• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    嵌段共聚物直接熱解法制備介孔炭材料及其在超級電容器中的應(yīng)用

    2015-06-05 14:36:36孔令斌李曉明羅永春
    新型炭材料 2015年4期
    關(guān)鍵詞:李曉明甘肅蘭州永春

    汪 勇, 孔令斌,, 李曉明, 冉 奮, 羅永春, 康 龍

    嵌段共聚物直接熱解法制備介孔炭材料及其在超級電容器中的應(yīng)用

    汪 勇1, 孔令斌1,2, 李曉明1, 冉 奮1, 羅永春2, 康 龍2

    (1.蘭州理工大學(xué)省部共建有色金屬先進(jìn)加工與再利用國家重點(diǎn)實(shí)驗(yàn)室,甘肅蘭州730050; 2.蘭州理工大學(xué)材料科學(xué)與工程學(xué)院,甘肅蘭州730050)

    以嵌段共聚物為前驅(qū)體,通過直接熱解聚丙烯腈嵌段苯乙烯(PAN-b-PS-b-PAN)制備新型納米多孔炭材料。炭材料制備依賴于嵌段共聚物分子的設(shè)計(jì),而分子量可控、分布范圍較窄的嵌段共聚物則通過可逆加成鏈轉(zhuǎn)移(RAFT)聚合方法合成。所制炭材料不僅具有較高的比表面積(950 m2·g-1),且在2~4 nm的介孔范圍內(nèi)孔徑得到良好的控制。此外,作為電極材料在2 mol/L KOH電解液中表現(xiàn)出高的比容量(185 F·g-1,電流密度為0.625 A·g-1),且顯示較好的循環(huán)壽命,經(jīng)10 000次循環(huán)后,能夠保持初始比容量的97.5%。通過不同分子量聚合物的設(shè)計(jì),制備結(jié)構(gòu)新穎的多孔炭材料,可應(yīng)用于高性能超級電容器。

    嵌段共聚物;介孔炭;聚合物炭化;能量存儲;超級電容器

    1 Introduction

    Supercapacitors play a key role in supporting the voltage of a system during increased loads from portable equipments to electric vehicles[1].Supercapacitors has been expected as a secondary electric power supplier for the automobiles with hybrid engine or fuel cell motor because of its rapid charge and discharge[2].Furthermore supercapacitor offer extremely a long service life over 106cycles,a high specific power of more than 10 Kw·h·Kg-1and can now be designed on the basis of environmentally friendlycomponents[3].Currently,Supercapacitors are widely used in consumer electronics[4],memory back-up systems,industrialpower and energy management[5], which can alleviate shortcomings of batteries,such as slow energy discharge.However,the energy density of supercapacitors is smaller than that of secondary batteries,which is a drawback for practical devices. In order to make the supercapacitors widely used in mang fields,the development of supercapacitors with a high energy density is highly needed.

    In general,carbons are good electrode materials of supercapacitors[6],which have been widely used and extensively studied,owing to their high conductivity,high surface area(up to 2 000 m2·g-1)[7], excellent anti-corrosion property,controllable porous structure and relatively low cost[8].Up to now,the preparation methods of carbon material for supercapacitors are reported extensively.For example,CMK-3 derived from the hard template SBA-15[9]shows a fiberlike close stacking structure with a pore diameter of 3.9 nm and a surface area of 900 m2·g-1,and a specific capacitance of 10 mF·cm-2or 90 F·g-1in nonaqueous electrolyte[10].Recently,a direct synthesis of highly ordered mesoporous carbons has been achieved by utilization of the organic-organic co-assembly between the commercial amphiphilic Pluronic block copolymers and phenolic oligomers through an evaporation induced self-assembly or solution synthesis route[11].This soft-templating synthesis procedure has great advantages over the complicated hard-templating procedures,but there are few choices for soft template.However,both the soft and hard template methods are difficult to prepare large-pore ordered mesoporous carbons due to the limitation of molecular weight of the templates’[11,12].The unique self-assembling properties of block copolymers make it possible to prepare carbon materials with tunable sizes on the nanometer scale.

    Herein we demonstrate a synthesis routine of polyacrylonitrile-b-polystyrene-b-pdyacrylonitrile (PAN-b-PS-b-PAN)block-copolymer as a carbon precursor of mesoporous carbon for supercapacitors with a reversible addition-fragmentation chain transfer (RAFT)mechanism.During high temperature carbonization,styrene is released to generate mesopores, which is named as“sacrificial”segment,while polyacrylonitrile is converted partly into carbon framework (“reserved”segment).In the bulk,block copolymers undergo micro-phase separation on the molecular scale(20-200 nm)to produce complex nanostructures with various morphologies,depending on the relative volume fraction of PAN to PS.In this work,a wellcontrolled the pore structure is realized by adjusting the molecular weight of the“sacrificial”segment. Meanwhile,mesoporous carbons have been synthesized with pore sizes of 2-4 nm.The studies shows that as-prepared mesoporous carbon has a considerably high specific capacitance of 185 F·g-1at a current density of 0.625 A·g1and excellent cycle stability of~97.5%of initial capacitance after 10 000 cycles in 2 mol/L KOH aqueous solution.All the electrochemical tests demonstrate that as-prepared porous carbon possesses excellentelectrochemical performance.

    2 Experimental

    2.1Materials

    All reactions were carried out in nitrogen atmosphere.Petroleum ether(30-60℃),chloroform (CHCl3),acetone,carbon disulfide(CS2),tetrabutyl ammonium hydrogen sulfate(TBAHS, C16H37NO4S,99%,Fluka),methanol(CH2OH), acrylonitrile(AN),styrene(St),N,N-dimethylformamide(DMF)were supplied by Sinopharm Chemical Reagent Co.(China)and other chemicals were of analytical grade.All chemicals were puri?ed by distillation.Azodiisobutyronitrile(AIBN)was purified by recrystallization in ethanol at 40℃.

    2.2Preparation of chain transfer agent

    Synthesis of S,S'-Bis(α,α'-dimethyl-α″-acetic acid)-trithiocarbonate(BDMAT)was performed according to document[13].

