• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Changes in Global DNA Methylation Intensity and DNMT1 Transcription During the Aging Process of Scallop Chlamys farreri

    2015-06-01 09:24:20LIANShanshanHEYanLIXueZHAOBosongHOURuiHUXiaoliZHANGLinglingandBAOZhenmin
    Journal of Ocean University of China 2015年4期

    LIAN Shanshan, HE Yan, LI Xue, ZHAO Bosong, HOU Rui, HU Xiaoli, ZHANG Lingling, and BAO Zhenmin

    Key Laboratory of Marine Genetics and Breeding (MGB) of Ministry of Education,College of Marine Life Sciences,Ocean University of China,Qingdao266003,P. R. China

    Changes in Global DNA Methylation Intensity and DNMT1 Transcription During the Aging Process of Scallop Chlamys farreri

    LIAN Shanshan, HE Yan, LI Xue, ZHAO Bosong, HOU Rui, HU Xiaoli, ZHANG Lingling, and BAO Zhenmin*

    Key Laboratory of Marine Genetics and Breeding (MGB) of Ministry of Education,College of Marine Life Sciences,Ocean University of China,Qingdao266003,P. R. China

    DNA methylation is an important epigenetic regulatory mechanism that influences genomic stability, gene activation, X-chromosome inactivation and other factors. A change in DNA methylation is usually associated with aging and cellular senescence. DNA methyltransferase 1 (DNMT1) is the most abundant DNA methyltransferase, and it plays an important role in maintaining the established methylation pattern during DNA replication in vertebrates. Although the effect of aging on DNA methylation has been well studied in vertebrates, little research has been conducted in invertebrates, especially in marine bivalves. In this study, we examined global DNA methylation levels in four groups of adult Zhikong scallopChlamys farreriat different ages. The results showed that both the age and tissue type had a strong effect on the DNA methylation. In addition, a significant decrease in DNA methylation with aging (1-4 years) can be detected in mantle, kidney and hepatopancreas. We further measured the change inDNMT1transcript abundance using quantitative reverse transcription PCR (qRT-PCR), which revealed thatDNMT1transcription significantly decreased with aging in mantle and hepatopancreas and strongly correlated with DNA methylation (R= 0.72). Our data provided greater insight into the aging-related decline of DNA methylation, which could aid in gaining a better understanding of the relationship between DNA methylation and the aging process in bivalve mollusks.

    aging; DNA methylation;DNMT1transcription;Chlamys farreri

    1 Introduction

    Epigenetic changes in DNA play an essential role in determining gene transcription. As an important epigenetic modification, DNA methylation is involved in the regulation of development, aging and carcinogenesis in mammals (Liuet al., 2003; Klose and Bird, 2006; Calvanese, 2009). Approximately 70%-80% of cytosines in CpG dinucleotides are methylated in vertebrates (Bird and Taggart, 1980). However, with the aging of animals, DNA demethylation increases (Wilsonet al., 1987; Mazin, 1993, 1994; Kresset al., 2001, 2006; Richardson, 2002; Rodriguezet al., 2008), and the total 5 mC loss could be as high as 91% in cows, 93% in mice, and even 99% in rats for old animals (Mazin, 1993). In humans, DNA methylation associates with chronological age over long time scales and is linked to complex aging-related diseases. The global loss in DNA methylation during aging and in tumor cells was also found in human beings, which could mainlybe the result of the progressive loss of DNMT1 efficacy (Fraga and Esteller, 2007). In a recent study, Hannumet al. (2013) measured more than 450000 CpG markers in hundreds of people from 19 to 101 years of age and found that 70387 (15%) of the markers had significant associations with the aging rate; the genome-wide methylation pattern represents a strong and reproducible biomarker of the biological aging rate. The genome-wide loss of DNA methylation during aging could be relevant to genome instability, the risk of carcinogenesis, aging disorders or other complex age-associated diseases, and the retardation of cell proliferation in tissues of aging organisms (Mazin, 1993; Barres and Zierath, 2011; Lao and Grady, 2011; Tappet al., 2013).

    Maintenance of the DNA methylation pattern in vertebrates is mediated by DNA methyltransferases (DNMTs), which catalyze the transfer of a methyl moiety from S-adenosyl-L-methionine (SAM) to the 5-position of cytosines, principally in the CpG dinucleotides (Law and Jacobsen, 2010). As the most abundant DNMT, DNMT1 plays an important role in maintaining the established methylation pattern during DNA replication (Flores and Amdam, 2011). It has been reported that DNMT1 has acrucial effect on global genomic methylation. For example, the inactivation of DNMT1 causes DNA demethylation, and homozygous null deletions of DNMT1 result in an 80% genomic loss of DNA methylationin mouse (Leiet al., 1996; Takebayashiet al., 2007). In human cells,DNMT1transcription steadily declines throughout the aging process (Lopatinaet al., 2002). These findings suggest that in vertebrates, reduced genome-wide methylation during aging can be attributed to a decreased abundance ofDNMT1.

    Invertebrates display a wide diversity of DNA methylation patterns (Suzukiet al., 2007). For example, with the lack of essential DNMTs, 5-methylcytosine could not be detected in the nematode wormCaenorhabditis elegansat any time during development or aging (Simpsonet al., 1986). In comparison, the fruit flyDrosophila melanogasterlacks most of the classical DNMTs and displays limited cytosine methylation (Hunget al., 1999; Lykoet al., 2000). At the same time, the honey beeApis melliferabears a fully functional set of DNMTs, and DNA methylation is widespread across its genome (Elangoet al., 2009).

    Although bivalve organisms comprise more than 30000 species and constitute the second largest group of mollusks, only limited research on DNA methylation patterns has been conducted in this taxonomic group (Gavery and Roberts, 2010; Riviereet al., 2013). A recent study has revealed changes in the DNA methylation during the early life of oysters and the importance of DNA methylation for proper larval development (Riviereet al., 2013). Such observations might indicate time-dependent patterns of DNA methylation in mollusks and the evolution of 5 mC during the process of aging. In this study, we examined the changes in DNA methylation andDNMT1transcript abundance in the marine bivalveChlamys farreriat 1 to 4 years of age. Detailed information on the changing patterns in different tissues was also collected. This study will aid us in obtaining a better understanding of the role of DNA methylation in the aging process of bivalve mollusks.

