• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    單壁碳納米管-石墨烯雜化材料的自組裝及其電學(xué)性能

    2015-06-05 14:36:37PrashantaDhojAdhikariYonghunKoDaesungJungChungYunPark
    新型炭材料 2015年4期
    關(guān)鍵詞:單壁酸處理電學(xué)

    Prashanta Dhoj Adhikari, Yong-hun Ko, Daesung Jung, Chung-Yun Park,

    單壁碳納米管-石墨烯雜化材料的自組裝及其電學(xué)性能

    Prashanta Dhoj Adhikari1, Yong-hun Ko1, Daesung Jung2, Chung-Yun Park1,2

    (1.InstituteofBasicScience,SungkyunkwanUniversity,Suwon440-746,RepublicofKorea; 2.DepartmentofEnergyScience,SungkyunkwanUniversity,Suwon440-746,RepublicofKorea)

    以Si為基底,采用氣相沉積法制備出石墨烯(G/Si)薄膜。將含1%APTES的苯溶液與G/Si密封,在115℃下加熱2 h,G薄膜上自組裝單層APTES膜(SAM-G/Si)。將SAM-G/Si浸漬于酸處理后的單壁碳納米管氯仿液中,45℃干燥即得到單壁碳納米管-石墨烯雜化材料(SWCNT-G/Si)。結(jié)果表明,具有p-型電學(xué)性能的G/Si經(jīng)表面改性后呈現(xiàn)出n-型性能,電容性能得到提高。

    1 Introduction

    One-dimensional single-walled carbon nanotubes (SWCNTs)and two-dimensional graphene are nanocarbon materials.Both materials have attracted tremendous attentions for fundamental research and applications in field-emission devices,field-effect transistors,supercapacitors,batteries[1-11],solar cells[12,13]and transparent electrodes[14-16],owing to their extraordinary electrical,mechanical,physical, and structural properties.SWCNTs and graphene have many analogous properties,but there are differences between the two due to structuraldifferences.Several attempts have recently been made to integrate these two novel materials together in order to utilize the merits of both[17-22].

    Chemical vapor deposition(CVD)is an important mean to synthesis carbon nanomaterials[13,23,24]. To realize the merits of a combined 2D graphene and 1D CNT material,there have been many recent attempts to prepare graphene sheet-CNT hybrid materials.Recently,the fabrication of G/CNT hybrids through CVD is more attractive because it is possible to form covalent C-C bonding between graphene and CNTs,and to prepare G-CNT hybrids with various structures[25-28].However,the as-grown CNTs are usually multi-walled CNTs(MWCNTs).This results in low specific surface areas(SSA)of as-fabricated G-CNT hybrids,and hinders their performance in the area where a high SSA is required,such as energystorage devices.The direct growth of CNTs on graphene oxide(GO)and reduced GO is simple and effective way to obtain G-CNT hybrids with strong graphene-CNT bonding and anticipated nanostructures. But,as-grown CNTs were still MWCNTs with a poor graphitization due to the high solubility of catalyst nanoparticles in GO or reduced GO[29].Besides,the high defect density of GO or reduced GO also limits the quality of graphene in as-fabricated G-CNT hybrids,and thus hinders their performance.Compared with MWCNTs,the SWCNTs have much large surface area and low defectdensity.Recently,Ning and co-workers demonstrated a one-step synthesis of GSWCNT hybrids by CVD with a mixed catalyst of MgO and Fe/MgO,in which MgO served as the template for the deposition of graphene and Fe/MgO served as the catalyst for the growth of SWCNTs,as well as the graphene layers[30].Nevertheless,to prepare purely SWCNT-graphene hybrid in this technique is difficult due to the poor stability of the catalyst nanoparticles on metal surface.

    In order to improve the quality of SWCNT-graphene hybrid that is well interconnected and has superior durability/applicability features for use in device fabrication,we report a simple approach first time to prepare the SWCNT-G hybrid,in which functionalized SWCNTs were chemisorbed onto the supported graphene film that was immobilized with a monolayer self-assembled from 3-aminopropyltriethoxysilane (APTES).This method could be useful as a new route to the fabrication of graphene hybrid materials for various potential applications.

    2 Experimental

    2.1Reagents and materials

    Isopropyl alcohol(IPA),3-aminopropyltriethoxysilane(APTES),toluene,SWCNTs,chloroform,nitric acid and membrane filter paper were purchased as received.Deionized water was used throughoutthe whole experiment.

    2.2Graphene synthesis

    Graphene was synthesized on copper foil by CVD method.Briefly,Cu foil was pre-annealing up-to 1 050℃in a reactor for 30 min under Ar. Then,methane was introduced into the reactor for 30 min,followed by a cooling down under Ar flow. The graphene grown via CVD was transferred onto a silicon substrate(SiO2/Si)by copper etching technique(G/Si)[31].

    2.3Fabrication of self-assembled monolayer onto graphene surface

    The graphene on the silicon substrate was irradiated by UV light for 30 min.Then,a glass beaker containing 1%APTES in toluene and UV-treated G/Si were placed in an air-tight steel box.The box was loaded into a processing chamber and heated up to 115℃for 2 h.An APTES was self-assembled to form a monolayer on graphene.Finally,as-fabricated self-assembled monolayer(SAMs)on graphene was rinsed with toluene and ethanol,and then dried by under a N2stream to obtain SAM-G/Si[32].

    2.4Functionalization of SWCNTs

    25 mg of SWCNTs and 50 mL of HNO3were mixed and refluxed overnight and later the mixtures were vacuum distilled,washed several times with water and dried in vacuum oven at 60℃for 1 h.

    2.5Loading of SWCNTs onto graphene surface

    The surface functionalized SWCNTs were dispersed in chloroform by ultrasonication for 3 h and then,SAM-G/Si substrate was dipped into solution overnight at 45℃.The SWCNT-loaded graphene on substrate was washed by ethanol and dried by blowing N2gas to obtain SWCNT-G/Si.