    2.3Preparation of PAN macroinitiator

    In a typical synthesis,for PAN synthesis,1× 10-1g(7.09×10-3mol)of BDMAT,3.2×10-2g (3.9×10-3mol)of AIBN,30 mL of DMF,and 10 g of acrylonitrile were added into an eggplant-bottom flask with a magnetic stirring bar,which was closed with stopcocks,subjected to three freeze-pump-thaw cycles,and immersed into a thermostated water bath at80℃for12 h under stirring.The reaction was terminated by the addition of aerated DMF,then the product was precipitated by adding methanol.The solid products was dried in a vacuum oven at room temperature.

    2.4Preparation of block copolymer PAN-b-PS-b-PAN

    For the synthesis of PAN-b-PS-b-PAN block copolymer,the above synthesized PAN(Mn= 12 203 g·mol-1and MW/Mn=1.09)was used as a macroinitiator.Feed ratios were calculated according to the proportion of PS:PAN-BDMAT:AIBN= 1 000∶3.7∶1 for the copdymer 1 and PS∶PAN-BDMAT∶AIBN=1 000∶1∶1 for the copolymer 2,and 30 mL DMF were added into an eggplant-bottom flask with a magnetic stirring bar,and the flask was closedwith stopcocks and subjected to three freeze-pumpthaw cycles,immersed into a thermostated water bath at 80℃for 12 h with stirring.The reaction was terminated by the addition of aerated DMF,the products were precipitated by adding methanol.The solid products were dried in a vacuum oven at room temperature to obtain block copolymer 1and 2.

    2.5Preparation of mesoporous carbons

    The polymers,PAN or the block copolymers were heated in air at 20℃·min-1to 240℃for 6 h. After pre-oxidation and cross-linking of polymers,the samples were pyrolyzed at the 800℃at a heating rate of 1℃·min-1in a nitrogen atmosphere to allow the conversion of the polymer to carbon materials.The pyrolyzed product from PAN was labeled as PAC, and those from PAN-b-PS-b-PAN copolymer 1and 2 were labeled as PASC-1 and PASC-2.

    2.6Electrode preparation and electrochemical measurements

    The working electrodes were prepared as follows:80%of electroactive material powder was mixed with 7.5%of acetylene black and 7.5%of conducting graphite in an agate mortar until a homogeneous black powder was obtained.To this mixture, 5%of tetrafluoroethylene was added together with a few drops of ethanol.After the solvent is briefly evaporated,the resulting paste was pressed at 10 MPa to nickel foam current collector.The electrode was dried at60℃for 12 h.

    Scheme 1 Synthetic route of polyacrylonitrile-b-polystyrene-b-polyacrylonitrile block copolymers.

    Where Cm(F·g-1)is the specific capacitance,I (A)is discharge current,Δt(s)is the discharge time,ΔV(V)represents the potential drop during discharge process,and m(g)is the mass of the active material.

    2.7Structure characterization

    The1H-nuclear magnetic resonance(NMR) spectra were performed in DMSO-d6with a Bruker Varian(FT-80A)NMR instrument.The molecular

    All electrochemical measurements of as-prepared electrode were carried out using an electrochemical working station(CHI660C,Shanghai,China)in a half-cell setup configuration at room temperature and a 2 mol/L KOH solution as the electrolyte.A typical three-electrode glass cell equipped with a working electrode,a platinum foil counter electrode,and a saturated calomelreference electrode(SCE)was used for electrochemical measurements of as-prepared working electrodes.The corresponding specific capacitance was calculated from the equation(1): weight of the polymers was investigated using Gel Permeation Chromatography(GPC)using a Waters 1515 HPLC equipped with a Waters 2414 Refractive Index detector and waters styragel columns(500, 103,and 105).DMF(flow rate of 1.0 mL·min-1) was used as the solvent and polystyrene(Shodex standard)as the standard for a universal calibration. Hermo gravimetric analysis(TGA)and differential scanning calorimetry(DSC)were carried outin air at a heating rate of 10℃·min-1on a NETZSCH STA 449F3.The microstructures of these carbons were characterized by transmission electron microscope (TEM,JEOL,JEM-2010,Japan)and and field emission scanning electron microscope(SEM,JEOL, JSM-6701F,Japan).The characteristic functional groups of the polymers were also analyzed with a Fourier transform infrared(FT-IR)spectrometer (NEXUS 670 FT-IR)in the absorbance mode (4 500-500 cm-1;number of scans:64;resolution: 2 cm-1).The surface area and N2adsorption-desorption isotherms were measured at77 K on a Micromeritics(ASAP,2020)according to the Brunaurer-Em-mett-Teller(BET)method,the pore size distributions were derived from the desorption branches of the isotherms.

    3 Results and discussion

    3.1Synthesis of PAN-b-PS-b-PAN block copolymer

    The1H NMR spectrum in Fig.1 shows that the signals at 1.39 ppm is assigned to-CH3of the BDMAT.The signals of the PAN block corresponding to -CH2and-CH protons are observed at 2.0 and 3.3 ppm,respectively.The two signals at 6.2-7.5 ppm are attributed to the meta-and para-protons whereas 8.0 ppm is contributed by ortho protons of benzene ring.To further elucidate PAN-b-PS-b-PAN,FTIR was employed to measure the functional groups of the copolymer materials.

    Fig.11H NMR spectrum of PAN-b-PS-b-PAN block copolymer in DMF solvent.

    The IR spectra of PAN-BDMAT and block copolymer PAN-b-PS-b-PAN exhibit well-defined peaks that are characteristic of the two polymers (Fig.2).The characteristic adsorption peak of the copolymer PAN is located at 2 240 cm-1,which is due to the bond C≡ N.Strong peaks near 2 929 and 1 492 cm-1indicate the stretching and bending vibrations of C—H,respectively[14,15].The BDMAT shows its characteristic absorption at 1 675 and 1 093 cm-1,which corresponds to the bonds C= O and C= S,respectively.Furthermore,the bands at 1 249 and 1 384 cm-1correspond to C—O stretching and the-C(CH3)2groups[16].It is clearly observed by a comparison of PAN with the block copolymer that there are some new absorption peaks.The additional band obtained at 3 027 cm-1is mainly caused by the C—H stretching vibration of aromatic functional group,which also has a weak bending vibration mode corresponding to the band recorded at 1 452 cm-1[17].Meanwhile,the vibrations of benzene ring skeleton C-C is located at around 1 600 cm-1[18].In the block copolymer,the characteristic vibration bands of polystyrene appear,which indicates that the block copolymers are synthesized.

