω and bythe set of allN-orbits.ThenGinduces a transitive permutation groupon.Take a-orbitaland(,)∈.Noting that=N×Gα,it follows that={()h|h∈Gα}.Set

    Then all Δi(α)are suborbits ofGatα,which are not necessarily distinct.It is easily shown thatN×Gαacts transitively on Ω1:={|1≤i≤n,h∈Gα}.It follows that allGα-orbits on Ω1have the same length divisible byFor eachi,let Δibe theG-orbital corresponding to Δi(α).

    Lemma 2.4Let G,N,andΔibe as above.

    (1)AllΔi(α)are suborbits of G of the same length divisible by

    (2)Ifis self-paired,then for each i,there is some j,such thatΔi(α)=

    (3)B(G,Ω,Δi)B(G,Ω,Δj)for1≤i,j≤n.

    Proof(1)follows from the argument above the lemma.

    Assume thatis self-paired.Then there is someg∈G,such that=Thus,for eachi,there are someandsuch that(α,βxi)g==.Settingwe have(α,βxi)g=Then Δi=

    For eachi,de finefi:Ω×{1,2}→Ω×{1,2}byfi(δ,1)=(δ,1)andfi(δ,2)=whereδ∈Ω.It is easily shown thatfiis an isomorphism fromB(G,Ω,Δ1)toB(G,Ω,Δi).Thus(3)follows.

    LetΓbe aG-semisymmetric graph.Suppose thatGhas a normal subgroupN,which acts intransitively on at least one of the bipartition subsets ofΓ.Then we de fine the quotient graphΓNto have vertices(theN-orbits)onV Γ,and twoN-orbitsBandare adjacent inΓNif and only if somev∈Band someare adjacent inΓ.It is easy to see that the quotientΓNis a regular graph if and only if allN-orbits have the same length.Moreover,ifΓNis regular,then its valency is a divisor of that ofΓ.The graphΓis called a normal cover ofΓN(with respect toGandN)ifΓNandΓhave the same valency,which yields thatNis the kernel ofGacting theN-orbits(vertices ofΓN).Thus,ifΓis a normal cover ofΓN,then the quotient groupG/Ncan be identi fied with a subgroup of AutΓN,soΓNisG/N-semisymmetric.

    Corollary 2.1Let Γ and G≤ AutΓ be as in Lemma2.3.Let N≤Z(G).Then N is intransitive and semiregular on both U and W.Assume further that|N|is odd and that ΓNis the orbital bipartite graph of some self-paired orbital of,where is the subgroup ofAutΓN induced by G.Then Γ is arc-transitive.

    ProofRecall thatGis faithful on bothUandW(see Remark 2.1).SinceN≤Z(G),every subgroup ofNis normal inG,soNv≤=forv∈V Γandg∈G.It follows thatNv=1,soNis semi-regular on bothUandW.Suppose thatNis transitive on one ofUandW,sayU.ThenG=NGuforu∈U,soGuis normal inGasN≤Z(G).It follows thatGufixes every vertex inU,soGu=1,which contradicts the transitivity ofGuonΓ(u).

    By Lemma 2.3,there is bijectionι:U?W,such that foru∈U,the subsetι?1(Γ(u))is a suborbit ofGatu.By Remark 2.1,we may chooseι,such that it maps eachN-orbit onUto someN-orbit onW.Thusιinduces a bijectiononV ΓNinterchanging two bipartition subsetsUNandWNofΓN,whereUNandWNdenote respectively the sets ofN-orbits onUandW.Moreover,it is easily shown thatfor anyN-orbitand thatι?1(Γ(u))={|h∈Gu}for∈U,such that

    Assume thatΓNis the orbital bipartite graph of some self-paired orbital of.Then,again by Lemma 2.3,∈AutΓNandis a self-paired suborbit ofat.If|N|is odd,then by Lemma 2.4,Γis isomorphic to the orbital bipartite graph of some self-paired orbital ofGonU,and henceΓis arc-transitive.

    Recall that,for a groupGthat acts transitively on a set Ω,a blockBis a non-empty subset of Ω,such thatB=BgorB∩Bg=?for everyg∈G.

    Lemma 2.5Let Γ be a connected graph,and let G≤AutΓ,such that G is locally primitive but not vertex-transitive.Assume that U and W are G-orbits on V Γ,and that B is a block of G on W.Then either B=W or|Γ(u)∩B|≤ 1for each u∈U.

    ProofNote that for eachu∈U,eitherΓ(u)∩B=?orΓ(u)∩Bis a block ofGuonΓ(u).SinceGuacts primitively onΓ(u),we know that either|Γ(u)∩B|≤ 1 orΓ(u)?B.Suppose thatΓ(u)?Bfor someu∈U.Takew∈Bandv∈Γ(w).SinceGis edge-transitive,there isg∈Gwithvg=uandwg∈Γ(u)?B.Thenw∈Bg?1∩B,soB=Bg?1.ThusΓ(v)=(Γ(u))g?1?Bg?1=B.It follows thatΓhas a connected component with vertex setB.This yieldsB=W.

    Lemma 2.6Let Γand G be as in Lemma2.5.Let U and W be the G-orbits on V Γ.Suppose that G has a normal subgroup N,which acts transitively on U.Then one of the following holds:

    (1)ΓNis a|Γ(u)|-star,where u∈U.

    (2)Γ is N-edge-transitive.

    (3)N is regular on both U and W.

    ProofIfNis intransitive onW,then(1)follows from[14,Lemma 5.5].Thus we assume thatNis transitive onW.Takeu∈U.IfNuis transitive onΓ(u),thenΓisN-edge-transitive,so(2)holds.Suppose thatNuis not transitive onΓ(u).SinceNuis normal inGuandGis locally primitive,NufixesΓ(u)point-wise.ThusNw≥Nufor eachw∈Γ(u).IfNwis transitive onΓ(w),thenΓisN-edge-transitive,so(2)holds.Thus we may further suppose thatNw≤for each∈Γ(w).By the connectedness ofΓ,we conclude thatNu=Nw=1.Then(3)follows.

    Recall that a quasi-primitive group is a permutation group with all minimal normal subgroups transitive.By[14,Theorem 1.1 and Lemma 5.1],the next lemma holds.

    Lemma 2.7Let Γ and G be as in Lemma2.5.Suppose that N is a normal subgroup of G,which is intransitive on both bipartition subsets of Γ.Then Γis a normal cover of ΓNand ΓNis G/N-locally primitive.If further N is maximal among the normal subgroups of G,which are intransitive on both bipartition subsets of Γ,then either ΓNis a complete bipartite graph,or G/N acts faithfully on both parts and is quasi-primitive on at least one of the bipartition subsets of ΓN.

    For a finite groupG,denote by soc(G)the subgroup generated by all minimal normal subgroups ofG,which is called the socle ofG.The next result describes the basic structural information for quasi-primitive permutation groups(see[30]).

    Lemma 2.8Let G be a finite quasi-primitive permutation group onΩ.Then G has at most two minimal normal subgroups,and one of the following statements holds:

    (1)andsoc(G)is the unique minimal normal subgroup of G,whered≥1and p is a prime;in this case,G is primitive onΩ.

    (2)soc(G)=Tlfor l≥1and a nonabelian simple group T,and eithersoc(G)is the unique minimal normal subgroup of G,orsoc(G)=M×N for two minimal normal subgroups M and N of G with|M|=|N|=|Ω|.

    3 The Quasi-primitive Case

    LetΓbe aG-locally primitive regular graph of order 18p,whereG≤AutΓandpis a prime.Assume thatGis intransitive onV Γ.ThenΓis a bipartite graph with two bipartition subsets beingG-orbits,sayUandW.

    Assume next thatGacts faithfully on bothUandW,and thatGis quasi-primitive on one ofUandW.IfGacts primitively on one ofUandW,then by[18],Γis either arc-transitive or isomorphic to one of the Gray graph and the Tutte 12-cage.Thus we assume in the following that neitherGUnorGWis a primitive permutation group.Then by Lemma 2.8,N:=soc(G)is the direct product of isomorphic non-abelian simple groups.In particular,Gis insoluble,soΓis not a cycle.