    2.6Characterization

    The surface modified substrates were characterized by Raman spectroscopy.Raman spectra were obtained using a Renishaw,1 000 micro-Raman spectrometer at an excitation wavelength of 514 nm, where at leastthree different sites were sampled.The substrates were further evaluated by X-ray photo electron spectroscopy(XPS).XPS spectra were obtained using a theta probe(VGMICROTEC,ESCA 2000) with a monochromatic Al Kαsource at a pressure of 2×10-9mbar.The surface morphology of samples was characterized using a field emission scanning electron microscope(FE-SEM,JEOL,JSM-7500F) at an accelerating voltage of 15 kV.The electrical properties of the SWCNT-G hybrid were examined using a 4200-scs Keithley semiconductor analyzer. Electrochemical characterizations of G/Si and SWCNT-G/Si were performed by cyclic voltammetry analysis in a three-electrode half shell system in 1 mol/L H2SO4solution.

    3 Results and discussion

    The acid-treated SWCNTs were evaluated by Raman spectroscopy.The radial breathing mode peak (RBM),G and 2 D peaks are seen at182,1 587 and 2 679 cm-1respectively for pristine SWCNTs as shown in Fig.1 a.However,after the acid treatment those peaks were not changed substantially,but a D peak clearly appears at 1 350 cm-1,indicating that surface defects are generated in SWCNTs by an acid oxidation(Fig.1b).The surface-functionalizedSWCNTs were further evaluated by XPS.Pristine SWCNTs sample is shown to have an overall oxygen content of 4%as shown in Fig.1c,but after the acid oxidation,the oxygen content is increased to 17% (Fig.1d),indicating that the surface treatment leads to a formation of sufficient surface functionalized groups(—OH,—COOH)in SWCNTs as expected, which might be helpful for their binding onto functionalized CVD-grown graphene film.The non-aqueous dispersion of SWCNTs into solvent is found more effective for acid treated ones rather than pristine SWCNTs,which could be also due to the introduction of hydrophilic groups into SWCNTs surface as shown in Fig.2(Inset).In addition,fabrication of SAMs onto graphene surface was evaluated by XPS and itis found that there is no evidence of formation of N peak for pristine graphene(Fig.3a)but for the SAMs fabricated sample a well-constructed N peak appears, confirming that abundant amine-terminated group is liberated onto graphene surface as shown in Fig.3. Compared with the graphene without the UV treatment(Fig.3b),the UV-treated one has a high N content of(Fig.3c),which is four times as that of the un-treated one,indicating that amine group is sufficiently loaded onto graphene surface as shown in Fig.3c[33].This indicates that the UV-treated sample liberates sufficient oxidize molecules onto graphene surface that is favorable for fabricating SAMs.

    Fig.1 Schematic illustration of SWCNTs covalently linked onto graphene surface.

    Fig.2 Raman and XPS spectra of SWCNTs before and after acid treatment: (a,b)Raman spectra of(a)pristine SWCNTs and(b)SWCNTs treated by oxidized acid;(c,d)XPS spectra of(c)SWCNTs and (d)SWCNTs treated by oxidized acid(Inset:the photographs of the dispersions of acid-treated SWCNTs and pristine SWCNTs).

    In order to further examine whether the SWCNTs are electronically coupled with graphene surface or merely physically attached,Raman bands of pristine and the acid-treated SWCNTs onto SAM-G samples are compared.The acid-treated SWCNTs are chemisorbed onto SAM-G,causing a change of the G and 2 D bands and also RBM peak position.However, there is no change of bands in SAM-G surface for thepristine SWCNTs onto SAM-G,indicating that there is no chemical interaction between SWCNTs and graphene surface.

    Fig.3 N1s XPS spectra for(a)G/Si,(b)SAM-G/Si without out UV treatment and(c)with UV treatment.

    Fig.4 Raman spectra for(a)SAM-G,(b)acid treated SWCNTs and(c)SWCNT-G/Si.

    Morphologies of SWCNTs,G/Si and SWCNTG/Si were evaluated by SEM as shown in Fig.5. After the acid-treated SWCNTs are chemisorbed onto graphene surface,they are commonly communicated with graphene as shown in Fig.5 c,consistent with the Raman results.

    To further confirm the chemical bonding,the acid-treated SWCNTs sorbed onto garphene surface was evaluated by XPS as shown in Fig.6.The N1s peak of SAM-G/Si is observed in the range of B.E. 399-402 eV.But,after the acid-treated SWCNTs are sorbed onto graphene surface the N1s peak is clearly divided and splitting peak is seen at higher B.E.~405 eV,which should be originated by amide bond. This result confirms the sorption of SWCNTs onto graphene surface is of chemicalnature[31,34].To evaluate their electrical characteristics induced by chemisorption between the SWCNTs and functionalized graphene,field-effect transistors measurements(FET) were carried out as shown in Fig.7.Pristine,functionalized and hybrid graphene FET were fabricated on SiO2/Si substrates using platinum for the source and drain electrodes and 1-butyl-3-methylimidazolium (BmimPF6)as an ionic liquid.The schematic procedure of FET measurements is shown in Fig.7 (Inset).The charge neutrality point for G/Si without surface treatment is near to positive site of zero volt (Fig.7a)but for the UV-treated G/Si,it is further shifted to the same positive site,indicating a p-type doping,which could be resulted from the-COOH, OH group via UV-treatment(Fig.7b).However, after SAMs fabrication on the UV-treated G/Si the charge neutrality point is shifted to negative site of zero volt,meaning a n-doping into graphene surface due to amine terminated SAMs deposition onto graphene surface(Fig.7c).But,after the acid-treated SWCNTs are chemisorbed onto SAM-G/Si,the n-type characteristic is reduced,indicating that doping of p-type material,which could be contributed from the SWCNTs(Fig.7d).Based on these results,itis expected that lone pair of electron from amine in SAMs may donate electron onto graphene,thereby, increasing the charge carrier concentration and therefore increasing the conductivity of SAM-G/Si sample.However,the chemisorption of SWCNTs onto its surface leads to a reduction in the resistance and reaches conductivity beyond position(Figure was not shown).This observation strongly suggests that the exceedingly conductive SWCNTs bonded with graphene[35].Therefore,stable binding of SWCNTs onto graphene surface in present work could be very applicable in storage devices.

