• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Global Exact Boundary Controllability for General First-Order Quasilinear Hyperbolic Systems?

    2015-06-06 06:21:12CunmingLIUPengQU

    Cunming LIU Peng QU

    1 Introduction

    Consider the following first-order quasilinear hyperbolic system with one space variable:

    whereu=(u1,···,un)T∈Uis the unknown vector function of(t,x),taking values in a bounded and connected domainU?(for convenience,all equations hold foru∈throughout this paper,unless otherwise indicated),andA(u)=(aij(u))is aC2smoothn×nmatrix function.By hyperbolicity,the coefficient matrixA(u)possessesnreal eigenvaluesλi(u)(i=1,···,n)a complete set of left eigenvectors

    satisfying

    and

    and a complete set of right eigenvectors

    satisfying

    and

    Without loss of generality,one may assume that

    whereδijis the Kronecker symbol.Suppose thatλi(u),li(u)andri(u)(i=1,···,n)are alsoC2smooth with respect tou.Since,generally speaking,first-order quasilinear hyperbolic systems with zero eigenvalues do not have exact boundary controllability(see[12]),we assume that the system possesses no zero eigenvalue,namely,

    Besides,for the simplicity of analyzing simple wave solutions,we assume the following condition for each eigenvalue:

    Remark 1.1For each eigenvalueλi(u)of the system,if either it is linearly degenerate,namely,

    or it is genuinely nonlinear,namely,

    then the assumption(1.8)obviously holds.

    We consider the mixed initial-boundary value problem for the system(1.1)with the initial condition

    and the following boundary conditions:

    whereHi(i=1,···,n)areC1functions and satisfy the following solvability conditions:

    andhi(t)∈C1(i=1,···,n)will be taken as boundary controls.

    This mixed initial-boundary value problem(1.1)and(1.9)–(1.11)admits a unique localC1solutionu=u(t,x)for any given initial data satisfying suitableC1compatibility conditions(see[13]).Many papers,including the present one,consider the following problem of exact boundary controllability:For any given initial dataφ(x)and final dataψ(x)∈C1([0,L];U),under certain reasonable assumptions,it is asked to find a controlling timeT0>0 andnboundary controls

    such that the mixed initial-boundary value problem(1.1)and(1.9)–(1.11)admits a uniqueC1solutionu=u(t,x)on the domain[0,T0]×[0,L],which verifies the following final condition:

    For linear hyperbolic systems,the exact boundary controllability has a complete theory(see[5,14]).For semilinear hyperbolic systems,one can refer to[4]and[19–20].For quasilinear hyperbolic systems,the theory of local exact boundary controllability has been established(see[1,7,9–10]).Roughly speaking,if the initial dataφ(x)and the final dataψ(x)are both smallC1perturbations around one constant equilibrium of the system,then one can find a sharp controlling timeT0and use some or all of the boundary functionshi(t)(i=1,···,n)as controls to achieve the exact boundary controllability in the framework ofC1classical solutions.Since the whole controlling process is achieved around one point in the phase space,this result is called to be the local controllability.

    Now it is natural to ask that for general initial data and final data,whether or not one has the global controllability.Since,in the general situation,the classical solutions may blowup in a finite time,the general global exact boundary controllability is hard to be built in the framework of classical solutions.However,for linearly degenerate hyperbolic systems of the diagonal form,since the blowup can be prevented for classical solutions,[18]presents the corresponding results on the global exact boundary controllability.

    On the other hand,we may consider the global exact boundary controllability in a slightly different sense as follows.If the initial data and the final data are smallC1perturbations of two distinct constant equilibriau?andu??of the system,namely,

    we wish to get the corresponding exact boundary controllability.For the results in this aspect,one may refer to[2,8,11,15]for hyperbolic systems of the diagonal form and wave equations,and[3]for the Saint-Venant equations with slope and friction,which is a special hyperbolic system of the diagonal form with source terms.The main method of these works is successively using exact boundary controllable neighborhoods of finitely many constant equilibria of the system to cover a curve connectingu?andu??composed of equilibria of the system,and then using the local exact boundary controllability to move the solution step by step from the controllable neighborhood ofu?to the one ofu??.In this way,the total controlling time of the global exact boundary controllability might be quite long.We point out that up to now,all the known results on the global exact boundary controllability are only restricted to quasilinear hyperbolic systems of the diagonal form,but not on the general quasilinear hyperbolic systems.

    In this paper,the general quasilinear hyperbolic system(1.1)(not necessarily of the diagonal form)is concerned with the initial dataφ(x)and the final dataψ(x)asC1perturbations of two distinct constant equilibriau?andu??,respectively.Besides,we hope to reduce the controlling time of the global exact boundary controllability.Our strategy is listed as follows.The first step is connecting those two constant equilibria with a set of characteristic trajectories of the system,and along these characteristic trajectories we can construct the simple wave solutions of the system which take values on them,respectively.By this analysis,a special solutionu=to system(1.1)with

    can be constructed with a possibly largeC1norm,which gives the exact boundary controllability connecting those two equilibria.Based on this,the desired global exact boundary controllability can then be achieved by applying the local exact boundary controllability near those two equilibria,respectively.Since the simple wave solutions used in this process may possess a largeC1norm,the values taken by this solution may change rapidly in the phase space,which overcomes the long-time consumption of the original pointwise extension control method.By means of characteristic trajectories,we are able to develop this simple wave method for the general quasilinear hyperbolic systems.

