• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    單壁碳納米管-石墨烯雜化材料的自組裝及其電學(xué)性能

    2015-06-05 14:36:37PrashantaDhojAdhikariYonghunKoDaesungJungChungYunPark
    新型炭材料 2015年4期
    關(guān)鍵詞:單壁酸處理電學(xué)

    Prashanta Dhoj Adhikari, Yong-hun Ko, Daesung Jung, Chung-Yun Park,

    單壁碳納米管-石墨烯雜化材料的自組裝及其電學(xué)性能

    Prashanta Dhoj Adhikari1, Yong-hun Ko1, Daesung Jung2, Chung-Yun Park1,2

    (1.InstituteofBasicScience,SungkyunkwanUniversity,Suwon440-746,RepublicofKorea; 2.DepartmentofEnergyScience,SungkyunkwanUniversity,Suwon440-746,RepublicofKorea)

    以Si為基底,采用氣相沉積法制備出石墨烯(G/Si)薄膜。將含1%APTES的苯溶液與G/Si密封,在115℃下加熱2 h,G薄膜上自組裝單層APTES膜(SAM-G/Si)。將SAM-G/Si浸漬于酸處理后的單壁碳納米管氯仿液中,45℃干燥即得到單壁碳納米管-石墨烯雜化材料(SWCNT-G/Si)。結(jié)果表明,具有p-型電學(xué)性能的G/Si經(jīng)表面改性后呈現(xiàn)出n-型性能,電容性能得到提高。

    1 Introduction

    One-dimensional single-walled carbon nanotubes (SWCNTs)and two-dimensional graphene are nanocarbon materials.Both materials have attracted tremendous attentions for fundamental research and applications in field-emission devices,field-effect transistors,supercapacitors,batteries[1-11],solar cells[12,13]and transparent electrodes[14-16],owing to their extraordinary electrical,mechanical,physical, and structural properties.SWCNTs and graphene have many analogous properties,but there are differences between the two due to structuraldifferences.Several attempts have recently been made to integrate these two novel materials together in order to utilize the merits of both[17-22].

    Chemical vapor deposition(CVD)is an important mean to synthesis carbon nanomaterials[13,23,24]. To realize the merits of a combined 2D graphene and 1D CNT material,there have been many recent attempts to prepare graphene sheet-CNT hybrid materials.Recently,the fabrication of G/CNT hybrids through CVD is more attractive because it is possible to form covalent C-C bonding between graphene and CNTs,and to prepare G-CNT hybrids with various structures[25-28].However,the as-grown CNTs are usually multi-walled CNTs(MWCNTs).This results in low specific surface areas(SSA)of as-fabricated G-CNT hybrids,and hinders their performance in the area where a high SSA is required,such as energystorage devices.The direct growth of CNTs on graphene oxide(GO)and reduced GO is simple and effective way to obtain G-CNT hybrids with strong graphene-CNT bonding and anticipated nanostructures. But,as-grown CNTs were still MWCNTs with a poor graphitization due to the high solubility of catalyst nanoparticles in GO or reduced GO[29].Besides,the high defect density of GO or reduced GO also limits the quality of graphene in as-fabricated G-CNT hybrids,and thus hinders their performance.Compared with MWCNTs,the SWCNTs have much large surface area and low defectdensity.Recently,Ning and co-workers demonstrated a one-step synthesis of GSWCNT hybrids by CVD with a mixed catalyst of MgO and Fe/MgO,in which MgO served as the template for the deposition of graphene and Fe/MgO served as the catalyst for the growth of SWCNTs,as well as the graphene layers[30].Nevertheless,to prepare purely SWCNT-graphene hybrid in this technique is difficult due to the poor stability of the catalyst nanoparticles on metal surface.

    In order to improve the quality of SWCNT-graphene hybrid that is well interconnected and has superior durability/applicability features for use in device fabrication,we report a simple approach first time to prepare the SWCNT-G hybrid,in which functionalized SWCNTs were chemisorbed onto the supported graphene film that was immobilized with a monolayer self-assembled from 3-aminopropyltriethoxysilane (APTES).This method could be useful as a new route to the fabrication of graphene hybrid materials for various potential applications.

    2 Experimental

    2.1Reagents and materials

    Isopropyl alcohol(IPA),3-aminopropyltriethoxysilane(APTES),toluene,SWCNTs,chloroform,nitric acid and membrane filter paper were purchased as received.Deionized water was used throughoutthe whole experiment.

    2.2Graphene synthesis

    Graphene was synthesized on copper foil by CVD method.Briefly,Cu foil was pre-annealing up-to 1 050℃in a reactor for 30 min under Ar. Then,methane was introduced into the reactor for 30 min,followed by a cooling down under Ar flow. The graphene grown via CVD was transferred onto a silicon substrate(SiO2/Si)by copper etching technique(G/Si)[31].

    2.3Fabrication of self-assembled monolayer onto graphene surface

    The graphene on the silicon substrate was irradiated by UV light for 30 min.Then,a glass beaker containing 1%APTES in toluene and UV-treated G/Si were placed in an air-tight steel box.The box was loaded into a processing chamber and heated up to 115℃for 2 h.An APTES was self-assembled to form a monolayer on graphene.Finally,as-fabricated self-assembled monolayer(SAMs)on graphene was rinsed with toluene and ethanol,and then dried by under a N2stream to obtain SAM-G/Si[32].

    2.4Functionalization of SWCNTs

    25 mg of SWCNTs and 50 mL of HNO3were mixed and refluxed overnight and later the mixtures were vacuum distilled,washed several times with water and dried in vacuum oven at 60℃for 1 h.

    2.5Loading of SWCNTs onto graphene surface

    The surface functionalized SWCNTs were dispersed in chloroform by ultrasonication for 3 h and then,SAM-G/Si substrate was dipped into solution overnight at 45℃.The SWCNT-loaded graphene on substrate was washed by ethanol and dried by blowing N2gas to obtain SWCNT-G/Si.