    Fig.5 SEM images of pristine(a)SWCNTs,(b)G/Si and(c)SWCNT-G/Si.

    Fig.6 XPS N1s spectra of(a)SAM-G and(b)SWCNT-G/Si.

    Moreover,the electrochemical properties of pristine and the hybrid materials were studied using them as working electrodes and 1 mol/L H2SO4for electrolyte solution at a scan rate 20 mV/s.Fig.8c and 8 d show the typical charge/discharge curves of the G/Si and SWCNT-G/Sisamples.The linear and symmetrical curves are indicative of the excellent electrochemical stability and charge/discharge properties as shown in Fig.8.The capacitance from the discharge curves is calculated using the following equation C=i×Δt/ ΔV[36].Where,i is the discharge current density (0.1 mA·cm-2),Δt is the duration of the discharge from+0.8 to-0.8 V(ΔV).

    Fig.7 I-V measurement for(a)G/Si, (b)UV-treated G/Si,(c)SAMs/Si and(d)SWCNT-G/Si(Inset:schematic representation of FET device).

    The discharge time for the SWCNT-G/Si is slightly greater than the G/Si sample and specific capacitance for the hybrid and pristine samples are calculated to be 6.01 and 5.03 mF/cm2respectively,indicating that the SWCNT-G/Si offers the larger charge capacity than the G/Si.Based upon the peak positions of Fig.8,the possible reason of the present result is that the SWCNT fibrils promote the electron transfer between SWCNTs and graphene electrode.In addition,the immobilization of SWCNTs creates the larger surface area onto the hybrid graphene electrode.Therefore,the surface functionalization of SWCNTs and graphene is found more effective to integrate them into the SWCNT-G hybrid,which could be implemented to fabricate supercapacitor.The present simple technique might be utilized to prepare other nanomaterials too.

    Fig.8 Cyclic voltammogram curves of(a)pristine graphene and(b)SWCNT-G at a scan rate of 20 mV/s in 1 mol/L H2SO4solution. (c,d)Their galvanostatic charge/discharge curves respectively.Supercapacitor performance of hybrid film showing high specific capacitance owing to a large surface area and marginally higher electrical conductivity.

    4 Conclusions

    We have developed a simple method to integrate SWCNTs onto CVD grown graphene film via immobilization technique.The amine groups on graphene promote the chemisorption of the acid-treated SWCNTs.A p-type characteristic of the G/Siis shifted to n-type electrical properties after immobilized with SAMs of APTES and hybridized with SWCNTs, which improves the specific capacitance.This approach could be of great use in the fabrication of supercapaicitors,flexible hybrid electrodes and other future applications.

    Acknowledgements

    This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(2009-0094023).

    [1] Novoselov K S,Geim A K,Morozov S V,et al.Electric field effect in atomically thin carbon films[J].Science,2004,306: 666-669.

    [2] Liang J,Xu Y,Huang Y,et al.Infrared-triggered actuators from graphene-based nanocomposites[J].J Phys Chem C, 2009,113:9921-9927.

    [3] Wang X,Zhi L J,Mullen K.Transparent,conductive graphene electrodes for dye-sensitized solar cells[J].Nano Lett,2008,8: 323-327.

    [4] Yoo E,Kim J,Hosono E,et al.Large reversible Li storage of graphenenanosheet families for use in rechargeable lithium ion batteries[J].Nano Lett,2008,8:2277-2282.

    [5] Schwierz F.Graphene transistors[J].Nat Nanotechnol,2010, 5:487-496.

    [6] Stoller M D,Park S,Zhu Y W,et al.Graphene-based ultracapacitors[J].Nano Lett,2008,8:3498-3502.

    [7] Simon P,Gogotsi Y.Materials for electrochemical capacitors[J]. Nat Mater,2008,7:845-854.

    [8] Dong X C,Shi Y M,Huang W,et al.Electrical detection of DNA hybridization with single-base specificity using transistors based on CVD-grown graphene sheets[J].Adv Mater,2010, 22:1649-1653.

    [9] Huang Y X,Sudibya H G,Fu D L,et al.Label-free detection of ATP release from living astrocytes with high temporal resolution using carbon nanotube network[J].Biosensor Bioelectron, 2009,24:2716-2720.

    [10] Huang Y X,Dong X C,Shi Y M,et al.Nanoelectronic biosensors based on CVD grown graphene[J].Nanoscale,2010, 2:1485-1488.

    [11] Dong X C,Fu D L,Xu Y P,etal.Label-free electronic detection of DNA using simple double walled carbon nanotube resistors[J].J Phys Chem C,2008,112:9891-9895.

    [12] Jia Y,Cao A,Bai X,et al.Achieving high efficiency siliconcarbon nanotube heterojunction solar cells by acid doping[J]. Nano Lett,2011,11:1901-1905.

    [13] Arco L G D,Zhang Y,Schlenker C W,et al.Continuous, highly flexible,and transparent graphene films by chemical vapor deposition for organic photovoltaics[J].ACS Nano,2010, 4:2865-2873.

