• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Hardware-implementable vector tracking loop for GNSS/INS deep integration

    2015-06-05 14:51:32LIUGangGUOMeifengZHANGRongCUIXiaoweiLIShunzhong
    關(guān)鍵詞:工程系電文環(huán)路

    LIU Gang, GUO Mei-feng, ZHANG Rong, CUI Xiao-wei, LI Shun-zhong

    (1. Department of Precision Instrument, Tsinghua University, Beijing 100084, China; 2. Department of Control Engineering, Naval Aeronautical and Astronautical University, Yantai 264001, China; 3. Department of Electronic Engineering, Tsinghua University, Beijing 100084, China;

    Hardware-implementable vector tracking loop for GNSS/INS deep integration

    LIU Gang1,2, GUO Mei-feng1, ZHANG Rong1, CUI Xiao-wei3, LI Shun-zhong1

    (1. Department of Precision Instrument, Tsinghua University, Beijing 100084, China; 2. Department of Control Engineering, Naval Aeronautical and Astronautical University, Yantai 264001, China; 3. Department of Electronic Engineering, Tsinghua University, Beijing 100084, China;

    Tracking sensitivity and positioning accuracy of GNSS vector tracking loop (VTL) are superior to that of scalar tracking loop (STL), but VTL is difficult to implement on hardware because of three obstacles: 1) all tracking channels’ measurements and parameters must be processed at the same time for multi-channel joint tracking; 2) the processor has high computational burden due to too frequent satellite position calculation; 3) it is unable to demodulate navigation message due to non-PLL tracking mode. Thus commercial receiver usually use such STL as its hardware is easy to access and its performance is sub-optimal. To apply the VTL on an embedded hardware platform in real-time mode, three methods are introduced: 1) linear interpolation for synchronizing asynchronous-observables; 2) algorithm optimization for calculating satellite position; 3) a novel method for demodulating navigation date bits from vector frequency lock loop. Simulations of the VTL and VDI are carried out using a normal aircraft trajectory, in which data samples are generated by trajectory generator and GNSS signal simulator, and then processed and compared on Matlab platform. The results show that the calculation efficiency of satellite position has improved 55 times, and the navigation message is successfully demodulated, and the VTL’s position and velocity accuracies are better than 3 m and 0.3 m/s, respectively, while the VDI’s position and velocity accuracies are better than 2 m and 0.1 m/s, respectively.

    GNSS; INS; deeply-integrated; vector tracking loop; hardware implementation

    The global navigation satellite system (GNSS) has rapidly developed recent years. The availability of GNSS under challenging environments, such as low signal-tonoise ratio (SNR), high-dynamic, and multipath, has become a hot research area. In case GNSS receiver can’t work alone due to ultra-low SNR and high dynamic, INS-aiding is the best way to continue the navigation.

    The complementation between GNSS and INS pushes the development of GNSS/INS integrated navigation system for several decades. Deep integration (DI) became the cutting edge of this area recently. In a DI system, INS navigation results are fed back to the GNSS tracking loop to remove dynamic effect and refine navigation results. There are two types of DI, scalar deeply integrated (SDI) and vector deeply integrated (VDI), which are sorted by GNSS tracking loop structure[1,2,10].

    The VDI is based on the GNSS vector tracking loop (VTL) structure, which tracks all the satellite signals simultaneously in a single filter. Compared with the scalar tracking loop (STL) which tracks one satellite signal in one channel separately, the VTL structure has the following advantages: firstly, the geometric relationship between the receiver and different satellites is used to refine the positioning accuracy; secondly, the tracking of low SNR satellites are assisted by the tracking results of high SNR satellites; finally, the navigation results are fed back to assist signal tracking which improves the accuracy under high dynamic and low SNR environments.

    Several VTL implementation architectures have been published[3-7]. Lashley stated the structure of VTL and tested VTL’s performance improvement compared to STL under high dynamics and low SNR[3]. Zhao Sihao realized VTL on a Matlab-based platform[4-5]. Lin Tao demonstrated a method of VTL in navigation domain which uses position and velocity of receiver to track satellite signal[6]. Liu Jing proposed a VTL using maximum likelihood (ML) estimation method[7]. But all of the VTLs mentioned above have the following disadvantages: firstly, they are implemented on a software-based receiver with data bit wipe-off technology in which navigation bits must be downloaded before, and this is not suitable for real-time embedded realization; secondly, VTL uses FLL-like loop to track carrier frequency which means it is impossible to demodulate navigation data directly; finally, more than 50 times per second of calculation of satellite position and velocity is a burden for real time hardware implementation. As a result, the VTL is not suitable for hardware implementation.

    This paper implements a VTL suitable for hardware implementation based on the VTL structure, and GNSS/ INS VDI algorithm can be realized on a real time hardware platform. The VTL contains a vector delay-lockloop (VDLL) and a vector frequency-lock-loop (VFLL). the VTL has several differences compared with the former implementations. The first difference is that it utilizes a linear interpolation method to synchronize the Kalman observables when using asynchronous correlators synchronized with navigation data bit edge. The second improvement is that an algorithm of demodulating navigation data messages has been introduced to extract navigation bits from VFLL. The third modification is that it utilizes the seventh-orderpiecewise-Hermite interpolation method to optimize the calculation of satellite position and velocity.

    The rest of paper is organized as follows. A mathmatic model of received GNSS signal is presented in section 1. Section 2 introduces the VDL structure and flow chart, including the modifications. Section 3 states the schedule and details of the simulation experiments. VDL simulation results, VDI simulation results and their comparison are proposed in section 4. Finally, the conclusion and future work are showed in section 5.