    2.6Characterization

    The surface modified substrates were characterized by Raman spectroscopy.Raman spectra were obtained using a Renishaw,1 000 micro-Raman spectrometer at an excitation wavelength of 514 nm, where at leastthree different sites were sampled.The substrates were further evaluated by X-ray photo electron spectroscopy(XPS).XPS spectra were obtained using a theta probe(VGMICROTEC,ESCA 2000) with a monochromatic Al Kαsource at a pressure of 2×10-9mbar.The surface morphology of samples was characterized using a field emission scanning electron microscope(FE-SEM,JEOL,JSM-7500F) at an accelerating voltage of 15 kV.The electrical properties of the SWCNT-G hybrid were examined using a 4200-scs Keithley semiconductor analyzer. Electrochemical characterizations of G/Si and SWCNT-G/Si were performed by cyclic voltammetry analysis in a three-electrode half shell system in 1 mol/L H2SO4solution.

    3 Results and discussion

    The acid-treated SWCNTs were evaluated by Raman spectroscopy.The radial breathing mode peak (RBM),G and 2 D peaks are seen at182,1 587 and 2 679 cm-1respectively for pristine SWCNTs as shown in Fig.1 a.However,after the acid treatment those peaks were not changed substantially,but a D peak clearly appears at 1 350 cm-1,indicating that surface defects are generated in SWCNTs by an acid oxidation(Fig.1b).The surface-functionalizedSWCNTs were further evaluated by XPS.Pristine SWCNTs sample is shown to have an overall oxygen content of 4%as shown in Fig.1c,but after the acid oxidation,the oxygen content is increased to 17% (Fig.1d),indicating that the surface treatment leads to a formation of sufficient surface functionalized groups(—OH,—COOH)in SWCNTs as expected, which might be helpful for their binding onto functionalized CVD-grown graphene film.The non-aqueous dispersion of SWCNTs into solvent is found more effective for acid treated ones rather than pristine SWCNTs,which could be also due to the introduction of hydrophilic groups into SWCNTs surface as shown in Fig.2(Inset).In addition,fabrication of SAMs onto graphene surface was evaluated by XPS and itis found that there is no evidence of formation of N peak for pristine graphene(Fig.3a)but for the SAMs fabricated sample a well-constructed N peak appears, confirming that abundant amine-terminated group is liberated onto graphene surface as shown in Fig.3. Compared with the graphene without the UV treatment(Fig.3b),the UV-treated one has a high N content of(Fig.3c),which is four times as that of the un-treated one,indicating that amine group is sufficiently loaded onto graphene surface as shown in Fig.3c[33].This indicates that the UV-treated sample liberates sufficient oxidize molecules onto graphene surface that is favorable for fabricating SAMs.

    Fig.1 Schematic illustration of SWCNTs covalently linked onto graphene surface.

    Fig.2 Raman and XPS spectra of SWCNTs before and after acid treatment: (a,b)Raman spectra of(a)pristine SWCNTs and(b)SWCNTs treated by oxidized acid;(c,d)XPS spectra of(c)SWCNTs and (d)SWCNTs treated by oxidized acid(Inset:the photographs of the dispersions of acid-treated SWCNTs and pristine SWCNTs).

    In order to further examine whether the SWCNTs are electronically coupled with graphene surface or merely physically attached,Raman bands of pristine and the acid-treated SWCNTs onto SAM-G samples are compared.The acid-treated SWCNTs are chemisorbed onto SAM-G,causing a change of the G and 2 D bands and also RBM peak position.However, there is no change of bands in SAM-G surface for thepristine SWCNTs onto SAM-G,indicating that there is no chemical interaction between SWCNTs and graphene surface.

    Fig.3 N1s XPS spectra for(a)G/Si,(b)SAM-G/Si without out UV treatment and(c)with UV treatment.

    Fig.4 Raman spectra for(a)SAM-G,(b)acid treated SWCNTs and(c)SWCNT-G/Si.

    Morphologies of SWCNTs,G/Si and SWCNTG/Si were evaluated by SEM as shown in Fig.5. After the acid-treated SWCNTs are chemisorbed onto graphene surface,they are commonly communicated with graphene as shown in Fig.5 c,consistent with the Raman results.

    To further confirm the chemical bonding,the acid-treated SWCNTs sorbed onto garphene surface was evaluated by XPS as shown in Fig.6.The N1s peak of SAM-G/Si is observed in the range of B.E. 399-402 eV.But,after the acid-treated SWCNTs are sorbed onto graphene surface the N1s peak is clearly divided and splitting peak is seen at higher B.E.~405 eV,which should be originated by amide bond. This result confirms the sorption of SWCNTs onto graphene surface is of chemicalnature[31,34].To evaluate their electrical characteristics induced by chemisorption between the SWCNTs and functionalized graphene,field-effect transistors measurements(FET) were carried out as shown in Fig.7.Pristine,functionalized and hybrid graphene FET were fabricated on SiO2/Si substrates using platinum for the source and drain electrodes and 1-butyl-3-methylimidazolium (BmimPF6)as an ionic liquid.The schematic procedure of FET measurements is shown in Fig.7 (Inset).The charge neutrality point for G/Si without surface treatment is near to positive site of zero volt (Fig.7a)but for the UV-treated G/Si,it is further shifted to the same positive site,indicating a p-type doping,which could be resulted from the-COOH, OH group via UV-treatment(Fig.7b).However, after SAMs fabrication on the UV-treated G/Si the charge neutrality point is shifted to negative site of zero volt,meaning a n-doping into graphene surface due to amine terminated SAMs deposition onto graphene surface(Fig.7c).But,after the acid-treated SWCNTs are chemisorbed onto SAM-G/Si,the n-type characteristic is reduced,indicating that doping of p-type material,which could be contributed from the SWCNTs(Fig.7d).Based on these results,itis expected that lone pair of electron from amine in SAMs may donate electron onto graphene,thereby, increasing the charge carrier concentration and therefore increasing the conductivity of SAM-G/Si sample.However,the chemisorption of SWCNTs onto its surface leads to a reduction in the resistance and reaches conductivity beyond position(Figure was not shown).This observation strongly suggests that the exceedingly conductive SWCNTs bonded with graphene[35].Therefore,stable binding of SWCNTs onto graphene surface in present work could be very applicable in storage devices.