    Without loss of generality,we assume thatGis quasi-primitive onU.Recall thatGUis not primitive.Take a maximal blockBU)ofGonU.Then|B|is a proper divisor of|U|=9pandfor eachuThenandGacts primitively onB.SinceGis quasi-primitive onU,we know thatGacts faithfully onB.Thus we may viewGas a primitive permutation group(onB)of degree

    Lemma 3.1|B|=3or9.

    ProofIt is easy to see that|B|=3,9 orp.Suppose that|B|=p.Then|B|=9 and by[7,Appendix B],N=soc(G)=A9or PSL(2,8).IfN=A9thenNBA8andp≤7;however,A8has no subgroups of indexp,a contradiction.ThusN=PSL(2,8),andp=7,soand|U|=63,whereu∈B.SinceΓisG-locally primitive,Guinduces a primitive permutation groupIfG=N,thenyielding thatΓis a cycle,a contradiction.It follows thatG=PΣL(2,8)PSL(2,8)and|Gv|=24,wherevis an arbitrary vertex ofΓ.Checking the subgroups of PSL(2,8)in the Atlas(see[6]),we know thatNhas no proper subgroups of index dividing 21.It implies thatNis transitive onW,soGis also quasi-primitive onW.By the information given for(2,8)in[6],for eachv∈V Γ.Then eitherandΓis cubic,orandΓhas valency 4.Take{u,w}∈EΓ.ThenIt follows thatGuandGwhave the same center,which contradicts Lemma 2.1.

    Therefore,Gis a primitive permutation group(onB)of degreepor 3p.For further argument,we list in Tables 1–2 the insoluble primitive groups of degreepand of degree 3p,respectively.Noting thatNBhas a subgroup of index|B|=9 or 3,it is easy to check thatN=A6or PSL(n,q).Suppose thatN=A6.Then|B|=3 andp=5.It follows thatGuis a 2-group.SinceΓisG-locally primitive,

    ThenΓis a cycle,a contradiction.Thus the next lemma follows.

    Table 1 Insoluble transitive groups of prime degree(see[2,Table 7.4])

    Table 2 Insoluble primitive groups of degree 3p(see[16])

    Lemma 3.2Either|B|=9and N=PSL(n,q)with n prime,or|B|=3and N=PSL(3,q)with q≡1(mod 3).

    Letbe the Galois field of orderq,and letbe then-dimensional linear space of row vectors overDenote byPandH,respectively,the sets of 1-subspaces and(n?1)-subspaces ofThen the action ofN=SL(n,q)/Z(SL(n,q))onBis equivalent to one of the actions ofNonPand onHinduced by

    whereA=(aij)n×n∈SL(n,q).Letσbe the inverse-transpose automorphism of SL(n,q),that is,

    Thenσgives an automorphism ofNof order 2.Define

    Then

    For 1≤i≤n,leteibe the vector with theith entry 1 and other entries 0.Then

    where

    For a subgroupXof SL(n,q),we denoteto be the image ofXinN,that is,=X/Z(SL(n,q)).Then the following lemma holds.

    Lemma 3.3If B∈B,then NBis conjugate in N to one

    The following simple fact may be shown by simple calculations.

    Lemma 3.4Set

    Thenacts transitively onand has two orbits on H with lengthsrespectively.Moreover,for each divisor m of q?1,Q:H has a unique subgroup containing Q:L and having index m,which is

    Lemma 3.5Write q=rffor a prime r and an integer f≥1.Assume that|B|=9for B∈B.Then the following statements hold:

    (1)(n,q)(2,2),(2,3),(3,2),(3,3).

    (2)n is an odd prime with q1(modn).

    (3)n is the smallest prime divisor of nf.

    ProofBy Lemma 3.2,N=PSL(n,q)for a primen.Since 9 is a divisor of|N|andNis simple,(n,q)(2,2),(2,3),(3,2).

    Suppose thatN=PSL(3,3).Thenp=13,G=N,|GB|=24·33and|Gu|=48.Takew∈Γ(u).SinceΓis regular,|Gu|=48=|Gw|.Checking the subgroups of SL(3,3)(see[6]),we haveSinceΓisG-locally primitive,andΓhas valency 4.ThusGuwD12.It follows thatGuandGwhave the same center isomorphic towhich contradicts Lemma 2.1.Thus(1)follows.

    Suppose thatn=2.Then,sinceis a prime,r=2 andf=2sfor some integers≥1.Thusand henceBut 22s?1 is not divisible by 9,a contradiction.This implies thatnis an odd prime.Ifq≡1(modn),thena contradiction.Then(2)follows.

    Ifnf=6 andr=2,thenp==21 or 63,a contradiction.Thus,by Zsigmondy’s theorem(see[20,p.508]),there is a prime,which dividesrnf?1,but notri?1 for all 1≤i≤nf?1.Clearly,such a prime isp.Suppose thatfhas a prime divisors,such thats

    Lemma 3.6Let B∈B.If(n,q)=(3,8),then|B|=9and Γ is arc-transitive and of valency8or64.

    ProofAssume that(n,q)=(3,8).ThenNSL(3,8),p=73 and|G:N|=1 or 3.By Lemma 3.2,|B|=9.Without loss of generality,we assume thatN=SL(3,8)and chooseB,such thatNB=P:H,whereandHis defined above Lemma 3.3.

    SinceNBis transitive onB,it is easily shown thatPacts trivially onB,soHacts transitively onB.Then|H:Hu|=9.Note thatChecking the subgroups of PSL(2,8),we conclude that the action ofHonBis equivalent to the action ofHon the set of 1-subspaces ofThen,without loss of generality,we may assume thatHuis conjugate to

    Recall that a(1,2)-flag ofis a pair{V1,V2}of a 1-subspace and a 2-subspace with the 1-subspace contained in the 2-subspace.SinceP≤Nu,we haveIt is easily shown thatNuis the stabilizer of some(1,2)-flag{V1,V2}inN.It follows that the action ofNonUis equivalent to the action ofNon the setFof(1,2)-flags of

    Now we show that the actions ofNonUandWare equivalent.Note that|G:N|=1 or 3.Thus,sinceWis aG-orbit,eitherNis transitive onWorNhas 3 orbits onW.Checking the subgroups of SL(3,8),we know thatNhas no subgroups of index 219.It follows thatNis transitive onW.Note thatN=SL(3,8)has no subgroups of index 3,9 or 219.It follows that a maximal block ofNonWhas size 9.Then a similar argument as above implies that the action ofNonWis also equivalent to that onF.Moreover,ΓisN-edge-transitive by Lemma 2.6.

    IdentifyingUwithF,and by Lemma 2.3,ΓB(N,F,Δ),where Δ is anN-orbital onF.Without loss of generality,chooseuto be the flagCalculation shows that Δ(u)is one of the following 5 suborbits:

    (i)which are self-paired and of length 23.

    (ii)andwhich are paired to each other and of length 26.

    (iii)which is self-paired and of length 29.

    Suppose that Δ(u)is the suborbit in(iii).ThenΓhas valency 29.Recall that|G:N|=1 or 3,andIt follows thatGu/Nuis cyclic,and henceGuis soluble.SinceΓisG-locally primitive,is a soluble primitive permutation group of degree 29.In particular,socand socis the unique minimal normal subgroup ofThusasNuinduces a normal transitive subgroup ofHowever,the unique Sylow 2-subgroup ofNuis non-abelian and has order 29,a contradiction.

    If Δ(u)is described in(i),thenΓhas valency 8,and by Lemma 2.3,Γis arc-transitive.

    Assume that Δ(u)is one of the suborbits in(ii).ThenΓhas valency 64.Letσbe the inverse-transpose automorphism ofN=SL(3,8).ThenFisσ-invariant.Consider the actionNonFand takea∈SL(3,8)with

    Thenwhich interchanges the two suborbits in(ii). It follows from Lemma 2.2 thatΓis arc-transitive.

    Lemma 3.7Assume that(n,q)(3,8).Then there is u∈U withwhere σ is the inverse-transpose automorphism ofSL(n,q),and and are described as in Lemmas3.3and3.4,respectively.In particular,q≡1(mod|B|).

    ProofRecall that the action ofN=SL(n,q)/Z(SL(n,q))onBis equivalent to one of the actions ofNonPand onH.Without loss of generality,we may chooseB∈B,such thatwhereandis described as in Lemma 3.3.Setq=rffor some primerand integerf≥1.ThenRis a nontrivialr-group.

