• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Changes in Global DNA Methylation Intensity and DNMT1 Transcription During the Aging Process of Scallop Chlamys farreri

    2015-06-01 09:24:20LIANShanshanHEYanLIXueZHAOBosongHOURuiHUXiaoliZHANGLinglingandBAOZhenmin
    Journal of Ocean University of China 2015年4期

    LIAN Shanshan, HE Yan, LI Xue, ZHAO Bosong, HOU Rui, HU Xiaoli, ZHANG Lingling, and BAO Zhenmin

    Key Laboratory of Marine Genetics and Breeding (MGB) of Ministry of Education,College of Marine Life Sciences,Ocean University of China,Qingdao266003,P. R. China

    Changes in Global DNA Methylation Intensity and DNMT1 Transcription During the Aging Process of Scallop Chlamys farreri

    LIAN Shanshan, HE Yan, LI Xue, ZHAO Bosong, HOU Rui, HU Xiaoli, ZHANG Lingling, and BAO Zhenmin*

    Key Laboratory of Marine Genetics and Breeding (MGB) of Ministry of Education,College of Marine Life Sciences,Ocean University of China,Qingdao266003,P. R. China

    DNA methylation is an important epigenetic regulatory mechanism that influences genomic stability, gene activation, X-chromosome inactivation and other factors. A change in DNA methylation is usually associated with aging and cellular senescence. DNA methyltransferase 1 (DNMT1) is the most abundant DNA methyltransferase, and it plays an important role in maintaining the established methylation pattern during DNA replication in vertebrates. Although the effect of aging on DNA methylation has been well studied in vertebrates, little research has been conducted in invertebrates, especially in marine bivalves. In this study, we examined global DNA methylation levels in four groups of adult Zhikong scallopChlamys farreriat different ages. The results showed that both the age and tissue type had a strong effect on the DNA methylation. In addition, a significant decrease in DNA methylation with aging (1-4 years) can be detected in mantle, kidney and hepatopancreas. We further measured the change inDNMT1transcript abundance using quantitative reverse transcription PCR (qRT-PCR), which revealed thatDNMT1transcription significantly decreased with aging in mantle and hepatopancreas and strongly correlated with DNA methylation (R= 0.72). Our data provided greater insight into the aging-related decline of DNA methylation, which could aid in gaining a better understanding of the relationship between DNA methylation and the aging process in bivalve mollusks.

    aging; DNA methylation;DNMT1transcription;Chlamys farreri

    1 Introduction

    Epigenetic changes in DNA play an essential role in determining gene transcription. As an important epigenetic modification, DNA methylation is involved in the regulation of development, aging and carcinogenesis in mammals (Liuet al., 2003; Klose and Bird, 2006; Calvanese, 2009). Approximately 70%-80% of cytosines in CpG dinucleotides are methylated in vertebrates (Bird and Taggart, 1980). However, with the aging of animals, DNA demethylation increases (Wilsonet al., 1987; Mazin, 1993, 1994; Kresset al., 2001, 2006; Richardson, 2002; Rodriguezet al., 2008), and the total 5 mC loss could be as high as 91% in cows, 93% in mice, and even 99% in rats for old animals (Mazin, 1993). In humans, DNA methylation associates with chronological age over long time scales and is linked to complex aging-related diseases. The global loss in DNA methylation during aging and in tumor cells was also found in human beings, which could mainlybe the result of the progressive loss of DNMT1 efficacy (Fraga and Esteller, 2007). In a recent study, Hannumet al. (2013) measured more than 450000 CpG markers in hundreds of people from 19 to 101 years of age and found that 70387 (15%) of the markers had significant associations with the aging rate; the genome-wide methylation pattern represents a strong and reproducible biomarker of the biological aging rate. The genome-wide loss of DNA methylation during aging could be relevant to genome instability, the risk of carcinogenesis, aging disorders or other complex age-associated diseases, and the retardation of cell proliferation in tissues of aging organisms (Mazin, 1993; Barres and Zierath, 2011; Lao and Grady, 2011; Tappet al., 2013).

    Maintenance of the DNA methylation pattern in vertebrates is mediated by DNA methyltransferases (DNMTs), which catalyze the transfer of a methyl moiety from S-adenosyl-L-methionine (SAM) to the 5-position of cytosines, principally in the CpG dinucleotides (Law and Jacobsen, 2010). As the most abundant DNMT, DNMT1 plays an important role in maintaining the established methylation pattern during DNA replication (Flores and Amdam, 2011). It has been reported that DNMT1 has acrucial effect on global genomic methylation. For example, the inactivation of DNMT1 causes DNA demethylation, and homozygous null deletions of DNMT1 result in an 80% genomic loss of DNA methylationin mouse (Leiet al., 1996; Takebayashiet al., 2007). In human cells,DNMT1transcription steadily declines throughout the aging process (Lopatinaet al., 2002). These findings suggest that in vertebrates, reduced genome-wide methylation during aging can be attributed to a decreased abundance ofDNMT1.

    Invertebrates display a wide diversity of DNA methylation patterns (Suzukiet al., 2007). For example, with the lack of essential DNMTs, 5-methylcytosine could not be detected in the nematode wormCaenorhabditis elegansat any time during development or aging (Simpsonet al., 1986). In comparison, the fruit flyDrosophila melanogasterlacks most of the classical DNMTs and displays limited cytosine methylation (Hunget al., 1999; Lykoet al., 2000). At the same time, the honey beeApis melliferabears a fully functional set of DNMTs, and DNA methylation is widespread across its genome (Elangoet al., 2009).

    Although bivalve organisms comprise more than 30000 species and constitute the second largest group of mollusks, only limited research on DNA methylation patterns has been conducted in this taxonomic group (Gavery and Roberts, 2010; Riviereet al., 2013). A recent study has revealed changes in the DNA methylation during the early life of oysters and the importance of DNA methylation for proper larval development (Riviereet al., 2013). Such observations might indicate time-dependent patterns of DNA methylation in mollusks and the evolution of 5 mC during the process of aging. In this study, we examined the changes in DNA methylation andDNMT1transcript abundance in the marine bivalveChlamys farreriat 1 to 4 years of age. Detailed information on the changing patterns in different tissues was also collected. This study will aid us in obtaining a better understanding of the role of DNA methylation in the aging process of bivalve mollusks.