    Inspecial solutions with monotone initial data are analyzed for the transport equation.Based on this,in§3,simple wave solutions to system(1.1)are constructed along the corresponding characteristic trajectories and are combined to form a special solution to system(1.1)on the domain[0,T0]×[0,L]withu?as its initial data andu??as its final data.This special solution,together with the local exact boundary controllability,then leads to the global exact boundary controllability.In§4,the quasilinear hyperbolic system of the diagonal form is analyzed as an example to show the reduction of the controlling time when using this new method.

    2 Special Solutions to the Transport Equation

    In this section,we consider the following transport equation:

    wherezis the unknown function of(t,x),taking its values on a closed intervalI?andλ(z)∈C1satisfies

    Consider the Cauchy problem of(2.1)with the following initial condition:

    From Theorem 1.1 of[6],we have the following lemma.

    Lemma 2.1Under the hypothesis(2.2),if

    then the Cauchy problem(2.1)and(2.3)admits a unique global C1solution

    on t≥0.

    Using this result,someC1solutions with specific properties to the equation(2.1)can be constructed as follows.

    Lemma 2.2Under the hypothesis(2.2)and

    if z?and z??are two given points on I,then for

    and any given δ>0,there exists a C1solution

    to the equation(2.1),satisfying

    and

    ProofSet

    We constructz(t,x)according to the following different cases.

    Case 1(Forward rarefaction waves)Ifλ(z)>0 andz??≤z?,one may choose a monotone function?∈C1(R;I)satisfying

    Then by Lemma 2.1,the Cauchy problem(2.1)and(2.3)admits a uniqueC1solutionz=z(t,x)ont≥0.Moreover,by the method of characteristics,one has

    which imply thatz=z(t,x)satisfies all the requirements of Lemma 2.2 on the domain[0,T1+δ]×[0,L](see Fig.1).

    Figure 1 Forward rarefaction waves in the case λ(z)>0 and z?? ≤ z?

    Case 2(Backward rarefaction waves)Ifλ(z)<0 andz??≥z?,one may choose a monotone function?∈C1satisfying

    Then by Lemma 2.1,the Cauchy problem(2.1)and(2.3)admits a uniqueC1solutionz=z(t,x)ont≥0.Moreover,by the method of characteristics,it is easy to show thatz=z(t,x)fulfills all the requirements of Lemma 2.2 on the domain[0,T1+δ]×[0,L](see Fig.2).

    Figure 2 Backward rarefaction waves in the case λ(z)<0 and z?? ≥ z?

    Case 3(Compression waves)Ifλ(z)>0 andz??>z?,orλ(z)<0 andz??

    to the equation(2.1),satisfying

    and

    Setting

    it is easy to show thatz=z(t,x)is aC1solution to the equation(2.1)on the domain[0,T1+δ]×[0,L],which fulfills all the requirements of Lemma 2.2(see Fig.3).

    Figure 3 Compression waves

    3 SimpleWave Solutions to Quasilinear Hyperbolic Systems and Global Exact Boundary Controllability

    In this section,simple wave solutions to the quasilinear hyperbolic system(1.1),suitably constructed based on the result of§2,are combined on the stripex∈[0,L]to form a desired special solution,and then the global exact boundary controllability can be realized.

    Fori=1,···,n,the curveu=u(i)(s,uB)defined inUby the following initial value problem of ODE:

    is called theith characteristic trajectory passing through the pointu=uB(see[6]).By hyperbolicity of the system,there arendistinct characteristic trajectories passing through any given pointuB∈U,and they form a set of local curved coordinates in the neighborhood ofuB.Therefore,for any given pointsu?andu??inone can find a set of(finitely many)characteristic trajectories to connect them successively.In other words,there existKcharacteristic trajectoriesu(ik)andKreal numberssk(k=1,···,K),such that

    and

    Obviously,the selection of these characteristic trajectories is not unique.In applications,we may choose the one with the least number of characteristic trajectories.

    On each given characteristic trajectory,we have the following lemma.

    Lemma 3.1Suppose that u=u(i)(s,uB)is the ith characteristic trajectory of the system(1.1)passing through u=uB,i=1,···,n,and z=z(t,x)is a C1solution to the following transport equation:

    on the domain[0,T]×[0,L].Then u=u(i)(z(t,x),uB)is a C1solution to the system(1.1)on the domain[0,T]×[0,L].

    ProofDue to the smoothness assumption of the right eigenvectorri(u),u=u(i)(z(t,x),uB)is aC1function on the domain[0,T]×[0,L].Substituting it into the equation(1.1)and noting(3.1)and(1.4),we have

    Note that the solutionu=u(i)(z(t,x),uB)given above depends on one scalar functionz=z(t,x),which means it is a simple wave solution.Moreover,it is easy to show that fori=1,···,n,if(1.8)holds for theith eigenvalueλi(u)of the system(1.1),then the functionλ(z)=λi(u(i)(z,uB))satisfies(2.2).Then,using Lemmas 2.2 and 3.1,we get the following corollary.