    2 Materials and Methods

    2.1 Sample Collection

    Zhikong scallop individuals (1, 2, 3 and 4 years of age) were provided by a shellfish farm in Rongcheng (Shandong Province, China). A total of 24 individuals (6 of each age) were randomly collected and then acclimated at 15℃in filtered seawater for one week. Then, six tissues, including mantle, gill, gonad, kidney, adductor muscle and hepatopancreas, were dissected, immediately frozen in liquid nitrogen and kept at -80℃.

    2.2 Global DNA Methylation Analysis

    Genomic DNA was extracted using a standard phenol-chloroform protocol. RNase A was added to avoid RNA contamination. DNA concentration and purity was determined by the NanoVue Plus UV spectrophotometer (GE Healthcare). DNA methylation was quantified using the Methylamp? Global DNA Methylation Quantification Kit from Epigentek (Brooklyn, NY) following the manufacturer’s instructions. The methylated fraction of the DNA is recognized by 5-methylcytosine antibody and quantified through an ELISA-like reaction. For each sample, methylation analysis was performed in triplicate. The methylation percentage of each sample was calculated according to the slope of the standard curve. The standard curve was generated by plotting the OD values of a dilution series made from a 100% methylated DNA standard that was supplied in the kit.

    2.3 Total RNA Extraction

    The total RNA was extracted using the method described by Huet al. (2006). Genomic DNA contamination in RNA samples was removed by DNase I treatment. The RNA concentration and purity was determined using the NanoVue Plus UV spectrophotometer (GE Healthcare), and the RNA integrity was verified by agarose gel electrophoresis.

    2.4 Analysis ofDNMT1Transcript Abundance

    The transcript abundance ofDNMT1was detected using quantitative reverse transcription PCR (qRT-PCR). Firststrand cDNA was synthesized from 500 ng total RNA using oligo (dT)18and MMLV reverse transcriptase (Promega, Madison, WI, USA). A control reaction without reverse transcriptase was performed to preclude the DNA contamination. The amplification mixture contained 2 μL of diluted cDNA (1:50), 4 μL of primers (2 μmol L-1each) and 10 μL of SYBR Green Real-time PCR Master Mix (TOYOBO, Osaka, Japan). All of the PCR reactions were performed in duplicate and run on a 7500 Real-Time PCR System (Applied Biosystems, CA, USA), using the following program: initial denaturation at 95℃ for 10 min, followed by 40 cycles of 95℃ for 15 s and 60℃ for 1 min. Here, β-actin (ACTB), elongation factor 1 beta (EF1β) andribosomal protein L16 (RPL16) were chosen as internal reference genes (IRGs) (Table 1). PCR efficiencies and optimal Ct values were estimated using the online software real-time PCR Miner (Zhao and Fernald, 2005). TheDNMT1transcripts were quantified relative to the three IRGs using the algorithm proposed by Hellemanset al. (2007).

    Table 1 List of primers used for qRT-PCR

    2.5 Statistical Analysis

    All of the data were subjected to one-way ANOVA using SPSS 16.0 (Norusis, 2008). Fisher’s least significant difference (LSD) test was applied when the ANOVA indicated a significant (P< 0.05) difference. The relationship between the data from different assays was determined using the Pearson correlation coefficient (R).

    3 Results and Discussion

    3.1 Age Effect on DNA Methylation

    To roughly estimate the change in the DNA methylation during scallop aging, the entire soft tissue was subjected to global DNA methylation analysis. Based on the results (Fig.1a), the DNA methylation ratio ranged from 0.1% to 0.5% across all of the samples, which was much lower than the values obtained in the vertebrates, such as human, mice and zebrafish (Vuceticet al., 2010; Liuet al., 2011; Fanget al., 2013). One-way ANOVA showed that age was significantly associated with the DNA methylation fraction (P< 0.001). It appeared that with the increase in the age of the scallops, DNA methylation declined, which is similar to the findings in most of the vertebrates and in thein vitromodels (Kresset al., 2001, 2006; Rodriguezet al., 2008; Mazin, 2009; Bollatiet al., 2009). We also noticed that the 1-year-old scallops had a significantly higher DNA methylation fraction than the other three age groups, and a dramatic drop in DNA methylation was detected when the scallops entered their second year. Afterward, the DNA methylation declined gradually, and a significant decrease was found only between the 2- and 4-year-old individuals (P< 0.01). Although the above results were based on all of the soft tissue, they indicated an age effect on the DNA methylation in scallop and provided some clues on the age-dependent changes of DNA methylation in marine bivalves.

    3.2 Effect of the Tissue Type on the DNA Methylation

    DNA methylation could be different among the tissues, which leads to an inaccurate estimation of the age effect based on the results from all of the soft tissue. Therefore, we further tested the DNA methylation fraction in six tissues (mantle, gill, gonad, kidney, adductor muscle and hepatopancreas) of 2-year-old scallop. According to oneway ANOVA, the DNA methylation fractions were significantly different among the tissue types (P< 0.001). As shown in Fig.1b, the kidney and adductor muscle had the highest (approximately 0.3%) DNA methylation ratio, followed by gonad and hepatopancreas (approximately 0.2%), and the lowest DNA methylation ratio was found in mantle and gill (approximately 0.1%). The observed tissue difference in the DNA methylation is similar to the finding in mammals (Romanov and Vanyushin, 1981; Gama-Sosaet al., 1983; Maegawaet al., 2010), which suggests that the tissue type should be considered when examining the effect of age on DNA methylation.

    Fig.1 Effects of age (a) and tissue type (b) on DNA methylation. One-way ANOVA followed by Fisher’s LSD test was used for the comparisons. The vertical bars represent the mean ± S.E. (n= 6). The values marked with different letters differed significantly from one another (P< 0.05).

    3.3 Tissue-Specific Effect of Age on DNA Methylation

    Consistent with the observation on the entire soft tissue, a decline in the DNA methylation fraction with age was also observed across all of the six tissues (Fig.2a). However, a significant difference among the ages was detected only in mantle, kidney and hepatopancreas. Based on the previous studies, all of these three tissues participate in excreting and depurating metals and other toxic materials in marine bivalves (Carmichael and Fowler, 1981; Cembellaet al., 1994; Arévaloet al., 1998; Blancoet al., 2002; Suzukiet al., 2005). Considering the depuration function, the damage from toxic residue and the burden of oxidative metabolism in these three tissues, their aging rate could be higher than that of the others, which would result in a significant decrease in the methylation ratio.