    Fig.2 FT-IR spectra of(a)PAN-BDMAT and(b)block copolymer PAN-b-PS-b-PAN.

    Two differentblock copolymers with a controlled molecular weight and narrow polydispersity(<1.3) are listed in Table 1.The block copolymer sharply shifted to a high molecular weight region with a narrow molecular weight distribution.The molecular weight of the PS block is controlled from 12 203 to 20 086 g·mol-1with a narrow polydispersity(PDI<1.2)while the molecular weight of PS block is controlled from 12 200 up to 32 300 g·mol-1,which is expected to form large pore.

    Table 1 Molecular weight of PAN-b-PS-b-PAN block copolymers by a simple polymerization process in the presence of the RAFT agent.

    3.2Mesoporous carbon from block copolymer and electrochemical performence

    The weightloss associated with pyrolysis is studied by TGA.Fig.3 shows weight changes during oxidative stabilization and pyrolysis of copolymers.The PAN-BDMAT shows a 5.2%of the weight loss at 270℃in a nitrogen atmosphere,and a total weight loss of 52.5%upon pyrolysis heating to 1 000℃, while the pristine and purified block copolymer exhibit a total 77%weight loss after pyrolysis 1 000℃. The weight loss of the block copolymer is clearly observed during heating process,which takes place roughly in three stages noted by stage I,II,and III. The first stage corresponds to due to partial dehydrogenation and cross-linking in the range of 20-270℃, which is the stabilization step involving the intra and intermolecular reactions that are needed to stabilizethe microphase separation structure prior to pyrolysis[19].The second stage of weight loss 59%can be clearly observed by TGA in the temperature range from 270 to 480℃.The major weightloss at450℃can be assigned to the thermal decomposition of sacrificial PS block.The third mass loss of 6%is attributed to further dehydrogenation and partialdenitrogenation of PAN.

    Numerous macropores and mesopores are evidentin Fig.4b,which are in favor of the improvement in the power performance capability of resulting supercapacitor.It is well documented that macropores serve as ion buffering reservoirs and mesopores are capable of overcoming the primary kinetic limits of electrochemical process.Fig.4 c exhibits numerous mesopores with uniform pore size distribution of 2-4 nm.Thus,the prepared sample is considered to be a interconnected porous carbon.

    Fig.3 TGA curves of(a)PAN-BDMAT and(b)PAN-b-PS-b-PAN.

    Fig.4 (a)SEM images of PASC-2.(b)TEM of PASC-2.(c)HRTEM of PASC-2.

    Nitrogen sorption experiments are performed to evaluate the overall porosity of the carbon samples (Fig.5a).Both of the PASC-1 and PASC-2 samples show type-IV isotherms with narrow hysteresis loops according to the IUPAC classification[20].The N2uptake of the PAC atlow relative pressures(p/p0<0.1) indicates the presence of the micropores,which is formed by pyrolysis of PAN.The PAC from PAN has a pore volume of0.21 cm3·g-1.The pore volume of the mesoporous carbons from the block polymers are larger(0.53,0.78 cm3·g-1)than that of porous carbon from PAN.The PAC shows a BET surface area of 467.8 m2·g-1while those of PASC-1 and-2 are 896.12 and 953.53 m2·g-1.Moreover,the pore size distribution curves of PAC(Fig.5 b)suggested that the size ofthe mesopores is about2.0 nm and virtually no other pores.PASC-1 and-2 show similar pore size distributions at2 nm[21],and the dominant pores are mesopores(>2 nm).The large mesoporous structure(6-200 nm)(insetin Fig.5b)is formed by interparticle voides from micro phase separation of the block coploy mers.In our case,the t-plot analysis shows thatthe ratio of pores(micropores and mesopores)is determined by ratio of retention block to sacrificial block of polymeric precursor.The one relatively with larger molecular weight and low polydispersity of sacrificial block,not only generated the micropores and mesopores,but also the larger distribution range(6-200 nm).These results indicate an excellent porosity of the mesoporous carbon by pyrolysis of polymers,including high surface area,large pore volume,and uniform mesopores,which are important for wide applications.

    Fig.6a shows the CV curves of PAC,PASC-1 and PASC-2 samples at a scan rate of 5 mV·S-1between-1.0 V and 0 V in 2 mol/L KOH solution. The shape of the CV reveals thatthe capacitance characteristic is very similar to thatof electric double-layer capacitance in which the shape is normally close to an ideal rectangular shape,and no obvious faradaic current is observed in the voltammogram[22].The PAC exhibits a small rectangular curve,corresponding to a low capacitance.The high currentresponse in the CV curve of PASC-1 and PASC-2 indicates thatthe effective specific surface area contributing to the capacitance is remarkably improved in the carbon materials.

    Fig.5 (a)Nitrogen sorption isotherms of PAC,PASC-1 and PASC-2 porous carbons synthesized via PAN-b-PS-b-PS block polymer pyrolysis. (b)Pore size distributions are calculated by BJH method from the desorption branches. The inset shows their corresponding pore size distribution from 20 to 200 nm.

    Fig.6 Comparison of(a)cyclic voltammograms of PAC,PASC-1 and PASC-2 at a scan rate of 5 mV·s-1in 2 mol/L KOH aqueous solution; (b)Charge-discharge curves of PAC,PASC-1 and PASC-2 at a scan rate of 5 mV·s-1; (c)Complex-plane impedance plots of PAC,PASC-1 and PASC-2; (d)Specific capacitance of as-prepared samples at a controlled current densities.The mass of active material is 8 mg.