    2 Materials and Methods

    2.1 Sample Collection

    Zhikong scallop individuals (1, 2, 3 and 4 years of age) were provided by a shellfish farm in Rongcheng (Shandong Province, China). A total of 24 individuals (6 of each age) were randomly collected and then acclimated at 15℃in filtered seawater for one week. Then, six tissues, including mantle, gill, gonad, kidney, adductor muscle and hepatopancreas, were dissected, immediately frozen in liquid nitrogen and kept at -80℃.

    2.2 Global DNA Methylation Analysis

    Genomic DNA was extracted using a standard phenol-chloroform protocol. RNase A was added to avoid RNA contamination. DNA concentration and purity was determined by the NanoVue Plus UV spectrophotometer (GE Healthcare). DNA methylation was quantified using the Methylamp? Global DNA Methylation Quantification Kit from Epigentek (Brooklyn, NY) following the manufacturer’s instructions. The methylated fraction of the DNA is recognized by 5-methylcytosine antibody and quantified through an ELISA-like reaction. For each sample, methylation analysis was performed in triplicate. The methylation percentage of each sample was calculated according to the slope of the standard curve. The standard curve was generated by plotting the OD values of a dilution series made from a 100% methylated DNA standard that was supplied in the kit.

    2.3 Total RNA Extraction

    The total RNA was extracted using the method described by Huet al. (2006). Genomic DNA contamination in RNA samples was removed by DNase I treatment. The RNA concentration and purity was determined using the NanoVue Plus UV spectrophotometer (GE Healthcare), and the RNA integrity was verified by agarose gel electrophoresis.

    2.4 Analysis ofDNMT1Transcript Abundance

    The transcript abundance ofDNMT1was detected using quantitative reverse transcription PCR (qRT-PCR). Firststrand cDNA was synthesized from 500 ng total RNA using oligo (dT)18and MMLV reverse transcriptase (Promega, Madison, WI, USA). A control reaction without reverse transcriptase was performed to preclude the DNA contamination. The amplification mixture contained 2 μL of diluted cDNA (1:50), 4 μL of primers (2 μmol L-1each) and 10 μL of SYBR Green Real-time PCR Master Mix (TOYOBO, Osaka, Japan). All of the PCR reactions were performed in duplicate and run on a 7500 Real-Time PCR System (Applied Biosystems, CA, USA), using the following program: initial denaturation at 95℃ for 10 min, followed by 40 cycles of 95℃ for 15 s and 60℃ for 1 min. Here, β-actin (ACTB), elongation factor 1 beta (EF1β) andribosomal protein L16 (RPL16) were chosen as internal reference genes (IRGs) (Table 1). PCR efficiencies and optimal Ct values were estimated using the online software real-time PCR Miner (Zhao and Fernald, 2005). TheDNMT1transcripts were quantified relative to the three IRGs using the algorithm proposed by Hellemanset al. (2007).

    Table 1 List of primers used for qRT-PCR

    2.5 Statistical Analysis

    All of the data were subjected to one-way ANOVA using SPSS 16.0 (Norusis, 2008). Fisher’s least significant difference (LSD) test was applied when the ANOVA indicated a significant (P< 0.05) difference. The relationship between the data from different assays was determined using the Pearson correlation coefficient (R).

    3 Results and Discussion

    3.1 Age Effect on DNA Methylation

    To roughly estimate the change in the DNA methylation during scallop aging, the entire soft tissue was subjected to global DNA methylation analysis. Based on the results (Fig.1a), the DNA methylation ratio ranged from 0.1% to 0.5% across all of the samples, which was much lower than the values obtained in the vertebrates, such as human, mice and zebrafish (Vuceticet al., 2010; Liuet al., 2011; Fanget al., 2013). One-way ANOVA showed that age was significantly associated with the DNA methylation fraction (P< 0.001). It appeared that with the increase in the age of the scallops, DNA methylation declined, which is similar to the findings in most of the vertebrates and in thein vitromodels (Kresset al., 2001, 2006; Rodriguezet al., 2008; Mazin, 2009; Bollatiet al., 2009). We also noticed that the 1-year-old scallops had a significantly higher DNA methylation fraction than the other three age groups, and a dramatic drop in DNA methylation was detected when the scallops entered their second year. Afterward, the DNA methylation declined gradually, and a significant decrease was found only between the 2- and 4-year-old individuals (P< 0.01). Although the above results were based on all of the soft tissue, they indicated an age effect on the DNA methylation in scallop and provided some clues on the age-dependent changes of DNA methylation in marine bivalves.

    3.2 Effect of the Tissue Type on the DNA Methylation

    DNA methylation could be different among the tissues, which leads to an inaccurate estimation of the age effect based on the results from all of the soft tissue. Therefore, we further tested the DNA methylation fraction in six tissues (mantle, gill, gonad, kidney, adductor muscle and hepatopancreas) of 2-year-old scallop. According to oneway ANOVA, the DNA methylation fractions were significantly different among the tissue types (P< 0.001). As shown in Fig.1b, the kidney and adductor muscle had the highest (approximately 0.3%) DNA methylation ratio, followed by gonad and hepatopancreas (approximately 0.2%), and the lowest DNA methylation ratio was found in mantle and gill (approximately 0.1%). The observed tissue difference in the DNA methylation is similar to the finding in mammals (Romanov and Vanyushin, 1981; Gama-Sosaet al., 1983; Maegawaet al., 2010), which suggests that the tissue type should be considered when examining the effect of age on DNA methylation.

    Fig.1 Effects of age (a) and tissue type (b) on DNA methylation. One-way ANOVA followed by Fisher’s LSD test was used for the comparisons. The vertical bars represent the mean ± S.E. (n= 6). The values marked with different letters differed significantly from one another (P< 0.05).

    3.3 Tissue-Specific Effect of Age on DNA Methylation

    Consistent with the observation on the entire soft tissue, a decline in the DNA methylation fraction with age was also observed across all of the six tissues (Fig.2a). However, a significant difference among the ages was detected only in mantle, kidney and hepatopancreas. Based on the previous studies, all of these three tissues participate in excreting and depurating metals and other toxic materials in marine bivalves (Carmichael and Fowler, 1981; Cembellaet al., 1994; Arévaloet al., 1998; Blancoet al., 2002; Suzukiet al., 2005). Considering the depuration function, the damage from toxic residue and the burden of oxidative metabolism in these three tissues, their aging rate could be higher than that of the others, which would result in a significant decrease in the methylation ratio.