    In comparison with the change in the DNA methylation fraction among the different age-related groups in the mantle (<0.1%), a higher drop (up to 0.3%) was found in the hepatopancreas and kidney. The higher drop in DNA methylation rate in the two tissues was possibly caused by the relatively low toxin effect (Cembellaet al., 1994; Bauderet al., 2001; Blancoet al., 2002) and faster cell self-renewal rate in the mantle compared with kidney and hepatopancreas, which could help to slow down the decline in the methylation rate. In addition, research showed that the promoter methylation of some stress-responding genes, which are involved in cellular responses to environmental stresses, are mediated by DNMT1 and DNMT3B together (Yinget al., 2005). DNMT3 can also contribute to the methylation pattern change in the mantle and should be verified in the future.

    3.4 Tissue-Specific Effect of Age onDNMT1Transcription

    Inhibition ofDNMT1could lead to reduced methylation levels in various animals, such as frog, mouse, and human (Stancheva and Meehan, 2000; Sadoet al., 2000; Rheeet al., 2002; Gaudetet al., 2003), which would indicate that DNMT1 plays a critical role in maintaining the global DNA methylation level. In this study,DNMT1transcription also declined with age in all six tissues (Fig.2b), which is similar to the findings in various mammals, including mouse and human (Vertinoet al., 1994; Hamataniet al., 2004; Kimet al., 2009; Liuet al., 2009). The 1-year-old scallops contained moreDNMT1transcripts than the other age groups across all of the tissues, which is consistent with the trend in the DNA methylation levels. A significant difference among the ages was detected in the mantle and hepatopancreas, with the 4-year-old scallops containing remarkably lower abundance ofDNMT1mRNA than the 1-year-old scallops. There was a similar reduction tendency in the global DNA methylation and inDNMT1transcription of gill, gonad and muscle of 4-year-old scallops, although the reduction was not significant. In addition, based on the data from different tissues of all four groups, the DNA methylation ratio was significantly and positively (R= 0.72;P< 0.001) correlated with the relative abundance ofDNMT1transcripts (Fig.3), which is similar to related results (R= 0.746) in human cells (Leiet al., 2009). Thus, DNMT1 is likely to participate in maintaining DNA methylation in scallops in a similar way as in other organisms. In addition, the agedependent decrease in DNA methylation can be attributed to the down-regulation ofDNMT1during the aging process of scallop.

    Fig.2 Changes in the DNA methylation ratio (a) and relative abundance ofDNMT1transcripts in six tissues of scallop at 1-4 years of age (b). One-way ANOVA followed by Fisher’s LSD test was used for the comparisons. The vertical bars represent the mean ± S.E. (n= 6). The values marked with different letters differed significantly from one another (P< 0.05).

    Fig.3 Correlation between the relative percentages (%) of DNA methylation andDNMT1mRNA abundance (n= 24).

    In summary, we found that both the age and tissue type had strong effects on DNA methylation inChlamys farreri. A significant decrease in DNA methylation with age was observed in the mantle, kidney and hepatopancreas. Agreeing with the results of DNA methylation,DNMT1transcription in mantle and hepatopancreas also declined with age. In addition, theDNMT1transcript abundance was significantly correlated with the DNA methylation ratio, which suggests the important role of DNMT1 in maintaining DNA methylation in scallop. This study can contribute to a better understanding of aging-related DNA methylation changes in bivalve mollusks.

    Acknowledgements

    This study was supported by the National Natural Science Foundation of China (31130054), the National HighTechnology Research and Development Program of China (2012AA10A401), and Doctoral Fund of Ministry of Education of China (20120132130002).

    Arévalo, F., Bermúdez, M., and Salgado, C., 1998. ASP toxicity in scallops: Individual variability and tissue distribution. In:Harmful Algae. Reguera, B.,et al., eds., Xunta de Galicia and the IOC of UNESCO, Paris,499-502.

    Barres, R., and Zierath, J. R., 2011. DNA methylation in metabolic disorders.The American Journal of Clinical Nutrition, 93: 897S-900S.

    Bauder, A. G., Cembella, A. D., Bricelj, V. M., and Quilliam, M. A., 2001. Uptake and fate of diarrhetic shellfish poisoning toxins from the dinoflagellateProrocentrum limain the bay scallopArgopecten irradians.Marine Ecology Prog Researchs Series, 213: 39-52.

    Berletch, J. B., Andrews, L. G., and Tollefsbol, T. O., 2007. A method to detect DNA methyltransferase I gene transcriptionin vitroin aging systems.Biological Aging, 372: 73-80.

    Bird, A. P., and Taggart, M. H., 1980. Variable patterns of total DNA and rDNA methylation in animals.Nucleic Acids Research, 8: 1485-1497.

    Blanco, J., Acosta, C., Bermúdez, M., and Salqado, C., 2002. Depuration and anatomical distribution of the amnesic shellfish poisoning (ASP) toxin domoic acid in the king scallopPectenmaximus.Aquat Toxicol, 60: 111-121.

    Bollati, V., Schwartz, J., Wright, R., Litonjua, A., Tarantini, L., Suh, H., Sparrow, D., Vokonas, P., and Baccarelli, A., 2009. Decline in genomic DNA methylation through aging in a cohort of elderly subjects.Mechanisms of Aging and Development, 130: 234-239.

    Calvanese, V., Lara, E., Kahn, A., and Fraga, M. F., 2009. The role of epigenetics in aging and age-related diseases.Aging Research Reviews, 8: 268-276.

    Carmichael, N., and Fowler, B., 1981. Cadmium accumulation and toxicity in the kidney of the bay scallopArgopecten irradians.Marine Biology, 65: 35-43.

    Cembella, A. D., Shumway, S. E., and Larocque, R., 1994. Sequestering and putative biotransformation of paralytic shellfish toxins by the sea scallopPlacopecten magellanicus:Seasonal and spatial scales in natural populations.Journal of Experimental Marine Biology and Ecology, 180: 1-22.

    Elango, N., Hunt, B. G., Goodisman, M. A., and Yi, S. V., 2009. DNA methylation is widespread and associated with differential gene expression in castes of the honeybee,Apis mellifera.Proceedings of the National Academy of Sciences, 106: 11206-11211.

    Fang, X., Thornton, C., Scheffler, B. E., and Willett, K. L., 2013. Benzo [a] pyrene decreases global and gene specific DNA methylation during zebrafish development.Environment Toxicol, 36: 40-50.