    Corollary 3.1Under hypotheses(1.7)–(1.8),if uE∈U is located on the ith characteristic trajectory passing through uB∈U,namely,

    for sE∈then for

    and any given δ>0,there exists a C1solution u=u(t,x)∈C1([0,Ti,?+δ]×[0,L];U)to the system(1.1),satisfying

    and

    By this result,fork=1,···,K,on each characteristic trajectoryu(ik)a simple wave solution can be constructed to get aC1solution developing fromtoAfter suitable translations with respect tot,these solutions can be combined to get the following result.

    Proposition 3.1Under hypotheses(1.7)–(1.8),for any given points u?and u??in U,if they can be connected by K characteristic trajectories of the system(1.1),then for

    and any given T0>KT?,there exists a C1solution u=u(t,x)∈C1([0,T0]×[0,L];U)to the system(1.1)on the domain[0,T0]×[0,L],satisfying

    and

    Remark 3.1If we choose?(x)∈Ck(k≥1)in the above process,may have higher regularity:(t,x)∈Ck([0,T0]×[0,L];U).

    Now the global exact boundary controllability can be precisely presented and proved by means of Proposition 3.1 and the local exact boundary controllability.

    Theorem 3.1Under hypotheses(1.7)–(1.8)and(1.12)–(1.13),for any given initial data φ(x)and final data ψ(x)satisfying(1.15)–(1.16),where u?and u??are constant equilibria of the system(1.1),being connected by K characteristic trajectories,let T?be defined by(3.7).Then for any given T0>(K+2)T?,there exist C1controls hi(t)(i=1,···,n)on[0,T0],such that the mixed initial-boundary value problem(1.1)and(1.9)–(1.11)admits a unique C1solution u=u(t,x)on the domain[0,T0]×[0,L],which verifies exactly the final condition(1.14).

    ProofBy the local exact boundary controllability given in[7,10],a local control can be performed to get aC1solutionu=u(t,x)on the domain[0,T?+δ]×[0,L]to the system(1.1),satisfying

    Then by Proposition 3.1,aC1solutionu=u(t,x)to the system(1.1)can be constructed on the domain[T?+δ,(K+1)(T?+δ)]×[0,L],satisfying

    Finally,another local control can be performed to get aC1solutionu=u(t,x)to the system(1.1)on the domain[(K+1)(T?+δ),(K+2)(T?+δ)]×[0,L],satisfying

    Now a special solutionu(t,x)∈C1([0,T0]×[0,L];U)to the system(1.1),which possesses the initial data(1.9)and the final data(1.14),can be constructed just by combining the above three solutions.Substituting this solution into boundary conditions(1.10)–(1.11),one can obtain theC1boundary controls

    Obviously,for these boundary controls,the aforementioned solutionu=u(t,x)is the uniqueC1solution to the corresponding mixed initial-boundary value problem(1.1)and(1.9)–(1.11).Moreover,u=u(t,x)satisfies the final condition(1.14).

    4 Further Discussions

    First,we take the quasilinear hyperbolic system of the diagonal form as an example to show the validity of our methods as well as the reduction of the controlling time.

    Consider the following quasilinear hyperbolic system of the diagonal form:

    whereλi(u)(i=1,···,n)are smooth and bounded,satisfying

    and

    For the following boundary conditions given atx=0 andx=L:

    we hope to find suitable boundary controlshi(t)(i=1,···,n)such that there exists aC1solutionu=u(t,x)which develops from the initial data

    in a neighborhood of one given constant equilibrium to the final data

    in a neighborhood of another given constant equilibrium.Since theith characteristic trajectory of(4.1)passing through any given point is a straight line parallel to theuiaxis,it is possible to give a much clearer estimate on the controlling time.Actually,from Theorem 3.1 we have the following result.

    Corollary 4.1Under hypotheses(4.2)–(4.3),for any given points u?and u??inany given controlling time

    and any given initial data φ(x)and final data ψ(x)satisfying

    there exist boundary controls hi(t)∈C1[0,T0](i=1,···,n)such that the mixed initial-boundary value problem(4.1)and(4.4)–(4.6)admits a unique C1solution u=u(t,x)on the domain[0,T0]×[0,L],which verifies exactly the final data(4.7).Here U can be chosen as any rectangular domain containing u?and u??.

    Roughly speaking,the global controllability time given in Corollary 4.1 is(n+2)times of the time of two-sided local exact boundary controllability(see[7]),which,in general,is much shorter than that consumed by the method of pointwise extension control.