    [14] Bae S,Kim H,Lee Y,et al.Roll-to-rollproduction of30-inch graphenefilms for transparent electrodes[J].Nat Nanotechnol, 2010,5:574-578.

    [15] Hu L B,Gruner G,Li D,et al.Patternabletransparent carbon nanotube films for electrochromicdevices[J].J Appl Phys,2007,101:016102.

    [16] Tantang H,Ong J Y,Loh C L,et al.Using oxidation to increase the electrical conductivity of carbon nanotube electrodes [J].Carbon,2009,47:1867-1870.

    [17] Dong X C,Li B,Wei A,et al.One-step growth of graphenecarbon nanotube hybrid materials by chemical vapor deposition [J].Carbon,2011,49:2944-2949.

    [18] Li CY,Li Z,Zhu H W,et al.Graphenenano-‘‘patch’’on a carbon nanotube network for highly transparent/conductive thin film applications[J].J Phys Chem C,2010,114:14008-14012.

    [19] King P J,Khan U,Lotya M,et al.Improvement oftransparent conducting nanotube films by addition of smallquantities of graphene[J].ACS Nano,2010,4:4238-4246.

    [20] Hong T K,Lee D W,Choi HJ,et al.Transparent,flexible conducting hybrid multilayer thin films of multiwalled carbon nanotubes with graphenenanosheets[J].ACS Nano,2010,4:3861-3868.

    [21] Fan Z J,Yan J,Zhi L J,et al.A three-dimensional carbon nanotube/graphene sandwich and its application as electrode in supercapacitor[J].Adv Mater,2010,22:3723-3728.

    [22] Tung V,Chen L M,Allen M J,et al.Low-temperature solution processing of graphene-carbon nanotube hybrid materials for high-performance transparent conductors[J].Nano Lett,2009, 9:1949-1955.

    [23] Adhikari P D,Kim S,Lee S,et al.Immobilization of iron nanoclustures on functionalized silicon substrate and their catalytic behavior to synthesize multi-walled carbon nano tubes[J]. Nanosci and Nanotech,2013,13:4587.

    [24] Adhikari P D,Song W,Cha M J,et al.Synthesis of high quality single-walled carbon nanotubes via catalytic layer reinforced by self-assembled monolayer[J].Thin Solid Films, 2013,545:50-55.

    [25] Chen S,Chen P,Wang Y.Carbon nanotubes grown in situ on graphenenanosheets as superior anodes for Li-ion batteries[J]. Nanoscale,2011,3(10):4323-4329.

    [26] Paul R K,Ghazinejad M,Penchev M,etal.Synthesis of a pillared graphene nanostructure:acounterpart of three-dimensional carbon architectures[J].Small,2010,6(20):2309-2313.

    [27] Lv R T,Cui T X,Jun M S,et al.Open ended,N-doped carbon nanotube-graphene hybrid nanostructures as high-performance catalyst support[J].Adv Funct Mater,2011,21(5): 999-1006.

    [28] Yu K H,Lu G H,Bo Z,et al.Carbon nanotube with chemically bonded graphene leaves for electronic and optoelectronic applications[J].J Phys Chem Lett,2011,2(13):1556-1562.

    [29] Rinaldi A,Tessonnier J P,Schuster M E,et al.Dissolved carbon controls the initial stages of nanocarbon growth[J].Angew Chem Int Ed,2011,50(14):3313-3317.

    [30] Zhu X,Ning G,Fan Z,et al.One-step synthesis of a graphene-carbon nanotube hybrid decorated by magnetic nanoparticles[J].Carbon,2012,50(8):2764-2771.

    [31] Adhikari P D,Jeon S,Chha M,et al.Immobilization of carbon nanotubes on functionalized graphene film grown by chemical vapor deposition and characterization of the hybrid material [J].Sci and Technol of Adv Mater,2014,15:015007.

    [32] Adhikari P D,Tai Y,Ujihara M,et al.Surface functionalization of carbon micro coils and their selective immobilization on surface-modified silicon substrates[J].J Nanosci and Nanotech,2010,10:833-839.

    [33] Adhikari P D,Imae T,Motojima S.Selective immobilization of carbon micro coils on patterned substrates and their electrochemical behavior on ITO substrate[J].Chem Eng J,2011,174: 693.

    [34] AdhikariP D,Chho J,Park C Y.Easy synthesis of nitrogen doped single-walled carbon nanotubes via using supporting layer as a precursor[J].Material Focus,2014,3:281-285.

    [35] Mou Z,Chen X,Du Y,etal.Forming mechanism of nitrogen doped graphene prepared by thermal solid-state reaction of graphite of oxide and urea[J].Appl Surf Sci,2011,258: 1704-1710.

    [36] Song R K,Park J H,Sivakkumar S R,et al.Supercapacitive properties of polyaniline/Nafion/hydrous RuO2composite electrodes[J].Journal of Power Sources,2007,166:297-301.

    Single-wall carbon nanotube hybridized graphene films: self assembly and electrical properties

    Prashanta Dhoj Adhikari1, Yong-hun Ko1, Daesung Jung2, Chung-Yun Park1,2
    (1.InstituteofBasicScience,SungkyunkwanUniversity,Suwon440-746,RepublicofKorea;2.DepartmentofEnergyScience,SungkyunkwanUniversity,Suwon440-746,RepublicofKorea)

    A SWCNT-G/Si hybrid film was fabricated from graphene(G)film by chemical vapor deposition and single-walled carbon nanotubes(SWCNTs)by an immobilization method,in which a 3-aminopropyltriethoxysilane monolayer was formed on a UV irradiated graphene film by self-assembly,and acid-oxidized SWCNTs were chemisorbed on it.The G/Si,3-aminopropyltriethoxysilane immobilized G/Si and SWCNT-G/Si hybrid films were characterized by SEM,Raman spectroscopy,XPS,and conductivity and electrochemical tests.Results indicate that the immobilization changes the p-type G/Si into n-type by electron donation from a lone electron pair on the amine and the chemisorption reduces the n-type behavior.The SWCNT-G/Si hybrid film has a higher specific capacitance than the G/Si film.This approach could be of great use in the fabrication of supercapacitors,flexible hybrid electrodes and other devices.