    Fig.5 SEM images of pristine(a)SWCNTs,(b)G/Si and(c)SWCNT-G/Si.

    Fig.6 XPS N1s spectra of(a)SAM-G and(b)SWCNT-G/Si.

    Moreover,the electrochemical properties of pristine and the hybrid materials were studied using them as working electrodes and 1 mol/L H2SO4for electrolyte solution at a scan rate 20 mV/s.Fig.8c and 8 d show the typical charge/discharge curves of the G/Si and SWCNT-G/Sisamples.The linear and symmetrical curves are indicative of the excellent electrochemical stability and charge/discharge properties as shown in Fig.8.The capacitance from the discharge curves is calculated using the following equation C=i×Δt/ ΔV[36].Where,i is the discharge current density (0.1 mA·cm-2),Δt is the duration of the discharge from+0.8 to-0.8 V(ΔV).

    Fig.7 I-V measurement for(a)G/Si, (b)UV-treated G/Si,(c)SAMs/Si and(d)SWCNT-G/Si(Inset:schematic representation of FET device).

    The discharge time for the SWCNT-G/Si is slightly greater than the G/Si sample and specific capacitance for the hybrid and pristine samples are calculated to be 6.01 and 5.03 mF/cm2respectively,indicating that the SWCNT-G/Si offers the larger charge capacity than the G/Si.Based upon the peak positions of Fig.8,the possible reason of the present result is that the SWCNT fibrils promote the electron transfer between SWCNTs and graphene electrode.In addition,the immobilization of SWCNTs creates the larger surface area onto the hybrid graphene electrode.Therefore,the surface functionalization of SWCNTs and graphene is found more effective to integrate them into the SWCNT-G hybrid,which could be implemented to fabricate supercapacitor.The present simple technique might be utilized to prepare other nanomaterials too.

    Fig.8 Cyclic voltammogram curves of(a)pristine graphene and(b)SWCNT-G at a scan rate of 20 mV/s in 1 mol/L H2SO4solution. (c,d)Their galvanostatic charge/discharge curves respectively.Supercapacitor performance of hybrid film showing high specific capacitance owing to a large surface area and marginally higher electrical conductivity.

    4 Conclusions

    We have developed a simple method to integrate SWCNTs onto CVD grown graphene film via immobilization technique.The amine groups on graphene promote the chemisorption of the acid-treated SWCNTs.A p-type characteristic of the G/Siis shifted to n-type electrical properties after immobilized with SAMs of APTES and hybridized with SWCNTs, which improves the specific capacitance.This approach could be of great use in the fabrication of supercapaicitors,flexible hybrid electrodes and other future applications.

    Acknowledgements

    This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(2009-0094023).

    [1] Novoselov K S,Geim A K,Morozov S V,et al.Electric field effect in atomically thin carbon films[J].Science,2004,306: 666-669.

    [2] Liang J,Xu Y,Huang Y,et al.Infrared-triggered actuators from graphene-based nanocomposites[J].J Phys Chem C, 2009,113:9921-9927.

    [3] Wang X,Zhi L J,Mullen K.Transparent,conductive graphene electrodes for dye-sensitized solar cells[J].Nano Lett,2008,8: 323-327.

    [4] Yoo E,Kim J,Hosono E,et al.Large reversible Li storage of graphenenanosheet families for use in rechargeable lithium ion batteries[J].Nano Lett,2008,8:2277-2282.

    [5] Schwierz F.Graphene transistors[J].Nat Nanotechnol,2010, 5:487-496.

    [6] Stoller M D,Park S,Zhu Y W,et al.Graphene-based ultracapacitors[J].Nano Lett,2008,8:3498-3502.

    [7] Simon P,Gogotsi Y.Materials for electrochemical capacitors[J]. Nat Mater,2008,7:845-854.

    [8] Dong X C,Shi Y M,Huang W,et al.Electrical detection of DNA hybridization with single-base specificity using transistors based on CVD-grown graphene sheets[J].Adv Mater,2010, 22:1649-1653.

    [9] Huang Y X,Sudibya H G,Fu D L,et al.Label-free detection of ATP release from living astrocytes with high temporal resolution using carbon nanotube network[J].Biosensor Bioelectron, 2009,24:2716-2720.

    [10] Huang Y X,Dong X C,Shi Y M,et al.Nanoelectronic biosensors based on CVD grown graphene[J].Nanoscale,2010, 2:1485-1488.

    [11] Dong X C,Fu D L,Xu Y P,etal.Label-free electronic detection of DNA using simple double walled carbon nanotube resistors[J].J Phys Chem C,2008,112:9891-9895.

    [12] Jia Y,Cao A,Bai X,et al.Achieving high efficiency siliconcarbon nanotube heterojunction solar cells by acid doping[J]. Nano Lett,2011,11:1901-1905.

    [13] Arco L G D,Zhang Y,Schlenker C W,et al.Continuous, highly flexible,and transparent graphene films by chemical vapor deposition for organic photovoltaics[J].ACS Nano,2010, 4:2865-2873.

    [14] Bae S,Kim H,Lee Y,et al.Roll-to-rollproduction of30-inch graphenefilms for transparent electrodes[J].Nat Nanotechnol, 2010,5:574-578.