    Takeu∈B.Then|NB:Nu|=|B|=3 or 9.Suppose thatNoting thatRNuis a subgroup ofNBasRis normal inNB,it follows thator 9.In particular,Ris a 3-group,and hence|B|=9 by Lemma 3.2.Then,by Lemma 3.5,nandq?1 are coprime,soZ(SL(n,q))=1.ThusNSL(n,q)andAssume that|(RNu):Nu|=9.ThenNB=RNu.It implies thatR∩Nuis normal inNB.ThenyieldingR∩Nu=1.It follows thatBy Lemma 3.5,we conclude thatn=3 andf=1,that is,(n,q)=(3,3),a contradiction.Thus|NB:(RNu)|=3.Noting thatit follows that GL(n?1,3f)has a subgroup of index 3.Note thatwheredis the largest common divisor ofn?1 and 3f?1.It implies that PSL(n?1,3f)has a subgroup of index 3.Thenn=3 andf=1,a contradiction.Therefore,Ris contained inNu.

    Sinceis normal inNB,we know thatis a subgroup ofNB.Suppose thatThenLetZbe the center of Thenanddivides 9.By Lemmas 3.2 and 3.5,n≥3 and(n,q)(3,2),(3,3).Thusis simple,and hence it has no subgroups of order 3.Suppose thatThenhas a primitive permutation representation of degree 9.By[7,Appendix B],we conclude thatThen(n,q)=(3,8),a contradiction.It follows thatthat is,Consider the commutator subgroups ofLand.By[19,Chapter II,Theorem 6.10],=L,and hencea contradiction.Therefore,the first part of this lemma follows.

    LetXandYbe the pre-images ofNBandNuin SL(n,q).ThenMoreover,X=Q:HorQσ:HandY≥Q:LorQσ:L,respectively.It follows that|B|is a divisor of|H:L|=q?1.Thenq≡1(mod|B|).

    Theorem 3.1Γ is an arc-transitive graph,and one of the following holds:

    (1)N=PSL(3,8),p=73and Γ has valency8or64.

    (2)N=PSL(n,q),and Γhas valency qn?1,where q≡1(mod 9),n≥5and(n,q)satisfies Lemma3.5.

    (3)N=PSL(3,q),3p=q2+q+1and Γhas valency q2,where q≡1(mod 3).

    ProofBy Lemmas 3.2 and 3.5,N=soc(G)=PSL(n,q)for some odd primen.If(n,q)=(3,8),then(1)follows from Lemma 3.6.Thus we assume that(n,q)(3,8)in the following.Writeq=rffor a primerand an integerf≥1.

    Case 1Assume that|B|=9.Thenis a prime.By Lemma 3.7,q≡1(mod 3),soIt follows thatn3.By Lemmas 3.5,nfhas no prime divisors less than 5.Note that|G:N|dividesnfandGis transitive onW.It follows that the number ofN-orbits onWis a divisor ofnf.It implies thatNis transitive onW,and henceGis quasi-primitive onW.

    Recall thatGis faithful and imprimitive onW.Take a maximal blockCofGonW,and setThenGacts primitively onC.

    Sincen≥5,checking Table 3,we conclude thatGhas no primitive permutation representation of degree 3p.Then|C|3.In addition,Ghas no subgroups of index 9,so|C|p.It follows that|C|=9 and|C|=p.Then the argument for the actions ofNonBandUis available for the actions onCandW.This allows us to viewBas a copy ofP,and to viewCas a copy ofPorH.

    ChooseB∈BandC∈C,such thatandThen,by Lemmas 3.4 and 3.7,andwhereu∈B,w∈CandXis a subgroup of SL(n,q)consisting matrices of the following form:

    Note thatΓisG-locally primitive andNis not regular on bothUandW.By Lemma 2.6,ΓisN-edge-transitive.ThenΓ(u)is anNu-orbit onW.Thus,for anNu-orbitonC,either

    Suppose thatNC=NB.Then bothBandCcorrespond toBy Lemma 3.4,for eachu∈B,the stabilizerNuis transitive onC{C}.Thus eitherNote thatNufixesCpoint-wise asNu=Nwis normal inNB=NC,wherew∈C.ThenChoose∈Ccorresponding toand take∈LetY1andY2be the pre-images ofNu∩andNu∩,respectively.Then

    It follows that|(Nu∩):(Nu∩)|=|Y1:Y2|=|9|=soNu∩is transitive onThen?Γ(u),which contradicts Lemma 2.5.

    Now letThenBandCcorrespond toand|2≤i≤respectively.By Lemma 3.4,Nuhas two orbitsC1andC2onC,whereC1has lengthand containsC1corresponding to|1≤i≤n?andC2has lengthqn?1and containsC2corresponding toCalculation shows thatwherew1∈C1andw2∈C2.IfΓ(u)then we get a similar contradiction as above.ThusandΓ(u)is one of the 9-orbits ofNuonNote thatforw∈C2.ThenΓis arc-transitive by Lemma 2.1,and(2)follows.

    Case 2Assume that|B|=3.ThenN=PSL(3,q)withq=rf≡1(mod 3).In particular,|N|has at least 4 distinct prime divisors(see[15,p.12]).

    LetW1be an arbitraryN-orbit onW.Takew∈W1.Thenor 9p.SinceNis simple,Nhas no subgroups of index 3.By[7,Appendix B],Nhas no subgroups of index 9.By Table 3,Nhas no primitive permutation representations of prime degree,soNhas no subgroups of indexp.Thus|W1|=3por 9p.Suppose that|W1|=3p.ThenNhas exactly three orbits onW.SinceNis normal inG,eachN-orbit onWis a block ofG.By Lemma 2.5,for some integerss,t≥0.ThenThus|N|has at most 3 distinct prime divisors,a contradiction.Then|W1|=9p,that is,Nis transitive onW.

    Take a maximal blockCofGonW,and setThenGacts primitively onC.Recall thatNhas no subgroups of index 3,9 orp.It implies that|C|=3p.Then(3)follows from an analogous argument given in Case 1.

    4 The Proof of Theorem 1.1

    LetΓbe aG-locally primitive regular graph of order 18p,whereG≤AutΓandpis a prime.Assume thatGis intransitive onV Γ.LetUandWbe theG-orbits onV Γ.IfGacts unfaithfully on one ofUandW,thenΓis the complete bipartite graph K9p,9p,and henceΓis arc-transitive.Thus we assume thatGis faithful on bothUandW.By the argument in Section 3,we assume further thatGhas non-trivial normal subgroups,which are intransitive on bothUandW.LetMbe maximal in such normal subgroups ofG.Denote byandthe sets ofM-orbits onUandW,respectively.For eachv∈V Γ,denote bytheM-orbit containingv.

    By Lemma 2.7,Γis a normal cover ofΓM.ThenMis semi-regular on bothUandW;in particular,|M|=3,9,por 3pandp,9 or 3,respectively.Note thatMis the kernel ofGacting onThen we identifyX:=G/Mwith a subgroup of AutΓM.ThenΓMisX-locally primitive.

    Next we finish the proof of Theorem 1.1 in two subsections depending on whether or notΓMis a bipartite complete graph.

    4.1 Graphs with ΓMcomplete bipartite

    In this subsection,we assume thatΓMis a complete bipartite graph,that is,Letu∈Uandw∈W.Thenandact primitively onand,respectively.ThusXacts primitively on bothand.Moreover,sois a divisor of|X|. foru∈U,yielding|Γ(u)|≤3.By Lemma 2.1,

    Lemma 4.1Assume that X is faithful on one ofand.Then Γ is an arc-transitive graph of order36and valency6.

    ProofWithout loss of generality,we may assume thatXis faithful on.Then bothXandare primitive permutation groups on.If|M|=3p,thenor S3,and henceXis intransitive on the edges ofΓM,a contradiction.If|M|=9,thenp2is a divisor ofX;however,each permutation group of degree primephas order indivisible byp2,a contradiction.If|M|=p,then soc(X)and socare one of A9,PSL(2,8)oryieldinga contradiction.

    Now let|M|=3.ThenandSince 9p2is a divisor of|X|,checking Table 3 implies that soc(X)=A3por A5.Note thatandIt follows thatsoc(X)A6and soc()A5.