    In comparison with the change in the DNA methylation fraction among the different age-related groups in the mantle (<0.1%), a higher drop (up to 0.3%) was found in the hepatopancreas and kidney. The higher drop in DNA methylation rate in the two tissues was possibly caused by the relatively low toxin effect (Cembellaet al., 1994; Bauderet al., 2001; Blancoet al., 2002) and faster cell self-renewal rate in the mantle compared with kidney and hepatopancreas, which could help to slow down the decline in the methylation rate. In addition, research showed that the promoter methylation of some stress-responding genes, which are involved in cellular responses to environmental stresses, are mediated by DNMT1 and DNMT3B together (Yinget al., 2005). DNMT3 can also contribute to the methylation pattern change in the mantle and should be verified in the future.

    3.4 Tissue-Specific Effect of Age onDNMT1Transcription

    Inhibition ofDNMT1could lead to reduced methylation levels in various animals, such as frog, mouse, and human (Stancheva and Meehan, 2000; Sadoet al., 2000; Rheeet al., 2002; Gaudetet al., 2003), which would indicate that DNMT1 plays a critical role in maintaining the global DNA methylation level. In this study,DNMT1transcription also declined with age in all six tissues (Fig.2b), which is similar to the findings in various mammals, including mouse and human (Vertinoet al., 1994; Hamataniet al., 2004; Kimet al., 2009; Liuet al., 2009). The 1-year-old scallops contained moreDNMT1transcripts than the other age groups across all of the tissues, which is consistent with the trend in the DNA methylation levels. A significant difference among the ages was detected in the mantle and hepatopancreas, with the 4-year-old scallops containing remarkably lower abundance ofDNMT1mRNA than the 1-year-old scallops. There was a similar reduction tendency in the global DNA methylation and inDNMT1transcription of gill, gonad and muscle of 4-year-old scallops, although the reduction was not significant. In addition, based on the data from different tissues of all four groups, the DNA methylation ratio was significantly and positively (R= 0.72;P< 0.001) correlated with the relative abundance ofDNMT1transcripts (Fig.3), which is similar to related results (R= 0.746) in human cells (Leiet al., 2009). Thus, DNMT1 is likely to participate in maintaining DNA methylation in scallops in a similar way as in other organisms. In addition, the agedependent decrease in DNA methylation can be attributed to the down-regulation ofDNMT1during the aging process of scallop.

    Fig.2 Changes in the DNA methylation ratio (a) and relative abundance ofDNMT1transcripts in six tissues of scallop at 1-4 years of age (b). One-way ANOVA followed by Fisher’s LSD test was used for the comparisons. The vertical bars represent the mean ± S.E. (n= 6). The values marked with different letters differed significantly from one another (P< 0.05).

    Fig.3 Correlation between the relative percentages (%) of DNA methylation andDNMT1mRNA abundance (n= 24).

    In summary, we found that both the age and tissue type had strong effects on DNA methylation inChlamys farreri. A significant decrease in DNA methylation with age was observed in the mantle, kidney and hepatopancreas. Agreeing with the results of DNA methylation,DNMT1transcription in mantle and hepatopancreas also declined with age. In addition, theDNMT1transcript abundance was significantly correlated with the DNA methylation ratio, which suggests the important role of DNMT1 in maintaining DNA methylation in scallop. This study can contribute to a better understanding of aging-related DNA methylation changes in bivalve mollusks.

    Acknowledgements

    This study was supported by the National Natural Science Foundation of China (31130054), the National HighTechnology Research and Development Program of China (2012AA10A401), and Doctoral Fund of Ministry of Education of China (20120132130002).

    Arévalo, F., Bermúdez, M., and Salgado, C., 1998. ASP toxicity in scallops: Individual variability and tissue distribution. In:Harmful Algae. Reguera, B.,et al., eds., Xunta de Galicia and the IOC of UNESCO, Paris,499-502.

    Barres, R., and Zierath, J. R., 2011. DNA methylation in metabolic disorders.The American Journal of Clinical Nutrition, 93: 897S-900S.

    Bauder, A. G., Cembella, A. D., Bricelj, V. M., and Quilliam, M. A., 2001. Uptake and fate of diarrhetic shellfish poisoning toxins from the dinoflagellateProrocentrum limain the bay scallopArgopecten irradians.Marine Ecology Prog Researchs Series, 213: 39-52.

    Berletch, J. B., Andrews, L. G., and Tollefsbol, T. O., 2007. A method to detect DNA methyltransferase I gene transcriptionin vitroin aging systems.Biological Aging, 372: 73-80.

    Bird, A. P., and Taggart, M. H., 1980. Variable patterns of total DNA and rDNA methylation in animals.Nucleic Acids Research, 8: 1485-1497.

    Blanco, J., Acosta, C., Bermúdez, M., and Salqado, C., 2002. Depuration and anatomical distribution of the amnesic shellfish poisoning (ASP) toxin domoic acid in the king scallopPectenmaximus.Aquat Toxicol, 60: 111-121.

    Bollati, V., Schwartz, J., Wright, R., Litonjua, A., Tarantini, L., Suh, H., Sparrow, D., Vokonas, P., and Baccarelli, A., 2009. Decline in genomic DNA methylation through aging in a cohort of elderly subjects.Mechanisms of Aging and Development, 130: 234-239.

    Calvanese, V., Lara, E., Kahn, A., and Fraga, M. F., 2009. The role of epigenetics in aging and age-related diseases.Aging Research Reviews, 8: 268-276.

    Carmichael, N., and Fowler, B., 1981. Cadmium accumulation and toxicity in the kidney of the bay scallopArgopecten irradians.Marine Biology, 65: 35-43.

    Cembella, A. D., Shumway, S. E., and Larocque, R., 1994. Sequestering and putative biotransformation of paralytic shellfish toxins by the sea scallopPlacopecten magellanicus:Seasonal and spatial scales in natural populations.Journal of Experimental Marine Biology and Ecology, 180: 1-22.

    Elango, N., Hunt, B. G., Goodisman, M. A., and Yi, S. V., 2009. DNA methylation is widespread and associated with differential gene expression in castes of the honeybee,Apis mellifera.Proceedings of the National Academy of Sciences, 106: 11206-11211.

    Fang, X., Thornton, C., Scheffler, B. E., and Willett, K. L., 2013. Benzo [a] pyrene decreases global and gene specific DNA methylation during zebrafish development.Environment Toxicol, 36: 40-50.

    Flores, K. B., and Amdam, G. V., 2011. Deciphering a methylome: What can we read into patterns of DNA methylation?The Journal of Experimental Biology, 214: 3155-3163.