    Flores, K. B., and Amdam, G. V., 2011. Deciphering a methylome: What can we read into patterns of DNA methylation?The Journal of Experimental Biology, 214: 3155-3163.

    Fraga, M. F., and Esteller, M., 2007. Epigenetics and aging: The targets and the marks.Trends in Genetics, 23: 413-418.

    Gama-Sosa, M. A., Midgett, R. M., Slagel, V. A., Githens, S., Kuo, K. C., Gehrke, C. W., and Ehrlich, M., 1983. Tissuespecific differences in DNA methylation in various mammals.Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression, 740: 212-219.

    Gaudet, F., Hodgson, J., Eden, A., Jackson-Grusby, L., Dausman, J., Gray, J. W., Leonhardt, H., and Jaenisch, R., 2003. Induction of tumors in mice by genomic hypomethylation.Science, 300: 489-492.

    Gavery, M. R., and Roberts, S. B., 2010. DNA methylation patterns provide insight into epigenetic regulation in the Pacific oyster (Crassostrea gigas).BMC Genomics, 11: 483-491.

    Hamatani, T., Falco, G., Carter, M. G., Akutsu, H., Stagg, C. A., Sharov, A. A., Dudekula, D. B., Vanburen, V., and Ko, M. S., 2004. Age-associated alteration of gene expression patterns in mouse oocytes.Human Molecular Genetics, 13: 2263-2278.

    Hannum, G., Guinney, J., Zhao, L., Zhang, L., Hughes, G., Sadda, S., Klotzle, B., Bibikova, M., Fan, J. B., Gao, Y., Deconde, R., Chen, M., Rajapakse, I., Friend, S., Ideker, T., and Zhang, K., 2013. Genome-wide methylation profiles reveal quantitative views of human aging rates.Molecular Cell, 49: 359-367.

    Hellemans, J., Mortier, G., De Paepe, A., Speleman, F., and Vandesompele, J., 2007. qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data.Genome Biology, 8: R19.

    Hu, X., Bao, Z., Hu, J., Shao, M., Zhang, L., Bi, K., Zhan, A., and Huang, X., 2006. Cloning and characterization of tryptophan 2, 3-dioxygenase gene of Zhikong scallopChlamys farreri(Jones and PResearchton 1904).Aquaculture Research, 37: 1187-1194.

    Hung, M.-S., Karthikeyan, N., Huang, B., Koo, H. C., Kiger, J., and Shen, C.-K., 1999. Drosophila proteins related to vertebrate DNA (5-cytosine) methyltransferases.Proceedings of the National Academy of Sciences, 96: 11940-11945.

    Kim, K.-C., Friso, S., and Choi, S.-W., 2009. DNA methylation, an epigenetic mechanism connecting folate to healthy embryonic development and aging.The Journal of Nutritional Biochemistry, 20: 917-926.

    Klose, R. J., and Bird, A. P., 2006. Genomic DNA methylation:the mark and its mediators.Trends Biochemistry Science, 31:89-97.

    Kress, C., Thomassin, H., and Grange, T., 2001. Local DNA demethylation in vertebrates: How could it be performed and targeted?FEBS Letter, 494: 135-140.

    Kress, C., Thomassin, H., and Grange, T., 2006. Active cytosine demethylation triggered by a nuclear receptor involves DNA strand breaks.Proceedings of the National Academy of Sciences, 103: 11112-11117.

    Lao, V. V., and Grady, W. M., 2011. Epigenetics and colorectal cancer.Nature Reviews Gastroenterology and Hepatology, 8:686-700.

    Law, J. A., and Jacobsen, S. E., 2010. Establishing, maintaining and modifying DNA methylation patterns in plants and animals.Nature Reviews Genetics, 11: 204-220.

    Lei, H., Oh, S. P., Okano, M., Juttermann, R., Goss, K. A., Jaenisch, R., and Li, E., 1996.De novoDNA cytosine methyltransferase activities in mouse embryonic stem cells.Development, 122: 3195-3205.

    Lei, W., Luo, Y., Yan, K., Zhao, S., Li, Y., Qiu, X., Zhou, Y., Long, H., Zhao, M., Liang, Y., Su, Y., and Lu, Q., 2009. Abnormal DNA methylation in CD4+T cells from patients with systemic lupus erythematosus, systemic sclerosis, and dermatomyositis.Scandinavian Journal of Rheumatology, 38:369-374.

    Liu, C., Ou, T., Wu, C., Li, R., Lin, Y., Lin, C., Tsai, W., Liu, H., and Yen, J., 2011. Global DNA methylation, DNMT1, and MBD2 in patients with systemic lupus erythematosus.Lupus, 20: 131-136.

    Liu, L., Wylie, R. C., Andrews, L. G., and Tollefsbol, T. O., 2003.Aging, cancer and nutrition: The DNA methylation connection.Mechnismof Aging and Development, 124: 989-998.

    Liu, Y., Chen, Y., and Richardson, B., 2009. Decreased DNA methyltransferase levels contribute to abnormal gene expression in ‘senescent’ CD4+CD28-T cells.Clinical Immunology, 132: 257-265.

    Lopatina, N., Haskell, J. F., Andrews, L. G., Poole, J. C., Saldanha, S., and Tollefsbol, T., 2002. Differential maintenance andde novomethylating activity by three DNA methyltransferases in aging and immortalized fibroblasts.Journal of Cellular Biochemistry, 84: 324-334.

    Lyko, F., Ramsahoye, B. H., and Jaenisch, R., 2000. Development: DNA methylation inDrosophila melanogaster.Nature, 408: 538-540.

    Maegawa, S., Hinkal, G., Kim, H. S., Shen, L., Zhang, L., Zhang, J., Zhang, N., Liang, S., Donehower, L. A., and Issa, J. J., 2010. Widespread and tissue specific age-related DNA methylation changes in mice.Genome Research, 20: 332-340.

    Mazin, A. L., 2009. Suicidal function of DNA methylation in age-related genome disintegration.Aging Research Reviews, 8:314-327.

    Mazin, A. L., 1993. Genome loses all 5-methylcytosine a life span. How is this connected with accumulation of mutations during aging?Molecular Biology, 27: 160-173.

    Mazin, A. L., 1994. Enzymatic DNA methylation as an aging mechanism.Molecular Biology, 28: 21-51.

    Norusis, M., 2008. SPSS 16.0 guide to data analysis. Prentice

    Hall Press.