    By soc(X)~=A6,we know thatXis isomorphic to a subgroup of AutIn particular,|X:soc(X)|is a divisor of 4.Since soc(X)is normal inX,all soc(X)-orbits onhave the same length dividing 3p.Thus the number of soc(X)-orbits onis a common divisor of 4 and 3p.It follows that soc(X)acts transitively on.In addition,soc(X)is transitive,asXis faithful and primitive on.ThenΓMis soc(X)-edge-transitive by Lemma 2.6.In particular,socand socact transitively onand,respectively.Checking the subgroups of A6,we conclude that socand socand socare not conjugate in soc(X).It is easy to see thatΓis soc(X)-locally primitive.

    LetHbe the pre-image of soc(X)inG.ThenH=M.soc(X),M=Z(H)andΓisH-locally primitive.Letbe the commutator subgroup ofH.Suppose thatH.ThenH=M×andA6.Thusis normal inHand intransitive on bothUandW.By Lemma 2.7,is semi-regular onV Γ,which is impossible.Therefore,H=.By the information given in[6],we know thatHhas an automorphismσof order 2 withfor suitableandNoting thatandfor arbitraryit follows thatThen,by Lemma 2.1,Γis an arc-transitive graph.

    Lemma 4.2Assume that X acts unfaithfully on bothand.Then Γ has valency2,3or p,and Γ is either arc-transitive or isomorphic to the Gray graph.

    ProofLetY1andY2be the corresponding kernels.ThenY1∩Y2=1 andY1Y2=Y1×Y2.SinceXacts primitively on bothand,we conclude thatY1andY2act transitively onand,respectively.It follows that socwherei=1,2.Checking primitive permutation groups of degreewe conclude thatY1×Y2contains a normal subgroupY=T1×T2,which is transitive onEΓM,such thatand one of the following conditions holds:

    (v)|M|=3 orp,T1=soc(Y1)T2=soc(Y2)andT1is non-abelian simple.

    LetNbe the pre-image ofYinG.ThenΓisN-edge-transitive.In particular,Nis not regular onUandW.Noting thatNis faithful on bothUandW,it follows thatNis not abelian.

    If(i)occurs,thenΓMis a cycle,soΓis arc-transitive.

    Assume that(ii)occurs.ThenYhas a subgroup,which has orderpand acts regularly on bothand.ThusNhas a subgroupacting regularly on bothUandW.By Sylow’s theorem,it is easily shown thatIt follows from Lemma 2.1 thatΓis vertex-transitive,and henceΓis arc-transitive.

    Assume that(iii)occurs.Then|M|=3pandIfp=3,then eitherΓis arc-transitive or by[26]or[27],Γis isomorphic to the Gray graph.Assume thatp=2.ThenMhas a characteristic subgroupand henceKis normal inN.It is easily shown thatΓis a normal cover ofΓKwith respect toNandK.ThusΓKis a cubic edge-transitive graph of order 12.However,by[3,5],there are no such graphs,a contradiction.Thus assume thatp≥5.ThenMhas a unique Sylowp-subgroup.LetPbe the unique Sylowp-subgroup ofM.ThenandPis normal inN.SinceΓis cubic,ΓisN-locally primitive.ThusΓis a normal cover ofΓP,and henceΓPis anN/P-edge-transitive cubic graph of order 18.WriteN=P:Q,whereQis a Sylow 3-subgroup ofN.Thenis non-abelian.

    LetSbe the Sylow 3-subgroup of CN(P).ThenSis normal inN.It is easily shown thatSfixes bothUandWset-wise,soSis intransitive on bothUandWas|U|=|W|=9pandp3.ThenSis semi-regular on bothUandW,so|S|=1,3 or 9;in particular,Sis ablelian.It implies thatPS=P×Sis abelian and semi-regular on bothUandW.Assume|S|=3.SinceSis normal inQ,it implies thatSlies in the center ofQ.Note thatThenQ/Sis cyclic.It follows thatQis abelian,a contradiction.Therefore,|S|=9,and hencePSis regular on bothUandW.ThusΓis arc-transitive by Lemma 2.1.

    Next we finish the proof by excluding(iv)–(v).

    Suppose that(iv)occurs.WriteN=P:Q,whereQis a Sylow 3-subgroup ofN.ThenLetSbe the Sylow 3-subgroup of CN(P).ThenSis normal inN.SinceNis non-abelian,QS.Consider the quotientN/CN(P).We conclude thatSinceΓis bipartite,it is easily shown thatSfixes the bipartition ofΓ.Ifp3,thenSis neither transitive nor semi-regular on bothUandW,which contradicts Lemma 2.7.Thusp=3,so|V Γ|=54 and|AutΓ|is divisible by 35.By[3,5],there exists no such cubic edge-transitive graph,a contradiction.

    Suppose that(v)occurs.Note thatorSinceY=N/Mis the direct product of two isomorphic non-abelian simple groups,it follows thatN/M=CN(M)/M,soN=CN(M).ThenMis the center ofN.Takeu∈U.ThenThenNuacts transitively on,and henceacts transitively onW.Note thatNuhas a normal subgroupwhich acts trivially on.ThenKfixes set-wise eachM-orbit onW.It is easily shown thatKis normal inIt follows that allK-orbits onWhave the same length.Thus eitherKacts trivially onW,orKacts transitively on eachM-orbit onW.The latter case implies thata contradiction.ThusK=1 asGis faithful on bothUandW,soNoting thatT2is transitive on,it follows thator 3p,which contradicts thatT2is simple.

    4.2 Graphs with ΓMnot complete bipartite

    Now we assume thatΓMis not a complete bipartite.ThenXacts faithfully on bothand.By Lemma 2.7,Xis quasi-primitive on one ofandRecall that3p,p,9 or 3.

    Lemma 4.3

    ProofSuppose thatWithout loss of generality,we assume thatXis quasiprimitive on.Then it is easily shown thatXis primitive on.Thus soc(X)is isomorphic to one of A9,PSL(2,8)orLetN≤GwithN/M=soc(X).

    Assume that soc(X)PSL(2,8).ThenXis 3-transitive on bothand.It follows thatand thatΓisN-locally primitive.Moreover,it is easily shown thatMis the center ofN.By[6],PSL(2,8)has Schur multiplier 1.This implies thatN=M×KwithThusNhas a normal subgroupKacting neither transitively nor semi-regularly on each ofUandW,which contradicts Lemma 2.7.

    Assume that socA similar argument as above implies thatandΓisN-locally primitive.Moreover,Nis a central extension ofMby A9.Ifp2,then noting that A9has Schur multiplierwe haveN=M×KforK

    Assume that socThenXAGL(2,3),and for somethe stabilizeris isomorphic to an irreducible subgroup of GL(2,3).By[13,Theorem 2],there are no semisymmetric graphs of order 18.It follows from[17,Lemma 2.5]that soc(X)acts transitively onThus soc(X)is regular on bothandBy[25],acts faithfully on the neighbors ofIn addition,sinceΓMisX-locally primitive,is a primitive permutation group onHowever,it is easy to check that GL(2,3)has no irreducible subgroups satisfying the conditions fora contradiction.

    Lemma 4.4or p,then Γ is arc-transitive.

    ProofIf=2,thenandΓMis 4-cycle,which is impossible.IfthenandΓMis 6-cycle,and henceΓis a cycle.Thus we assume thatThen|M|=9,and eitherorXis a permutation group with soc(X)listed in Table 3.In particular,Ghas a subgroupwhich acts regularly on bothUandW.By Sylow’s theorem,it is easily shown thatwherePis a Sylowp-subgroup ofR.ThenRis abelian,and henceΓis arc-transitive by Lemma 2.1.

    Finally,we deal with the case wherethat is,p3 and

    Lemma 4.5Assume that=3p9.Then Γ is arc-transitive.

    ProofWithout loss of generality,we assume thatX=G/Mis a quasi-primitive group onSinceby Lemma 2.8,soc(X)is insoluble.