    Fraga, M. F., and Esteller, M., 2007. Epigenetics and aging: The targets and the marks.Trends in Genetics, 23: 413-418.

    Gama-Sosa, M. A., Midgett, R. M., Slagel, V. A., Githens, S., Kuo, K. C., Gehrke, C. W., and Ehrlich, M., 1983. Tissuespecific differences in DNA methylation in various mammals.Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression, 740: 212-219.

    Gaudet, F., Hodgson, J., Eden, A., Jackson-Grusby, L., Dausman, J., Gray, J. W., Leonhardt, H., and Jaenisch, R., 2003. Induction of tumors in mice by genomic hypomethylation.Science, 300: 489-492.

    Gavery, M. R., and Roberts, S. B., 2010. DNA methylation patterns provide insight into epigenetic regulation in the Pacific oyster (Crassostrea gigas).BMC Genomics, 11: 483-491.

    Hamatani, T., Falco, G., Carter, M. G., Akutsu, H., Stagg, C. A., Sharov, A. A., Dudekula, D. B., Vanburen, V., and Ko, M. S., 2004. Age-associated alteration of gene expression patterns in mouse oocytes.Human Molecular Genetics, 13: 2263-2278.

    Hannum, G., Guinney, J., Zhao, L., Zhang, L., Hughes, G., Sadda, S., Klotzle, B., Bibikova, M., Fan, J. B., Gao, Y., Deconde, R., Chen, M., Rajapakse, I., Friend, S., Ideker, T., and Zhang, K., 2013. Genome-wide methylation profiles reveal quantitative views of human aging rates.Molecular Cell, 49: 359-367.

    Hellemans, J., Mortier, G., De Paepe, A., Speleman, F., and Vandesompele, J., 2007. qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data.Genome Biology, 8: R19.

    Hu, X., Bao, Z., Hu, J., Shao, M., Zhang, L., Bi, K., Zhan, A., and Huang, X., 2006. Cloning and characterization of tryptophan 2, 3-dioxygenase gene of Zhikong scallopChlamys farreri(Jones and PResearchton 1904).Aquaculture Research, 37: 1187-1194.

    Hung, M.-S., Karthikeyan, N., Huang, B., Koo, H. C., Kiger, J., and Shen, C.-K., 1999. Drosophila proteins related to vertebrate DNA (5-cytosine) methyltransferases.Proceedings of the National Academy of Sciences, 96: 11940-11945.

    Kim, K.-C., Friso, S., and Choi, S.-W., 2009. DNA methylation, an epigenetic mechanism connecting folate to healthy embryonic development and aging.The Journal of Nutritional Biochemistry, 20: 917-926.

    Klose, R. J., and Bird, A. P., 2006. Genomic DNA methylation:the mark and its mediators.Trends Biochemistry Science, 31:89-97.

    Kress, C., Thomassin, H., and Grange, T., 2001. Local DNA demethylation in vertebrates: How could it be performed and targeted?FEBS Letter, 494: 135-140.

    Kress, C., Thomassin, H., and Grange, T., 2006. Active cytosine demethylation triggered by a nuclear receptor involves DNA strand breaks.Proceedings of the National Academy of Sciences, 103: 11112-11117.

    Lao, V. V., and Grady, W. M., 2011. Epigenetics and colorectal cancer.Nature Reviews Gastroenterology and Hepatology, 8:686-700.

    Law, J. A., and Jacobsen, S. E., 2010. Establishing, maintaining and modifying DNA methylation patterns in plants and animals.Nature Reviews Genetics, 11: 204-220.

    Lei, H., Oh, S. P., Okano, M., Juttermann, R., Goss, K. A., Jaenisch, R., and Li, E., 1996.De novoDNA cytosine methyltransferase activities in mouse embryonic stem cells.Development, 122: 3195-3205.

    Lei, W., Luo, Y., Yan, K., Zhao, S., Li, Y., Qiu, X., Zhou, Y., Long, H., Zhao, M., Liang, Y., Su, Y., and Lu, Q., 2009. Abnormal DNA methylation in CD4+T cells from patients with systemic lupus erythematosus, systemic sclerosis, and dermatomyositis.Scandinavian Journal of Rheumatology, 38:369-374.

    Liu, C., Ou, T., Wu, C., Li, R., Lin, Y., Lin, C., Tsai, W., Liu, H., and Yen, J., 2011. Global DNA methylation, DNMT1, and MBD2 in patients with systemic lupus erythematosus.Lupus, 20: 131-136.

    Liu, L., Wylie, R. C., Andrews, L. G., and Tollefsbol, T. O., 2003.Aging, cancer and nutrition: The DNA methylation connection.Mechnismof Aging and Development, 124: 989-998.

    Liu, Y., Chen, Y., and Richardson, B., 2009. Decreased DNA methyltransferase levels contribute to abnormal gene expression in ‘senescent’ CD4+CD28-T cells.Clinical Immunology, 132: 257-265.

    Lopatina, N., Haskell, J. F., Andrews, L. G., Poole, J. C., Saldanha, S., and Tollefsbol, T., 2002. Differential maintenance andde novomethylating activity by three DNA methyltransferases in aging and immortalized fibroblasts.Journal of Cellular Biochemistry, 84: 324-334.

    Lyko, F., Ramsahoye, B. H., and Jaenisch, R., 2000. Development: DNA methylation inDrosophila melanogaster.Nature, 408: 538-540.

    Maegawa, S., Hinkal, G., Kim, H. S., Shen, L., Zhang, L., Zhang, J., Zhang, N., Liang, S., Donehower, L. A., and Issa, J. J., 2010. Widespread and tissue specific age-related DNA methylation changes in mice.Genome Research, 20: 332-340.

    Mazin, A. L., 2009. Suicidal function of DNA methylation in age-related genome disintegration.Aging Research Reviews, 8:314-327.

    Mazin, A. L., 1993. Genome loses all 5-methylcytosine a life span. How is this connected with accumulation of mutations during aging?Molecular Biology, 27: 160-173.

    Mazin, A. L., 1994. Enzymatic DNA methylation as an aging mechanism.Molecular Biology, 28: 21-51.

    Norusis, M., 2008. SPSS 16.0 guide to data analysis. Prentice

    Hall Press.

    Rhee, I., Bachman, K. E., Park, B. H., Jair, K., Yen, R. C., Schuebel, K. E., Cui, H., Feinberg, A. P., Lengauer, C., Kinzler, K. W., Baylin, S. B., and Vogelstein, B., 2002. DNMT1 and DNMT3b cooperate to silence genes in human cancer cells.Nature, 416: 552-556.