    1 Signal model

    Where Diis the data bits, Tis the correlation interval, C/N0is the carrier power to noise power spectral density, Δfi=fcarr,i-arr,iis the frequency estimation error, Δτi=τi-is the code delay estimation error, Δφi=φi-is the initial phase estimation error, R(·) is the code correlation function, and niis the complex white Gaussian noise sequence with unit variance.

    Using different delay of local replica Pseudorandom code, equation (1) gives EI (Early I) component correlation IE, EI (Early Q) component correlation QE, and also IP, QP, IL, QL, with which the Kalman observables could be generated.

    2 Vector tracking loop specifications

    Fig.1 shows the structure of the VTL.

    The VTL is mostly consisted of local signal generator, signal tracking error discriminator and extended Kalman filter (EKF). The local signal generator includes three modules: position/velocity prediction module, code phase/frequency computation module and code/carrier generation module.

    Fig.2 shows the flow chart of the VTL.

    The VTL works as follows: the predicted receiver position and velocity are used to calculate the code phase/ frequency and carrier frequency which are required for generating local replica signal. The local replica signal is correlated with the incoming satellite signal, and then is accumulated to generate the IE, IP, IL, QE, QPand QLcorrelations with 20 ms period. The discriminator handles the correlations to generate the observables of code phase error and carrier frequency error. After processing by EKF, the estimated position/velocity errors and clock errors are used to correct the VTL parameters. Then comes the next loop.

    Fig.1 Structure of the vector tracking loop

    Fig.2 Flow chart of the vector tracking loop

    A more detailed description is proposed as follows:

    Suppose the kth epoch parameters are known, which are ephemeris, code frequency fcode,i, code phase τi, carrier frequency fcarr,i, signal transmit time tt,i, receiver clock bias tbwith unit of m, clock drift tdwith unit of m/s, receiver ECEF position p=(xu,yu,zu), receiver ECEF velocity v=(vx,vy,vz), where i stands for the ith satellite. Then the k+1th epoch parameters can be predicted as:

    Where tk,k+1is the interval from k to k+1 epoch.Satellite position and velocity are calculated from the ephemeris, and then the k+1th epoch baseband control parameters can be derived as:

    Where Δpi,k,k+1is the ith satellite’s movement vector within tk,k+1, vi,kis the ith satellite’s velocity, ui,k+1=(uix,uiy,uiz)is the line-of-sight unit vector pointing from the receiver to the ith satellite, fcode= 1.023 MHz is the standard code frequency, fcarris the standard carrier frequency, and Δtbis the clock bias error.

    Baseband control parameters are used to generate local replica signals which are correlated with the incoming satellite signals to generate IE, QE, IP, QP, IL and QL.

    This paper chooses EKF to handle the tracking and navigation tasks. The state vector of the EKF includes receiver’s three-dimensional position error, three-dimensional velocity error, clock bias error, and clock drift error.

    The discrete transition function of the EKF is:

    All the available satellites’ outputs of code phase discriminator and carrier frequency discriminator are used as the EKF observables.

    Where zcode,iis the code phase discriminator’s output of the ith satellite, zcarr,iis the corresponding carrier frequency discriminator’s output, and N is the number of the available satellites.

    The DLL discriminator in this paper is normalized as non-coherent early minus late envelope discriminator[1]:

    The FLL discriminator in this paper is[1]:

    Where t1and t2are the adjacent correlation intervals.

    The observation function of EKF is:

    After EKF filtering, the navigation errors are updated. Then the state vector is set to zero and the algorithm comes to the next cycle.

    2.1 Synchronizing method: Linear interpolation

    Since different satellite signals experience different propagation delays, the bit edges of different satellite are asynchronous[8]. But the baseband correlation ends are synchronous with the bit edges, so the correlation observables are asynchronous, as shown in Fig.3.

    Fig.3 Example of asynchronous correlation and linear interpolation method

    In the EKF, observables must be obtained simultaneously, so linear interpolation is used to synchronize the asynchronous correlation results. At observing epoch tk, the ith satellite observables is :

    For GNSS/INS deeply-integrated application, the observing epoch could be synchronized with the INS sampling epoch.

    2.2 Algorithm of decoding navigation data

    When using a VFLL to track the carrier frequency, the signal power is distributed over I channel and Q channel, so navigation bits can’t be fetched directly.

    This paper uses dot-multiply of the adjacent two conjugate complex prompt correlations to extract the navigation bits[2]. This can be derived as:

    This function supposes that the delta carrier frequency between the two adjacent correlation intervals is less than 1/(4T), which ensures that[is positive, so when navigation bit change occurs, the dot-multiply is negative, otherwise, it is positive.

    The performance of data demodulation is measured in terms of bit error rate (BER). for VFLL:

    Where S/N0is the signal to noise ratio[2].

    The algorithm is utilized to demodulate a 10 s long GPS signal with highS/N0, and the BER is zero. A part of the demodulated data is demonstrated in Fig.4.