    Case 1Assume thatX=G/Mis primitive onThenXis known as in Table 2.Since soc(X)is non-abelian simple,it has no proper subgroups of index less than 5.Suppose that soc(X)is not primitive onThen either each soc(X)-orbit onhas lengthp,or soc(X)is transitive onwith a block of size 3;moreover,p>3 in both cases.Thus,for these two cases,soc(X)can be viewed as a transitive permutation group of prime degree.Checking Tables 1–2,we conclude that socand socwhereαis either anM-orbit onor a block of soc(X)with size 3 onFor the former case,soc(X)α|≤|S7:A6|=14,a contradiction;for the latter case,A6has a subgroup of index 3,which is impossible.It follows that soc(X)is primitive on bothand;in particular,ΓMis soc(X)-edge-transitive.

    LetN≤GwithN/M=soc(X).Clearly,Nis normal inGandΓisN-edge-transitive.Moreover,it is easily shown thatMis the center ofN.

    Subcase 1.1Assume that the extensionN=M.soc(X)splits overM,that is,N=M×Kfor socThenKis a normal subgroup ofG,andKacts primitively on bothand.SinceKis a non-abelian simple group,its order has at least three distinct prime divisors.It follows thatKis not semi-regular on bothUandW.ThenKis transitive on one ofUandW.This implies that 9pis a divisor of|K|,soKis not isomorphic to one of A5,PSL(3,2)and PSL(2,2f).

    Without loss of generality,assume thatKis transitive onU.Then,foru∈U,the stabilizeris transitive on theM-orbitThussoKhas a subgroup of index 3.Noting thatit implies thatChecking the subgroups of socwe know that eitherandp=5,orPSL(3,q)and 3p=q2+q+1,whereqis a power of a prime withq≡1(mod 3).

    Assume soc(X)=A6.ThenΓhas order 90.Suppose thatKis intransitive onW.ThenKhas three orbits onW,soΓis cubic by Lemma 2.6.ThusΓis a semisymmetric cubic graph by[5,Theorem 5.2].Again by[5],there is no semisymmetric cubic graphs of order 90,a contradiction.ThenKis also transitive onW.By Lemma 2.6,ΓisK-edge-transitive.Checking the subgroups of A6,we know thatKuD8foru∈U.It follows thatΓhas valency 4 or 8.SinceΓisG-locally primitive,is a primitive group of degree 4 or 8.Sinceis a transitive normal subgroup of,it follows thatΓhas valency 4.ThenΓMhas valency 4.Consider the actions of soc(X)onandIf these two actions are equivalent,thenΓMhas valency 6 or 8;otherwise,ΓMhas valency 3 or 12.This is a contradiction.

    Assume that soc(X)=PSL(3,q).ThenΓMhas valencyq2,q+1 orq2+q.IfKis intransitive onW,thenKhas three orbits onW,and henceΓis cubic by Lemma 2.6,a contradiction.ThusKis also transitive onW,soΓisK-edge-transitive.Arguing similarly as in the proof of Theorem 3.1,we conclude thatΓis arc-transitive and has valencyq2.

    Subcase 1.2Assume that the extensionN=M.soc(X)does not split overM.Then checking the Schur multipliers of the simple groups in Table 3,conclude thatN=3.A6withp=5 or 2,orN=3.A7withp=5 or 7,orN=SL(3,q)with 3q?1.

    LetN=SL(3,q)with 3q?1.Using the notation defined above in Lemma 3.3,we identifywithPandwithPorH.Then there areandsuch that

    andBy Lemma 3.4 and a similar argument as in the proof of Theorem 3.1,it is easily shown thatΓis an arc-transitive graph of valencyq2.

    LetN=3.A6.Ifp=2,thenand henceΓis arc-transitive by Lemma 2.4.Now letp=5.ThenΓMhas valency 6,8,3 or 12.Takeu∈U.ThensoSinceΓisG-locally primitive,is a primitive group.Noting thatis a transitive normal subgroup ofit follows thatΓhas valency 4 or 3.SinceΓis a normal cover ofΓM,we conclude thatΓhas valency 3.By[5],there is no semi-symmetric cubic graphs of order 90.ThusΓis arc-transitive.

    LetN=3.A7withp=5 or 7.Assume first that soc(X)acts equivalently onandThen by Lemma 2.3,ΓMis isomorphic to an orbital bipartite graph of soc(X)onCalculation shows that the suborbits of soc(X)onare all self-paired.ThenΓis arc-transitive by Colloray 2.1.Ifp=5,thenX=soc(X)PSL(2,7)andΓMhas valency 14;however,PSL(2,7)has no primitive permutation representations of degree 14,a contradiction.Thenp=7.It is easily shown thatΓhas valency 10.

    Assume that the actions of soc(X)onandare not equivalent.ThenX=soc(X)=A7andPSL(2,7),soG=N=3.A7.In particular,p=5 andΓMhas order 30.TakeChecking the subgroups of A7,we conclude that=7 or 8.ThenΓMhas valency 7 or 8,and so doesΓ.Veri fied by GAP,there are two involutionssuch thatforv∈V Γ.Thus we may choose a suitablesuch thatfor an automorphism ofGof order 2.ThenΓis arc-transitive by Lemma 2.1.

    Case 2 Assume thatX=G/Mis quasi-primitive,but not primitive onLetBbe a maximal block ofXonThen|B|=3.SetB=Then|B|=pandXacts faithfully onB.ThusXis known as in Table 3.LetThen|XB:Xu|=|B|=3.Checking one by one the groups listed in Table 3,we conclude that soc(X)=PSL(n,q)with

    Suppose thatn=2.Thenq=for some integers≥1,andN=M.soc(X)×PSLIt follows thatGhas a normal subgroupKisomorphic to PSLNote that 9 is not a divisor of|K|.It follows thatKis intransitive on bothUandW.By Lemma 2.7,Kis semi-regular onU,which is impossible.Thenn≥3.

    A similar argument as above implies that(n,q)(3,2).Then by[15,p.12],|soc(X)|has at least four distinct prime divisors.Noting|X|=it follows thathas an odd prime divisor other than 3.This implies that the valency ofis no less than 5.If soc(X)is intransitive onthen soc(X)has exactly three orbits onsoΓMhas valency 3 by Lemma 2.6,a contradiction.Therefore,soc(X)is transitive onand henceΓMis soc(X)-edge-transitive.LetN≤GwithN/M=soc(X).ThenNis normal inGandΓisN-edge-transitive.

    It is easily shown thatnis an odd prime with(modn)(see the proof of Lemma 3.5).Then the Schur multiplier of PSL(n,q)is 1.Recallingit yields thatN=M×K,whereClearly,Kis a normal subgroup ofG.Recalling that soc(X)is transitive on bothandwe conclude that eachK-orbit onV Γhas length at least 3p.SinceKis not semi-regular andΓhas valency no less than 5,by Lemma 2.6,we know thatΓisK-edgetransitive.Then the argument in Section 3 implies thatΓis an arc-transitive graph.

    AcknowledgementThe authors would like to thank the referees for valuable comments and careful reading.Note that=N×Gvand

    [1]Aschbacher,M.,Finite Group Theory,Cambridge University Press,Cambridge,1993.

    [2]Cameron,P.J.,Permutation Groups,Cambridge University Press,Cambridge,1999.

    [3]Conder,M.and Dobcsányi,P.,Trivalent symmetric graphs on up to 768 vertices,J.Combin.Math.Combin.Comput.,40,2002,41–63.

    [4]Conder,M.D.,Li,C.H.and Praeger,C.E.,On the Weiss conjecture for finite locally primitive graphs,Proc.Edinburgh Math.Soc.(2),43,2000,129–138.

    [5]Conder,M.,Malni?,A.,Maru?i?,D.and Poto?nik,P.,A census of semisymmetric cubic graphs on up to 768 vertices,J.Algebr.Comb.,23,2006,255–294.

    [6]Conway,J.H.,Curtis,R.T.,Noton,S.P.,et al.,Atlas of Finite Groups,Clarendon Press,Oxford,1985.

    [7]Dixon,J.D.and Mortimer,B.,Permutation Groups,Springer-Verlag,New York,Berlin,Heidelberg,1996.

    [8]Du,S.F.and Xu,M.Y.,A classification of semisymmetric graphs of order 2pq,Comm.Algebra,28(6),2000,2685–2714.

    [9]Fang,X.G.,Havas,G.and Praeger,C.E.,On the automorphism groups of quasi-primitive almost simple graphs,J.Algebra,222,1999,271–283.