    Compared with the method given in previous results,the process shown in this paper has the following advantages:First,the global exact boundary controllability is established for general hyperbolic systems,but not just for systems of the diagonal form.Secondly,the controlling time can be significantly reduced.However,the result given in this paper is only feasible to homogeneous systems,since the constant equilibria of an inhomogeneous system generally form a complicated manifold in the phase space,and there may not exist a set of finite characteristic trajectories,composed of equilibria,that connect any two given equilibria.Moreover,the global exact boundary controllability is established only with two-sided boundary controls.In general,since the simple waves do not satisfy the uncontrolled boundary conditions,the global one-sided exact boundary controllability or the two-sided one with less controls(see[7]for the corresponding theories of local controllability)can not be achieved using the above method of simple waves.

    AcknowledgementThe authors would like to thank Prof.Ta-Tsien Li of Fudan University for his patient guidance,precious suggestions and productive discussions.

    [1]Cirinà,Marco,Boundary controllability of nonlinear hyperbolic systems,SIAM Journal on Control,7(2),1969,198–212.

    [2]Gugat,Martin and Leugering,Günter,Global boundary controllability of the de St.Venant equations between steady states,Annales de l’Institut Henri Poincaré,Analyse Non Linéare,20(1),2003,1–11.

    [3]Gugat,Martin and Leugering,Günter,Global boundary controllability of the Saint-Venant system for sloped canals with friction,Annales de l’Institut Henri Poincaré,Analyse Non Linéare,26(1),2009,257–270.

    [4]Lasiecka,Irena and Triggiani,Roberto,Exact controllability of semilinear abstract systems with application to waves and plates boundary control problems,Applied Mathematics and Optimization,23(2),1991,109–154.

    [5]Lions,Jacques-Louis,Exact controllability,stabilization and perturbations for distributed systems,SIAM Review,30(1),1988,1–68.

    [6]Li,Ta-Tsien,Global Classical Solutions for Quasilinear Hyperbolic Systems,Vol.32,Research in Applied Mathematics,Masson,John Wiley,Paris,1994.

    [7]Li,Ta-Tsien,Controllability and Observability for Quasilinear Hyperbolic Systems,Vol.3,AIMS Series on Applied Mathematics,American Institute of Mathematical Sciences,Springfield,MO,and Higher Education Press,Beijing,2010.

    [8]Li,Ta-Tsien,Global exact boundary controllability for first order quasilinear hyperbolic systems,Discrete and Continuous Dynamical Systems,Ser.B,14(4),2010,1419–1432.

    [9]Li,Ta-Tsien and Rao,Bo-Peng,Local exact boundary controllability for a class of quasilinear hyperbolic systems,Chinese Annals of Mathematics,Ser.B,23(2),2002,209–218.

    [10]Li,Ta-Tsien and Rao,Bo-Peng,Exact boundary controllability for quasilinear hyperbolic systems,SIAM Journal on Control and Optimization,41(6),2003,1748–1755.

    [11]Li,Ta-Tsien and Wang,Zhi-Qiang,Global exact boundary controllability for first order quasilinear hyperbolic systems of diagonal form,International Journal of Dynamical Systems and Dif f erential Equations,1(1),2007,12–19.

    [12]Li,Ta-Tsien and Yu,Li-Xin,Exact controllability for first order quasilinear hyperbolic systems with zero eigenvalues,Chinese Annals of Mathematics,Ser.B,24(4),2003,415–422.

    [13]Li,Ta-Tsien and Yu,Wen-Ci,Boundary Value Problems for Quasilinear Hyperbolic Systems,Vol.5,Duke University Mathematics Series,Duke University,Durham,N.C.,1985.

    [14]Russell,David L.,Controllability and stabilizability theory for linear partial differential equations:Recent progress and open questions,SIAM Review,20(4),1978,639–739.

    [15]Wang,Ke,Global exact boundary controllability for 1-D quasilinear wave equations,Mathematical Methods in the Applied Sciences,34(3),2011,315–324.

    [16]Wang,Zhi-Qiang,Exact controllability for nonautonomous quasilinear hyperbolic systems,PhD thesis,Fudan University,2006(in Chinese).

    [17]Wang,Zhi-Qiang,Exact controllability for nonautonomous first order quasilinear hyperbolic systems,Chinese Annals of Mathematics,Ser.B,27(6),2006,643–656.

    [18]Wang,Zhi-Qiang,Global exact controllability for quasilinear hyperbolic systems of diagonal form with linearly degenerate characteristics,Nonlinear Analysis:Theory,Methods&Applications,69(2),2008,510–522.

    [19]Zuazua,Enrike,Exact controllability for the semilinear wave equation,Journal de Mathématiques Pures et Appliquées,69(1),1990,1–31.

    [20]Zuazua,Enrique,Exact controllability for semilinear wave equations in one space dimension,Annales de l’Institut Henri Poincaré,Analyse Non Linéaire,10(1),1993,109–129.