    [15] Hu L B,Gruner G,Li D,et al.Patternabletransparent carbon nanotube films for electrochromicdevices[J].J Appl Phys,2007,101:016102.

    [16] Tantang H,Ong J Y,Loh C L,et al.Using oxidation to increase the electrical conductivity of carbon nanotube electrodes [J].Carbon,2009,47:1867-1870.

    [17] Dong X C,Li B,Wei A,et al.One-step growth of graphenecarbon nanotube hybrid materials by chemical vapor deposition [J].Carbon,2011,49:2944-2949.

    [18] Li CY,Li Z,Zhu H W,et al.Graphenenano-‘‘patch’’on a carbon nanotube network for highly transparent/conductive thin film applications[J].J Phys Chem C,2010,114:14008-14012.

    [19] King P J,Khan U,Lotya M,et al.Improvement oftransparent conducting nanotube films by addition of smallquantities of graphene[J].ACS Nano,2010,4:4238-4246.

    [20] Hong T K,Lee D W,Choi HJ,et al.Transparent,flexible conducting hybrid multilayer thin films of multiwalled carbon nanotubes with graphenenanosheets[J].ACS Nano,2010,4:3861-3868.

    [21] Fan Z J,Yan J,Zhi L J,et al.A three-dimensional carbon nanotube/graphene sandwich and its application as electrode in supercapacitor[J].Adv Mater,2010,22:3723-3728.

    [22] Tung V,Chen L M,Allen M J,et al.Low-temperature solution processing of graphene-carbon nanotube hybrid materials for high-performance transparent conductors[J].Nano Lett,2009, 9:1949-1955.

    [23] Adhikari P D,Kim S,Lee S,et al.Immobilization of iron nanoclustures on functionalized silicon substrate and their catalytic behavior to synthesize multi-walled carbon nano tubes[J]. Nanosci and Nanotech,2013,13:4587.

    [24] Adhikari P D,Song W,Cha M J,et al.Synthesis of high quality single-walled carbon nanotubes via catalytic layer reinforced by self-assembled monolayer[J].Thin Solid Films, 2013,545:50-55.

    [25] Chen S,Chen P,Wang Y.Carbon nanotubes grown in situ on graphenenanosheets as superior anodes for Li-ion batteries[J]. Nanoscale,2011,3(10):4323-4329.

    [26] Paul R K,Ghazinejad M,Penchev M,etal.Synthesis of a pillared graphene nanostructure:acounterpart of three-dimensional carbon architectures[J].Small,2010,6(20):2309-2313.

    [27] Lv R T,Cui T X,Jun M S,et al.Open ended,N-doped carbon nanotube-graphene hybrid nanostructures as high-performance catalyst support[J].Adv Funct Mater,2011,21(5): 999-1006.

    [28] Yu K H,Lu G H,Bo Z,et al.Carbon nanotube with chemically bonded graphene leaves for electronic and optoelectronic applications[J].J Phys Chem Lett,2011,2(13):1556-1562.

    [29] Rinaldi A,Tessonnier J P,Schuster M E,et al.Dissolved carbon controls the initial stages of nanocarbon growth[J].Angew Chem Int Ed,2011,50(14):3313-3317.

    [30] Zhu X,Ning G,Fan Z,et al.One-step synthesis of a graphene-carbon nanotube hybrid decorated by magnetic nanoparticles[J].Carbon,2012,50(8):2764-2771.

    [31] Adhikari P D,Jeon S,Chha M,et al.Immobilization of carbon nanotubes on functionalized graphene film grown by chemical vapor deposition and characterization of the hybrid material [J].Sci and Technol of Adv Mater,2014,15:015007.

    [32] Adhikari P D,Tai Y,Ujihara M,et al.Surface functionalization of carbon micro coils and their selective immobilization on surface-modified silicon substrates[J].J Nanosci and Nanotech,2010,10:833-839.

    [33] Adhikari P D,Imae T,Motojima S.Selective immobilization of carbon micro coils on patterned substrates and their electrochemical behavior on ITO substrate[J].Chem Eng J,2011,174: 693.

    [34] AdhikariP D,Chho J,Park C Y.Easy synthesis of nitrogen doped single-walled carbon nanotubes via using supporting layer as a precursor[J].Material Focus,2014,3:281-285.

    [35] Mou Z,Chen X,Du Y,etal.Forming mechanism of nitrogen doped graphene prepared by thermal solid-state reaction of graphite of oxide and urea[J].Appl Surf Sci,2011,258: 1704-1710.

    [36] Song R K,Park J H,Sivakkumar S R,et al.Supercapacitive properties of polyaniline/Nafion/hydrous RuO2composite electrodes[J].Journal of Power Sources,2007,166:297-301.

    Single-wall carbon nanotube hybridized graphene films: self assembly and electrical properties

    Prashanta Dhoj Adhikari1, Yong-hun Ko1, Daesung Jung2, Chung-Yun Park1,2
    (1.InstituteofBasicScience,SungkyunkwanUniversity,Suwon440-746,RepublicofKorea;2.DepartmentofEnergyScience,SungkyunkwanUniversity,Suwon440-746,RepublicofKorea)

    A SWCNT-G/Si hybrid film was fabricated from graphene(G)film by chemical vapor deposition and single-walled carbon nanotubes(SWCNTs)by an immobilization method,in which a 3-aminopropyltriethoxysilane monolayer was formed on a UV irradiated graphene film by self-assembly,and acid-oxidized SWCNTs were chemisorbed on it.The G/Si,3-aminopropyltriethoxysilane immobilized G/Si and SWCNT-G/Si hybrid films were characterized by SEM,Raman spectroscopy,XPS,and conductivity and electrochemical tests.Results indicate that the immobilization changes the p-type G/Si into n-type by electron donation from a lone electron pair on the amine and the chemisorption reduces the n-type behavior.The SWCNT-G/Si hybrid film has a higher specific capacitance than the G/Si film.This approach could be of great use in the fabrication of supercapacitors,flexible hybrid electrodes and other devices.