    Rhee, I., Bachman, K. E., Park, B. H., Jair, K., Yen, R. C., Schuebel, K. E., Cui, H., Feinberg, A. P., Lengauer, C., Kinzler, K. W., Baylin, S. B., and Vogelstein, B., 2002. DNMT1 and DNMT3b cooperate to silence genes in human cancer cells.Nature, 416: 552-556.

    Richardson, B. C., 2002. Role of DNA methylation in the regulation of cell function: Autoimmunity, aging and cancer.The Journal of Nutrition, 132: 2401S-2405S.

    Rodriguez, J., Vives, L., Jordà, M., Morales, C., Mu?oz, M., Vendrell, E., and Peinado, M. A., 2008. Genome-wide tracking of unmethylated DNA Alu repeats in normal and cancer cells.Nucleic Acids Research, 36: 770-784.

    Romanov, G. A., and Vanyushin, B. F., 1981. Methylation of reiterated sequences in mammalian DNAs effects of the tissue type, age, malignancy and hormonal induction.Biochimica et Biophysica Acta (BBA)-Nucleic Acids and Protein Synthesis, 653: 204-218.

    Riviere, G., Wu, G., Fellous, A., Goux, D., Sourdaine, P., and Favrel, P., 2013. DNA methylation is crucial for the early development in the oysterC. gigas.Marine Biotechnology, 15:739-753.

    Sado, T., Fenner, M. H., Tan, S.-S., Tam, P., Shioda, T., and Li, E., 2000. X inactivation in the mouse embryo deficient forDnmt1distinct effect of hypomethylation on imprinted and random X inactivation.Development Biology, 225: 294-303.

    Simpson, V. J., Johnson, T. E., and Hammen, R. F., 1986. Caenorhabditis elegans DNA does not contain 5-methylcytosine at any time during development or aging.Nucleic Acids Research, 14: 6711-6719.

    Stancheva, I., and Meehan, R. R., 2000. Transient depletion of xDnmt1 leads to premature gene activation inXenopusembryos.Genes Development, 14: 313-327.

    Suzuki, M. M., and Bird, A., 2008. DNA methylation landscapes:Provocative insights from epigenomics.Nature Reviews Genetics, 9: 465-476.

    Suzuki, M. M., Kerr, A. R., De Sousa, D., and Bird, A., 2007. CpG methylation is targeted to transcription units in an invertebrate genome.Genome Research, 17: 625-631.

    Takebayashi, S.-I., Tamura, T., Matsuoka, C., and Okano, M., 2007. Major and essential role for the DNA methylation mark in mouse embryogenesis and stable association of DNMT1 with newly replicated regions.Molecular and Cellular Biology, 27: 8243-8258.

    Tapp, H. S., Commane, D. M., Bradburn, D. M., Arasaradnam, R., Mathers, J. C., Johnson, I. T., and Belshaw, N. J., 2013. Nutritional factors and gender influence age-related DNA methylation in the human rectal mucosa.Aging Cell, 12: 148-155.

    Vertino, P. M., Issa, J.-P., Pereira-Smith, O. M., and Baylin, S. B., 1994. Stabilization of DNA methyltransferase levels and CpG island hypermethylation precede SV40-induced immortalization of human fibroblasts.Cell Growth and Differentiation: The Molecular Biology Journal of the American Association for Cancer Research, 5: 1395-1402.

    Vucetic, Z., Kimmel, J., Totoki, K., Hollenbeck, E., and Reyes, T. M., 2010. Maternal high-fat diet alters methylation and gene expression of dopamine and opioid-related genes.Endocrinology, 151: 4756-4764.

    Wilson, V. L., Smith, R., Ma, S., and Cutler, R. G., 1987. Genomic 5-methyldeoxycytidine decreases with age.Journal of Biological Chemistry, 262: 9948-9951.

    Ying, J., Srivastava, G., Hsieh, W. S., Gao, Z., Murray, P., Liao, S., Ambinder, R., and Tao, Q., 2005. The stress-responsive gene GADD45G is a functional tumor suppressor, with its response to environmental stresses frequently disrupted epigenetically in multiple tumors.Clinical Cancer Research, 11:6442-6449.

    Zhao, S., and Fernald, R. D., 2005. Comprehensive algorithm for quantitative real-time polymerase chain reaction.Journal of Computational Biology, 12: 1047-1064.

    (Edited by Qiu Yantao)

    (Received October 10, 2013; revised January 19, 2014; accepted March 23, 2015)

    ? Ocean University of China, Science Press and Spring-Verlag Berlin Heidelberg 2015