    Richardson, B. C., 2002. Role of DNA methylation in the regulation of cell function: Autoimmunity, aging and cancer.The Journal of Nutrition, 132: 2401S-2405S.

    Rodriguez, J., Vives, L., Jordà, M., Morales, C., Mu?oz, M., Vendrell, E., and Peinado, M. A., 2008. Genome-wide tracking of unmethylated DNA Alu repeats in normal and cancer cells.Nucleic Acids Research, 36: 770-784.

    Romanov, G. A., and Vanyushin, B. F., 1981. Methylation of reiterated sequences in mammalian DNAs effects of the tissue type, age, malignancy and hormonal induction.Biochimica et Biophysica Acta (BBA)-Nucleic Acids and Protein Synthesis, 653: 204-218.

    Riviere, G., Wu, G., Fellous, A., Goux, D., Sourdaine, P., and Favrel, P., 2013. DNA methylation is crucial for the early development in the oysterC. gigas.Marine Biotechnology, 15:739-753.

    Sado, T., Fenner, M. H., Tan, S.-S., Tam, P., Shioda, T., and Li, E., 2000. X inactivation in the mouse embryo deficient forDnmt1distinct effect of hypomethylation on imprinted and random X inactivation.Development Biology, 225: 294-303.

    Simpson, V. J., Johnson, T. E., and Hammen, R. F., 1986. Caenorhabditis elegans DNA does not contain 5-methylcytosine at any time during development or aging.Nucleic Acids Research, 14: 6711-6719.

    Stancheva, I., and Meehan, R. R., 2000. Transient depletion of xDnmt1 leads to premature gene activation inXenopusembryos.Genes Development, 14: 313-327.

    Suzuki, M. M., and Bird, A., 2008. DNA methylation landscapes:Provocative insights from epigenomics.Nature Reviews Genetics, 9: 465-476.

    Suzuki, M. M., Kerr, A. R., De Sousa, D., and Bird, A., 2007. CpG methylation is targeted to transcription units in an invertebrate genome.Genome Research, 17: 625-631.

    Takebayashi, S.-I., Tamura, T., Matsuoka, C., and Okano, M., 2007. Major and essential role for the DNA methylation mark in mouse embryogenesis and stable association of DNMT1 with newly replicated regions.Molecular and Cellular Biology, 27: 8243-8258.

    Tapp, H. S., Commane, D. M., Bradburn, D. M., Arasaradnam, R., Mathers, J. C., Johnson, I. T., and Belshaw, N. J., 2013. Nutritional factors and gender influence age-related DNA methylation in the human rectal mucosa.Aging Cell, 12: 148-155.

    Vertino, P. M., Issa, J.-P., Pereira-Smith, O. M., and Baylin, S. B., 1994. Stabilization of DNA methyltransferase levels and CpG island hypermethylation precede SV40-induced immortalization of human fibroblasts.Cell Growth and Differentiation: The Molecular Biology Journal of the American Association for Cancer Research, 5: 1395-1402.

    Vucetic, Z., Kimmel, J., Totoki, K., Hollenbeck, E., and Reyes, T. M., 2010. Maternal high-fat diet alters methylation and gene expression of dopamine and opioid-related genes.Endocrinology, 151: 4756-4764.

    Wilson, V. L., Smith, R., Ma, S., and Cutler, R. G., 1987. Genomic 5-methyldeoxycytidine decreases with age.Journal of Biological Chemistry, 262: 9948-9951.

    Ying, J., Srivastava, G., Hsieh, W. S., Gao, Z., Murray, P., Liao, S., Ambinder, R., and Tao, Q., 2005. The stress-responsive gene GADD45G is a functional tumor suppressor, with its response to environmental stresses frequently disrupted epigenetically in multiple tumors.Clinical Cancer Research, 11:6442-6449.

    Zhao, S., and Fernald, R. D., 2005. Comprehensive algorithm for quantitative real-time polymerase chain reaction.Journal of Computational Biology, 12: 1047-1064.

    (Edited by Qiu Yantao)

    (Received October 10, 2013; revised January 19, 2014; accepted March 23, 2015)

    ? Ocean University of China, Science Press and Spring-Verlag Berlin Heidelberg 2015