    [10]Fang,X.G.,Ma,X.S.and Wang,J.,On locally primitive Cayley graphs of finite simple groups,J.Combin.Theory Ser.A,118,2011,1039–1051.

    [11]Fang,X.G.and Praeger,C.E.,On graphs admitting arc-transitive actions of almost simple groups,J.Algebra,205,1998,37–52.

    [12]Fang,X.G.,Praeger,C.E.and Wang,J.,Locally primitive Cayley graphs of finite simple groups,Sci.China Ser.A,44,2001,58–66.

    [13]Folkman,J.,Regular line-symmetric graphs,J.Combin Theory Ser.B,3,1967,215–232.

    [14]Giudici,M.,Li,C.H.and Praeger,C.E.,Analysing finite locallys-arc transitive graphs,Trans.Amer.Math.Soc.,356,2004,291–317.

    [15]Gorenstein,D.,Finite Simple Groups,Plenum Press,New York,1982.

    [16]Han,H.and Lu,Z.P.,Semisymmetric graphs of order 6p2and prime valency,Sci.China Math.,55,2012,2579–2592.

    [17]Han,H.and Lu,Z.P.,Affine primitive permutation groups and semisymmetric graphs,Electronic J.Combin.,20(2),2013,Research Paper 39.

    [18]Han,H.and Lu,Z.P.,Semisymmetric graphs arising from primitive permutation groups of degree 9p,Sci.China Math.,58,2015,to appear.DOI:10.1007/s11425-000-0000-0

    [19]Huppert,B.,Endliche Gruppen I,Springer-Verlag,Berlin,1967.

    [20]Huppert,B.and Blackburn,N.,Finite Groups II,Springer-Verlag,Berlin,1982.

    [21]Iranmanesh,M.A.,On finiteG-locally primitive graphs and the Weiss conjecture,Bull.Austral.Math.Soc.,70,2004,353–356.

    [22]Li,C.H.,Lou,B.G.and Pan,J.M.,Finite locally primitive abelian Cayley graphs,Sci.China Math.,54,2011,845–854.

    [23]Li,C.H.and Ma,L.,Locally primitive graphs and bidirect products of graphs,J.Aust.Math.Soc.,91,2011,231–242.

    [24]Li,C.H.,Pan,J.M.and Ma,L.,Locally primitive graphs of prime-power order,J.Aust.Math.Soc.,86,2009,111–122.

    [25]Lu,Z.P.,On the automorphism groups of bi-Cayley graphs,Beijing Daxue Xuebao,39,2003,1–5.

    [26]Lu,Z.P.,Wang,C.Q.and Xu,M.Y.,On semisymmetric cubic graphs of order 6p2,Sci.China Ser.A,47(1),2004,1–17.

    [27]Malni?,A.,Maru?i?,D.and Wang,C.Q.,Cubic edge-transitive graphs of order 2p3,Discrete Math,274,2004,187–198.

    [28]Pan,J.M.,Locally primitive normal Cayley graphs of metacyclic groups,Electron.J.Combin.,16,2009,Research Paper 96.

    [29]Praeger,C.E.,Imprimitive symmetric graphs,Ars.Combin.,19A,1985,149–163.

    [30]Praeger,C.E.,An o’Nan-Scott theorem for finite quasi-primitive permutation groups and an application to 2-arc transitive graphs,J.London Math.Soc.,47,1992,227–239.

    [31]Spiga,P.,OnG-locally primitive graphs of locally twisted wreath type and a conjecture of Weiss,J.Combin.Theory Ser.A,118,2011,2257–2260.

    [32]Weiss,R.,s-Transitive graphs,Algebraic methods in graph theory,Colloq.Math.Soc.János Bolyai,25,1981,827–847.