    Fig.6b further displays the comparison of galvanostatic charge-discharge curves of PAC,PASC-1 and PASC-2,which have nearly triangular shapes at the same current density of 0.625 A·g-1.The mass specific capacitance(F·g-1)at the current density of 0.625 A·g-1tends to increase with the increase of specific surface area,which may be attributed to the relative narrow distribution of pore size and the increased the effective surface area.Fig.6c shows the impedance plot of PAC,PASC-1 and PASC-2.The impedance plots for each sample can be divided into a high-frequency component and a low-frequency component.The absence of this loop indicates that the materials have a really low intrinsic resistance which includes the total resistances of the ionic resistance in the electrolyte,the intrinsic resistance of active materials,and the contact resistance at the active material/ current collector interface.The semicircle in the high-frequency range associates with the surface properties of the porous electrode,which corresponds to the charge transfer resistance(Rct).It can be seen that the sample of PASC-2 have a small Rctwhich is ascribed to the nanoporous structure feature that facilitate the transport of electrolyte ions.In Fig.6d,the variation in the specific capacitance of the electrodes as a function of the scan rates is plotted.The PASC-2 exhibits the highest specific capacitance of 185 F·g-1at a current density of 0.625 A·g-1.When the scan rate is increased by ten times,the mass specific capacitance was 125 F·g-1,which is 67.5%of the initial capacity(at a current density of 0.625 A·g-1).

    Fig.7 Cycle life at a current density of 2 A·g-1.

    For a further understanding of the electrochemical performance,the long-term cycle stability of the electrode was evaluated at a current density of 2 A·g-1for 10 000 cycles.Importantly,studied devices exhibites good cycle stability,which is especially desirable in supercapacitors,by maintaining 97.5%of capacitance after 10 000 charge/discharge cycles.The long-term stability implies an excellent electrode materialfor supercapacitor.

    3 Conclusions

    We successfully synthesized PAN-b-PS-b-PAN block copolymers as a new kind of precursors for the formation of mesoporous carbon materials via a reversible addition-fragmentation chain transfer mechanism,in which PAN is the carbon source that foams carbon network and PS is the sacrificial segment that is released during pyrolysis at 800℃.The mesoporous carbons exhibited high BET surface areas of 896.12 m2·g-1(PASC-2)and 953.53 m2·g-1(PASC-1)with mesopore size of 2-4 nm and small amount of micropores.Moreover,the specific capacitances of PASC-2 and PASC-1 are 185 and 150 F·g-1at a current density of 0.625 A·g-1respectively and long cycle life of 97.5%capacity retention after 10 000 charge/discharge cycles in 2 mol/L KOH aqueous solution.

    [1] Xiao H,Wen C,Ni C,et al.Effectof porosity on the electrical resistivity of carbon materials[J].New Carbon Materials,2013, 28(5):349-354.

    [2] Mitani S,Lee S I,Yoon S H,et al.Activation of raw pitch coke with alkali hydroxide to prepare high performance carbon for electric double layer capacitor[J].Journalof Power Sources, 2004,133(2):298-301.

    [3] Broussea T,Toupina M and Bélangera D.A hybrid activated carbon-manganese dioxide capacitor using a mild aqueous electrolyte[J].Journal of The Electrochemical Society,2004,151 (4),A614-A622.

    [4] Zheng J P.Theoretical energy density for electrochemical capacitors with intercalation electrodes[J].Journal of The Electrochemical Society,2005,152(9):A1864-A1869.

    [5] Li WR,Chen D H,Li Z,etal.Nitrogen-containing carbon spheres with very large uniform mesopores:The superior electrode materials for EDLC in organic electrolyte[J].Carbon,2007,45(9):1757-1763.

    [6] Chen C M,Zhang Q,Huang C H,et al.Macroporous‘bubble’graphene film via template-directed ordered-assembly for high rate supercapacitors[J].Chemical Communication,2012,48,7149-7151.

    [7] Zheng J P and Jow T R.A new charge storage mechanism for electrochemical capacitors[J].Journal of The Electrochemical Society,1995,142(1):L6-L8.

    [8] Pandolfo A G and Hollenkamp A F.Carbon properties and their role in supercapacitors[J].Journalof Power Sources,2006,157 (1):11-27.

    [9] Liu H J,Cui W J,Jin L H,et al.Preparation of three-dimensional ordered mesoporous carbon sphere arrays by a two-step templating route and their application for supercapacitors[J]. Journal of Materials Chemistry,2009,19:3661-3667.

    [10] Li H Q,Luo J Y,Zhou X F,et al.An ordered mesoporous carbon with short pore length and its electrochemical performances in supercapacitor applications[J].Journal of The Electrochemical Society,2007,154(8):A731-A736.

    [11] Deng Y H,Cai Y,Sun Z K,et al.Controlled synthesis and functionalization of ordered large-pore mesoporous carbons[J]. Advanced Functional Materials,2010,20(21):3658-3665.

    [12] Liu C,Li F,Ma L P,etal.Advanced materials for energy storage[J].Advanced Functional Materials,2010,22(8):E28-E62.

    [13] Lai J T,Filla D and Shea R.Functional polymers from novel carboxyl-terminated trithiocarbonates as highly efficient RAFT agents[J].Macromolecules,2002,35(18):6754-6756.

    [14] Chen J Z,Chen Z H,Wang C H,et al.Calcium-assisted hydrothermal carbonization of an alginate for the production of carbon microspheres with unique surface nanopores[J].Materials Letters,2012,67(1):365-368.

    [15] Liao Y H,Zhou D Y,Rao M M,et al.Self-supported poly (methyl methacrylate-acrylonitrile-vinyl acetate)-based gel electrolyte for lithium ion battery[J].Journal of Power Sources, 2009,189(1):139-144.

    [16] Wang X X,Li T H,Ji Y B,etal.Synthesis and characteristicsof continuous mesoporous carbon films by a rapid solvent evaporation method[J].Applied Surface Science,2008,255(5): 1719-1725.

    [17] Ho H T,Martin E L,Pascual S,etal.Thermoresponsive block copolymers containing reactive azlactone groups and their bioconjugation with lysozyme[J].Polymer Chemistry,2013,4 (3):675-685.

    [18] Tan Y T,Ran F,Wang L R,et al.Synthesis and electrochemical properties of hollow polyaniline microspheres by a sulfonated polystyrene template[J].Applied Polymer,2013,127(3): 1544-1549.

    [19] Zhong MJ,Kim E K,McGann J P,et al.Electrochemically active nitrogen-enriched nanocarbons with well-defined morphology synthesized by pyrolysis of self-assembled block copolymer[J]. Journal of American Chemical Society,2012,134(36):14846-14857.