    亚洲最大成人av| 欧美激情久久久久久爽电影| 亚洲精品aⅴ在线观看| 国产极品天堂在线| 日韩大片免费观看网站| 日本免费a在线| 99久久精品国产国产毛片| 国产精品一二三区在线看| 国产 一区 欧美 日韩| 午夜免费男女啪啪视频观看| av天堂中文字幕网| 亚洲精品aⅴ在线观看| 又大又黄又爽视频免费| 欧美一区二区亚洲| 简卡轻食公司| 色尼玛亚洲综合影院| 国产成人午夜福利电影在线观看| 亚洲第一区二区三区不卡| 亚洲熟女精品中文字幕| 久久精品综合一区二区三区| 高清欧美精品videossex| 亚洲一区高清亚洲精品| 亚洲av中文字字幕乱码综合| 免费观看在线日韩| 久久99热这里只有精品18| 有码 亚洲区| 少妇的逼好多水| 丝袜美腿在线中文| 日本黄色片子视频| 欧美变态另类bdsm刘玥| 亚洲欧美一区二区三区黑人 | 菩萨蛮人人尽说江南好唐韦庄| 少妇的逼好多水| 欧美成人a在线观看| 久久精品夜色国产| 日韩电影二区| 亚洲电影在线观看av| 少妇丰满av| 日韩强制内射视频| 亚洲欧美中文字幕日韩二区| 水蜜桃什么品种好| 午夜激情欧美在线| 久久久久网色| 男人爽女人下面视频在线观看| 禁无遮挡网站| 午夜福利视频1000在线观看| 国内精品宾馆在线| 精品一区二区三区视频在线| 国产中年淑女户外野战色| 欧美成人a在线观看| 美女黄网站色视频| 狂野欧美白嫩少妇大欣赏| 午夜激情久久久久久久| 纵有疾风起免费观看全集完整版 | 久久久久久久久中文| 日韩在线高清观看一区二区三区| 亚洲丝袜综合中文字幕| 国产精品久久视频播放| 国产高清国产精品国产三级 | 一本一本综合久久| 水蜜桃什么品种好| 欧美丝袜亚洲另类| 久久精品久久久久久久性| 成年免费大片在线观看| 欧美3d第一页| 中文字幕亚洲精品专区| 中文在线观看免费www的网站| 在线观看人妻少妇| 男人狂女人下面高潮的视频| 成年免费大片在线观看| 韩国高清视频一区二区三区| 日韩一区二区三区影片| 国产v大片淫在线免费观看| 亚洲在线观看片| 国产精品.久久久| 汤姆久久久久久久影院中文字幕 | 成人无遮挡网站| 国产一级毛片在线| 伦精品一区二区三区| 久久久亚洲精品成人影院| 日韩欧美三级三区| 一本久久精品| 亚洲天堂国产精品一区在线| 国产av码专区亚洲av| 亚洲欧洲国产日韩| 久久97久久精品| 国产视频内射| 久久久欧美国产精品| 国产免费福利视频在线观看| xxx大片免费视频| 18禁在线无遮挡免费观看视频| 亚洲人成网站高清观看| h日本视频在线播放| 国产三级在线视频| 午夜亚洲福利在线播放| 亚洲精品中文字幕在线视频 | 身体一侧抽搐| 精品午夜福利在线看| 亚洲va在线va天堂va国产| 男人狂女人下面高潮的视频| 日本熟妇午夜| 国产午夜精品久久久久久一区二区三区| 亚洲欧洲日产国产| 精品人妻熟女av久视频| 中文字幕av在线有码专区| 午夜福利网站1000一区二区三区| 亚洲欧洲日产国产| 久久精品国产亚洲网站| 国产又色又爽无遮挡免| 2022亚洲国产成人精品| 欧美一区二区亚洲| 极品教师在线视频| 国产毛片a区久久久久| 黄片无遮挡物在线观看| 在线观看美女被高潮喷水网站| 最近的中文字幕免费完整| 欧美潮喷喷水| 国内精品美女久久久久久| 免费电影在线观看免费观看| 毛片女人毛片| 精品久久久噜噜| 插逼视频在线观看| 精品午夜福利在线看| 久久国内精品自在自线图片| 国产成人精品一,二区| 99视频精品全部免费 在线| 国产成人91sexporn| 日韩av在线大香蕉| 亚洲精品456在线播放app| 亚洲,欧美,日韩| 蜜臀久久99精品久久宅男| 国产亚洲最大av| 水蜜桃什么品种好| 赤兔流量卡办理| 中文天堂在线官网| 亚洲最大成人av| 久久人人爽人人片av| 小蜜桃在线观看免费完整版高清| 久久99蜜桃精品久久| 中国国产av一级| 99热6这里只有精品| 天堂av国产一区二区熟女人妻| 亚洲第一区二区三区不卡| 亚州av有码| 高清欧美精品videossex| 免费黄频网站在线观看国产| 成年女人看的毛片在线观看| 国产精品三级大全| 麻豆精品久久久久久蜜桃| 18+在线观看网站| 亚洲激情五月婷婷啪啪| 久久综合国产亚洲精品| 午夜福利成人在线免费观看| 欧美最新免费一区二区三区| 亚州av有码| 老司机影院成人| 国产日韩欧美在线精品| 国产爱豆传媒在线观看| 激情五月婷婷亚洲| 