    Fig.4 Demodulation results of navigation data

    2.3 Satellite orbit interpolation algorithm

    Edwards and Lashley[9]has realized a real-time VTL using field-programmable-gate-arrays (FPGA) with a fast microprocessor. In this implementation, the correlation interval is 20 ms, which means that the microprocessor must finish all of the calculation task within 20 ms. Edwards’ algorithm loop costs 15.5722 ms, among which 7.9164 ms was occupied by computing satellite position and velocity. So the calculation of satellite position and velocity is the major part that needs to be optimized to accommodate other application, e.g. the GNSS and INS integration. It suggests that we can use piecewise-Hermite interpolation to optimize the calculation of satellite position and velocity. Reference [11] proved that the most efficient method in terms of low computational cost, easy implementation and sufficient precision of less than 10 cm and 1 mm/s is piecewise-cubic-Hermite interpolation with sampling intervals of about 100-200 s[12].

    This paper uses a 7th-order piecewise-Hermite interpolation with sampling intervals of 100 s. The integration time of tracking loop is 20 ms, so 50 calculations of satellite position/velocity are carried out per second.

    To verify the efficient and accuracy of the Hermite interpolation algorithm, 10 000 s satellite orbit calculation are performed on the Matlab-based platform with Intel i5 CPU. The non-interpolatory method costs 233.6798 s, while the Hermite interpolation algorithm costs 4.2567 s, showing 55 times faster than the conventional method.

    Fig.5 Interpolation errors

    Fig.5 shows the interpolation errors, in which the interpolation standard deviation of position and velocity are 5.64×10-7m and 6.77×10-11m/s, respectively, which could be ignored for VTL application.

    3 Schedule and details of the simulation experiments

    This paper designs two types of simulation experiments, one is the VTL simulation based on the structure introduced in section 2, the other is VDI simulation which involves INS aiding.

    Design an airplane’s coordinated turn trajectory, in which the airplane velocity is 200 m/s, and the roll angle is less than 30°. The trajectory of the airplane is shown in Fig.6.

    Fig.6 Coordinated turn trajectory of the airplane

    GNSS intermediate-frequency simulator generates the satellite signal according to the trajectory. Characteristics of the INS and satellite signal are listed in Tab.1.

    Tab.1 Characteristics of the INS and GNSS

    Fig.7 shows the structure of the VDI. The INS position and velocity are used to predict the code phase/ frequency and carrier frequency which are required for generating local replica signal. The local replica signal is correlated with the incoming satellite signal, and then is accumulated to generate the IE, IP, IL, QE, QP and QL correlations with 20 ms period. The discriminator handles the correlations to generate the observables of code phase error and carrier frequency error. After processing by EKF, the estimated INS errors and clock errors are used to correct the VDI parameters.

    The VDI uses 17th-dimensional state vector: threedimensional attitude, velocity, and position, gyroscope bias, accelerator bias and clock bias, clock drift. Otherwise, the implementation of EKF is the same as that of VTL.

    4 Simulation results

    The VTL and VDI algorithms are simulated on a Matlab-based platform according to the structure in Fig.1 and Fig.7. Real-time navigation bits are decoded. Simulation results show that the two methods can track satellite signal well. By comparing with the original trajectory, the navigation errors are shown in Fig.8.

    Tab.2 shows the standard deviations of the navigation solution errors which indicate that the VDI provides more accurate navigation solutions than the VTL, in particular, the velocity has improved an order of magnitude. However, the standard deviation of errors will increase as the SNRs of satellite signals decrease.

    On the other hand, the INS aiding enhances the dynamic performance of GNSS receiver when receiver encounters signal outage. INS can help maintain tracking satellite signals for a short time. If signal outrage disappears within this time, none re-acquisition is needed.

    Fig.7 Structure of the vector deeply-integrated algorithm

    5 Conclusion and future work

    This paper proposes a method of vector tracking loop for hardware implementation in real-time without navigation-bit wiping-off technology, based on which GNSS/INS VDI algorithm could be realized. To ensure the embedded hardware implementation in real-time, this paper presents an algorithm to extract navigation bits from vector frequency lock loop; on the other hand, linear interpolation is used to form the synchronous observables for the extended Kalman filter; finally, Hermite interpolation is used to rapidly calculate satellite’s position and velocity.

    Vector deeply-integrated algorithm is demonstrated based on the VTL, which is helpful for improving the navigation accuracy.

    Two types of simulation experiments are carried out on a Matlab-based platform to evaluate the function and accuracy of the VTL and VDI. Simulationresults show that the VTL and VDI can work correctly. Under the circumstance of airplane coordinated turn trajectory described in section 3, the position error standard deviations of the VTL and VDI are 2.4224 m and 1.3528 m, respectively, their velocity error standard deviations are 0.2386 m/s and 0.0135 m/s, respectively, and the attitude error standard deviation of VDI is 0.0103°. Thus, compared with the VTL, the VDI demonstrates more accurate navigation results under the INS-aiding.

    Fig.8 Navigation errors comparison between VTL and VDI

    Tab.2 Standard deviations of navigation errors

    The algorithm realized on the Matlab-based platform is easy to be applied on a hardware platform, which will be carried out in the near future.

    [1] Kaplan E D, Hegarty C. Under GPS: principles and applications[M]. 2nd ed. Artech House Inc, MA, 2006: 153-242.

    [2] Parkinson B W, Spilker J J. Global positioning system: Theory and applications[M]. American Institute of Aeronautics and Astronautics, Washington DC, 1996.

    [3] Lashley M. Modeling and performance analysis of GPS vector tracking algorithms[D]. PhD Dissertation, Auburn University, Alabama, 2009.

    [4] Zhao S, Akos D. An open source GPS/GNSS vector tracking loop-implementation, filter tuning, and results[C] //Proceedings of Institute of Navigation International Technical Meeting. San Diego, CA, 2011: 1293-1305.