    * Corresponding author. Tel: 0086-532-82031960 E-mail: zmbao@ouc.edu.cn

    午夜福利免费观看在线| 一区二区日韩欧美中文字幕| 777久久人妻少妇嫩草av网站| 国产成人a∨麻豆精品| 亚洲自偷自拍图片 自拍| 麻豆乱淫一区二区| 国产精品麻豆人妻色哟哟久久| 亚洲精品一卡2卡三卡4卡5卡 | 日日夜夜操网爽| 久久久久网色| 精品人妻1区二区| 国产91精品成人一区二区三区 | 1024香蕉在线观看| 人成视频在线观看免费观看| 免费不卡黄色视频| 看免费av毛片| 另类精品久久| 久久久欧美国产精品| 大陆偷拍与自拍| 欧美精品一区二区免费开放| 伦理电影免费视频| 国产黄色视频一区二区在线观看| 欧美在线黄色| 久久久国产精品麻豆| 久久99精品国语久久久| 成年女人毛片免费观看观看9 | 成年动漫av网址| 国产精品一区二区在线观看99| 丝袜人妻中文字幕| 91麻豆av在线| 一本大道久久a久久精品| 晚上一个人看的免费电影| avwww免费| 国产av精品麻豆| 波多野结衣一区麻豆| 熟女少妇亚洲综合色aaa.| 亚洲中文日韩欧美视频| 亚洲精品国产av蜜桃| 免费看不卡的av| 黄频高清免费视频| 最新在线观看一区二区三区 | 成人午夜精彩视频在线观看| 99国产精品一区二区蜜桃av | 欧美97在线视频| 精品久久久久久久毛片微露脸 | 日本wwww免费看| 国产日韩一区二区三区精品不卡| 亚洲欧美日韩另类电影网站| 亚洲国产欧美日韩在线播放| 国产精品一区二区在线不卡| 久久人妻福利社区极品人妻图片 | 日韩人妻精品一区2区三区| 久久精品国产亚洲av涩爱| 老熟女久久久| 在线观看免费高清a一片| 成人国语在线视频| 99国产精品免费福利视频| 国产又色又爽无遮挡免| 1024视频免费在线观看| 亚洲熟女精品中文字幕| 亚洲国产av影院在线观看| 又大又黄又爽视频免费| 精品欧美一区二区三区在线| 精品久久蜜臀av无| 国产高清国产精品国产三级| 日日夜夜操网爽| 一区二区三区精品91| 天堂中文最新版在线下载| 久久99一区二区三区| 男女免费视频国产| 91国产中文字幕| 国产黄频视频在线观看| 国产成人一区二区三区免费视频网站 | 亚洲精品国产av蜜桃| 亚洲专区中文字幕在线| 岛国毛片在线播放| 少妇人妻久久综合中文| 亚洲av片天天在线观看| 亚洲精品一区蜜桃| 色94色欧美一区二区| 亚洲人成电影免费在线| 丰满少妇做爰视频| 乱人伦中国视频| videosex国产| 国产成人欧美在线观看 | 免费看十八禁软件| 久久综合国产亚洲精品| 国产高清视频在线播放一区 | 日本色播在线视频| 中文字幕高清在线视频| 日本91视频免费播放| 成在线人永久免费视频| av又黄又爽大尺度在线免费看| 亚洲精品国产av成人精品| 亚洲伊人色综图| 免费高清在线观看日韩| 久久久久视频综合| 一级a爱视频在线免费观看| 午夜免费观看性视频| 亚洲国产欧美一区二区综合| 免费久久久久久久精品成人欧美视频| 亚洲欧美日韩另类电影网站| 捣出白浆h1v1| 菩萨蛮人人尽说江南好唐韦庄| 真人做人爱边吃奶动态| 欧美+亚洲+日韩+国产| 视频区欧美日本亚洲| 国产成人一区二区三区免费视频网站 | 欧美 日韩 精品 国产| 一二三四社区在线视频社区8| 久久九九热精品免费| 9色porny在线观看| 亚洲专区中文字幕在线| 51午夜福利影视在线观看| 少妇的丰满在线观看| 欧美性长视频在线观看| 午夜免费男女啪啪视频观看| 久热这里只有精品99| videos熟女内射| 国产精品久久久久久精品古装| 每晚都被弄得嗷嗷叫到高潮| 精品国产乱码久久久久久男人| 在线av久久热| 少妇 在线观看| 国产精品国产av在线观看| 亚洲一区二区三区欧美精品| 91精品国产国语对白视频| 成年av动漫网址| 亚洲成色77777| 国产成人免费观看mmmm| 国产精品免费视频内射| 天天躁夜夜躁狠狠躁躁| 午夜两性在线视频| 久久精品久久久久久久性| 亚洲图色成人| 亚洲精品久久成人aⅴ小说| 宅男免费午夜| 国产av一区二区精品久久| 亚洲,欧美,日韩| 久久毛片免费看一区二区三区| 久久亚洲国产成人精品v| 久久国产精品大桥未久av| 日韩av不卡免费在线播放| 午夜老司机福利片| av又黄又爽大尺度在线免费看| 日韩av免费高清视频| 中文字幕色久视频| 日韩av在线免费看完整版不卡| 国产伦人伦偷精品视频| 亚洲国产看品久久| 极品少妇高潮喷水抽搐| 久久久久久人人人人人| 日韩一区二区三区影片| 国产黄色视频一区二区在线观看| 国产精品一区二区精品视频观看| 97人妻天天添夜夜摸| 成年人午夜在线观看视频| 一本大道久久a久久精品| av国产久精品久网站免费入址| 免费一级毛片在线播放高清视频 | 国产一区二区三区av在线| 亚洲av日韩精品久久久久久密 | 一级,二级,三级黄色视频| 天天操日日干夜夜撸| 香蕉丝袜av| 亚洲av日韩精品久久久久久密 | 18禁黄网站禁片午夜丰满| 日韩制服骚丝袜av| 免费不卡黄色视频| 国产男人的电影天堂91| 日韩一区二区三区影片| 欧美日韩综合久久久久久| 啦啦啦在线观看免费高清www| 欧美精品亚洲一区二区| 久久久国产精品麻豆| 日韩中文字幕视频在线看片| 久久久久久免费高清国产稀缺| 色94色欧美一区二区| 成人三级做爰电影| 亚洲专区中文字幕在线| 天天躁夜夜躁狠狠久久av| 黄色a级毛片大全视频| 久久人人97超碰香蕉20202| 你懂的网址亚洲精品在线观看| 夫妻午夜视频| www.999成人在线观看| e午夜精品久久久久久久| 曰老女人黄片| 成人免费观看视频高清| 亚洲欧洲精品一区二区精品久久久| 久久久久久久大尺度免费视频| 国产亚洲精品久久久久5区| 男女国产视频网站| 国产野战对白在线观看| 欧美日韩成人在线一区二区| 欧美性长视频在线观看| 国产精品九九99| 自拍欧美九色日韩亚洲蝌蚪91| 久久人人爽人人片av| 国产三级黄色录像| www.