国产v大片淫在线免费观看| 久久鲁丝午夜福利片| 久久精品国产自在天天线| 一二三四中文在线观看免费高清| 日本三级黄在线观看| 国产男女超爽视频在线观看| 一级片'在线观看视频| 国产片特级美女逼逼视频| 欧美97在线视频| 麻豆久久精品国产亚洲av| 午夜激情久久久久久久| 建设人人有责人人尽责人人享有的 | 亚洲精品亚洲一区二区| 麻豆国产97在线/欧美| 国产精品美女特级片免费视频播放器| 91狼人影院| 亚洲国产精品sss在线观看| 久久精品久久精品一区二区三区| 国产在视频线在精品| 在线天堂最新版资源| 日韩三级伦理在线观看| 亚洲欧美一区二区三区国产| 国产一区二区三区综合在线观看 | 赤兔流量卡办理| 汤姆久久久久久久影院中文字幕 | 亚洲精品第二区| 亚洲精品一二三| 久久99蜜桃精品久久| 最近中文字幕高清免费大全6| 国产91av在线免费观看| 亚洲欧美一区二区三区黑人 | 成人亚洲精品av一区二区| 熟妇人妻久久中文字幕3abv| 精品久久久久久电影网| 国产淫片久久久久久久久| 午夜免费观看性视频| av在线观看视频网站免费| 久久综合国产亚洲精品| 天堂影院成人在线观看| 在线观看av片永久免费下载| 免费观看性生交大片5| 高清毛片免费看| 美女脱内裤让男人舔精品视频| 国产精品人妻久久久影院| 在线免费十八禁| 国产成人午夜福利电影在线观看| 精品国产三级普通话版| 春色校园在线视频观看| 国产又色又爽无遮挡免| 日本wwww免费看| 日本一二三区视频观看| 尾随美女入室| 精品一区二区免费观看| 51国产日韩欧美| 国产精品不卡视频一区二区| 搡老妇女老女人老熟妇| 亚洲人成网站在线播| 欧美日韩综合久久久久久| 丰满人妻一区二区三区视频av| 在现免费观看毛片| 免费看不卡的av| av播播在线观看一区| 欧美成人a在线观看| 亚洲av成人精品一区久久| 国产精品综合久久久久久久免费| 日本爱情动作片www.在线观看| 亚洲美女搞黄在线观看| 欧美精品一区二区大全| 九色成人免费人妻av| 国产中年淑女户外野战色| 天天一区二区日本电影三级| 亚洲av.av天堂| 久久久久网色| 国内精品一区二区在线观看| 久久久久久久久久黄片| 欧美3d第一页| 亚洲欧美精品自产自拍| 欧美日韩视频高清一区二区三区二| 日本三级黄在线观看| 身体一侧抽搐| 深爱激情五月婷婷| 女的被弄到高潮叫床怎么办| av.在线天堂| 夫妻午夜视频| 99久久人妻综合| 亚洲av日韩在线播放| 欧美性猛交╳xxx乱大交人| 欧美高清性xxxxhd video| 国产成人精品久久久久久| av一本久久久久| 日韩一区二区三区影片| 日本免费在线观看一区| 日本爱情动作片www.在线观看| 老师上课跳d突然被开到最大视频| 国产乱人视频| 天天躁日日操中文字幕| 免费av观看视频| 久久精品夜夜夜夜夜久久蜜豆| 禁无遮挡网站| 久久鲁丝午夜福利片| 亚州av有码| 麻豆精品久久久久久蜜桃| .国产精品久久| 色哟哟·www| 如何舔出高潮| 欧美精品一区二区大全| 好男人视频免费观看在线| 可以在线观看毛片的网站| 国产精品无大码| 欧美成人一区二区免费高清观看| 色5月婷婷丁香| 精品一区二区免费观看| 欧美3d第一页| 日韩欧美 国产精品| 国产黄片视频在线免费观看| 欧美潮喷喷水| 精品一区二区免费观看| 久久精品久久久久久久性| 国产老妇女一区| 色哟哟·www| 中文字幕亚洲精品专区| 天天躁夜夜躁狠狠久久av| 91在线精品国自产拍蜜月| 亚洲在线自拍视频| 国产 一区精品| 婷婷色综合www| 久久久久免费精品人妻一区二区| 国产一区亚洲一区在线观看| 干丝袜人妻中文字幕| 亚洲av中文字字幕乱码综合| 日本色播在线视频| 午夜免费激情av| 午夜精品国产一区二区电影 | 久久久久久久久久成人| 美女黄网站色视频| 亚洲国产成人一精品久久久| freevideosex欧美| 国产亚洲av嫩草精品影院| 91狼人影院| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲aⅴ乱码一区二区在线播放| 国产精品麻豆人妻色哟哟久久 | 久久久久网色| 久久久久久久久久久免费av| 美女xxoo啪啪120秒动态图| 国产在视频线在精品| 亚洲精品,欧美精品| 99久久精品国产国产毛片| 十八禁网站网址无遮挡 | 又爽又黄无遮挡网站| 国产熟女欧美一区二区| 69人妻影院| 国产探花在线观看一区二区| 