    [5] Zhao S, Lu M Q, Feng Z M. Implementation and performance assessment of a vector tracking method based on a software GPS receiver[J]. The Journal of Navigation, 2011, 64: 151-161.

    [6] Lin T, Curran J T, O’Driscoll C. Implementation of a navigation domain GNSS signal tracking loop[C]// Proceedings of Institute of Navigation International GNSS. Portland, USA, 2011: 3644-3651.

    [7] Liu J, Cui X W, Lu M Q. A vector tracking loop based on ML estimation in dynamic week signal environments[C]// CSNC2012. Guangzhou, China, 2012: 629-643.

    [8] Pedro A R, Javier G G, Carlos H M. Data-bits asynchronous tracking loop scheme for high performance real-time GNSS receivers[C]//The Fourth International Conference on Advances in Satellite and Space Communications. Venice, Italy, 2012: 108-113.

    [9] Edwards W L, Lashley M. Bevly D M. FPGA implementation of a vector tracking GPS receiver using modelbased tools[C]//22nd International Meeting of the Satellite Division of The ION. Savannah, GA, 2009: 273-280.

    [10] Petovello M G, Lachapelle G. Comparison of vector-based software receiver implementations with application to ultra-tight GPS/INS integration[C]//Proceedings of Institute of Navigation International GNSS. Fort Worth TX, USA, 2006: 1790-1799.

    [11] Korvenoja P, Piche R. Efficient satellite orbit approximation [C]//Proceedings of Institute of Navigation International GNSS. Salt Lake City, USA, 2000: 1930-1937.

    硬件可實(shí)現(xiàn)的GNSS/INS矢量深組合跟蹤環(huán)路

    劉 剛1,2,郭美鳳1,張 嶸1,崔曉偉3,李順忠1

    (1. 清華大學(xué) 精密儀器系,北京 100084;2. 海軍航空工程學(xué)院 控制工程系,煙臺(tái) 264001;3. 清華大學(xué) 電子工程系,北京 100084)

    GNSS矢量跟蹤環(huán)路(VTL)跟蹤靈敏度和定位精度優(yōu)于標(biāo)量跟蹤環(huán)路(STL),但實(shí)現(xiàn)復(fù)雜度高,三個(gè)主要難點(diǎn)是:多通道聯(lián)合跟蹤要求各通道同時(shí)獲取觀測(cè)量并在同一時(shí)刻更新環(huán)路參數(shù);高頻率計(jì)算衛(wèi)星位置加重處理器運(yùn)算負(fù)擔(dān);無法跟蹤載波相位導(dǎo)致無法解調(diào)導(dǎo)航電文。以上三個(gè)難點(diǎn)阻礙VTL在硬件平臺(tái)上實(shí)現(xiàn),因此商業(yè)接收機(jī)通常使用容易硬件實(shí)現(xiàn)的STL,但性能次優(yōu)。為了在嵌入式硬件平臺(tái)上實(shí)現(xiàn)VTL,引入三種方法:異步觀測(cè)量線性插值、衛(wèi)星位置計(jì)算算法優(yōu)化、特殊的導(dǎo)航電文解調(diào)方法,之后通過仿真驗(yàn)證優(yōu)化算法的功能及性能。使用航跡發(fā)生器生成飛機(jī)協(xié)調(diào)轉(zhuǎn)彎航跡,再使用GNSS衛(wèi)星信號(hào)模擬器產(chǎn)生中頻采樣信號(hào),基于Matlab平臺(tái)處理數(shù)據(jù)并進(jìn)行了對(duì)比分析。仿真結(jié)果表明該VTL計(jì)算衛(wèi)星位置效率提升55倍,成功解調(diào)導(dǎo)航電文,VTL位置精度優(yōu)于3 m,速度精度優(yōu)于0.3 m/s,基于該VTL的矢量深組合(VDI)算法位置精度優(yōu)于2 m,速度精度優(yōu)于0.1 m/s。

    全球?qū)Ш叫l(wèi)星系統(tǒng);慣性導(dǎo)航系統(tǒng);深組合;矢量跟蹤環(huán)路;硬件實(shí)現(xiàn)

    U666.1

    A

    1005-6734(2015)02-0189-07

    2014-10-22;

    2012-01-20

    總裝十二五預(yù)研(20114113019)

    劉剛(1985—),男,博士研究生,從事組合導(dǎo)航研究。E-mail:gang-liu07@mails.tsinghua.edu.cn

    ved GNSS signal is down-converted, sampled, demodulated and correlated. The complex correlations of ithsatellite can be expressed as[1]:

    10.13695/j.cnki.12-1222/o3.2015.02.010

    聯(lián) 系 人:張嶸(1968—),男,研究員,博士生導(dǎo)師。E-mail:rongzh@mail.tsinghua.edu.cn

    猜你喜歡
    工程系電文環(huán)路
    一種與內(nèi)部缺陷儀設(shè)備通訊的接口模塊
    ADS-B延遲轉(zhuǎn)發(fā)電文檢測(cè)及干擾臺(tái)定位方法
    上海市中環(huán)路標(biāo)線調(diào)整研究
    上海公路(2018年4期)2018-03-21 05:57:46
    電子信息工程系
    機(jī)電工程系簡(jiǎn)介
    穿行:服裝工程系畢業(yè)設(shè)計(jì)作品
    衛(wèi)星導(dǎo)航系統(tǒng)導(dǎo)航電文編排結(jié)構(gòu)研究
    西安航空學(xué)院學(xué)報(bào)(2014年4期)2014-07-13 07:42:10
    Buck-Boost變換器的環(huán)路補(bǔ)償及仿真
    單脈沖雷達(dá)導(dǎo)引頭角度跟蹤環(huán)路半實(shí)物仿真
    久久午夜福利片| 亚洲午夜理论影院| 日韩精品青青久久久久久| 91麻豆精品激情在线观看国产| 99国产精品一区二区蜜桃av| 中出人妻视频一区二区| 在线观看舔阴道视频| 我的老师免费观看完整版| 亚洲av.av天堂| 亚洲aⅴ乱码一区二区在线播放| 成人一区二区视频在线观看| 成人国产综合亚洲| 国内揄拍国产精品人妻在线| 中亚洲国语对白在线视频| 非洲黑人性xxxx精品又粗又长| 天堂网av新在线| 韩国av一区二区三区四区| 国产精品野战在线观看| 国产午夜精品久久久久久一区二区三区 | 男人狂女人下面高潮的视频| 成人av在线播放网站| 精品久久久久久久末码| 亚洲黑人精品在线| 午夜精品久久久久久毛片777| 国产淫片久久久久久久久| 很黄的视频免费| 少妇人妻精品综合一区二区 | 欧美国产日韩亚洲一区| 日本在线视频免费播放| 欧美潮喷喷水| 窝窝影院91人妻| 成人永久免费在线观看视频| 网址你懂的国产日韩在线| 欧美日韩综合久久久久久 | 黄色视频,在线免费观看| 国产精品久久久久久av不卡| 国产精品嫩草影院av在线观看 | 日日摸夜夜添夜夜添av毛片 | 久久亚洲真实| 中文在线观看免费www的网站| 国产乱人伦免费视频| 少妇被粗大猛烈的视频| 高清毛片免费观看视频网站| 免费在线观看日本一区| 日韩精品青青久久久久久| a级毛片免费高清观看在线播放| 午夜精品久久久久久毛片777| 啦啦啦韩国在线观看视频| 国产午夜福利久久久久久| 国产精品免费一区二区三区在线| 欧美色视频一区免费| 成人美女网站在线观看视频| 亚洲精品亚洲一区二区| 欧美性猛交╳xxx乱大交人| 在线免费观看不下载黄p国产 | 免费人成视频x8x8入口观看| 欧美高清性xxxxhd video| 99久久九九国产精品国产免费| www日本黄色视频网| 天美传媒精品一区二区| 亚洲国产精品久久男人天堂| 国产一级毛片七仙女欲春2| 久久久久久久久久黄片| av女优亚洲男人天堂| 欧美最黄视频在线播放免费| 亚洲精品在线观看二区| 欧美性猛交╳xxx乱大交人| 国产亚洲欧美98| 国产成人一区二区在线| 亚洲美女视频黄频| a在线观看视频网站| 乱系列少妇在线播放| 老女人水多毛片| 久久精品国产亚洲av涩爱 | 国产精品98久久久久久宅男小说| 99久久中文字幕三级久久日本| 禁无遮挡网站| 国产色婷婷99| av天堂在线播放| av在线天堂中文字幕| 欧美色欧美亚洲另类二区| 在线观看舔阴道视频| 国产一区二区三区av在线 | 中文字幕熟女人妻在线| 99热这里只有是精品在线观看| 亚洲午夜理论影院| 久久精品夜夜夜夜夜久久蜜豆| 少妇猛男粗大的猛烈进出视频 | 欧美成人免费av一区二区三区| 黄色配什么色好看| 免费av毛片视频| 男插女下体视频免费在线播放| 国产又黄又爽又无遮挡在线| 嫩草影视91久久| 亚洲狠狠婷婷综合久久图片| 精品久久久久久成人av| 熟女电影av网| 露出奶头的视频| 成年免费大片在线观看| 国产乱人伦免费视频| 国产91精品成人一区二区三区| 桃红色精品国产亚洲av| 赤兔流量卡办理| 亚洲真实伦在线观看| 最近中文字幕高清免费大全6 | 村上凉子中文字幕在线| 欧美在线一区亚洲| 亚洲欧美日韩高清在线视频| 最好的美女福利视频网| 男女视频在线观看网站免费| 免费人成在线观看视频色| 国产爱豆传媒在线观看| 最近中文字幕高清免费大全6 | 18禁黄网站禁片免费观看直播| 欧美在线一区亚洲| 国产又黄又爽又无遮挡在线| 