    Chung-Yun Park.E-mail:cypark@skku.edu

    TB332

    A

    Chung-Yun Park.E-mail:cypark@skku.edu

    Prashanta Dhoj Adhikari.E-mail:dhoj2@yahoo.com

    1007-8827(2015)04-0342-07

    Received date:2015-03-10;Revised date:2015-08-05

    Author introduction:Prashanta Dhoj Adhikari.E-mail:dhoj2@yahoo.com

    English edition available online ScienceDirect(http://www.sciencedirect.com/science/journal/18725805).

    10.1016/S1872-5805(15)60193-7

    猜你喜歡
    單壁酸處理電學(xué)
    電學(xué)
    赤霉酸處理對核桃種子萌發(fā)和幼苗生長的影響
    河北果樹(2022年1期)2022-02-16 00:41:06
    單壁碳納米管內(nèi)1,4-萘琨電池電極材料性能的研究
    云南化工(2021年7期)2021-12-21 07:27:38
    對一個電學(xué)故障題的思考
    酸處理對馬鈴薯塊莖形成相關(guān)基因表達(dá)的影響
    不同細(xì)度玻纖針刺復(fù)合氈的耐酸性研究
    Lesson Seventy-four An atypical presentation of a typical arrhythmia
    多巴胺和腎上腺素在單壁碳納米管修飾電極上的電化學(xué)行為
    巧用電學(xué)知識 妙解環(huán)保問題
    酚醛樹脂/混酸處理碳納米管復(fù)合材料的制備與性能
    中國塑料(2014年9期)2014-10-17 02:48:34
    天天影视国产精品| 老司机深夜福利视频在线观看| 91麻豆av在线| 操美女的视频在线观看| 国产精品永久免费网站| 老司机亚洲免费影院| 老熟妇仑乱视频hdxx| 久久中文看片网| 国产免费现黄频在线看| 色精品久久人妻99蜜桃| 亚洲avbb在线观看| 日韩国内少妇激情av| 亚洲精品在线观看二区| 亚洲人成77777在线视频| 一级作爱视频免费观看| 精品一区二区三区av网在线观看| 悠悠久久av| 欧美黄色片欧美黄色片| 国产黄色免费在线视频| 亚洲男人的天堂狠狠| 热99国产精品久久久久久7| 男女午夜视频在线观看| 日韩视频一区二区在线观看| 久久这里只有精品19| 99精品在免费线老司机午夜| 老汉色∧v一级毛片| 午夜福利,免费看| 日韩高清综合在线| 最新美女视频免费是黄的| 亚洲精品一卡2卡三卡4卡5卡| 国产成人系列免费观看| 免费女性裸体啪啪无遮挡网站| bbb黄色大片| 久久青草综合色| 亚洲一区二区三区色噜噜 | 人人妻,人人澡人人爽秒播| 国产一区二区在线av高清观看| 国产av又大| xxx96com| ponron亚洲| 日本黄色日本黄色录像| 久久久国产成人免费| 国产成人av激情在线播放| 久久精品91蜜桃| 国产精品免费一区二区三区在线| 久久久国产成人免费| 免费观看精品视频网站| 国产亚洲av高清不卡| 久久亚洲精品不卡| 亚洲五月婷婷丁香| 久久人人爽av亚洲精品天堂| 日韩中文字幕欧美一区二区| 国产成年人精品一区二区 | 人人妻,人人澡人人爽秒播| 国产免费现黄频在线看| 免费在线观看亚洲国产| 午夜91福利影院| 日本五十路高清| 亚洲性夜色夜夜综合| 国产麻豆69| 看黄色毛片网站| 自线自在国产av| videosex国产| 久久久久久亚洲精品国产蜜桃av| 欧美不卡视频在线免费观看 | 日韩大尺度精品在线看网址 | 国产精品九九99| 真人一进一出gif抽搐免费| 在线播放国产精品三级| 一边摸一边做爽爽视频免费| 欧美日本中文国产一区发布| 久久这里只有精品19| 久久精品国产综合久久久| 女人高潮潮喷娇喘18禁视频| 国产精品久久久久久人妻精品电影| 欧美日韩亚洲国产一区二区在线观看| 女同久久另类99精品国产91| 亚洲,欧美精品.