亚洲国产精品专区欧美| 欧美 日韩 精品 国产| 亚洲av日韩在线播放| 免费观看无遮挡的男女| 国产又色又爽无遮挡免| 又粗又硬又长又爽又黄的视频| 麻豆精品久久久久久蜜桃| 国产av码专区亚洲av| 国产精品爽爽va在线观看网站| 亚洲av在线观看美女高潮| 汤姆久久久久久久影院中文字幕 | 丝瓜视频免费看黄片| 欧美精品一区二区大全| 69av精品久久久久久| 亚洲人成网站在线观看播放| 免费不卡的大黄色大毛片视频在线观看 | 亚洲一区高清亚洲精品| 寂寞人妻少妇视频99o| 一区二区三区四区激情视频| 97超碰精品成人国产| 一级毛片 在线播放| 美女高潮的动态| 寂寞人妻少妇视频99o| 91久久精品国产一区二区成人| 国产午夜精品一二区理论片| 免费电影在线观看免费观看| 欧美高清性xxxxhd video| 婷婷色麻豆天堂久久| 99久久精品国产国产毛片| 人妻制服诱惑在线中文字幕| 欧美性感艳星| 天堂av国产一区二区熟女人妻| 美女国产视频在线观看| 晚上一个人看的免费电影| 成人毛片a级毛片在线播放| 国产成人a∨麻豆精品| 97超碰精品成人国产| 五月玫瑰六月丁香| videos熟女内射| 91aial.com中文字幕在线观看| 一本一本综合久久| 国产av码专区亚洲av| av在线播放精品| 精品久久久久久久人妻蜜臀av| 色综合亚洲欧美另类图片| 国产单亲对白刺激| 国产极品天堂在线| 国产成人aa在线观看| 九九在线视频观看精品| 大片免费播放器 马上看| 国产亚洲精品av在线| 国产av不卡久久| 伊人久久国产一区二区| 最新中文字幕久久久久| 成年免费大片在线观看| 热99在线观看视频| 免费看av在线观看网站| 亚洲精品久久久久久婷婷小说| 久久久色成人| 人体艺术视频欧美日本| 国产免费视频播放在线视频 | 国产成人精品婷婷| 久久久a久久爽久久v久久| 精品人妻视频免费看| 亚洲成人久久爱视频| 肉色欧美久久久久久久蜜桃 | 国产成人a∨麻豆精品| av在线亚洲专区| 亚洲欧洲日产国产| 成年女人在线观看亚洲视频 | xxx大片免费视频| 亚洲国产成人一精品久久久| 少妇人妻一区二区三区视频| 国产视频内射| freevideosex欧美| 少妇人妻精品综合一区二区| 免费观看av网站的网址| 亚洲国产最新在线播放| 亚洲色图av天堂| 欧美性感艳星| 日韩在线高清观看一区二区三区| 我的女老师完整版在线观看| 国产黄色视频一区二区在线观看| 成人午夜精彩视频在线观看| 久久久午夜欧美精品| 国产黄片视频在线免费观看| 久久精品国产亚洲av天美| 亚洲国产高清在线一区二区三| 舔av片在线| 高清毛片免费看| 免费无遮挡裸体视频| 99热网站在线观看| 一区二区三区乱码不卡18| 女的被弄到高潮叫床怎么办| 在线天堂最新版资源| 嫩草影院精品99| 亚洲美女搞黄在线观看| 男的添女的下面高潮视频| 欧美激情在线99| 国产免费又黄又爽又色| 蜜臀久久99精品久久宅男| videossex国产| 亚洲在线观看片| 黄色日韩在线| 五月玫瑰六月丁香| 嘟嘟电影网在线观看| 亚洲欧美一区二区三区黑人 | 免费黄频网站在线观看国产| 大话2 男鬼变身卡| 激情 狠狠 欧美| 高清毛片免费看| 只有这里有精品99| 一个人免费在线观看电影| 一级毛片aaaaaa免费看小| 亚洲欧美一区二区三区黑人 | 91精品一卡2卡3卡4卡| 国内揄拍国产精品人妻在线| 一二三四中文在线观看免费高清| 免费看不卡的av| 97人妻精品一区二区三区麻豆| 最近手机中文字幕大全| 亚洲三级黄色毛片| 日韩精品有码人妻一区| 成人性生交大片免费视频hd| 小蜜桃在线观看免费完整版高清| 街头女战士在线观看网站| 高清欧美精品videossex| 色5月婷婷丁香| 777米奇影视久久| 如何舔出高潮| av.