久久精品人妻少妇| 日韩av在线大香蕉| 免费在线观看日本一区| 搡老岳熟女国产| 嫩草影院入口| 真人做人爱边吃奶动态| 亚洲欧美日韩无卡精品| 日本一二三区视频观看| netflix在线观看网站| 亚洲欧美日韩无卡精品| 毛片女人毛片| 欧美绝顶高潮抽搐喷水| 九九久久精品国产亚洲av麻豆| 国产亚洲av嫩草精品影院| 日韩一区二区视频免费看| 精品人妻1区二区| 嫩草影院新地址| 日本三级黄在线观看| 国产精品久久久久久久电影| 变态另类丝袜制服| 中出人妻视频一区二区| 女生性感内裤真人,穿戴方法视频| 18禁黄网站禁片午夜丰满| 中文资源天堂在线| 国产不卡一卡二| 免费观看的影片在线观看| 波多野结衣巨乳人妻| 国产精品无大码| 夜夜爽天天搞| 国产精品野战在线观看| 久久精品国产亚洲av香蕉五月| 久久久色成人| 人妻制服诱惑在线中文字幕| 国产亚洲91精品色在线| 一卡2卡三卡四卡精品乱码亚洲| 亚洲人成网站在线播放欧美日韩| a级毛片免费高清观看在线播放| 老司机午夜福利在线观看视频| 免费看光身美女| 婷婷六月久久综合丁香| 美女 人体艺术 gogo| 日韩,欧美,国产一区二区三区 | 麻豆一二三区av精品| 色在线成人网| 欧美色视频一区免费| 亚洲无线观看免费| 深夜精品福利| 亚洲av电影不卡..在线观看| 一进一出抽搐gif免费好疼| 免费观看人在逋| 国内久久婷婷六月综合欲色啪| 永久网站在线| 两个人视频免费观看高清| 男女那种视频在线观看| av国产免费在线观看| 18禁裸乳无遮挡免费网站照片| 成人一区二区视频在线观看| 少妇丰满av| 给我免费播放毛片高清在线观看| 免费看光身美女| 免费不卡的大黄色大毛片视频在线观看 | 麻豆av噜噜一区二区三区| 国产乱人伦免费视频| 国产黄a三级三级三级人| 久久久国产成人精品二区| 亚洲精品一卡2卡三卡4卡5卡| 亚洲av成人av| 别揉我奶头 嗯啊视频| 免费在线观看影片大全网站| 99久久无色码亚洲精品果冻| 人人妻人人看人人澡| 一a级毛片在线观看| 久9热在线精品视频| 久久精品国产亚洲av涩爱 | 久久婷婷人人爽人人干人人爱| 搡老妇女老女人老熟妇| 啦啦啦啦在线视频资源| 亚洲色图av天堂| 18禁黄网站禁片免费观看直播| 色精品久久人妻99蜜桃| 日韩在线高清观看一区二区三区 | 老司机午夜福利在线观看视频| 国产极品精品免费视频能看的| 国产精品自产拍在线观看55亚洲| 淫妇啪啪啪对白视频| 亚洲欧美日韩无卡精品| 国产人妻一区二区三区在| 伊人久久精品亚洲午夜| 琪琪午夜伦伦电影理论片6080| 免费黄网站久久成人精品| 12—13女人毛片做爰片一| 一区二区三区四区激情视频 | 99久久成人亚洲精品观看| 一进一出抽搐gif免费好疼| 久久久久久久精品吃奶| 在线国产一区二区在线| 欧美黑人欧美精品刺激| 婷婷丁香在线五月| 不卡一级毛片| 欧美成人一区二区免费高清观看| 91狼人影院| 国产成年人精品一区二区| 欧美丝袜亚洲另类 | bbb黄色大片| 婷婷亚洲欧美| 亚洲av日韩精品久久久久久密| 日本三级黄在线观看| 国产精品久久久久久亚洲av鲁大| 一本一本综合久久| 欧美日韩综合久久久久久 | 日日摸夜夜添夜夜添小说| 男女下面进入的视频免费午夜| 别揉我奶头~嗯~啊~动态视频| 天天一区二区日本电影三级| 亚洲精品国产成人久久av| 日本在线视频免费播放| 日韩中字成人| 很黄的视频免费| 日本黄色视频三级网站网址| 性插视频无遮挡在线免费观看| 午夜日韩欧美国产| 久久人人爽人人爽人人片va| 亚洲av电影不卡..在线观看| 国产爱豆传媒在线观看| 日本欧美国产在线视频| 欧美最新免费一区二区三区| 精品免费久久久久久久清纯| 色综合婷婷激情| 久久久久久久久大av| 亚洲成a人片在线一区二区| 日本成人三级电影网站| 欧美黑人欧美精品刺激| 变态另类成人亚洲欧美熟女| 免费av不卡在线播放| 久久99热这里只有精品18| 欧美成人a在线观看| 在线播放国产精品三级| 看片在线看免费视频| 午夜福利在线在线| 欧美一区二区国产精品久久精品| 午夜激情欧美在线| netflix在线观看网站| 亚洲成人中文字幕在线播放| 久久亚洲真实| 又黄又爽又刺激的免费视频.