    [20] Zhang J,Kong L B,Cai J J,etal.Hierarchically porous nickel hydroxide/mesoporous carbon composite materials for electrochemical capacitors[J].Microporous and Mesoporous Materials,2010,132(1-2):154-162.

    [21] Nguyena Chi-thanh,Kim Dong-pyo.Direct preparation of mesoporous carbon by pyrolysis of poly(acrylonitrile-b-methylmethacrylate)diblock copolymer[J].Journal of Materials Chemistry, 2011,21,14226-14230.

    [22] Lang J W,Yan X B,Yuan X Y,et al.Study on the electrochemical properties of cubic ordered mesoporous carbon for supercapacitors[J].Journal of Power Sources,2011,196(23): 10472-10478 .

    Mesoporous carbons for supercapacitors obtained by the pyrolysis of block copolymers

    WANG Yong1, KONG Ling-bin1,2, LI Xiao-ming1, RAN Fen1, LUO Yong-chun2, KANG Long2
    (1.StateKeyLaboratoryofAdvancedProcessingandRecyclingofNonferrousMetals,SchoolofMaterialsScienceandEngineering,LanzhouUniversityofTechnology,Lanzhou730050,China;
    2.SchoolofMaterialsScienceandEngineering,LanzhouUniversityofTechnology,Lanzhou730050,China)

    Novel mesoporous carbons were prepared by the simple pyrolysis of block-copolymers,polyacrylonitrile-b-polystyreneb-polyacrylonitrile(PAN-b-PS-b-PAN),in which PAN generates a carbon network and PS is released to form mesopores after pyrolysis.The block-copolymers were synthesized by reversible addition-fragmentation chain transfer(RAFT)polymerization and the molecular weight of each polymer block can be designed to tailor the porous structure of the mesoporous carbons.The carbons have high specific surface areas and a well-controlled mesopore size.The best mesoporous carbon has a high specific capacitance of 185 F ·g-1at0.625 A·g-1with a high power capability and a remarkable cycle stability in 2 mol/L KOH aqueous electrolyte.

    Block copolymer;Mesoporous carbon;Polymer carbonization;Energy storage;Supercapacitor

    KONG Ling-bin,Professsor.E-mail:konglb@lut.cn

    TQ127.1+1

    A

    國家自然科學(xué)基金(51362018,21163010);教育部關(guān)鍵項(xiàng)目(212183).

    孔令斌,教授.E-mail:konglb@lut.cn

    汪 勇,碩士研究生.E-mail:gaoxing9999@126.com

    1007-8827(2015)04-0302-08

    Received date:2015-01-05;Revised date:2015-07-25

    Foundation item:National Natural Science Foundation of China(51362018,21163010);Key Project of Chinese Ministry of

    Education(212183).

    Author introduction:WANG Yong,Master Student.E-mail:gaoxing9999@126.com

    English edition available online ScienceDirect(http://www.sciencedirect.com/science/journal/18725805).