    九色国产91popny在线| 亚洲午夜理论影院| 在线播放国产精品三级| 国产精品久久电影中文字幕| 免费看日本二区| 99热6这里只有精品| 别揉我奶头~嗯~啊~动态视频| 国产精品久久视频播放| 久久久久久久精品吃奶| 91在线精品国自产拍蜜月 | 成人三级黄色视频| 亚洲美女黄片视频| 日韩成人在线观看一区二区三区| av中文乱码字幕在线| 亚洲精品在线观看二区| 亚洲精品一区av在线观看| 此物有八面人人有两片| 欧美日本亚洲视频在线播放| 久久国产乱子伦精品免费另类| 午夜影院日韩av| 国产成人系列免费观看| 亚洲国产看品久久| 国产又色又爽无遮挡免费看| 久久精品aⅴ一区二区三区四区| 国产精品香港三级国产av潘金莲| avwww免费| 国产一区二区在线观看日韩 | 少妇熟女aⅴ在线视频| 国产免费男女视频| 国产免费男女视频| 欧美日韩国产亚洲二区| 日本熟妇午夜| 激情在线观看视频在线高清| h日本视频在线播放| 亚洲色图av天堂| 在线观看66精品国产| 熟女电影av网| 人妻夜夜爽99麻豆av| 99久久久亚洲精品蜜臀av| 我的老师免费观看完整版| 国产高潮美女av| ponron亚洲| 人人妻,人人澡人人爽秒播| 亚洲成人精品中文字幕电影| 99re在线观看精品视频| 在线视频色国产色| 国产三级中文精品| 亚洲成人中文字幕在线播放| www日本黄色视频网| 一级a爱片免费观看的视频| 精华霜和精华液先用哪个| 在线观看一区二区三区| 1024香蕉在线观看| 波多野结衣高清作品| 琪琪午夜伦伦电影理论片6080| 天天添夜夜摸| 制服丝袜大香蕉在线| 久久亚洲真实| 久久久国产成人免费| 免费看日本二区| 久久久久精品国产欧美久久久| 国产在线精品亚洲第一网站| 韩国av一区二区三区四区| 一个人看视频在线观看www免费 | 免费一级毛片在线播放高清视频| 亚洲av成人一区二区三| 在线十欧美十亚洲十日本专区| 日本成人三级电影网站| 国产高潮美女av| 日韩欧美精品v在线| 国产精品av视频在线免费观看| 免费电影在线观看免费观看| 亚洲精品粉嫩美女一区| 国产精品自产拍在线观看55亚洲| 日日干狠狠操夜夜爽| 男人的好看免费观看在线视频| 亚洲人与动物交配视频| 在线看三级毛片| 成熟少妇高潮喷水视频| 国产精品永久免费网站| 观看免费一级毛片| 日日夜夜操网爽| 小蜜桃在线观看免费完整版高清| 国产亚洲精品av在线| 免费在线观看视频国产中文字幕亚洲| 免费一级毛片在线播放高清视频| 免费看光身美女| av天堂中文字幕网| 大型黄色视频在线免费观看| www日本黄色视频网| 97超视频在线观看视频| 久久精品综合一区二区三区| 最近最新中文字幕大全免费视频| 嫁个100分男人电影在线观看| 国产精品美女特级片免费视频播放器 | 1024手机看黄色片| 国产精品亚洲av一区麻豆| 午夜成年电影在线免费观看| 免费观看精品视频网站| 在线观看舔阴道视频| 亚洲熟女毛片儿| 国内少妇人妻偷人精品xxx网站 | 久久草成人影院| 日韩欧美在线二视频| 免费在线观看日本一区| 久久久久免费精品人妻一区二区| 欧美日韩精品网址| 老汉色∧v一级毛片| 亚洲成人精品中文字幕电影| 日韩欧美三级三区| a级毛片a级免费在线| 免费观看人在逋| 18禁裸乳无遮挡免费网站照片| 欧美日韩一级在线毛片| 欧美极品一区二区三区四区| 黑人欧美特级aaaaaa片| 欧美绝顶高潮抽搐喷水| 欧美三级亚洲精品| 精华霜和精华液先用哪个| 亚洲精品色激情综合| 99国产综合亚洲精品| 最近最新免费中文字幕在线| 99精品久久久久人妻精品| x7x7x7水蜜桃| 亚洲精品乱码久久久v下载方式 | 欧美黄色淫秽网站| 国产日本99.免费观看| 成人午夜高清在线视频| 搞女人的毛片| 国产欧美日韩精品一区二区| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲人与动物交配视频| 精品国产亚洲在线| a级毛片a级免费在线| 黑人操中国人逼视频| 一级毛片高清免费大全| 手机成人av网站| 成人国产一区最新在线观看| 色噜噜av男人的天堂激情| 久久久国产精品麻豆| 亚洲成av人片免费观看| 色综合欧美亚洲国产小说| 免费在线观看日本一区| 白带黄色成豆腐渣| 亚洲乱码一区二区免费版| 久久精品影院6| 欧美性猛交黑人性爽| 真人做人爱边吃奶动态| 国产精品1区2区在线观看.| 亚洲乱码一区二区免费版| АⅤ资源中文在线天堂| 91久久精品国产一区二区成人 | 国产高清视频在线观看网站| 51午夜福利影视在线观看| 亚洲国产色片| 色尼玛亚洲综合影院| 亚洲va日本ⅴa欧美va伊人久久| 九九在线视频观看精品| 亚洲自拍偷在线| 亚洲精品国产精品久久久不卡| 国产成人精品久久二区二区91| 18禁黄网站禁片午夜丰满| 色尼玛亚洲综合影院| 国产av麻豆久久久久久久| 欧美绝顶高潮抽搐喷水| 男人舔女人的私密视频| 亚洲国产精品sss在线观看| 久久精品综合一区二区三区| 18禁裸乳无遮挡免费网站照片| 中出人妻视频一区二区| 欧美最黄视频在线播放免费| 一个人看的www免费观看视频| 精品人妻1区二区| 欧美黑人欧美精品刺激| 久久久久久久精品吃奶| 精品熟女少妇八av免费久了| 国产 一区 欧美 日韩| 久久久久国产精品人妻aⅴ院| 国产精品久久久久久亚洲av鲁大| 久久久久久久久久黄片| 夜夜爽天天搞| 日本撒尿小便嘘嘘汇集6| 久久午夜综合久久蜜桃| 人人妻人人看人人澡| av天堂中文字幕网| 美女午夜性视频免费| 国产一区二区激情短视频| 给我免费播放毛片高清在线观看| 精品日产1卡2卡| 久久久久久久久中文| 国内精品美女久久久久久| 宅男免费午夜| 中国美女看黄片| 人妻久久中文字幕网| 特级一级黄色大片| 99国产极品粉嫩在线观看| 老汉色av国产亚洲站长工具| 欧美成人一区二区免费高清观看 | 最好的美女福利视频网| 国产三级黄色录像| 亚洲欧美日韩高清专用| 亚洲第一电影网av| 欧美激情久久久久久爽电影| 悠悠久久av| 国产精品一区二区三区四区久久| 久久亚洲真实| 亚洲男人的天堂狠狠| 色老头精品视频在线观看| 亚洲美女黄片视频| 国产亚洲欧美在线一区二区| 亚洲色图 男人天堂 中文字幕| 国产又黄又爽又无遮挡在线| 国产毛片a区久久久久| 少妇人妻一区二区三区视频| 精品久久久久久久毛片微露脸| 男人和女人高潮做爰伦理| 国产av一区在线观看免费| 激情在线观看视频在线高清| 午夜福利18| 成在线人永久免费视频| 日韩有码中文字幕| 99精品在免费线老司机午夜| 日韩欧美 国产精品| 免费电影在线观看免费观看| 91久久精品国产一区二区成人 | 国产精品爽爽va在线观看网站| 久99久视频精品免费| 一本精品99久久精品77| 成人永久免费在线观看视频| 亚洲av成人不卡在线观看播放网| 久久香蕉国产精品| 精品熟女少妇八av免费久了| 可以在线观看毛片的网站| 两个人的视频大全免费| АⅤ资源中文在线天堂| 国产亚洲av嫩草精品影院| 精品久久久久久久久久久久久| 日本成人三级电影网站| av欧美777| 一个人观看的视频www高清免费观看 | 国产亚洲精品久久久com| 亚洲第一电影网av| 亚洲电影在线观看av| 国产三级中文精品| 亚洲中文av在线| 国产麻豆成人av免费视频| 看黄色毛片网站| 91字幕亚洲| 国产一区二区在线av高清观看| 99在线视频只有这里精品首页| 免费在线观看日本一区| 中文亚洲av片在线观看爽| 在线永久观看黄色视频| 中亚洲国语对白在线视频| 日本在线视频免费播放| 国产精品亚洲一级av第二区| 色吧在线观看| 十八禁人妻一区二区| 中文在线观看免费www的网站| 日韩中文字幕欧美一区二区| 国产精品香港三级国产av潘金莲| 免费大片18禁| 很黄的视频免费| 黑人操中国人逼视频| 2021天堂中文幕一二区在线观| 99国产综合亚洲精品| 亚洲精品中文字幕一二三四区| 国产视频内射| 久久久久免费精品人妻一区二区| 人人妻人人澡欧美一区二区| a级毛片a级免费在线| e午夜精品久久久久久久| 久久久久免费精品人妻一区二区| 国产成人系列免费观看| 一个人观看的视频www高清免费观看 | 精品久久久久久成人av| h日本视频在线播放| 色综合亚洲欧美另类图片| 日韩高清综合在线| 国产精品一区二区免费欧美| 日本黄大片高清| 国产一区二区激情短视频| 久久久久性生活片| 婷婷亚洲欧美| 午夜免费观看网址| 一本一本综合久久| 中文字幕高清在线视频| 欧美又色又爽又黄视频| 欧美日韩中文字幕国产精品一区二区三区| 热99re8久久精品国产| 香蕉久久夜色| 男女下面进入的视频免费午夜| 亚洲五月天丁香| 中文字幕最新亚洲高清| 一区二区三区激情视频| 深夜精品福利| 很黄的视频免费| 国内精品一区二区在线观看| 亚洲美女视频黄频| 亚洲欧美日韩高清专用| 国产亚洲精品av在线| 国产一区在线观看成人免费| 啪啪无遮挡十八禁网站| 真实男女啪啪啪动态图| 亚洲一区二区三区色噜噜| 