    Chung-Yun Park.E-mail:cypark@skku.edu

    TB332

    A

    Chung-Yun Park.E-mail:cypark@skku.edu

    Prashanta Dhoj Adhikari.E-mail:dhoj2@yahoo.com

    1007-8827(2015)04-0342-07

    Received date:2015-03-10;Revised date:2015-08-05

    Author introduction:Prashanta Dhoj Adhikari.E-mail:dhoj2@yahoo.com

    English edition available online ScienceDirect(http://www.sciencedirect.com/science/journal/18725805).

    10.1016/S1872-5805(15)60193-7

    猜你喜歡
    單壁酸處理電學(xué)
    電學(xué)
    赤霉酸處理對核桃種子萌發(fā)和幼苗生長的影響
    河北果樹(2022年1期)2022-02-16 00:41:06
    單壁碳納米管內(nèi)1,4-萘琨電池電極材料性能的研究
    云南化工(2021年7期)2021-12-21 07:27:38
    對一個電學(xué)故障題的思考
    酸處理對馬鈴薯塊莖形成相關(guān)基因表達(dá)的影響
    不同細(xì)度玻纖針刺復(fù)合氈的耐酸性研究
    Lesson Seventy-four An atypical presentation of a typical arrhythmia
    多巴胺和腎上腺素在單壁碳納米管修飾電極上的電化學(xué)行為
    巧用電學(xué)知識 妙解環(huán)保問題
    酚醛樹脂/混酸處理碳納米管復(fù)合材料的制備與性能
    中國塑料(2014年9期)2014-10-17 02:48:34
    777米奇影视久久| 久久精品亚洲熟妇少妇任你| 亚洲精品一卡2卡三卡4卡5卡 | 操出白浆在线播放| 欧美另类一区| 一本大道久久a久久精品| 国产精品久久久久久精品古装| 国产在线一区二区三区精| 亚洲人成网站在线观看播放| 久久女婷五月综合色啪小说| 免费观看a级毛片全部| 国产成人欧美在线观看 | 超碰成人久久| 久久久精品区二区三区| 国产野战对白在线观看| 亚洲国产日韩一区二区| 亚洲美女黄色视频免费看| 亚洲国产中文字幕在线视频| 中文字幕av电影在线播放| 亚洲成人免费电影在线观看 | 男女高潮啪啪啪动态图| 日韩 亚洲 欧美在线| 欧美av亚洲av综合av国产av| 免费观看人在逋| bbb黄色大片| 一级毛片女人18水好多 | 国产成人一区二区三区免费视频网站 | 午夜91福利影院| 欧美亚洲日本最大视频资源| 免费在线观看完整版高清| 交换朋友夫妻互换小说| 午夜激情久久久久久久| 欧美人与性动交α欧美精品济南到| 精品一品国产午夜福利视频| 国产视频一区二区在线看| 老司机亚洲免费影院| 国产免费视频播放在线视频| 丁香六月欧美| 国产成人精品久久二区二区免费| 久久精品久久精品一区二区三区| 亚洲av电影在线观看一区二区三区| 中文字幕最新亚洲高清| 久久久久视频综合| 各种免费的搞黄视频| 久久久久国产一级毛片高清牌| 欧美少妇被猛烈插入视频| 国精品久久久久久国模美| 亚洲专区国产一区二区| 国产91精品成人一区二区三区 | 两个人免费观看高清视频| 黄频高清免费视频| 2018国产大陆天天弄谢| 日韩 亚洲 欧美在线| avwww免费| 天天操日日干夜夜撸| 各种免费的搞黄视频| 女人爽到高潮嗷嗷叫在线视频| 亚洲精品国产av蜜桃| 亚洲精品美女久久久久99蜜臀 | 午夜精品国产一区二区电影| 岛国毛片在线播放| 精品国产乱码久久久久久小说| 美女扒开内裤让男人捅视频| 美国免费a级毛片| 亚洲av在线观看美女高潮| 欧美激情极品国产一区二区三区| 99热国产这里只有精品6| 国产99久久九九免费精品| 妹子高潮喷水视频| 亚洲,欧美,日韩| 国产女主播在线喷水免费视频网站| 亚洲欧洲国产日韩| 又黄又粗又硬又大视频| 男人添女人高潮全过程视频| 欧美在线一区亚洲| 午夜久久久在线观看| 国产精品久久久久久精品电影小说| 精品人妻一区二区三区麻豆| 满18在线观看网站| 男女高潮啪啪啪动态图| 999久久久国产精品视频| 捣出白浆h1v1| 99香蕉大伊视频| 我要看黄色一级片免费的| 男女午夜视频在线观看| 香蕉丝袜av| 国产精品人妻久久久影院| 五月天丁香电影| 久久精品熟女亚洲av麻豆精品| 亚洲av电影在线进入| 超色免费av| 国产精品人妻久久久影院| 久久影院123| 国产视频首页在线观看| 真人做人爱边吃奶动态| 男男h啪啪无遮挡| 久久久久网色| 亚洲三区欧美一区| 午夜两性在线视频| 