| 欧美精品一区二区免费开放| 亚洲av成人一区二区三| 波多野结衣av一区二区av| а√天堂www在线а√下载| 成年女人毛片免费观看观看9| 日韩国内少妇激情av| 国产又色又爽无遮挡免费看| 嫁个100分男人电影在线观看| 精品第一国产精品| 嫩草影视91久久| 黑丝袜美女国产一区| 99久久精品国产亚洲精品| av电影中文网址| 天天影视国产精品| 亚洲一区二区三区欧美精品| 中文字幕av电影在线播放| ponron亚洲| 国产精品国产av在线观看| 欧美日本中文国产一区发布| 极品教师在线免费播放| 久久久久久久久久久久大奶| 一进一出抽搐动态| 高清av免费在线| 久久 成人 亚洲| 亚洲色图av天堂| 波多野结衣高清无吗| 国产主播在线观看一区二区| 久久久久久大精品| 日韩高清综合在线| www国产在线视频色| 亚洲精品久久午夜乱码| 国产乱人伦免费视频| 97碰自拍视频| 欧美黑人欧美精品刺激| 欧美日韩福利视频一区二区| 国产精品久久电影中文字幕| 国产精品免费视频内射| 国产成年人精品一区二区 | 无遮挡黄片免费观看| 亚洲av熟女| 伦理电影免费视频| 久久婷婷成人综合色麻豆| 久久久久久大精品| 精品午夜福利视频在线观看一区| 变态另类成人亚洲欧美熟女 | 欧美色视频一区免费| 久久 成人 亚洲| 国产野战对白在线观看| 电影成人av| xxx96com| 无遮挡黄片免费观看| a级毛片在线看网站| 欧美久久黑人一区二区| 91字幕亚洲| 少妇裸体淫交视频免费看高清 | 亚洲国产毛片av蜜桃av| 欧美日韩中文字幕国产精品一区二区三区 | 欧美日韩中文字幕国产精品一区二区三区 | 亚洲午夜精品一区,二区,三区| 女人被躁到高潮嗷嗷叫费观| 免费av毛片视频| 免费女性裸体啪啪无遮挡网站| 久久这里只有精品19| 国产99久久九九免费精品| 国产亚洲精品久久久久久毛片| 免费少妇av软件| 国产精品av久久久久免费| 在线观看日韩欧美| 91老司机精品| 国产亚洲精品久久久久久毛片| 国产精品国产av在线观看| 在线观看午夜福利视频| 亚洲国产中文字幕在线视频| 精品卡一卡二卡四卡免费| 国产99白浆流出| 80岁老熟妇乱子伦牲交| 欧美成人性av电影在线观看| 精品无人区乱码1区二区| 99精品在免费线老司机午夜| 亚洲全国av大片| 亚洲熟妇中文字幕五十中出 | 美女国产高潮福利片在线看| 无遮挡黄片免费观看| 丝袜美腿诱惑在线| 18禁黄网站禁片午夜丰满| 黄色a级毛片大全视频| 亚洲三区欧美一区| 精品国产美女av久久久久小说| 大型av网站在线播放| 国产精品秋霞免费鲁丝片| 色婷婷久久久亚洲欧美| 十八禁网站免费在线| 精品一区二区三区四区五区乱码| 亚洲欧美激情在线| 亚洲狠狠婷婷综合久久图片| 桃色一区二区三区在线观看| 国产精品电影一区二区三区| 夜夜躁狠狠躁天天躁| 精品福利永久在线观看| 69精品国产乱码久久久| 91老司机精品| 在线观看www视频免费| 免费av毛片视频| 久久亚洲真实| 国产亚洲欧美精品永久| 欧美精品啪啪一区二区三区| 国产亚洲精品第一综合不卡| 亚洲av电影在线进入| 日本wwww免费看| 久久 成人 亚洲| 好男人电影高清在线观看| 久久精品人人爽人人爽视色| 欧美日韩福利视频一区二区| 看免费av毛片| 三上悠亚av全集在线观看| 黄色视频,在线免费观看| 国产av一区在线观看免费| 精品电影一区二区在线| 男女之事视频高清在线观看| 国产激情欧美一区二区| 国产不卡一卡二| 欧美人与性动交α欧美精品济南到| 欧美乱色亚洲激情| 久久香蕉国产精品| 国产高清国产精品国产三级| 国产精品久久久av美女十八| 三级毛片av免费| 精品福利观看| 国产av精品麻豆| 国产aⅴ精品一区二区三区波| 久久欧美精品欧美久久欧美| 青草久久国产| 久久久久国产精品人妻aⅴ院| www.999成人在线观看| 国产欧美日韩综合在线一区二区| 脱女人内裤的视频| 午夜精品国产一区二区电影| 亚洲 欧美 日韩 在线 免费| 超碰97精品在线观看| 色婷婷久久久亚洲欧美| 日韩有码中文字幕| 人人妻人人添人人爽欧美一区卜| 国产无遮挡羞羞视频在线观看| 亚洲精品国产精品久久久不卡| 一个人观看的视频www高清免费观看 | 久久国产精品人妻蜜桃| 妹子高潮喷水视频| 欧美激情 高清一区二区三区| 在线观看免费日韩欧美大片| 成人18禁高潮啪啪吃奶动态图| 黑人巨大精品欧美一区二区mp4| 久热这里只有精品99| 电影成人av| 欧美大码av| 亚洲精品中文字幕在线视频| 国产精品一区二区三区四区久久 | 日本免费一区二区三区高清不卡 | 免费av中文字幕在线| 乱人伦中国视频| 一区二区三区精品91| 欧美 亚洲 国产 日韩一| 久久久水蜜桃国产精品网| 久久久国产一区二区| 嫩草影视91久久| 国产成人影院久久av| 成人永久免费在线观看视频| 90打野战视频偷拍视频| 久久国产精品人妻蜜桃| 一级a爱片免费观看的视频| 久9热在线精品视频| 九色亚洲精品在线播放| 国产精品自产拍在线观看55亚洲| 一级毛片女人18水好多| 他把我摸到了高潮在线观看| 欧美日韩亚洲国产一区二区在线观看| 亚洲自拍偷在线| 中文字幕人妻熟女乱码| 亚洲精品成人av观看孕妇| 黄频高清免费视频| 亚洲精品av麻豆狂野| 午夜福利一区二区在线看| 日本vs欧美在线观看视频| 天堂俺去俺来也www色官网| 少妇裸体淫交视频免费看高清 | 免费在线观看完整版高清| 成年女人毛片免费观看观看9| ponron亚洲| a在线观看视频网站| 国产精品久久久久成人av| 男人舔女人下体高潮全视频| 18禁裸乳无遮挡免费网站照片 | 中出人妻视频一区二区| 