熟女人妻精品国产| 亚洲成人免费av在线播放| 日韩一本色道免费dvd| 亚洲,一卡二卡三卡| 午夜影院在线不卡| 人人妻人人澡人人看| 黄色视频在线播放观看不卡| 色网站视频免费| 久久ye,这里只有精品| 天天躁夜夜躁狠狠躁躁| 国产黄频视频在线观看| 午夜激情av网站| 看十八女毛片水多多多| 久久综合国产亚洲精品| 国产精品久久久av美女十八| 亚洲欧美成人综合另类久久久| 国产精品久久久久久精品电影小说| 99re6热这里在线精品视频| 国产一区亚洲一区在线观看| 三上悠亚av全集在线观看| 久久精品国产亚洲av高清一级| 人人妻人人添人人爽欧美一区卜| h视频一区二区三区| 精品国产乱码久久久久久小说| 老司机在亚洲福利影院| 肉色欧美久久久久久久蜜桃| 久久青草综合色| 久久狼人影院| 女人精品久久久久毛片| 在线亚洲精品国产二区图片欧美| 最新的欧美精品一区二区| 欧美日韩国产mv在线观看视频| 免费看不卡的av| 十分钟在线观看高清视频www| 建设人人有责人人尽责人人享有的| 丝袜美腿诱惑在线| 高清不卡的av网站| 男女床上黄色一级片免费看| 国产成人啪精品午夜网站| 成人国产一区最新在线观看 | 久久久久久久国产电影| 丝袜人妻中文字幕| 免费在线观看视频国产中文字幕亚洲 | 国产亚洲欧美在线一区二区| 成人18禁高潮啪啪吃奶动态图| 免费黄频网站在线观看国产| 免费在线观看黄色视频的| 一级a爱视频在线免费观看| 99精国产麻豆久久婷婷| 午夜福利视频精品| 成年人免费黄色播放视频| 一边亲一边摸免费视频| 精品人妻一区二区三区麻豆| 日本色播在线视频| 在线观看www视频免费| 免费女性裸体啪啪无遮挡网站| 91老司机精品| 午夜福利一区二区在线看| 两人在一起打扑克的视频| 妹子高潮喷水视频| 国产黄色免费在线视频| 欧美日韩av久久| 99精国产麻豆久久婷婷| 热re99久久国产66热| 免费在线观看完整版高清| xxx大片免费视频| 自线自在国产av| 婷婷色麻豆天堂久久| 亚洲自偷自拍图片 自拍| 岛国毛片在线播放| 日本av手机在线免费观看| 国产真人三级小视频在线观看| 精品熟女少妇八av免费久了| 久久久久久免费高清国产稀缺| 精品福利永久在线观看| 老司机深夜福利视频在线观看 | 国产熟女午夜一区二区三区| 国产亚洲一区二区精品| 汤姆久久久久久久影院中文字幕| 777久久人妻少妇嫩草av网站| 叶爱在线成人免费视频播放| 在线观看免费高清a一片| 久久av网站| 日韩av免费高清视频| 新久久久久国产一级毛片| 69精品国产乱码久久久| 国产精品一二三区在线看| 欧美精品一区二区大全| 国产老妇伦熟女老妇高清| 久久国产精品大桥未久av| 脱女人内裤的视频| 亚洲第一青青草原| 亚洲av电影在线观看一区二区三区| 亚洲国产看品久久| 成人三级做爰电影| 国产免费又黄又爽又色| 日韩制服骚丝袜av| 99久久人妻综合| 婷婷色综合大香蕉| 国产成人欧美| 亚洲美女黄色视频免费看| 欧美日韩精品网址| 久久久久久久久久久久大奶| 欧美日韩av久久| 免费观看av网站的网址| 精品少妇久久久久久888优播| 久久精品国产a三级三级三级| 香蕉丝袜av| 亚洲欧洲日产国产| 久久久久国产精品人妻一区二区| 宅男免费午夜| 国产一区二区三区av在线| 国产成人a∨麻豆精品| 在线观看一区二区三区激情| 男女之事视频高清在线观看 | 一级a爱视频在线免费观看| 欧美黑人欧美精品刺激| 在线观看免费午夜福利视频| av国产久精品久网站免费入址| 天天影视国产精品| 婷婷色麻豆天堂久久| 久久午夜综合久久蜜桃| 建设人人有责人人尽责人人享有的| videosex国产| 亚洲中文日韩欧美视频| 人人妻人人澡人人爽人人夜夜| 校园人妻丝袜中文字幕| 国产在线视频一区二区| 亚洲,一卡二卡三卡| 亚洲成av片中文字幕在线观看| 国产精品三级大全| 国产av一区二区精品久久| 午夜激情久久久久久久| 国产xxxxx性猛交| 亚洲av男天堂| 波多野结衣av一区二区av| 性少妇av在线| 亚洲国产精品国产精品| 99久久精品国产亚洲精品| 嫩草影视91久久| 在线观看免费午夜福利视频| 伊人久久大香线蕉亚洲五| 欧美人与性动交α欧美精品济南到| 建设人人有责人人尽责人人享有的| 麻豆av在线久日| 亚洲欧美中文字幕日韩二区| 久久久久久久久久久久大奶| 亚洲专区国产一区二区| 最新的欧美精品一区二区| 亚洲专区国产一区二区| 亚洲人成电影观看| 久久精品久久久久久久性| 嫁个100分男人电影在线观看 | 男女免费视频国产| 一边摸一边抽搐一进一出视频| 亚洲七黄色美女视频| 欧美人与性动交α欧美软件| 亚洲国产精品一区二区三区在线| 亚洲一区中文字幕在线| 高清黄色对白视频在线免费看| 欧美性长视频在线观看| 天天操日日干夜夜撸| 国语对白做爰xxxⅹ性视频网站| 精品久久久久久久毛片微露脸 | 精品福利观看| 亚洲av国产av综合av卡| 激情视频va一区二区三区| 这个男人来自地球电影免费观看| 性色av一级| 91国产中文字幕| 亚洲精品在线美女| 欧美日韩福利视频一区二区| 免费在线观看影片大全网站 | 久久人人爽人人片av| 国产黄色免费在线视频| 亚洲精品在线美女| 日韩伦理黄色片| 亚洲 国产 在线| 久久久精品国产亚洲av高清涩受| 男人舔女人的私密视频| 日韩制服骚丝袜av| 亚洲国产毛片av蜜桃av| 一级片'在线观看视频| 久久精品熟女亚洲av麻豆精品| 一级片'在线观看视频| 日韩电影二区| av天堂久久9| 免费在线观看完整版高清| 黄片播放在线免费| 在线天堂中文资源库| 久久 成人 亚洲| 色94色欧美一区二区| 精品国产国语对白av| 波野结衣二区三区在线| 99国产精品一区二区三区| 亚洲国产精品一区二区三区在线| 下体分泌物呈黄色| 欧美日韩成人在线一区二区| 欧美日韩亚洲高清精品| 国产精品秋霞免费鲁丝片| 99久久人妻综合| 一级毛片 在线播放| 在线观看人妻少妇| 大片电影免费在线观看免费| 91麻豆精品激情在线观看国产 | 国产无遮挡羞羞视频在线观看| 国产精品一国产av| 成年av动漫网址| 99热网站在线观看| 国产又爽黄色视频| 欧美另类一区| 亚洲精品美女久久久久99蜜臀 | 亚洲欧美一区二区三区黑人| 女性被躁到高潮视频| 欧美在线一区亚洲| 国产精品国产三级国产专区5o| 一区二区三区精品91| 飞空精品影院首页| 两人在一起打扑克的视频| 国产成人系列免费观看| 亚洲国产中文字幕在线视频| 亚洲,欧美精品.