    10.1016/S1872-5805(15)60191-3

    猜你喜歡
    李曉明甘肅蘭州永春
    大眾文藝(2022年23期)2022-12-25 03:09:24
    從太空俯瞰地球
    軍事文摘(2021年20期)2021-11-10 01:58:34
    Effect of entanglement embedded in environment on quantum non-Markovianity based on collision model
    難忘的生日會
    都市人(2020年10期)2020-11-06 07:27:20
    永春雪山巖
    A new acyclic peroxide from Aspergillus nidulans SD-531, a Fungus Obtained from the Deep-sea Sediment of Cold Spring in the South China Sea*
    甘肅蘭州卷
    永春“逐火把”激情上演
    海峽姐妹(2019年4期)2019-06-18 10:39:12
    南雄梅關(guān)
    藝術(shù)家(2019年4期)2019-04-20 11:30:48
    甘肅蘭州鹽什公路復(fù)工預(yù)計(jì)2019年7月底建成通車
    石油瀝青(2019年2期)2019-02-13 17:24:47
    亚洲精品中文字幕一二三四区| 日韩一卡2卡3卡4卡2021年| 母亲3免费完整高清在线观看| 91av网站免费观看| 亚洲九九香蕉| 性色av乱码一区二区三区2| 在线看a的网站| 18禁裸乳无遮挡免费网站照片 | 丝袜美足系列| 亚洲av成人一区二区三| 成人永久免费在线观看视频| 热re99久久国产66热| 午夜福利影视在线免费观看| 成人永久免费在线观看视频| 欧美日韩av久久| 女人爽到高潮嗷嗷叫在线视频| 日韩免费高清中文字幕av| netflix在线观看网站| 午夜日韩欧美国产| 99国产精品一区二区三区| 国产精品1区2区在线观看.| 美女大奶头视频| 国产av精品麻豆| 日本wwww免费看| 国产在线精品亚洲第一网站| 色哟哟哟哟哟哟| 欧美激情 高清一区二区三区| 18美女黄网站色大片免费观看| 精品久久久久久成人av| 久久国产精品影院| 一a级毛片在线观看| 亚洲七黄色美女视频| 国产区一区二久久| 久久精品亚洲熟妇少妇任你| 日本欧美视频一区| 国产成人精品无人区| www国产在线视频色| 亚洲专区字幕在线| 波多野结衣av一区二区av| 亚洲狠狠婷婷综合久久图片| 少妇的丰满在线观看| 中文字幕人妻丝袜制服| 亚洲av日韩精品久久久久久密| 大香蕉久久成人网| 窝窝影院91人妻| 免费在线观看影片大全网站| 午夜福利免费观看在线| 欧美丝袜亚洲另类 | 亚洲成人久久性| 欧美黑人欧美精品刺激| 国产极品粉嫩免费观看在线| 精品久久久精品久久久| 久久欧美精品欧美久久欧美| 一夜夜www| 免费不卡黄色视频| 窝窝影院91人妻| 每晚都被弄得嗷嗷叫到高潮| 女性生殖器流出的白浆| 99久久精品国产亚洲精品| 久久久久久亚洲精品国产蜜桃av| 一级片'在线观看视频| 99久久国产精品久久久| 国产精华一区二区三区| 国产一区二区在线av高清观看| 欧美在线一区亚洲| 这个男人来自地球电影免费观看| 麻豆国产av国片精品| 夜夜爽天天搞| 桃红色精品国产亚洲av| 操出白浆在线播放| 成年女人毛片免费观看观看9| 多毛熟女@视频| 看免费av毛片| 在线国产一区二区在线| 色老头精品视频在线观看| 日本黄色视频三级网站网址| 91字幕亚洲| 国产高清激情床上av| 亚洲精品一二三| 国内毛片毛片毛片毛片毛片| 中文字幕人妻熟女乱码| 精品久久久精品久久久| 国产精品香港三级国产av潘金莲| 视频在线观看一区二区三区| 国产成人av激情在线播放| 免费在线观看影片大全网站| 成人免费观看视频高清| 久久草成人影院| 曰老女人黄片| 1024香蕉在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 香蕉久久夜色| 精品人妻在线不人妻| 免费搜索国产男女视频| 亚洲欧洲精品一区二区精品久久久| 一区二区三区激情视频| 国产精品日韩av在线免费观看 | 老司机午夜福利在线观看视频| 亚洲国产精品合色在线| 午夜a级毛片| 1024视频免费在线观看| 日日夜夜操网爽| 每晚都被弄得嗷嗷叫到高潮| 日韩欧美国产一区二区入口| 99精品欧美一区二区三区四区| 一夜夜www| 欧美乱妇无乱码| 在线观看免费午夜福利视频| 色婷婷av一区二区三区视频| 亚洲成国产人片在线观看| 婷婷丁香在线五月| 黄片播放在线免费| av电影中文网址| 亚洲精品在线美女| 天天躁狠狠躁夜夜躁狠狠躁| 99精品欧美一区二区三区四区| 18禁美女被吸乳视频| 国产色视频综合| 在线观看日韩欧美| 国产成人欧美在线观看| 欧美激情久久久久久爽电影 | 麻豆成人av在线观看| 另类亚洲欧美激情| 国产极品粉嫩免费观看在线| 一本综合久久免费| 一进一出好大好爽视频| 别揉我奶头~嗯~啊~动态视频| 亚洲欧美日韩高清在线视频| 夜夜看夜夜爽夜夜摸 | 午夜精品在线福利| 国产亚洲精品综合一区在线观看 | 午夜精品国产一区二区电影| 露出奶头的视频| 日本wwww免费看| 成人精品一区二区免费| 国产一区在线观看成人免费| а√天堂www在线а√下载| 少妇的丰满在线观看| 9191精品国产免费久久| 国产不卡一卡二| 日韩av在线大香蕉| 丰满迷人的少妇在线观看| 在线观看www视频免费| 男女床上黄色一级片免费看| 99久久国产精品久久久| 热99国产精品久久久久久7| 精品久久久久久,| 日本a在线网址| 人妻久久中文字幕网| 免费在线观看视频国产中文字幕亚洲| 精品人妻在线不人妻| 久久天躁狠狠躁夜夜2o2o| 搡老乐熟女国产| 色哟哟哟哟哟哟| 女生性感内裤真人,穿戴方法视频| 热99re8久久精品国产| 黑人操中国人逼视频| 一级a爱片免费观看的视频| 又大又爽又粗| 国产熟女xx| 日韩精品免费视频一区二区三区| av福利片在线| 女性被躁到高潮视频| 欧美激情 高清一区二区三区| 99久久国产精品久久久| 在线观看免费视频日本深夜| 免费高清在线观看日韩| 亚洲情色 制服丝袜| 伊人久久大香线蕉亚洲五| 欧美成人性av电影在线观看| 91老司机精品| 在线观看一区二区三区激情| av福利片在线| 国产精品国产高清国产av| 19禁男女啪啪无遮挡网站| 久久久精品国产亚洲av高清涩受| 精品少妇一区二区三区视频日本电影| 嫩草影院精品99| 欧洲精品卡2卡3卡4卡5卡区| av天堂在线播放| 久久亚洲真实| 午夜91福利影院| 精品人妻在线不人妻| 99精品久久久久人妻精品| 国产精品乱码一区二三区的特点 | 青草久久国产| 超碰成人久久| 亚洲,欧美精品.