| 国产高清视频在线播放一区| 国产精品自产拍在线观看55亚洲| 男人狂女人下面高潮的视频| 亚洲av五月六月丁香网| 免费av毛片视频| 高清毛片免费观看视频网站| 观看免费一级毛片| 国产午夜精品论理片| av中文乱码字幕在线| 国产欧美日韩精品亚洲av| 嫁个100分男人电影在线观看| 亚洲avbb在线观看| 亚洲va日本ⅴa欧美va伊人久久| 午夜免费成人在线视频| or卡值多少钱| 99热6这里只有精品| 在线播放无遮挡| 亚洲最大成人av| bbb黄色大片| 在线播放无遮挡| 日本色播在线视频| 一个人免费在线观看电影| 亚洲成a人片在线一区二区| 成人国产综合亚洲| 88av欧美| 女人被狂操c到高潮| 久久热精品热| 成人性生交大片免费视频hd| 一区二区三区激情视频| 午夜老司机福利剧场| 欧美激情久久久久久爽电影| 校园人妻丝袜中文字幕| 在线观看舔阴道视频| 有码 亚洲区| 男女那种视频在线观看| 97超视频在线观看视频| 久久国产精品人妻蜜桃| 一进一出好大好爽视频| 日本在线视频免费播放| 久久精品国产自在天天线| aaaaa片日本免费| 国产高清视频在线播放一区| 国产真实乱freesex| 麻豆成人av在线观看| 69人妻影院| av在线亚洲专区| 精品久久久久久久久av| 免费在线观看日本一区| 天堂√8在线中文| 级片在线观看| 他把我摸到了高潮在线观看| 99热这里只有精品一区| 少妇被粗大猛烈的视频| 亚洲avbb在线观看| 精品久久久久久久久亚洲 | 欧美+亚洲+日韩+国产| 国产欧美日韩一区二区精品| 日本黄大片高清| 男插女下体视频免费在线播放| 黄色日韩在线| 欧美成人a在线观看| 黄色一级大片看看| 少妇猛男粗大的猛烈进出视频 | 午夜免费男女啪啪视频观看 | 中文字幕精品亚洲无线码一区| 人妻夜夜爽99麻豆av| 桃红色精品国产亚洲av| 国产午夜福利久久久久久| 久久久久国内视频| 成人特级黄色片久久久久久久| 欧美成人a在线观看| 黄色一级大片看看| 色播亚洲综合网| 国产探花极品一区二区| av视频在线观看入口| 老司机深夜福利视频在线观看| 久久久精品欧美日韩精品| 天堂av国产一区二区熟女人妻| 亚洲熟妇中文字幕五十中出| 窝窝影院91人妻| 哪里可以看免费的av片| 99久久精品一区二区三区| 日本精品一区二区三区蜜桃| 国产精品一区二区免费欧美| 国产男人的电影天堂91| av在线老鸭窝| 五月玫瑰六月丁香| 日韩大尺度精品在线看网址| 精品久久国产蜜桃| 欧美高清成人免费视频www| 久久久久久国产a免费观看| 可以在线观看毛片的网站| 哪里可以看免费的av片| 波多野结衣巨乳人妻| 久久久久久久午夜电影| 亚洲成av人片在线播放无| 国产一区二区亚洲精品在线观看| 真人做人爱边吃奶动态| 乱人视频在线观看| 熟妇人妻久久中文字幕3abv| 欧美zozozo另类| 天天一区二区日本电影三级| 一个人观看的视频www高清免费观看| 国产精品乱码一区二三区的特点| av视频在线观看入口| 亚洲国产精品合色在线| 免费搜索国产男女视频| 日本成人三级电影网站| 毛片女人毛片| 日本免费一区二区三区高清不卡| 午夜激情福利司机影院| 亚洲精品在线观看二区| 麻豆av噜噜一区二区三区| 久久人人精品亚洲av| 啦啦啦啦在线视频资源| 久久精品国产自在天天线| 中文字幕免费在线视频6| 久久精品国产自在天天线| 欧美另类亚洲清纯唯美| 黄色女人牲交| 99久久成人亚洲精品观看| 99热网站在线观看| 国产高清三级在线| 亚洲内射少妇av| a级一级毛片免费在线观看| 成年女人永久免费观看视频| 尾随美女入室| 一级毛片久久久久久久久女| 欧美精品啪啪一区二区三区| 欧美xxxx黑人xx丫x性爽| 九九在线视频观看精品| 久久久色成人| 男人舔奶头视频| 很黄的视频免费| 亚洲乱码一区二区免费版| 国产69精品久久久久777片| 亚洲av中文av极速乱 | 久久这里只有精品中国| 国产高清三级在线| 久久久久久久午夜电影| 欧美激情国产日韩精品一区| 亚洲aⅴ乱码一区二区在线播放| 一个人看的www免费观看视频| 最近最新免费中文字幕在线| 亚洲中文字幕日韩| 国产淫片久久久久久久久| 大型黄色视频在线免费观看| 国产亚洲欧美98| av国产免费在线观看| 亚洲不卡免费看| www.色视频.com| 又黄又爽又刺激的免费视频.| 免费高清视频大片| 色综合婷婷激情| 我要搜黄色片| 亚洲精品一卡2卡三卡4卡5卡| 国产成人影院久久av| 精品一区二区三区视频在线观看免费| bbb黄色大片| 欧美日本亚洲视频在线播放| 免费黄网站久久成人精品| 久久精品国产清高在天天线| 欧美最黄视频在线播放免费| 18禁在线播放成人免费| 国产精品乱码一区二三区的特点| 一边摸一边抽搐一进一小说| 色哟哟哟哟哟哟| 国产精品美女特级片免费视频播放器| av中文乱码字幕在线| 婷婷丁香在线五月| 国产私拍福利视频在线观看| 国产精品野战在线观看| 午夜亚洲福利在线播放| 国产精品98久久久久久宅男小说| 精品欧美国产一区二区三| 身体一侧抽搐| 韩国av在线不卡| 少妇人妻一区二区三区视频| av黄色大香蕉| 国国产精品蜜臀av免费| 国产精品99久久久久久久久| 国产精品久久久久久av不卡| 精品一区二区三区人妻视频| 国产亚洲欧美98| 男女下面进入的视频免费午夜| 国产大屁股一区二区在线视频| 