• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Expression Pattern of Chlamys farreri sox2 in Eggs, Embryos and Larvae of Various Stages

    2015-06-01 09:24:20LIANGShaoshuaiMAXiaoshiHANTiantianYANGDandanandZHANGZhifeng
    Journal of Ocean University of China 2015年4期

    LIANG Shaoshuai, MA Xiaoshi, HAN Tiantian, YANG Dandan, and ZHANG Zhifeng

    Key Laboratory of Marine Genetics and Breeding of Ministry of Education,College of Marine Life Sciences,Ocean University of China,Qingdao266003,P. R. China

    Expression Pattern of Chlamys farreri sox2 in Eggs, Embryos and Larvae of Various Stages

    LIANG Shaoshuai, MA Xiaoshi, HAN Tiantian, YANG Dandan, and ZHANG Zhifeng*

    Key Laboratory of Marine Genetics and Breeding of Ministry of Education,College of Marine Life Sciences,Ocean University of China,Qingdao266003,P. R. China

    The SOX2 protein is an important transcription factor functioning during the early development of animals. In this study, we isolated a full-length cDNA sequence of scallopChlamys farreri sox2,Cf-sox2which was 2194 bp in length with a 981 bp open reading frame encoding 327 amino acids. With real-time PCR analysis, it was detected thatCf-sox2was expressed in unfertilized oocytes, fertilized eggs and all the tested embryos and larvae. The expression level increased significantly (P <0.01) in embryos from 2-cell to blastula, and then decreased significantly (P <0.01) and reached the minimum in umbo larva. Moreover, location of theCfsox2expression was revealed using whole mountin situhybridization technique. Positive hybridization signal could be detected in the central region of unfertilized oocytes and fertilized eggs, and then strong signals dispersed throughout the embryos from 2-cell to gastrula. During larval development, the signals were concentrated and strong signals were restricted to 4 regions of viscera mass in veliger larva. In umbo larva, weak signals could be detected in regions where presumptive visceral and pedal ganglia may be formed. The expression pattern ofCf-sox2during embryogenesis was similar to that of mammalsox2, which implied that Cf-SOX2 may participate in the regulation of early development ofC. farreri.

    Sox2; early development; development of nervous system;Chlamys farreri

    1 Introduction

    The SOX (SRY-related HMG-box) protein, as a transcription factor, was first identified in mammals (Gubbayet al., 1990). Till present, more than 30 members of SOX family have been identified in animals, which generally contain a conserved HMG (high-mobility group) domain of 79 amino acids and play several roles such as cell pluripotency (Avilionet al., 2003), sex determination (Bishopet al., 2000; Chaboissieret al., 2004; Koopman, 2005), and neurogenesis (Bylundet al., 2003; Grahamet al., 2003; Sandberget al., 2005). SOX2 belongs to the SOXB1 subgroup of SOX family, containing a polyglycine domain in N-terminal region, a Ser-rich domain in C-terminal region, and a group B motif behind HMG-box (Bowleset al., 2000).

    A full-length cDNA clone ofsox2was first isolated from the fetal brain cDNA library of human being (Homo sapiens) (Stevanovicet al., 1994), and then it was identified and studied in other animals such as mouse (Mus musculus) (Collignonet al., 1996; Yuanet al., 1995), ovine (Ovis aries) (Payenet al., 1997) and chicken (Gallus gallus) (Uwanoghoet al., 1995). It has been reportedthatsox2may play roles in embryogenesis and neurogenesis in vertebrates such asM. musculus(Avilionet al., 2003; Keramariet al., 2010; Pan and Schultz, 2011),G. gallus(Grahamet al., 2003; Rexet al., 1997) andXenopus laevis(Mizusekiet al., 1998). During early development ofM. musculus,sox2expresses in unfertilized oocytes, fertilized eggs and ICM (inner cell mass) of blastula (Keramariet al., 2010; Pan and Schultz, 2011), primitive (Avilionet al., 2003) and extraembryonic ectoderms (Collignonet al., 1996), as well as uncommitted stem cells and precursor cells of developing central nervous system (CNS) (Liet al., 1998; Zapponeet al., 2000). Furthermore, Avilionet al. (2003) found thatM.musculusembryos withsox2-null homozygous are normal until blastocyst stage before embryo implantation, but begin to die shortly after embryo implantation. Such pattern revealed thatMm-sox2is essential for the embryonic development. Moreover,sox2also expresses in the anterior region of presumptive neuroectoderm, neural tube and throughout nervous system (Avilionet al., 2003). Deletion of a neural cell-specific enhancer sequence ofsox2affects the proliferation of neural precursor cells and the generation of neurons in adult mouse neurogenic region, suggesting that SOX2 plays an important role inM.musculusneural development (Ferriet al., 2004).