| 久久久精品国产亚洲av高清涩受| 夜夜看夜夜爽夜夜摸 | 日日夜夜操网爽| 免费少妇av软件| tocl精华| 国产精品1区2区在线观看.| 国产黄a三级三级三级人| 欧美中文日本在线观看视频| 久久久久久人人人人人| 一级,二级,三级黄色视频| 真人做人爱边吃奶动态| 男女下面进入的视频免费午夜 | 国产亚洲欧美在线一区二区| 级片在线观看| 97碰自拍视频| 午夜精品在线福利| 欧美性长视频在线观看| 国产亚洲欧美在线一区二区| 欧洲精品卡2卡3卡4卡5卡区| 成人国产一区最新在线观看| 黄片大片在线免费观看| 亚洲午夜精品一区,二区,三区| 久久精品影院6| 99久久综合精品五月天人人| 成人av一区二区三区在线看| 高清毛片免费观看视频网站 | 国产精品九九99| 成人亚洲精品av一区二区 | 久久久久国产一级毛片高清牌| 色哟哟哟哟哟哟| 在线看a的网站| 亚洲 欧美一区二区三区| 巨乳人妻的诱惑在线观看| 一区在线观看完整版| 757午夜福利合集在线观看| 亚洲av成人av| 高清在线国产一区| 日韩 欧美 亚洲 中文字幕| 99香蕉大伊视频| 9热在线视频观看99| 亚洲av日韩精品久久久久久密| 久久伊人香网站| 久久久久亚洲av毛片大全| 一级,二级,三级黄色视频| 色综合婷婷激情| 国产精品免费一区二区三区在线| 欧美丝袜亚洲另类 | 91成人精品电影| 亚洲中文av在线| 人人妻人人澡人人看| 黄色怎么调成土黄色| 侵犯人妻中文字幕一二三四区| 五月开心婷婷网| 伦理电影免费视频| 精品一区二区三卡| 亚洲免费av在线视频| 亚洲 欧美 日韩 在线 免费| 母亲3免费完整高清在线观看| 看黄色毛片网站| 他把我摸到了高潮在线观看| av网站在线播放免费| 91字幕亚洲| 日韩高清综合在线| 色老头精品视频在线观看| 成人免费观看视频高清| 免费在线观看日本一区| 午夜福利欧美成人| 亚洲欧美激情综合另类| 男人舔女人的私密视频| 久9热在线精品视频| 水蜜桃什么品种好| 99精国产麻豆久久婷婷| 91精品国产国语对白视频| 午夜福利一区二区在线看| aaaaa片日本免费| 久久精品91蜜桃| 高清黄色对白视频在线免费看| 一区二区三区国产精品乱码| 老汉色av国产亚洲站长工具| 国产片内射在线| 村上凉子中文字幕在线| 亚洲人成伊人成综合网2020| 999久久久国产精品视频| 日韩人妻精品一区2区三区| 欧美乱码精品一区二区三区| 午夜福利免费观看在线| 久久人人爽av亚洲精品天堂| 久热这里只有精品99| 女人精品久久久久毛片| www.自偷自拍.com| 18禁黄网站禁片午夜丰满| 夜夜看夜夜爽夜夜摸 | 在线观看舔阴道视频| 午夜福利,免费看| 成熟少妇高潮喷水视频| 国产精品久久久av美女十八| 免费看十八禁软件| 欧美激情久久久久久爽电影 | 国产单亲对白刺激| 好男人电影高清在线观看| 久久精品亚洲av国产电影网| 侵犯人妻中文字幕一二三四区| 日本a在线网址| 亚洲国产欧美网| 久久精品影院6| 中文字幕最新亚洲高清| 午夜福利欧美成人| 精品午夜福利视频在线观看一区| 国产成人系列免费观看| 首页视频小说图片口味搜索| 最好的美女福利视频网| 亚洲人成伊人成综合网2020| 黑人巨大精品欧美一区二区蜜桃| 国产av又大| 国产精品免费视频内射| 老鸭窝网址在线观看| 不卡av一区二区三区| 一个人免费在线观看的高清视频| 亚洲中文日韩欧美视频| 五月开心婷婷网| 高潮久久久久久久久久久不卡| 男女做爰动态图高潮gif福利片 | 亚洲精品av麻豆狂野| 欧美老熟妇乱子伦牲交| 法律面前人人平等表现在哪些方面| 亚洲美女黄片视频| 日本撒尿小便嘘嘘汇集6| 国产欧美日韩一区二区三区在线| 精品熟女少妇八av免费久了| 亚洲精品中文字幕在线视频| 一区二区三区精品91| 又黄又爽又免费观看的视频| 少妇裸体淫交视频免费看高清 | 亚洲精品美女久久av网站| 最新美女视频免费是黄的| 精品国产一区二区三区四区第35| 女人精品久久久久毛片| 亚洲成人精品中文字幕电影 | 悠悠久久av| 超色免费av| 国产精品99久久99久久久不卡| 狠狠狠狠99中文字幕| 亚洲一区二区三区不卡视频| 免费观看人在逋| 咕卡用的链子| 久久中文字幕一级| 9191精品国产免费久久| 俄罗斯特黄特色一大片| 精品高清国产在线一区| 黑丝袜美女国产一区| 男男h啪啪无遮挡| 国产一区二区激情短视频| 亚洲精品久久午夜乱码| 成年人免费黄色播放视频| 国产精品一区二区免费欧美| 亚洲男人天堂网一区| 成人18禁高潮啪啪吃奶动态图| 亚洲片人在线观看| 久久伊人香网站| 国产高清激情床上av| 成人亚洲精品av一区二区 | 91老司机精品| 99在线人妻在线中文字幕| 精品一区二区三区av网在线观看| 一二三四社区在线视频社区8| 久久人人爽av亚洲精品天堂| 长腿黑丝高跟| 真人做人爱边吃奶动态| 国产午夜精品久久久久久| 人妻丰满熟妇av一区二区三区| 人人妻人人爽人人添夜夜欢视频| 人人妻人人添人人爽欧美一区卜| 国产午夜精品久久久久久| av国产精品久久久久影院| 天堂动漫精品| 国产1区2区3区精品| 国产一区二区激情短视频| 日日夜夜操网爽| 国产黄a三级三级三级人| 国产激情欧美一区二区| 久久久久久大精品| av电影中文网址| 日韩欧美免费精品| 色婷婷久久久亚洲欧美| 国产精品 国内视频| 老熟妇乱子伦视频在线观看| 亚洲一区二区三区欧美精品| 一区二区三区激情视频| 一级作爱视频免费观看| 99久久人妻综合| aaaaa片日本免费| 新久久久久国产一级毛片| 日韩一卡2卡3卡4卡2021年| 国产av在哪里看| 日本vs欧美在线观看视频| 新久久久久国产一级毛片| 国产区一区二久久| 精品国产一区二区三区四区第35| 成人18禁在线播放| 午夜免费观看网址| 黄色怎么调成土黄色| 亚洲精品美女久久av网站| 一级毛片精品| 亚洲性夜色夜夜综合| 午夜福利影视在线免费观看| 51午夜福利影视在线观看| 欧美激情久久久久久爽电影 | 黄色丝袜av网址大全| 午夜免费观看网址| 