| 日本av手机在线免费观看| 日韩熟女老妇一区二区性免费视频| 欧美日韩国产mv在线观看视频| 91字幕亚洲| 在线观看免费午夜福利视频| 亚洲成人免费av在线播放| 午夜激情久久久久久久| 亚洲第一青青草原| 在线观看免费高清a一片| 美女脱内裤让男人舔精品视频| 99国产精品一区二区三区| 伊人亚洲综合成人网| 亚洲熟女毛片儿| 美女主播在线视频| 一个人免费看片子| 国产精品三级大全| 男女无遮挡免费网站观看| 一本色道久久久久久精品综合| 午夜精品国产一区二区电影| 只有这里有精品99| 又黄又粗又硬又大视频| 性高湖久久久久久久久免费观看| 婷婷丁香在线五月| 久久久久久久国产电影| 制服诱惑二区| 一级黄色大片毛片| 亚洲黑人精品在线| 在线 av 中文字幕| 国产av精品麻豆| 黄色怎么调成土黄色| 久久天堂一区二区三区四区| 成人国语在线视频| 国产深夜福利视频在线观看| 日本wwww免费看| 十八禁高潮呻吟视频| 女警被强在线播放| 中文字幕制服av| 视频区图区小说| 成年av动漫网址| 日韩制服骚丝袜av| 日韩制服丝袜自拍偷拍| 亚洲人成电影免费在线| 亚洲专区中文字幕在线| 久久精品久久久久久噜噜老黄| 狠狠精品人妻久久久久久综合| 欧美日韩一级在线毛片| 欧美日韩亚洲高清精品| 成年人黄色毛片网站| 亚洲精品国产区一区二| 成年人黄色毛片网站| 国产成人欧美| 日本av免费视频播放| 欧美日韩黄片免| 99香蕉大伊视频| 久久久久久人人人人人| 69精品国产乱码久久久| 亚洲精品在线美女| 亚洲人成电影观看| 一边摸一边抽搐一进一出视频| 久久久国产精品麻豆| 少妇猛男粗大的猛烈进出视频| 在线天堂中文资源库| 啦啦啦在线免费观看视频4| 国产在线视频一区二区| 日本av手机在线免费观看| 欧美激情 高清一区二区三区| 在线观看国产h片| 国产一卡二卡三卡精品| 色综合欧美亚洲国产小说| 男女无遮挡免费网站观看| 久久久久国产一级毛片高清牌| tube8黄色片| 久久久久久亚洲精品国产蜜桃av| 国产日韩欧美亚洲二区| 国产成人免费观看mmmm| 在线观看人妻少妇| 成年女人毛片免费观看观看9 | 午夜免费成人在线视频| 日韩一卡2卡3卡4卡2021年| 自线自在国产av| 精品一区二区三区四区五区乱码 | 最近最新中文字幕大全免费视频 | 欧美激情高清一区二区三区| 真人做人爱边吃奶动态| 九草在线视频观看| 亚洲精品久久午夜乱码| 少妇被粗大的猛进出69影院| xxx大片免费视频| avwww免费| 国产精品免费大片| 精品人妻在线不人妻| 又粗又硬又长又爽又黄的视频| 国产一区有黄有色的免费视频| 狂野欧美激情性xxxx| 精品人妻一区二区三区麻豆| 色婷婷av一区二区三区视频| 999久久久国产精品视频| 精品国产乱码久久久久久小说| 飞空精品影院首页| 免费观看a级毛片全部| 热re99久久精品国产66热6| 久久精品亚洲av国产电影网| 欧美日韩黄片免| 别揉我奶头~嗯~啊~动态视频 | 老司机亚洲免费影院| 国产欧美日韩精品亚洲av| 欧美精品av麻豆av| 亚洲第一青青草原| 男女高潮啪啪啪动态图| 考比视频在线观看| 中文字幕最新亚洲高清| 亚洲,欧美,日韩| 午夜免费鲁丝| 人人妻人人爽人人添夜夜欢视频| 我的亚洲天堂| 黄色视频不卡| 色播在线永久视频| 久久人妻福利社区极品人妻图片 | 黄色视频不卡| 一级毛片女人18水好多 | 久久国产精品人妻蜜桃| 亚洲国产精品999| 黄色a级毛片大全视频| 捣出白浆h1v1| 少妇猛男粗大的猛烈进出视频| 国产三级黄色录像| 精品国产国语对白av| 国产熟女欧美一区二区| 一级毛片我不卡| 久久精品国产亚洲av高清一级| a 毛片基地| 免费高清在线观看视频在线观看| 免费看av在线观看网站| 别揉我奶头~嗯~啊~动态视频 | 国产又爽黄色视频| √禁漫天堂资源中文www| 久久毛片免费看一区二区三区| 国产一区二区 视频在线| 1024香蕉在线观看| 无限看片的www在线观看| 亚洲色图 男人天堂 中文字幕| 国产真人三级小视频在线观看| 日日爽夜夜爽网站| 1024视频免费在线观看| videos熟女内射| 青青草视频在线视频观看| 国产免费福利视频在线观看| 久久久久久久大尺度免费视频| 国产成人啪精品午夜网站| 波野结衣二区三区在线| 一区二区三区激情视频| 国产一区亚洲一区在线观看| 九草在线视频观看| 亚洲精品第二区| 18禁裸乳无遮挡动漫免费视频| 精品少妇黑人巨大在线播放| 下体分泌物呈黄色| 日韩一卡2卡3卡4卡2021年| 午夜福利,免费看| 色婷婷久久久亚洲欧美| 亚洲欧美成人综合另类久久久| 亚洲精品一二三| 久久精品亚洲熟妇少妇任你| 国产欧美日韩综合在线一区二区| 少妇被粗大的猛进出69影院| 日韩免费高清中文字幕av| 日本色播在线视频| 两个人免费观看高清视频| 欧美乱码精品一区二区三区| 亚洲熟女精品中文字幕| 精品人妻在线不人妻| 一级毛片我不卡| 免费观看a级毛片全部| 80岁老熟妇乱子伦牲交| 婷婷色综合www| 精品熟女少妇八av免费久了| 国产又色又爽无遮挡免| 2021少妇久久久久久久久久久| 国产极品粉嫩免费观看在线| 亚洲成人国产一区在线观看 | 两性夫妻黄色片| avwww免费| 欧美乱码精品一区二区三区| 一区在线观看完整版| 午夜福利一区二区在线看| 亚洲欧美清纯卡通| 日韩伦理黄色片| 久久亚洲国产成人精品v| 国产片特级美女逼逼视频| 国产精品秋霞免费鲁丝片| 欧美人与善性xxx| 亚洲精品一卡2卡三卡4卡5卡 | 亚洲国产精品一区三区|