    * Corresponding author. Tel: 0086-532-82031960 E-mail: zmbao@ouc.edu.cn

    26uuu在线亚洲综合色| 青春草国产在线视频| 免费观看在线日韩| 三上悠亚av全集在线观看| 观看美女的网站| 欧美日韩视频精品一区| 久久久久久久亚洲中文字幕| 一级黄片播放器| 99热国产这里只有精品6| 一区二区日韩欧美中文字幕 | 久久99蜜桃精品久久| 国产在线一区二区三区精| 日韩成人av中文字幕在线观看| 国产女主播在线喷水免费视频网站| 自线自在国产av| 国产日韩一区二区三区精品不卡 | 寂寞人妻少妇视频99o| 亚洲精品乱码久久久v下载方式| 欧美日韩视频高清一区二区三区二| 日本黄大片高清| 人人妻人人添人人爽欧美一区卜| 在线看a的网站| 91久久精品国产一区二区成人| 久久精品国产亚洲av涩爱| 一级黄片播放器| 在线观看三级黄色| 欧美日韩综合久久久久久| 欧美日韩亚洲高清精品| 国产国拍精品亚洲av在线观看| 99精国产麻豆久久婷婷| 久久精品国产a三级三级三级| 成人影院久久| 亚洲欧美一区二区三区黑人 | 久久这里有精品视频免费| 最后的刺客免费高清国语| 蜜臀久久99精品久久宅男| 国产精品一区二区三区四区免费观看| 18禁观看日本| 亚洲欧美一区二区三区国产| 99热网站在线观看| 亚洲成人av在线免费| 少妇熟女欧美另类| 成人国产av品久久久| 亚洲综合精品二区| 久久久亚洲精品成人影院| 日韩熟女老妇一区二区性免费视频| 高清不卡的av网站| 99热网站在线观看| 国产精品人妻久久久久久| 九色成人免费人妻av| 美女主播在线视频| 日本-黄色视频高清免费观看| videos熟女内射| a 毛片基地| 久久久久精品久久久久真实原创| 性高湖久久久久久久久免费观看| 国产精品一二三区在线看| 国产男女内射视频| 欧美日韩综合久久久久久| 丝瓜视频免费看黄片| av在线播放精品| 中文欧美无线码| 蜜桃在线观看..| 久久久久网色| 国产男人的电影天堂91| 99视频精品全部免费 在线| 亚洲人成网站在线播| 久久综合国产亚洲精品| 男女啪啪激烈高潮av片| 免费人成在线观看视频色| 一本一本综合久久| 桃花免费在线播放| 国产精品一区二区在线观看99| 婷婷成人精品国产| 欧美性感艳星| 欧美亚洲 丝袜 人妻 在线| 人妻 亚洲 视频| 欧美xxxx性猛交bbbb| 国产男女内射视频| 母亲3免费完整高清在线观看 | 插阴视频在线观看视频| 最新中文字幕久久久久| 看免费成人av毛片| 欧美日韩亚洲高清精品| 一区二区三区四区激情视频| 成人毛片60女人毛片免费| 亚洲第一av免费看| 免费日韩欧美在线观看| 日韩中文字幕视频在线看片| 亚洲四区av| 国产精品 国内视频| 人妻少妇偷人精品九色| 国产成人精品久久久久久| 性色avwww在线观看| 色94色欧美一区二区| av国产精品久久久久影院| 日韩在线高清观看一区二区三区| 26uuu在线亚洲综合色| 国产一级毛片在线| 最新的欧美精品一区二区| 亚洲国产精品成人久久小说| 国产在线免费精品| 校园人妻丝袜中文字幕| kizo精华| 丰满乱子伦码专区| 精品人妻在线不人妻| 多毛熟女@视频| 亚洲一区二区三区欧美精品| 国产成人午夜福利电影在线观看| 韩国av在线不卡| 99九九线精品视频在线观看视频| 国产精品久久久久久久电影| 国产日韩欧美亚洲二区| 亚洲av免费高清在线观看| 日韩中文字幕视频在线看片| 日本黄大片高清| av专区在线播放| 天堂俺去俺来也www色官网| 丰满迷人的少妇在线观看| 国产午夜精品久久久久久一区二区三区| 久久av网站| 18禁观看日本| 国产在视频线精品| 国产欧美另类精品又又久久亚洲欧美| 国产免费一级a男人的天堂| 久久久欧美国产精品| 婷婷色av中文字幕| 黄色怎么调成土黄色| 国产欧美日韩综合在线一区二区| 黑丝袜美女国产一区| av在线老鸭窝| a 毛片基地| 青青草视频在线视频观看| 哪个播放器可以免费观看大片| 久久精品国产亚洲av涩爱| 黑人巨大精品欧美一区二区蜜桃 | 日本vs欧美在线观看视频| 亚洲av二区三区四区| 亚洲欧美色中文字幕在线| 欧美xxxx性猛交bbbb| 久久久久久久精品精品| 久久久久精品久久久久真实原创| 精品国产露脸久久av麻豆| 夜夜爽夜夜爽视频| 一边摸一边做爽爽视频免费| 国产高清有码在线观看视频| 只有这里有精品99| 欧美激情极品国产一区二区三区 | 考比视频在线观看| 国产日韩欧美视频二区| 久久青草综合色| 一级毛片 在线播放| 欧美精品人与动牲交sv欧美| 成年女人在线观看亚洲视频| 久久99热6这里只有精品| 在线观看免费高清a一片| 黑人高潮一二区| 免费人妻精品一区二区三区视频| 成年人免费黄色播放视频| 在线观看人妻少妇| 欧美精品亚洲一区二区| 免费观看性生交大片5| 最近最新中文字幕免费大全7| 男女啪啪激烈高潮av片| 九草在线视频观看| 9色porny在线观看| 亚洲av福利一区| 少妇被粗大猛烈的视频| 午夜福利在线观看免费完整高清在| 国产不卡av网站在线观看| 欧美 日韩 精品 国产| av电影中文网址| 欧美另类一区| 最黄视频免费看| 日本黄大片高清| 一个人看视频在线观看www免费| 国产在线一区二区三区精| 欧美日韩av久久| 啦啦啦视频在线资源免费观看| 七月丁香在线播放| 男女啪啪激烈高潮av片| av有码第一页| 久久久精品免费免费高清| 18禁动态无遮挡网站| 热99国产精品久久久久久7| 自拍欧美九色日韩亚洲蝌蚪91| 制服诱惑二区| 亚洲av日韩在线播放| 国产探花极品一区二区| 精品亚洲成a人片在线观看| 最近的中文字幕免费完整| 午夜福利视频精品| 激情五月婷婷亚洲| 搡女人真爽免费视频火全软件| 边亲边吃奶的免费视频| 日韩,欧美,国产一区二区三区| 天天影视国产精品| 婷婷色av中文字幕| 亚洲av免费高清在线观看| 国产高清有码在线观看视频| 高清av免费在线| 最黄视频免费看| 亚洲av欧美aⅴ国产| 黄色一级大片看看| 亚洲精品久久成人aⅴ小说 | 91精品国产九色| 91久久精品国产一区二区成人| 夫妻午夜视频| 美女国产视频在线观看| 欧美日韩成人在线一区二区| 岛国毛片在线播放| 国产精品国产av在线观看| 久久久久国产网址| 久久这里有精品视频免费| kizo精华| 免费看光身美女| 婷婷色综合www| 51国产日韩欧美| 国产视频内射| 久久精品熟女亚洲av麻豆精品| 国产成人aa在线观看| 大码成人一级视频| 高清黄色对白视频在线免费看| 久久久久久久久久久免费av| 亚洲欧美成人精品一区二区| 午夜福利视频在线观看免费| 丝袜在线中文字幕| 下体分泌物呈黄色| 好男人视频免费观看在线| 观看美女的网站| www.