国产国拍精品亚洲av在线观看| 一本一本综合久久| 中文字幕av成人在线电影| 干丝袜人妻中文字幕| 男人舔女人下体高潮全视频| 成人美女网站在线观看视频| 露出奶头的视频| 看免费成人av毛片| 久久国内精品自在自线图片| 午夜福利在线在线| 欧洲精品卡2卡3卡4卡5卡区| 久久精品影院6| 亚洲无线观看免费| 久久午夜福利片| 亚洲成人久久性| 国内精品久久久久久久电影| 黄片wwwwww| av在线老鸭窝| 亚洲性夜色夜夜综合| 国产成人一区二区在线| 亚洲精品影视一区二区三区av| 一区二区三区激情视频| aaaaa片日本免费| 最新中文字幕久久久久| 精品久久久久久久久久免费视频| 我要看日韩黄色一级片| 免费av不卡在线播放| av女优亚洲男人天堂| 国产精品无大码| 精品人妻一区二区三区麻豆 | 国产高清有码在线观看视频| 国产午夜福利久久久久久| 韩国av在线不卡| 久久精品夜夜夜夜夜久久蜜豆| 欧美一级a爱片免费观看看| a级毛片a级免费在线| 国产毛片a区久久久久| 毛片女人毛片| 亚洲成人精品中文字幕电影| 国产 一区 欧美 日韩| 欧美一区二区国产精品久久精品| 少妇高潮的动态图| 好男人在线观看高清免费视频| 神马国产精品三级电影在线观看| 精品99又大又爽又粗少妇毛片 | 成人永久免费在线观看视频| 国产成人影院久久av| 久久欧美精品欧美久久欧美| 别揉我奶头 嗯啊视频| 有码 亚洲区| 欧美精品啪啪一区二区三区| 在现免费观看毛片| 91av网一区二区| 99热这里只有是精品50| av在线天堂中文字幕| 麻豆成人av在线观看| 三级毛片av免费| 国内揄拍国产精品人妻在线| 美女被艹到高潮喷水动态| 天美传媒精品一区二区| 999久久久精品免费观看国产| 久久久久性生活片| 日日撸夜夜添| 久久久久免费精品人妻一区二区| 午夜福利在线观看吧| 久久精品人妻少妇| 日本三级黄在线观看| 国国产精品蜜臀av免费| 亚洲经典国产精华液单| 美女 人体艺术 gogo| 国产精品av视频在线免费观看| 日日摸夜夜添夜夜添小说| 亚洲av熟女| 国产高清视频在线播放一区| 欧美极品一区二区三区四区| 少妇的逼好多水| 国产精品一区二区三区四区免费观看 | 亚洲国产色片| 亚洲成人中文字幕在线播放| 大又大粗又爽又黄少妇毛片口| 观看美女的网站| 国产极品精品免费视频能看的| 欧美3d第一页| 亚州av有码| 熟妇人妻久久中文字幕3abv| 日韩亚洲欧美综合| 少妇被粗大猛烈的视频| 99久久精品一区二区三区| 亚洲国产精品成人综合色| 一进一出抽搐gif免费好疼| 校园春色视频在线观看| 色吧在线观看| 人妻丰满熟妇av一区二区三区| 国国产精品蜜臀av免费| av在线亚洲专区| 亚洲精华国产精华精| 久久精品国产亚洲网站| 日日啪夜夜撸| 日本黄大片高清| 亚洲成a人片在线一区二区| 久久这里只有精品中国| 老女人水多毛片| 天堂√8在线中文| 久久久久久久久中文| 午夜亚洲福利在线播放| 国产视频一区二区在线看| 国产人妻一区二区三区在| 日韩欧美精品v在线| 欧美高清性xxxxhd video| 免费高清视频大片| 欧美+日韩+精品| 久久亚洲真实| 动漫黄色视频在线观看| 精品人妻熟女av久视频| 男女啪啪激烈高潮av片| 99热这里只有是精品在线观看| 国产 一区精品| 亚洲avbb在线观看| 99热网站在线观看| 免费在线观看日本一区| 综合色av麻豆| 国产伦在线观看视频一区| 免费搜索国产男女视频| 夜夜看夜夜爽夜夜摸| 日韩 亚洲 欧美在线| 欧美日本亚洲视频在线播放| 精品99又大又爽又粗少妇毛片 | 麻豆精品久久久久久蜜桃| 亚洲精品日韩av片在线观看| 一级av片app| 国产主播在线观看一区二区| 国产在视频线在精品| 他把我摸到了高潮在线观看| 成熟少妇高潮喷水视频| 精品久久久久久,| 亚洲国产精品久久男人天堂| 日本 av在线| 久久草成人影院| 97人妻精品一区二区三区麻豆| 亚洲美女搞黄在线观看 | 国产精品女同一区二区软件 | 国模一区二区三区四区视频| 国产女主播在线喷水免费视频网站 | 美女cb高潮喷水在线观看| 美女免费视频网站| 午夜视频国产福利| 日韩高清综合在线| 美女免费视频网站| 午夜免费男女啪啪视频观看 | 联通29元200g的流量卡| 色精品久久人妻99蜜桃| 国产一区二区三区av在线 | 亚洲不卡免费看| 亚洲熟妇熟女久久| 欧美日本视频| 天美传媒精品一区二区| 国产精品亚洲一级av第二区| 亚洲av免费高清在线观看| av中文乱码字幕在线| 欧洲精品卡2卡3卡4卡5卡区| 日韩精品有码人妻一区| 国产成人a区在线观看| 我要看日韩黄色一级片| 九九在线视频观看精品| 狂野欧美白嫩少妇大欣赏| 2021天堂中文幕一二区在线观| 久久草成人影院| 99热网站在线观看|