在线天堂| 亚洲最大成人av| 老女人水多毛片| av网站免费在线观看视频 | 国产视频首页在线观看| 99热这里只有精品一区| 我的老师免费观看完整版| 国产亚洲午夜精品一区二区久久 | 久久韩国三级中文字幕| 久久精品国产亚洲av天美| 国产精品福利在线免费观看| 久久韩国三级中文字幕| 尾随美女入室| av免费在线看不卡| 亚洲成人久久爱视频| 大香蕉久久网| 噜噜噜噜噜久久久久久91| 午夜福利成人在线免费观看| 天天躁夜夜躁狠狠久久av| 毛片一级片免费看久久久久| 91精品一卡2卡3卡4卡| 爱豆传媒免费全集在线观看| 亚洲丝袜综合中文字幕| 亚洲av国产av综合av卡| 看免费成人av毛片| av免费在线看不卡| 欧美高清性xxxxhd video| 久久久亚洲精品成人影院| 欧美日韩国产mv在线观看视频 | 日韩精品青青久久久久久| 亚洲精品影视一区二区三区av| 18+在线观看网站| 日韩欧美三级三区| 建设人人有责人人尽责人人享有的 | 一个人免费在线观看电影| 精品久久久久久久久久久久久| 亚洲精品自拍成人| 午夜老司机福利剧场| 欧美日本视频| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 深夜a级毛片| 亚洲av免费高清在线观看| 免费大片黄手机在线观看| 精品久久久久久久久av| 国产老妇伦熟女老妇高清| 国内精品一区二区在线观看| 久久精品综合一区二区三区| 国产综合懂色| 免费看a级黄色片| 久久国内精品自在自线图片| 欧美不卡视频在线免费观看| 国产精品日韩av在线免费观看| 免费看av在线观看网站| 日韩欧美 国产精品| 午夜爱爱视频在线播放| 午夜福利在线在线| 极品教师在线视频| 日韩制服骚丝袜av| 亚洲天堂国产精品一区在线| 久久人人爽人人爽人人片va| 天堂av国产一区二区熟女人妻| 久久久精品欧美日韩精品| 99re6热这里在线精品视频| 亚洲aⅴ乱码一区二区在线播放| 免费av不卡在线播放| 日韩欧美精品免费久久| 国产午夜福利久久久久久| 麻豆成人午夜福利视频| 国产精品国产三级专区第一集| 国产69精品久久久久777片| 精品久久久久久久久亚洲| 日本三级黄在线观看| 亚洲一级一片aⅴ在线观看| 青春草视频在线免费观看| 97在线视频观看| 国产伦理片在线播放av一区| 日日摸夜夜添夜夜爱| 亚洲av二区三区四区| 国产在视频线精品| 男的添女的下面高潮视频| 免费在线观看成人毛片| 91aial.com中文字幕在线观看| 精品99又大又爽又粗少妇毛片| 亚洲av男天堂| 欧美潮喷喷水| 偷拍熟女少妇极品色| 国产精品一区二区三区四区免费观看| 一级毛片我不卡| 成人毛片60女人毛片免费| 少妇熟女欧美另类| 免费观看a级毛片全部| 免费黄网站久久成人精品| 国产成人免费观看mmmm| 成人欧美大片| 亚洲av一区综合| 九草在线视频观看| 午夜免费激情av| 成人毛片a级毛片在线播放| 麻豆成人午夜福利视频| 亚洲av日韩在线播放| 毛片女人毛片| 男女那种视频在线观看| .国产精品久久| 一区二区三区高清视频在线| 亚洲婷婷狠狠爱综合网| 人人妻人人澡人人爽人人夜夜 | 寂寞人妻少妇视频99o| 久久韩国三级中文字幕| 看免费成人av毛片| 丰满乱子伦码专区| 欧美高清成人免费视频www| av一本久久久久| 欧美变态另类bdsm刘玥| 激情 狠狠 欧美| 亚洲无线观看免费| 观看美女的网站| 高清视频免费观看一区二区 | 少妇裸体淫交视频免费看高清| 久久精品熟女亚洲av麻豆精品 | av网站免费在线观看视频 | 亚洲精品456在线播放app| 亚洲欧美精品专区久久| 亚洲欧美一区二区三区国产| 91久久精品电影网| 能在线免费观看的黄片| av网站免费在线观看视频 | 狂野欧美白嫩少妇大欣赏| 国产精品一区二区性色av| 好男人在线观看高清免费视频| 大陆偷拍与自拍| 深爱激情五月婷婷| 亚洲精华国产精华液的使用体验| 亚洲欧洲日产国产| 久久久精品免费免费高清| 国产精品日韩av在线免费观看| 午夜免费观看性视频| 亚洲欧洲日产国产| 国产淫语在线视频| 精品午夜福利在线看| 国产成人a区在线观看| 精品国产三级普通话版| 成年av动漫网址| 日韩不卡一区二区三区视频在线| 成人亚洲精品av一区二区| 美女大奶头视频| 国产乱来视频区| 男人舔奶头视频| 能在线免费观看的黄片| 国产爱豆传媒在线观看| 水蜜桃什么品种好| 亚洲精品日韩在线中文字幕| 久久精品夜色国产| 日韩精品青青久久久久久| 免费黄色在线免费观看| 日韩欧美 国产精品| 熟女人妻精品中文字幕| 91午夜精品亚洲一区二区三区| 秋霞在线观看毛片| 中文字幕av成人在线电影| 三级毛片av免费| 婷婷色麻豆天堂久久| 国产视频内射| 亚洲激情五月婷婷啪啪| 人妻系列 视频| 亚洲自拍偷在线| 国产精品伦人一区二区| 久久国产乱子免费精品| 成人亚洲精品av一区二区| 精品久久久久久久久亚洲| 91精品国产九色| 最新中文字幕久久久久| 高清在线视频一区二区三区| 亚洲精品乱久久久久久|