欧美成人精品欧美一级黄| 精品人妻一区二区三区麻豆| 丝袜喷水一区| 另类亚洲欧美激情| 人妻 亚洲 视频| 国产一区二区激情短视频 | 免费在线观看黄色视频的| 亚洲欧美日韩高清在线视频 | 777久久人妻少妇嫩草av网站| 国产日韩欧美在线精品| 18在线观看网站| 9色porny在线观看| 91字幕亚洲| 成人亚洲精品一区在线观看| 久久久久视频综合| 午夜两性在线视频| 性高湖久久久久久久久免费观看| av片东京热男人的天堂| 又黄又粗又硬又大视频| 国产欧美日韩一区二区三 | 日本vs欧美在线观看视频| 王馨瑶露胸无遮挡在线观看| 国产精品久久久av美女十八| 亚洲黑人精品在线| 国产精品一区二区免费欧美 | 亚洲久久久国产精品| 日本午夜av视频| 丁香六月欧美| 91成人精品电影| 久久人妻熟女aⅴ| 国产亚洲欧美精品永久| 在线观看www视频免费| 亚洲精品美女久久av网站| 精品熟女少妇八av免费久了| 久久精品久久精品一区二区三区| 欧美av亚洲av综合av国产av| 老鸭窝网址在线观看| 国产高清videossex| 激情视频va一区二区三区| 久久久久精品人妻al黑| 可以免费在线观看a视频的电影网站| 欧美性长视频在线观看| 午夜免费男女啪啪视频观看| 女警被强在线播放| 亚洲一区中文字幕在线| 中文字幕人妻丝袜一区二区| 一级毛片 在线播放| 热99国产精品久久久久久7| 国产亚洲av片在线观看秒播厂| 人妻一区二区av| 免费高清在线观看日韩| 电影成人av| 国产亚洲av片在线观看秒播厂| 免费在线观看日本一区| 高清欧美精品videossex| 亚洲精品日本国产第一区| 亚洲欧美激情在线| 自线自在国产av| 午夜福利乱码中文字幕| 欧美黄色片欧美黄色片| 免费观看av网站的网址| 十八禁人妻一区二区| 国产极品粉嫩免费观看在线| 精品久久蜜臀av无| 久久人人爽av亚洲精品天堂| 我要看黄色一级片免费的| 999久久久国产精品视频| 色网站视频免费| 91麻豆av在线| 纯流量卡能插随身wifi吗| 欧美激情极品国产一区二区三区| 亚洲激情五月婷婷啪啪| 宅男免费午夜| 中文字幕人妻丝袜制服| 国产成人一区二区三区免费视频网站 | 国产片内射在线| 一二三四在线观看免费中文在| 午夜福利一区二区在线看| 久久精品成人免费网站| 搡老乐熟女国产| 亚洲中文字幕日韩| 最近手机中文字幕大全| 欧美国产精品va在线观看不卡| tube8黄色片| 亚洲av电影在线进入| 婷婷色综合大香蕉| 精品第一国产精品| 国产免费视频播放在线视频| 成人国产一区最新在线观看 | 美女福利国产在线| 一区二区三区激情视频| 十八禁高潮呻吟视频| 亚洲国产毛片av蜜桃av| 久久av网站| 美女脱内裤让男人舔精品视频| 成人黄色视频免费在线看| 高清av免费在线| 美女福利国产在线| 亚洲欧美一区二区三区国产| 国产在线一区二区三区精| 国产欧美日韩一区二区三 | 免费看十八禁软件| 天天躁日日躁夜夜躁夜夜| 在线观看免费视频网站a站| 波多野结衣一区麻豆| 婷婷色综合www| 久久天堂一区二区三区四区| 一本色道久久久久久精品综合| 久热爱精品视频在线9| 女人久久www免费人成看片| 少妇的丰满在线观看| 侵犯人妻中文字幕一二三四区| 精品人妻熟女毛片av久久网站| 极品人妻少妇av视频| 国产老妇伦熟女老妇高清| 亚洲av美国av| www.精华液| 女人被躁到高潮嗷嗷叫费观| 亚洲黑人精品在线| netflix在线观看网站| 日韩欧美一区视频在线观看| 视频区图区小说| 在线 av 中文字幕| 国产免费现黄频在线看| 亚洲欧洲精品一区二区精品久久久| 91字幕亚洲| 天天操日日干夜夜撸| 脱女人内裤的视频| h视频一区二区三区| 国产精品 国内视频| xxxhd国产人妻xxx| 80岁老熟妇乱子伦牲交| 99精品久久久久人妻精品| 一本大道久久a久久精品| 黄片小视频在线播放| 久久这里只有精品19| 亚洲欧美一区二区三区国产| 香蕉丝袜av| 成人18禁高潮啪啪吃奶动态图| 嫩草影视91久久| 精品福利永久在线观看| 丝袜美足系列| 国产成人一区二区在线| 久久久国产一区二区| 飞空精品影院首页| 1024视频免费在线观看| 欧美人与性动交α欧美软件| 午夜福利乱码中文字幕| 在线av久久热| 亚洲三区欧美一区| cao死你这个sao货| 亚洲国产最新在线播放| 国产成人精品无人区| 天堂8中文在线网| 久久久久久久大尺度免费视频| 大话2 男鬼变身卡| 男男h啪啪无遮挡| 国产又色又爽无遮挡免| 一边亲一边摸免费视频| 丝袜喷水一区| 最黄视频免费看| a 毛片基地| 亚洲精品美女久久久久99蜜臀 | 深夜精品福利| 国产精品 欧美亚洲| 国产深夜福利视频在线观看| 69精品国产乱码久久久| 建设人人有责人人尽责人人享有的| 99精国产麻豆久久婷婷| 久久精品久久精品一区二区三区| 少妇被粗大的猛进出69影院| 大片电影免费在线观看免费| 国产亚洲av片在线观看秒播厂| 亚洲天堂av无毛| 手机成人av网站| 国产精品一区二区在线观看99| 