色视频.com| 日本午夜av视频| freevideosex欧美| 亚洲av日韩在线播放| 国产成人精品在线电影| 国产精品不卡视频一区二区| 国产成人精品一,二区| 高清在线视频一区二区三区| 另类精品久久| 少妇熟女欧美另类| 美女国产高潮福利片在线看| 亚洲高清免费不卡视频| 在线观看美女被高潮喷水网站| 大码成人一级视频| 国产精品成人在线| 天天操日日干夜夜撸| 国产精品一区二区在线观看99| 麻豆成人av视频| 国产午夜精品一二区理论片| 在线观看一区二区三区激情| a级毛色黄片| 最近2019中文字幕mv第一页| 日本欧美国产在线视频| 国产成人免费无遮挡视频| 青青草视频在线视频观看| 国产成人av激情在线播放 | 成人手机av| 男女边摸边吃奶| 精品熟女少妇av免费看| 最近中文字幕2019免费版| 女人久久www免费人成看片| 欧美+日韩+精品| 日韩在线高清观看一区二区三区| 在线观看免费视频网站a站| 午夜福利视频在线观看免费| 三上悠亚av全集在线观看| 观看美女的网站| 欧美日韩视频精品一区| 高清视频免费观看一区二区| 久久99热6这里只有精品| 国产高清国产精品国产三级| 午夜福利网站1000一区二区三区| 99久久人妻综合| 少妇猛男粗大的猛烈进出视频| 日韩中字成人| 亚洲性久久影院| 建设人人有责人人尽责人人享有的| 亚洲色图 男人天堂 中文字幕 | 免费看不卡的av| 日日摸夜夜添夜夜爱| 日韩中字成人| 大香蕉久久网| 狠狠精品人妻久久久久久综合| 在线观看美女被高潮喷水网站| 3wmmmm亚洲av在线观看| 亚洲精品日韩av片在线观看| 汤姆久久久久久久影院中文字幕| 亚洲av二区三区四区| 人人妻人人澡人人爽人人夜夜| 寂寞人妻少妇视频99o| 免费人妻精品一区二区三区视频| 又大又黄又爽视频免费| 亚洲av福利一区| 18禁在线播放成人免费| 亚洲色图综合在线观看| 婷婷色综合www| 99热6这里只有精品| 久久久久久人妻| 大又大粗又爽又黄少妇毛片口| 熟女av电影| 黑丝袜美女国产一区| 中文天堂在线官网| 人妻夜夜爽99麻豆av| 满18在线观看网站| 国产女主播在线喷水免费视频网站| 国产成人精品无人区| 国产女主播在线喷水免费视频网站| 中文欧美无线码| 2018国产大陆天天弄谢| 最近中文字幕高清免费大全6| 秋霞在线观看毛片| 蜜桃国产av成人99| 欧美亚洲日本最大视频资源| 蜜桃国产av成人99| 国产 精品1| 少妇熟女欧美另类| 亚洲精品中文字幕在线视频| 亚洲精品456在线播放app| a级毛色黄片| 九色亚洲精品在线播放| 99热6这里只有精品| 久久精品国产亚洲网站| 三级国产精品片| 另类精品久久| 久久久久久久大尺度免费视频| 在线亚洲精品国产二区图片欧美 | 国产精品一区二区三区四区免费观看| 免费大片黄手机在线观看| 性高湖久久久久久久久免费观看| 波野结衣二区三区在线| 久久久久久久久久人人人人人人| 你懂的网址亚洲精品在线观看| 寂寞人妻少妇视频99o| 国产精品 国内视频| 制服丝袜香蕉在线| 男的添女的下面高潮视频| 中文字幕人妻丝袜制服| 亚洲精品亚洲一区二区| 亚洲av国产av综合av卡| 在线观看免费日韩欧美大片 | 亚洲精品日韩在线中文字幕| 久久99精品国语久久久| 精品国产乱码久久久久久小说| 日韩不卡一区二区三区视频在线| 美女国产视频在线观看| 国产精品人妻久久久影院| 最近中文字幕高清免费大全6| 日本猛色少妇xxxxx猛交久久| 日韩人妻高清精品专区| 不卡视频在线观看欧美| 亚洲国产毛片av蜜桃av| 51国产日韩欧美| 好男人视频免费观看在线| √禁漫天堂资源中文www| 亚洲熟女精品中文字幕| av.在线天堂| 久久久久久久久久成人| 乱人伦中国视频| 最近2019中文字幕mv第一页| 日日摸夜夜添夜夜爱| 国产精品三级大全| 亚洲国产av影院在线观看| 久久免费观看电影| 免费高清在线观看日韩| 母亲3免费完整高清在线观看 | 久久久久国产网址| 你懂的网址亚洲精品在线观看| 国产黄色免费在线视频| 国产极品粉嫩免费观看在线 | 国产精品国产三级专区第一集| 欧美日韩视频精品一区| 亚洲一级一片aⅴ在线观看| 国产片内射在线| 亚洲色图综合在线观看| 大香蕉97超碰在线| 国产精品久久久久久精品电影小说| 飞空精品影院首页| 久久久a久久爽久久v久久| 在线播放无遮挡| 人人妻人人澡人人爽人人夜夜| av网站免费在线观看视频| 欧美日韩在线观看h| 中文字幕最新亚洲高清| 下体分泌物呈黄色| 国产成人精品一,二区| 插逼视频在线观看| 亚洲欧洲国产日韩| 日日爽夜夜爽网站| 91精品国产九色| 亚洲,欧美,日韩| 午夜av观看不卡| 国内精品宾馆在线| 中文天堂在线官网| 日本与韩国留学比较| 多毛熟女@视频| 亚洲国产色片| 久久国产精品男人的天堂亚洲 | 国产无遮挡羞羞视频在线观看| 啦啦啦啦在线视频资源| 精品亚洲成国产av| 日韩欧美一区视频在线观看| 亚洲经典国产精华液单| 亚洲av二区三区四区| 久久人妻熟女aⅴ| 哪个播放器可以免费观看大片| 国产成人精品婷婷| 少妇猛男粗大的猛烈进出视频| 欧美 亚洲 国产 日韩一| 