黄色片一级片一级黄色片| 脱女人内裤的视频| 国产一区在线观看成人免费| 99riav亚洲国产免费| 免费观看精品视频网站| 精品一区二区三卡| 中文欧美无线码| 久久久久久久久中文| 嫩草影视91久久| 老鸭窝网址在线观看| 国产在线精品亚洲第一网站| 国产亚洲精品久久久久久毛片| 色婷婷久久久亚洲欧美| 一a级毛片在线观看| 国产极品粉嫩免费观看在线| 国产精品98久久久久久宅男小说| 欧美黄色片欧美黄色片| 人人妻人人澡人人看| xxxhd国产人妻xxx| 自线自在国产av| 人成视频在线观看免费观看| 国产国语露脸激情在线看| 日日夜夜操网爽| 亚洲第一av免费看| 成人手机av| 国产1区2区3区精品| 在线视频色国产色| 日韩大码丰满熟妇| 高清欧美精品videossex| www.999成人在线观看| 亚洲第一欧美日韩一区二区三区| 精品一区二区三区视频在线观看免费 | 国产精品九九99| 色尼玛亚洲综合影院| 波多野结衣高清无吗| 超色免费av| 久久精品亚洲熟妇少妇任你| 亚洲精品美女久久久久99蜜臀| 国产精品亚洲av一区麻豆| 国产一区二区三区视频了| 丝袜美腿诱惑在线| 亚洲在线自拍视频| 搡老岳熟女国产| 久久香蕉激情| 变态另类成人亚洲欧美熟女 | a在线观看视频网站| 精品卡一卡二卡四卡免费| 午夜a级毛片| 精品国产一区二区久久| 午夜福利影视在线免费观看| 国产精品国产av在线观看| 99久久精品国产亚洲精品| 亚洲精品成人av观看孕妇| 久久精品人人爽人人爽视色| 国产区一区二久久| 妹子高潮喷水视频| 欧美日韩中文字幕国产精品一区二区三区 | 十八禁网站免费在线| 中文字幕色久视频| 不卡一级毛片| 一个人观看的视频www高清免费观看 | 色综合站精品国产| www.熟女人妻精品国产| 嫩草影视91久久| 1024视频免费在线观看| 久久久久久久久中文| 黄片小视频在线播放| 精品欧美一区二区三区在线| 亚洲全国av大片| 国产精品久久视频播放| 麻豆一二三区av精品| 国产真人三级小视频在线观看| 欧美人与性动交α欧美精品济南到| 一边摸一边抽搐一进一出视频| 国产午夜精品久久久久久| 国产高清国产精品国产三级| 国产成人系列免费观看| 欧美日韩一级在线毛片| 亚洲人成网站在线播放欧美日韩| 精品国产乱码久久久久久男人| 一级毛片女人18水好多| 亚洲第一av免费看| 别揉我奶头~嗯~啊~动态视频| 中文字幕精品免费在线观看视频| 亚洲精品在线观看二区| 麻豆国产av国片精品| 亚洲av五月六月丁香网| 日韩视频一区二区在线观看| 久久热在线av| 国产精品亚洲一级av第二区| 成人亚洲精品一区在线观看| 伦理电影免费视频| 亚洲美女黄片视频| 麻豆国产av国片精品| 亚洲色图av天堂| 黄片小视频在线播放| 中文欧美无线码| 中文字幕高清在线视频| 免费在线观看完整版高清| 婷婷丁香在线五月| 免费在线观看影片大全网站| 亚洲七黄色美女视频| 国产人伦9x9x在线观看| 最好的美女福利视频网| 欧美成狂野欧美在线观看| 无限看片的www在线观看| 国产一区二区三区综合在线观看| 欧洲精品卡2卡3卡4卡5卡区| 亚洲全国av大片| 电影成人av| 成人精品一区二区免费| 男人舔女人下体高潮全视频| 这个男人来自地球电影免费观看| 日日爽夜夜爽网站| 80岁老熟妇乱子伦牲交| 久久久国产成人精品二区 | 欧美日韩中文字幕国产精品一区二区三区 | 日本精品一区二区三区蜜桃| 国产成人av教育| 在线观看免费视频日本深夜| 久久精品人人爽人人爽视色| 欧美大码av| 亚洲国产看品久久| av福利片在线| 国产精品1区2区在线观看.| 精品久久久久久久毛片微露脸| 丰满迷人的少妇在线观看| 最好的美女福利视频网| 99riav亚洲国产免费| 高清欧美精品videossex| 亚洲熟妇熟女久久| 法律面前人人平等表现在哪些方面| 伊人久久大香线蕉亚洲五| 午夜福利在线观看吧| 激情在线观看视频在线高清| 久久中文字幕人妻熟女| 亚洲情色 制服丝袜| 国产高清激情床上av| 欧美一级毛片孕妇| 波多野结衣高清无吗| a在线观看视频网站| 精品久久久精品久久久| 日本精品一区二区三区蜜桃| 91麻豆av在线| 伊人久久大香线蕉亚洲五| 午夜精品久久久久久毛片777| 国产精品98久久久久久宅男小说| 51午夜福利影视在线观看| 精品卡一卡二卡四卡免费| 亚洲精品美女久久av网站| 成熟少妇高潮喷水视频| 亚洲少妇的诱惑av| 一进一出抽搐动态| 午夜精品国产一区二区电影| a在线观看视频网站| 9热在线视频观看99| 欧美激情高清一区二区三区| 亚洲精品久久午夜乱码| 婷婷精品国产亚洲av在线| 日韩欧美免费精品| 精品欧美一区二区三区在线| 亚洲精品成人av观看孕妇| 国产欧美日韩精品亚洲av| 日本撒尿小便嘘嘘汇集6| 亚洲自偷自拍图片 自拍| 久久国产精品男人的天堂亚洲| 成在线人永久免费视频| 高清毛片免费观看视频网站 | 国产成人欧美| 日韩人妻精品一区2区三区| 一级毛片高清免费大全| 亚洲成人国产一区在线观看| 