亚洲精品久久午夜乱码| 国产精品爽爽va在线观看网站 | 国产区一区二久久| 国产又色又爽无遮挡免费看| 伦理电影免费视频| 亚洲成av片中文字幕在线观看| 黄色a级毛片大全视频| 亚洲精品美女久久久久99蜜臀| 人人妻人人添人人爽欧美一区卜| 欧美日韩中文字幕国产精品一区二区三区 | 欧美日韩视频精品一区| 国产麻豆69| 大型黄色视频在线免费观看| 在线av久久热| 久久精品aⅴ一区二区三区四区| 成人国语在线视频| 每晚都被弄得嗷嗷叫到高潮| 久久久久久久精品吃奶| 人人澡人人妻人| 国产成人系列免费观看| 老司机福利观看| 久热这里只有精品99| 国产色爽女视频免费观看| 天堂√8在线中文| 小蜜桃在线观看免费完整版高清| 观看美女的网站| 少妇高潮的动态图| 日韩高清综合在线| 国产爱豆传媒在线观看| 首页视频小说图片口味搜索| 婷婷六月久久综合丁香| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 色视频www国产| 欧美在线黄色| 国产又黄又爽又无遮挡在线| 国产三级黄色录像| 国产免费男女视频| 97热精品久久久久久| 999久久久精品免费观看国产| 久久久久国内视频| 久久热精品热| 国产亚洲欧美98| 一a级毛片在线观看| 亚洲天堂国产精品一区在线| АⅤ资源中文在线天堂| 亚洲av中文字字幕乱码综合| 男女之事视频高清在线观看| 在线观看免费视频日本深夜| 熟女人妻精品中文字幕| 亚洲一区二区三区色噜噜| 久久久国产成人免费| 日本五十路高清| 日韩免费av在线播放| 真人一进一出gif抽搐免费| 国产三级中文精品| 亚洲av不卡在线观看| 久久精品国产清高在天天线| 国产欧美日韩精品一区二区| 免费大片18禁| 国产老妇女一区| 国产真实乱freesex| 自拍偷自拍亚洲精品老妇| 一卡2卡三卡四卡精品乱码亚洲| 国产91精品成人一区二区三区| 99精品在免费线老司机午夜| 观看美女的网站| 波野结衣二区三区在线| 99在线视频只有这里精品首页| 婷婷精品国产亚洲av在线| 久久草成人影院| 亚洲激情在线av| 国产伦精品一区二区三区四那| 18禁在线播放成人免费| 三级男女做爰猛烈吃奶摸视频| 99在线视频只有这里精品首页| 亚洲精品一区av在线观看| 亚洲久久久久久中文字幕| 男女床上黄色一级片免费看| 在线播放无遮挡| 啪啪无遮挡十八禁网站| 人妻夜夜爽99麻豆av| 97超级碰碰碰精品色视频在线观看| 欧美bdsm另类| 日韩大尺度精品在线看网址| 一个人免费在线观看电影| 免费av不卡在线播放| 国产欧美日韩一区二区精品| 最好的美女福利视频网| 精品人妻一区二区三区麻豆 | 91午夜精品亚洲一区二区三区 | 网址你懂的国产日韩在线| 美女cb高潮喷水在线观看| 国产高潮美女av| 一级av片app| 美女黄网站色视频| 在线观看舔阴道视频| 天天躁日日操中文字幕| 久久热精品热| 亚洲久久久久久中文字幕| www.999成人在线观看| 国产午夜精品论理片| 国产精品久久视频播放| 欧美+亚洲+日韩+国产| 中文字幕免费在线视频6| 十八禁网站免费在线| 韩国av一区二区三区四区| 亚洲精品影视一区二区三区av| 国产高清视频在线播放一区| 色av中文字幕| 九色成人免费人妻av| 老司机深夜福利视频在线观看| 成人无遮挡网站| 日韩人妻高清精品专区| 内地一区二区视频在线| 国产精品三级大全| 看十八女毛片水多多多| 18禁黄网站禁片午夜丰满| 一a级毛片在线观看| 国产探花在线观看一区二区| av视频在线观看入口| 我的老师免费观看完整版| 成人鲁丝片一二三区免费| 国产精品免费一区二区三区在线| 久久久久免费精品人妻一区二区| 十八禁人妻一区二区| 午夜免费成人在线视频| 亚洲天堂国产精品一区在线| 欧美性猛交╳xxx乱大交人| 在线观看免费视频日本深夜| 97超级碰碰碰精品色视频在线观看| 丰满的人妻完整版| 色综合婷婷激情| 午夜福利在线观看吧| 此物有八面人人有两片| 国产在视频线在精品| 久久久久久大精品| 麻豆成人av在线观看| aaaaa片日本免费| 亚洲av.av天堂| 在线观看舔阴道视频| 久久天躁狠狠躁夜夜2o2o| 国产三级中文精品| 国内久久婷婷六月综合欲色啪| 精品久久国产蜜桃| 又黄又爽又免费观看的视频| 国产亚洲av嫩草精品影院| 2021天堂中文幕一二区在线观| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 天堂影院成人在线观看| a级毛片a级免费在线| 国内精品一区二区在线观看| 精品熟女少妇八av免费久了| 97人妻精品一区二区三区麻豆| 中文字幕人妻熟人妻熟丝袜美| 乱人视频在线观看| 亚洲第一区二区三区不卡| 久久草成人影院| 天堂√8在线中文| 欧美不卡视频在线免费观看| 狂野欧美白嫩少妇大欣赏| 99久久精品热视频| 韩国av一区二区三区四区| 禁无遮挡网站| 精品久久久久久久久亚洲 | 国内少妇人妻偷人精品xxx网站| 蜜桃久久精品国产亚洲av| 久久久久久大精品| 国产亚洲精品久久久久久毛片| 亚洲一区高清亚洲精品| 一二三四社区在线视频社区8| 黄色配什么色好看| 51国产日韩欧美| 久久久久久久久大av| 好看av亚洲va欧美ⅴa在| 久久午夜亚洲精品久久| 男女下面进入的视频免费午夜| a级一级毛片免费在线观看| 欧美xxxx黑人xx丫x性爽| 午夜影院日韩av| 日韩大尺度精品在线看网址| 一个人观看的视频www高清免费观看| 亚洲精品亚洲一区二区| 观看免费一级毛片| 岛国在线免费视频观看| 成人国产一区最新在线观看| 国产综合懂色| 岛国在线免费视频观看| 此物有八面人人有两片| 久久国产精品人妻蜜桃| 两个人视频免费观看高清| 亚洲 国产 在线| 天堂影院成人在线观看| 51午夜福利影视在线观看| 日本免费一区二区三区高清不卡| 亚洲国产精品久久男人天堂| 乱人视频在线观看| 麻豆久久精品国产亚洲av| 久久伊人香网站| 一级毛片久久久久久久久女| 12—13女人毛片做爰片一| 日本三级黄在线观看| 我要搜黄色片| 久久热精品热| 观看免费一级毛片| 久久久久久久精品吃奶| 精品人妻1区二区| 人妻丰满熟妇av一区二区三区| 性插视频无遮挡在线免费观看| 99国产极品粉嫩在线观看| 人妻丰满熟妇av一区二区三区| 嫩草影院入口| 午夜福利18| 国产激情偷乱视频一区二区| 桃红色精品国产亚洲av| eeuss影院久久| 在线观看舔阴道视频| 一级作爱视频免费观看| 国产精品一及|