久热久热在线精品观看| 日韩精品免费视频一区二区三区 | 不卡视频在线观看欧美| 亚洲第一区二区三区不卡| 日本av免费视频播放| 女人精品久久久久毛片| 制服人妻中文乱码| 亚洲国产最新在线播放| 我要看黄色一级片免费的| 热re99久久精品国产66热6| 丁香六月天网| 麻豆成人av视频| 九草在线视频观看| 日韩av在线免费看完整版不卡| 女人精品久久久久毛片| 在线精品无人区一区二区三| 亚洲精华国产精华液的使用体验| 日韩人妻高清精品专区| 黑人猛操日本美女一级片| 最近的中文字幕免费完整| a级片在线免费高清观看视频| 亚洲天堂av无毛| 女性被躁到高潮视频| 五月开心婷婷网| 亚洲精品国产色婷婷电影| 少妇精品久久久久久久| 永久免费av网站大全| freevideosex欧美| 成人国产av品久久久| 欧美变态另类bdsm刘玥| 一级毛片黄色毛片免费观看视频| 欧美bdsm另类| 狂野欧美激情性bbbbbb| 全区人妻精品视频| 久久ye,这里只有精品| av线在线观看网站| 男人操女人黄网站| 日韩 亚洲 欧美在线| 精品酒店卫生间| 成人18禁高潮啪啪吃奶动态图 | 免费看光身美女| 亚洲欧洲日产国产| 亚洲精品乱码久久久v下载方式| 免费观看a级毛片全部| 国产视频内射| 免费av不卡在线播放| 日本av手机在线免费观看| 日韩精品免费视频一区二区三区 | 日韩av在线免费看完整版不卡| 午夜福利在线观看免费完整高清在| 欧美精品国产亚洲| 欧美精品亚洲一区二区| 精品人妻熟女毛片av久久网站| 国产精品一国产av| 久久午夜福利片| 国产成人精品一,二区| 三级国产精品欧美在线观看| 国产综合精华液| 如何舔出高潮| 午夜福利在线观看免费完整高清在| 日韩av免费高清视频| 亚洲欧美一区二区三区国产| av有码第一页| 亚洲国产av影院在线观看| 成年人午夜在线观看视频| 久久精品国产鲁丝片午夜精品| 成人免费观看视频高清| 一边亲一边摸免费视频| 麻豆乱淫一区二区| 久久久久久久久久成人| 亚洲av福利一区| 国产精品99久久99久久久不卡 | 另类精品久久| 亚洲中文av在线| 日本vs欧美在线观看视频| 亚洲av免费高清在线观看| 乱码一卡2卡4卡精品| 亚洲欧美精品自产自拍| 啦啦啦中文免费视频观看日本| 欧美亚洲日本最大视频资源| 日本黄大片高清| 精品一区在线观看国产| 久久久久久久大尺度免费视频| 成年美女黄网站色视频大全免费 | 欧美 日韩 精品 国产| 国产高清不卡午夜福利| 大片电影免费在线观看免费| 亚洲国产成人一精品久久久| 亚洲人成77777在线视频| 成人漫画全彩无遮挡| 国产精品一二三区在线看| 久久av网站| 日日撸夜夜添| 最近2019中文字幕mv第一页| 伊人久久精品亚洲午夜| 3wmmmm亚洲av在线观看| 国内精品宾馆在线| 日韩电影二区| 人妻夜夜爽99麻豆av| 中文字幕av电影在线播放| 一个人免费看片子| 大香蕉久久成人网| 夜夜骑夜夜射夜夜干| 久久毛片免费看一区二区三区| 成人国语在线视频| 一本久久精品| 99re6热这里在线精品视频| 一级毛片 在线播放| 黄色视频在线播放观看不卡| 免费高清在线观看日韩| 少妇的逼好多水| 蜜桃久久精品国产亚洲av| 日本黄大片高清| 91精品国产国语对白视频| 久久国产精品男人的天堂亚洲 | 免费高清在线观看日韩| 国产综合精华液| 乱码一卡2卡4卡精品| 男人操女人黄网站| 日韩亚洲欧美综合| 伦精品一区二区三区| 国产亚洲欧美精品永久| 久久精品久久久久久久性| 久久热精品热| 91在线精品国自产拍蜜月| 亚洲丝袜综合中文字幕| 日韩伦理黄色片| 欧美日韩av久久| 免费av不卡在线播放| 一级毛片电影观看| 在线观看一区二区三区激情| 蜜臀久久99精品久久宅男| 亚洲国产色片| 99国产精品免费福利视频| 精品午夜福利在线看| 热re99久久精品国产66热6| 99视频精品全部免费 在线| 中文字幕av电影在线播放| 青春草视频在线免费观看| 中国三级夫妇交换| 最近2019中文字幕mv第一页| 狠狠婷婷综合久久久久久88av| 男女国产视频网站| 黑人巨大精品欧美一区二区蜜桃 | 国产在线视频一区二区| 五月玫瑰六月丁香| av线在线观看网站| 国产黄频视频在线观看| 亚洲四区av| 99精国产麻豆久久婷婷| 久久综合国产亚洲精品| 欧美变态另类bdsm刘玥| 亚洲伊人久久精品综合| 熟妇人妻不卡中文字幕| 午夜日本视频在线| 亚洲欧美中文字幕日韩二区| 国产精品一区二区三区四区免费观看| 青青草视频在线视频观看| 久久国产精品男人的天堂亚洲 | 亚洲经典国产精华液单| 狠狠精品人妻久久久久久综合| 在线观看免费日韩欧美大片 | 成年人免费黄色播放视频| a级毛片免费高清观看在线播放| 伊人久久国产一区二区| 亚洲av成人精品一二三区| 亚洲不卡免费看| 亚洲伊人久久精品综合| 国产成人精品一,二区| 国产精品三级大全| 尾随美女入室| 校园人妻丝袜中文字幕| 性高湖久久久久久久久免费观看| 嫩草影院入口| 精品少妇黑人巨大在线播放| 一级片'在线观看视频| 国产日韩欧美在线精品| 桃花免费在线播放| 蜜桃久久精品国产亚洲av| 哪个播放器可以免费观看大片| 韩国av在线不卡| 亚洲av欧美aⅴ国产| 色婷婷久久久亚洲欧美| 欧美日韩一区二区视频在线观看视频在线| 在线观看免费高清a一片| 欧美人与善性xxx| 久久久久人妻精品一区果冻| 大又大粗又爽又黄少妇毛片口| 成人国产av品久久久| 美女视频免费永久观看网站| 美女大奶头黄色视频| a级毛片黄视频| 天堂中文最新版在线下载| 插阴视频在线观看视频| 免费高清在线观看日韩| av卡一久久| 看十八女毛片水多多多| 免费观看性生交大片5| 十八禁网站网址无遮挡| 久久人人爽av亚洲精品天堂| 成人综合一区亚洲| 久久久久视频综合| 国产成人精品一,二区| 一本—道久久a久久精品蜜桃钙片| 欧美 日韩 精品 国产| freevideosex欧美| 国产日韩欧美视频二区|