国产高清videossex| 日本91视频免费播放| 日本午夜av视频| 日韩 亚洲 欧美在线| 色网站视频免费| 亚洲成国产人片在线观看| 国产1区2区3区精品| 国产成人91sexporn| 亚洲成人手机| 亚洲国产精品国产精品| 肉色欧美久久久久久久蜜桃| 高清av免费在线| 亚洲国产精品成人久久小说| 国产亚洲av片在线观看秒播厂| 日韩熟女老妇一区二区性免费视频| 操出白浆在线播放| 99久久99久久久精品蜜桃| 91成人精品电影| 国产亚洲精品久久久久5区| 狂野欧美激情性xxxx| 777久久人妻少妇嫩草av网站| 国产又色又爽无遮挡免| 亚洲五月婷婷丁香| 我的亚洲天堂| 国产高清视频在线播放一区 | 亚洲精品美女久久久久99蜜臀 | 五月开心婷婷网| 久久综合国产亚洲精品| 蜜桃在线观看..| 免费久久久久久久精品成人欧美视频| 巨乳人妻的诱惑在线观看| 极品人妻少妇av视频| 晚上一个人看的免费电影| 亚洲精品久久久久久婷婷小说| 女性被躁到高潮视频| 一级毛片黄色毛片免费观看视频| 天天躁日日躁夜夜躁夜夜| 国产亚洲欧美在线一区二区| 91精品国产国语对白视频| www.999成人在线观看| 国产高清国产精品国产三级| av欧美777| 成年女人毛片免费观看观看9 | 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲成人免费电影在线观看 | 男人舔女人的私密视频| 熟女少妇亚洲综合色aaa.| 免费黄频网站在线观看国产| 亚洲国产av新网站| 亚洲精品一区蜜桃| 两人在一起打扑克的视频| 久久久久久久大尺度免费视频| 国产精品偷伦视频观看了| 一级a爱视频在线免费观看| 国产女主播在线喷水免费视频网站| 亚洲精品国产av成人精品| 久久女婷五月综合色啪小说| 大片免费播放器 马上看| 啦啦啦 在线观看视频| 天堂8中文在线网| 午夜福利乱码中文字幕| 18禁裸乳无遮挡动漫免费视频| 久久青草综合色| 亚洲av成人不卡在线观看播放网 | 国产男女内射视频| 丝袜在线中文字幕| 在线天堂中文资源库| 亚洲精品乱久久久久久| 三上悠亚av全集在线观看| 欧美人与性动交α欧美精品济南到| av不卡在线播放| 欧美变态另类bdsm刘玥| 大码成人一级视频| 99久久人妻综合| 母亲3免费完整高清在线观看| 亚洲精品日本国产第一区| 19禁男女啪啪无遮挡网站| av片东京热男人的天堂| videos熟女内射| 亚洲熟女精品中文字幕| 久久久久久人人人人人| 丝袜人妻中文字幕| 热99国产精品久久久久久7| 免费女性裸体啪啪无遮挡网站| xxxhd国产人妻xxx| av视频免费观看在线观看| 午夜久久久在线观看| 久久久久久久国产电影| 久久久久久久久久久久大奶| 一级黄片播放器| 你懂的网址亚洲精品在线观看| 美国免费a级毛片| 中文字幕人妻丝袜一区二区| 99热网站在线观看| 天天影视国产精品| 免费在线观看黄色视频的| 纯流量卡能插随身wifi吗| 日韩av不卡免费在线播放| 一区二区三区乱码不卡18| 欧美日韩亚洲综合一区二区三区_| 欧美久久黑人一区二区| 赤兔流量卡办理| 亚洲欧洲日产国产| 久久久国产欧美日韩av| 2018国产大陆天天弄谢| 国产精品麻豆人妻色哟哟久久| 亚洲美女黄色视频免费看| 亚洲精品在线美女| 久久久亚洲精品成人影院| 精品久久久精品久久久| 在线看a的网站| 丝袜美足系列| 国产精品av久久久久免费| 9色porny在线观看| 国产又色又爽无遮挡免| 色视频在线一区二区三区| 久久精品熟女亚洲av麻豆精品| 国产精品三级大全| 波多野结衣av一区二区av| 午夜老司机福利片| 男女午夜视频在线观看| 18禁黄网站禁片午夜丰满| 亚洲精品日本国产第一区| 精品福利永久在线观看| 婷婷色综合www| 亚洲av日韩在线播放| 精品高清国产在线一区| 国产欧美日韩精品亚洲av| av在线播放精品| 蜜桃在线观看..| 日韩av在线免费看完整版不卡| 国产精品熟女久久久久浪| 成人亚洲欧美一区二区av| 一级毛片我不卡| 五月开心婷婷网| 国产日韩一区二区三区精品不卡| 捣出白浆h1v1| 高潮久久久久久久久久久不卡| 国产av一区二区精品久久| 国产人伦9x9x在线观看| 男女无遮挡免费网站观看| 欧美国产精品一级二级三级| 国产亚洲av片在线观看秒播厂| 黄色片一级片一级黄色片| 啦啦啦啦在线视频资源| 国产成人影院久久av| 99国产精品一区二区三区| videosex国产| av国产久精品久网站免费入址| 亚洲精品美女久久av网站| 久久久精品94久久精品| 高清视频免费观看一区二区| 欧美精品av麻豆av| 精品国产乱码久久久久久小说| 国产日韩一区二区三区精品不卡| 国产精品一区二区免费欧美 | √禁漫天堂资源中文www| 飞空精品影院首页| 久久人妻福利社区极品人妻图片 | 欧美av亚洲av综合av国产av| 欧美精品人与动牲交sv欧美| 丝袜美足系列| 国产av一区二区精品久久| 一区在线观看完整版| 欧美日韩精品网址| 欧美人与善性xxx| 91麻豆av在线| 