99久久精品国产亚洲精品| 悠悠久久av| 色精品久久人妻99蜜桃| 老司机亚洲免费影院| 91成年电影在线观看| 国产在线精品亚洲第一网站| 一级a爱片免费观看的视频| 女警被强在线播放| 欧美日韩黄片免| 日日干狠狠操夜夜爽| 精品欧美一区二区三区在线| 中文亚洲av片在线观看爽| 亚洲精品美女久久久久99蜜臀| 午夜a级毛片| 涩涩av久久男人的天堂| 一进一出抽搐动态| ponron亚洲| 69精品国产乱码久久久| 国产成人欧美| 久久天躁狠狠躁夜夜2o2o| 91九色精品人成在线观看| 国产三级黄色录像| 精品一区二区三区av网在线观看| 亚洲第一青青草原| 中文字幕最新亚洲高清| 另类亚洲欧美激情| 在线av久久热| 久久久久亚洲av毛片大全| 黄片大片在线免费观看| 亚洲精品一卡2卡三卡4卡5卡| 久久99一区二区三区| 成人精品一区二区免费| 欧美黑人欧美精品刺激| 男女高潮啪啪啪动态图| 男女做爰动态图高潮gif福利片 | 性色av乱码一区二区三区2| 咕卡用的链子| 日韩视频一区二区在线观看| 看黄色毛片网站| 成人亚洲精品一区在线观看| 真人做人爱边吃奶动态| 国产精品日韩av在线免费观看 | 一边摸一边抽搐一进一出视频| 亚洲黑人精品在线| 日韩精品中文字幕看吧| 免费观看人在逋| 中文字幕精品免费在线观看视频| 久久中文字幕人妻熟女| 精品卡一卡二卡四卡免费| 一二三四社区在线视频社区8| 91老司机精品| 老汉色av国产亚洲站长工具| 精品一区二区三区av网在线观看| 人人妻人人爽人人添夜夜欢视频| 50天的宝宝边吃奶边哭怎么回事| 免费在线观看完整版高清| 天堂影院成人在线观看| 99re在线观看精品视频| 成人三级做爰电影| 亚洲欧美日韩无卡精品| 中文字幕色久视频| 久久狼人影院| 黑人猛操日本美女一级片| 亚洲欧美日韩无卡精品| 亚洲第一欧美日韩一区二区三区| 一级a爱片免费观看的视频| 狂野欧美激情性xxxx| 亚洲国产毛片av蜜桃av| 人妻久久中文字幕网| 欧美日韩国产mv在线观看视频| 亚洲在线自拍视频| 日韩免费av在线播放| 久久久久九九精品影院| 热re99久久精品国产66热6| 午夜免费激情av| 国产亚洲av高清不卡| 美女午夜性视频免费| 自拍欧美九色日韩亚洲蝌蚪91| 村上凉子中文字幕在线| 成年女人毛片免费观看观看9| 在线视频色国产色| 伦理电影免费视频| 久久久久久大精品| 一本大道久久a久久精品| 国产精品av久久久久免费| 又黄又爽又免费观看的视频| 亚洲精华国产精华精| 午夜两性在线视频| 成年人黄色毛片网站| 999久久久精品免费观看国产| 男女下面插进去视频免费观看| 国产精品电影一区二区三区| 亚洲精品一二三| av网站在线播放免费| 国产一区在线观看成人免费| 欧美中文日本在线观看视频| 午夜福利欧美成人| 亚洲欧美激情综合另类| 999久久久精品免费观看国产| 免费看十八禁软件| 老司机在亚洲福利影院| 欧美日韩亚洲综合一区二区三区_| 久久草成人影院| 久久国产精品男人的天堂亚洲| 性欧美人与动物交配| 精品人妻1区二区| 国产精品秋霞免费鲁丝片| 天天躁夜夜躁狠狠躁躁| 国产极品粉嫩免费观看在线| 超碰97精品在线观看| 99精品久久久久人妻精品| 91字幕亚洲| 18禁黄网站禁片午夜丰满| 少妇粗大呻吟视频| 99riav亚洲国产免费| 亚洲三区欧美一区| 午夜免费激情av| 少妇粗大呻吟视频| 国产麻豆69| 欧美日本亚洲视频在线播放| 免费在线观看亚洲国产| 成人特级黄色片久久久久久久| 桃红色精品国产亚洲av| 动漫黄色视频在线观看| 国产av又大| 午夜视频精品福利| 久久精品91无色码中文字幕| 亚洲五月色婷婷综合| 精品福利永久在线观看| 色老头精品视频在线观看| 人成视频在线观看免费观看| 国产精品98久久久久久宅男小说| av超薄肉色丝袜交足视频| 久热爱精品视频在线9| 国产精品久久视频播放| 9热在线视频观看99| 久久精品成人免费网站| 亚洲欧美精品综合一区二区三区| 亚洲av第一区精品v没综合| 国产精品1区2区在线观看.| 99riav亚洲国产免费| 久久久久久人人人人人| 在线观看免费午夜福利视频| 午夜精品国产一区二区电影| 三级毛片av免费| av中文乱码字幕在线| 校园春色视频在线观看| 在线国产一区二区在线| 久久精品影院6| 18禁裸乳无遮挡免费网站照片 | 久99久视频精品免费| 99国产极品粉嫩在线观看| 老司机午夜福利在线观看视频| 两个人免费观看高清视频| 欧美久久黑人一区二区| 长腿黑丝高跟| 一级毛片精品| 欧美黄色片欧美黄色片| 高潮久久久久久久久久久不卡| 午夜免费观看网址| 大码成人一级视频| 国产xxxxx性猛交| 国产97色在线日韩免费| 999久久久国产精品视频| 中文字幕人妻熟女乱码| 欧美日韩亚洲高清精品| 国产国语露脸激情在线看| 久久精品aⅴ一区二区三区四区| 欧美最黄视频在线播放免费 | 美女福利国产在线| a在线观看视频网站| 国产成人系列免费观看| 亚洲精品av麻豆狂野|