亚洲中文av在线| 一进一出抽搐动态| 亚洲av成人一区二区三| 日韩欧美精品v在线| 成人无遮挡网站| 精品久久久久久久久久免费视频| 国产高潮美女av| 亚洲性夜色夜夜综合| 成年女人毛片免费观看观看9| 亚洲午夜精品一区,二区,三区| 久久99热这里只有精品18| 国产欧美日韩一区二区精品| 精品久久久久久久人妻蜜臀av| 日韩免费av在线播放| 亚洲性夜色夜夜综合| 99热这里只有精品一区 | 免费av毛片视频| 操出白浆在线播放| 天天一区二区日本电影三级| 精品国产美女av久久久久小说| 最近最新免费中文字幕在线| 夜夜躁狠狠躁天天躁| 神马国产精品三级电影在线观看| 观看美女的网站| 特大巨黑吊av在线直播| 亚洲熟女毛片儿| 久久香蕉国产精品| 欧美3d第一页| 国产毛片a区久久久久| 国产私拍福利视频在线观看| 欧美日韩福利视频一区二区| 国产伦一二天堂av在线观看| av欧美777| 国产欧美日韩一区二区精品| 国产亚洲精品一区二区www| 欧美在线黄色| 嫁个100分男人电影在线观看| 天堂av国产一区二区熟女人妻| 久久欧美精品欧美久久欧美| 欧美在线一区亚洲| 国产综合懂色| ponron亚洲| 91在线精品国自产拍蜜月 | 久久国产精品人妻蜜桃| 国产乱人视频| 亚洲七黄色美女视频| 亚洲第一电影网av| 一进一出抽搐gif免费好疼| 男女之事视频高清在线观看| 级片在线观看| 日韩欧美国产一区二区入口| av视频在线观看入口| 久久久久久久久免费视频了| 午夜视频精品福利| 黄频高清免费视频| 一本精品99久久精品77| 欧美又色又爽又黄视频| 国产精品久久久久久人妻精品电影| 国产aⅴ精品一区二区三区波| 日韩人妻高清精品专区| 岛国在线免费视频观看| 亚洲人成网站高清观看| 色在线成人网| 在线观看午夜福利视频| 人人妻人人看人人澡| 热99在线观看视频| 99在线视频只有这里精品首页| 成人永久免费在线观看视频| 九九久久精品国产亚洲av麻豆 | 99久久精品一区二区三区| 97人妻精品一区二区三区麻豆| 欧美黑人巨大hd| 丁香六月欧美| 久久亚洲精品不卡| 国产美女午夜福利| 久久香蕉精品热| 19禁男女啪啪无遮挡网站| 狂野欧美白嫩少妇大欣赏| 成人高潮视频无遮挡免费网站| 国产欧美日韩一区二区三| 99久久国产精品久久久| 超碰成人久久| 久久精品影院6| 国产成人啪精品午夜网站| 亚洲专区中文字幕在线| 中亚洲国语对白在线视频| 麻豆一二三区av精品| 男人舔女人下体高潮全视频| 女警被强在线播放| 国产精品1区2区在线观看.| 天天添夜夜摸| 久久热在线av| 亚洲国产精品999在线| tocl精华| 国内精品一区二区在线观看| 免费高清视频大片| 成人三级做爰电影| 国产乱人视频| 一边摸一边抽搐一进一小说| 色综合婷婷激情| 久久中文看片网| 亚洲成a人片在线一区二区| 日本成人三级电影网站| 国产精品av久久久久免费| av天堂中文字幕网| 床上黄色一级片| 亚洲第一电影网av| 此物有八面人人有两片| 欧美成人一区二区免费高清观看 | 在线免费观看的www视频| 欧美黄色淫秽网站| 我的老师免费观看完整版| 亚洲aⅴ乱码一区二区在线播放| 一区二区三区国产精品乱码| 男女做爰动态图高潮gif福利片| 国产成人一区二区三区免费视频网站| av天堂中文字幕网| 欧美性猛交╳xxx乱大交人| 国产在线精品亚洲第一网站| 亚洲国产精品999在线| 男人和女人高潮做爰伦理| 亚洲午夜精品一区,二区,三区| 淫秽高清视频在线观看| 亚洲人成网站高清观看| 午夜影院日韩av| 国产真实乱freesex| 亚洲av五月六月丁香网| or卡值多少钱| 精品久久久久久久久久久久久| 午夜福利在线在线| 国产亚洲av嫩草精品影院| 国产精品一区二区三区四区免费观看 | 一卡2卡三卡四卡精品乱码亚洲| 日韩欧美 国产精品| 俺也久久电影网| 又黄又爽又免费观看的视频| 欧美zozozo另类| 日本一本二区三区精品| 在线观看一区二区三区| 精品无人区乱码1区二区| 999久久久精品免费观看国产| 国产精品久久久久久人妻精品电影| 亚洲av成人一区二区三| 亚洲18禁久久av| 伦理电影免费视频| 少妇人妻一区二区三区视频| 热99re8久久精品国产| 老汉色∧v一级毛片| 高清毛片免费观看视频网站| 在线十欧美十亚洲十日本专区| 淫秽高清视频在线观看| 怎么达到女性高潮| 丰满的人妻完整版| 欧美日韩亚洲国产一区二区在线观看| 日韩欧美国产一区二区入口| 真人一进一出gif抽搐免费| 黄色成人免费大全| 91av网站免费观看| 可以在线观看毛片的网站| 一进一出好大好爽视频| 亚洲第一欧美日韩一区二区三区| 99国产极品粉嫩在线观看| 国产欧美日韩一区二区精品| 黑人巨大精品欧美一区二区mp4| 51午夜福利影视在线观看| 亚洲一区二区三区不卡视频| 国产精品日韩av在线免费观看| 两个人看的免费小视频| 男女下面进入的视频免费午夜| 两人在一起打扑克的视频| 国产高潮美女av| 午夜精品在线福利| 小说图片视频综合网站| 国产成人精品久久二区二区91| 亚洲一区二区三区不卡视频| 国产av不卡久久| 黄色丝袜av网址大全| 啦啦啦免费观看视频1| 高清毛片免费观看视频网站| 日韩精品中文字幕看吧| 偷拍熟女少妇极品色| 人人妻人人看人人澡| 亚洲av免费在线观看| 天堂影院成人在线观看| 国产真人三级小视频在线观看| 国产视频内射| av天堂在线播放| 黄色片一级片一级黄色片| 欧美日韩黄片免| 99久久无色码亚洲精品果冻| 久久精品亚洲精品国产色婷小说| 舔av片在线| 久久久久久久久中文| 国产成人福利小说| 亚洲在线观看片| 在线免费观看的www视频| 级片在线观看| 久久精品aⅴ一区二区三区四区| 人妻久久中文字幕网| 97人妻精品一区二区三区麻豆| 久久久国产成人精品二区| 欧美av亚洲av综合av国产av| 在线看三级毛片| 午夜免费成人在线视频| 很黄的视频免费| 国产av在哪里看| av片东京热男人的天堂| av天堂在线播放| 国产97色在线日韩免费| av天堂在线播放| 两人在一起打扑克的视频| av天堂在线播放| 免费在线观看成人毛片| 国产精品综合久久久久久久免费| 香蕉国产在线看| 色哟哟哟哟哟哟| 毛片女人毛片| 日韩中文字幕欧美一区二区| 午夜福利在线观看吧| 国产精品98久久久久久宅男小说| 欧美激情在线99| 国产毛片a区久久久久| 欧美成人性av电影在线观看| 亚洲午夜精品一区,二区,三区| 亚洲欧美日韩卡通动漫| 白带黄色成豆腐渣| 天天躁日日操中文字幕| 手机成人av网站| 日本 欧美在线| 成人特级黄色片久久久久久久| 香蕉国产在线看| 久久香蕉精品热| 亚洲aⅴ乱码一区二区在线播放| 欧美激情久久久久久爽电影| 国产成人精品久久二区二区91| 国内精品一区二区在线观看| 久久久久久久精品吃奶| 亚洲av五月六月丁香网| 69av精品久久久久久| 国语自产精品视频在线第100页| 天天躁日日操中文字幕| 小说图片视频综合网站| 国产亚洲精品久久久com| 免费在线观看影片大全网站| 麻豆国产av国片精品| 伊人久久大香线蕉亚洲五| 很黄的视频免费| 亚洲乱码一区二区免费版| 老司机午夜福利在线观看视频| 五月伊人婷婷丁香| 国产v大片淫在线免费观看| 国产一区在线观看成人免费| 欧美中文综合在线视频| 美女午夜性视频免费| 欧洲精品卡2卡3卡4卡5卡区| av欧美777| 99久久成人亚洲精品观看| 丰满人妻一区二区三区视频av | 国产亚洲精品久久久com| 精品一区二区三区视频在线观看免费| 日韩高清综合在线| 熟女电影av网| 亚洲精品久久国产高清桃花| 亚洲中文字幕日韩| 久久中文字幕一级| 色综合婷婷激情| 国产精品爽爽va在线观看网站| 国产精品99久久久久久久久| 国产成人精品无人区| 亚洲专区国产一区二区| 嫁个100分男人电影在线观看| 色哟哟哟哟哟哟| 午夜激情福利司机影院| 村上凉子中文字幕在线| 亚洲男人的天堂狠狠| 久久99热这里只有精品18| 国产又黄又爽又无遮挡在线| 99热只有精品国产| 亚洲 欧美一区二区三区| or卡值多少钱| 在线十欧美十亚洲十日本专区| 99久久无色码亚洲精品果冻| 99视频精品全部免费 在线 | 亚洲电影在线观看av| 一级作爱视频免费观看| 国产三级中文精品| 99久国产av精品| 久久99热这里只有精品18| 国产在线精品亚洲第一网站| 亚洲中文av在线| 好看av亚洲va欧美ⅴa在| 亚洲aⅴ乱码一区二区在线播放| 成人高潮视频无遮挡免费网站| 亚洲精品久久国产高清桃花| 国产99白浆流出| 别揉我奶头~嗯~啊~动态视频| 精品人妻1区二区| 又爽又黄无遮挡网站| 国产精品av视频在线免费观看| 国产aⅴ精品一区二区三区波| 一二三四社区在线视频社区8| 中文字幕高清在线视频| 91在线精品国自产拍蜜月 | 曰老女人黄片| 国产成人影院久久av| 日本免费一区二区三区高清不卡| 国产69精品久久久久777片 | 国产视频内射| 亚洲片人在线观看| 精品一区二区三区av网在线观看|