亚洲精品国产一区二区精华液| 午夜视频精品福利| 一本色道久久久久久精品综合| 久久狼人影院| 自拍欧美九色日韩亚洲蝌蚪91| 精品视频人人做人人爽| 国产亚洲欧美精品永久| 久久久欧美国产精品| 我的亚洲天堂| 久久av网站| 日日爽夜夜爽网站| 你懂的网址亚洲精品在线观看| 国产免费视频播放在线视频| 天堂中文最新版在线下载| 日韩 亚洲 欧美在线| 亚洲av欧美aⅴ国产| 国产精品国产三级国产专区5o| 别揉我奶头~嗯~啊~动态视频 | 久久天堂一区二区三区四区| 久久久精品94久久精品| 国产在线免费精品| www日本在线高清视频| 欧美日韩亚洲综合一区二区三区_| 亚洲国产精品成人久久小说| 国产精品一国产av| 免费看av在线观看网站| 女人精品久久久久毛片| av欧美777| 美女扒开内裤让男人捅视频| 精品少妇黑人巨大在线播放| 91老司机精品| 国产av精品麻豆| 我的亚洲天堂| 99国产综合亚洲精品| 亚洲国产精品成人久久小说| 精品福利永久在线观看| 丝袜在线中文字幕| 精品国产乱码久久久久久小说| tube8黄色片| 女人精品久久久久毛片| 国产午夜精品一二区理论片| 国产精品一区二区免费欧美 | 交换朋友夫妻互换小说| 狂野欧美激情性bbbbbb| 母亲3免费完整高清在线观看| 国产无遮挡羞羞视频在线观看| 午夜老司机福利片| 欧美黑人精品巨大| 男女国产视频网站| 男女床上黄色一级片免费看| 啦啦啦中文免费视频观看日本| 亚洲国产日韩一区二区| 中文字幕av电影在线播放| 亚洲欧美精品自产自拍| 韩国高清视频一区二区三区| 成年人黄色毛片网站| 777久久人妻少妇嫩草av网站| 久9热在线精品视频| 亚洲精品国产区一区二| 一级毛片 在线播放| 国产亚洲精品第一综合不卡| 伦理电影免费视频| 欧美激情 高清一区二区三区| 精品卡一卡二卡四卡免费| 成人亚洲精品一区在线观看| 黄色怎么调成土黄色| 国产亚洲精品久久久久5区| 午夜福利影视在线免费观看| 亚洲五月婷婷丁香| 悠悠久久av| av又黄又爽大尺度在线免费看| 精品一区二区三卡| 久久久久久久精品精品| 国产精品九九99| a级毛片黄视频| 国产精品久久久久久人妻精品电影 | 又大又爽又粗| 久久精品久久久久久久性| 亚洲免费av在线视频| 日本91视频免费播放| 日本av免费视频播放| 亚洲成人免费av在线播放| 亚洲成国产人片在线观看| 午夜福利,免费看| av国产精品久久久久影院| 满18在线观看网站| 精品福利观看| 久久免费观看电影| 一级黄片播放器| 日本a在线网址| 天堂俺去俺来也www色官网| 国产精品偷伦视频观看了| 在线观看人妻少妇| 亚洲国产欧美在线一区| 日本黄色日本黄色录像| 国产免费视频播放在线视频| 日韩av不卡免费在线播放| 亚洲熟女毛片儿| 成人国产av品久久久| 亚洲精品av麻豆狂野| h视频一区二区三区| 国产精品三级大全| 国产精品一区二区在线观看99| 精品高清国产在线一区| 久久精品国产亚洲av高清一级| 悠悠久久av| 久久久久久久久久久久大奶| 韩国精品一区二区三区| 成人影院久久| 欧美日韩综合久久久久久| 好男人视频免费观看在线| 国产精品国产三级专区第一集| 亚洲精品中文字幕在线视频| 一本色道久久久久久精品综合| 99国产精品免费福利视频| 91精品伊人久久大香线蕉| 亚洲一区二区三区欧美精品| 免费日韩欧美在线观看| 在线观看免费午夜福利视频| 久久精品熟女亚洲av麻豆精品| 9色porny在线观看| 亚洲国产精品一区二区三区在线| 侵犯人妻中文字幕一二三四区| 免费不卡黄色视频| 亚洲欧美色中文字幕在线| 久久精品久久精品一区二区三区| 男的添女的下面高潮视频| 天堂俺去俺来也www色官网| 国产精品人妻久久久影院| 午夜福利乱码中文字幕| 久久人人爽av亚洲精品天堂| 夫妻性生交免费视频一级片| a级毛片黄视频| 久久精品亚洲av国产电影网| 亚洲伊人色综图| 国产精品一区二区在线不卡| 男女之事视频高清在线观看 | 亚洲精品美女久久久久99蜜臀 | 久久精品国产亚洲av高清一级| 又黄又粗又硬又大视频| 99香蕉大伊视频| 国产午夜精品一二区理论片| av在线播放精品| 中国美女看黄片| 亚洲国产毛片av蜜桃av| 久久久久精品国产欧美久久久 | 午夜福利免费观看在线| 秋霞在线观看毛片| 欧美日韩福利视频一区二区| 久久毛片免费看一区二区三区| 免费久久久久久久精品成人欧美视频| 波野结衣二区三区在线| 久久久久久免费高清国产稀缺| 国产成人91sexporn| 精品少妇黑人巨大在线播放| 国产成人精品久久二区二区免费| 久久性视频一级片| 精品国产一区二区三区四区第35| 久久影院123| 国产成人精品无人区| 欧美成人午夜精品| 色综合欧美亚洲国产小说| 国产精品久久久av美女十八| 国产片内射在线| 黄片小视频在线播放| 欧美另类一区| 你懂的网址亚洲精品在线观看| 水蜜桃什么品种好| 别揉我奶头~嗯~啊~动态视频 | 亚洲第一青青草原| 两个人看的免费小视频| 尾随美女入室| 高潮久久久久久久久久久不卡|