    Currently, SOX2 is concerned specially due to its role in iPSCs (induced pluripotent stem cells). Takahashi andYamanaka (2006, 2007) found that iPSCs can be generated from mouse fibroblast by simultaneous introduction of four genes,oct3/4,sox2,c-mycandklf4. Human iPSCs from human fibroblast can also be generated through a similar approach (Takahashi and Yamanaka, 2007). Furthermore,sox2is approved participating iPSCs formation inH. sapiens. Yuet al. (2007) found thatsox2,oct4,nanogandlin28are sufficient to reprogramH. sapienssomatic cells into pluripotent stem cells, and the removal ofsox2from reprogramming combinations will eliminate the appearance of iPSCs.

    Althoughsox2has been revealed to be essential during early development and plays a role in iPSCs in several vertebrates, its expression and role in invertebrates are not clear. The scallop (Chlamys farreri) is an important commercial marine bivalve in China. In this study, we cloned a full-length cDNA sequence ofsox2and profiled its expression inC. farreriembryos and larvae, aiming to reveal the expression pattern ofsox2inC. farreriduring early development and understand its function in bivalves.

    2 Materials and Methods

    2.1 Animal and Sampling

    Healthy male and female scallop (mean shell height 6.08 cm ± 0.71 cm) were purchased from NanShan Market, Qingdao, China. After cleaned, the scallop were induced to release gametes by drying in shade and then stimulating with UV-irradiated seawater (21℃ ± 1℃). Artificial fertilization was conducted and fertilized eggs were placed in filtered, UV-irradiated seawater at 21℃ ± 1℃. Hatched trochophores were reared in aerated seawater, renewed twice a day. Unfertilized oocytes, fertilized eggs, embryos (2-cell, 4-cell, 8-cell, 16-cell, blastula, gastrula), and larvae (trochophore, veliger and umbo larva) were collected. One part were fixed in 4% paraformaldehyde (PFA) in 0.1 mol L-1phosphate buffer (pH 7.4) at 4℃ for 16 h, and then dehydrated in a series of methanol solutions (70%, 85%, 95%, 100%) and stored in 100% methanol at -20℃ forin situhybridization. The veliger larvae and umbo larvae were relaxed by MgCl2before fixation. Another part were frozen immediately in liquid nitrogen and stored at -80℃ for total RNA extraction.

    2.2 Isolation of Full-Length cDNA

    A target cDNA fragment of 755 bp was retrieved fromC. farreritranscriptome by comparing with several SOX2 protein sequences of other species in GenBank. Specific primers (Table 1), including sense primers S1-3’, S2-3’and reverse primers R1-5’ and R2-5’, were designed based on the fragment to conduct 3’ and 5’ RACE (rapid amplification of cDNA ends) ofsox2by SMARTTMRACE cDNA amplification kit (Clontech, Moutain View, USA) according to the manufacturer’s instructions. The nested-PCR was performed to get 5’ RACE fragment; the specific primer R1-5’ and primer UPM were employed for the first round PCR with cDNA of testis at proliferative phase as template; primer NUP and specific primer R2-5’for the second round PCR with the first round PCR product as template. For 3’ RACE, the nested-PCR was also performed: the primer S1-3’ and primer UPM were used for the first round with cDNA of testis at proliferative phase as template; and the primer S2-3’ and primer NUP with first round PCR product as template for the second round. PCR condition was as following: 94℃ 5 min, followed by 29 cycles of 94℃ 30 s, 68℃ 30 s, 72℃3 min, and 72℃ 10 min for a final extension.

    The PCR products were gel-purified and inserted into pMD18-T simple vector (Takara Bio Inc., Otsu, Japan), then transformed intoE. coliDH5α competent cells. Positive clones were selected and sequenced. A full-length sequence was assembled using DNASTAR.

    Table 1 Sequence of the primers used in experiment

    2.3 Sequence Analysis

    Similarity searches were performed with the BLAST program at NCBI (http://www.ncbi.nlm.nih.gov/blast). Multiple alignments were analyzed using the CLUSTAL X software. A phylogenetic tree was constructed using MEGA-4.0 with 1000 bootstrap trials.

    2.4 RNA Isolation and cDNA Synthesis

    Total RNA was isolated with guanidine thiocyanate method. The RNA was subjected to DNase treatment with DNase I (Takara Bio. Co. Ltd., Dalian, China). Quality and quantity of RNA were assessed through agarose gel electrophoresis and spectrophotometry at 260 and 280 nm (NanoVue, GE Healthcare, Piscataway, NJ, USA). Firststrand cDNA was synthesized using Prime-Script RT reagent Kit (Takara Bio. Co. Ltd., Dalian, China) following manufacturer’s instructions. The reaction was performed at 37℃ for 3 h, which was terminated by heating at 85℃for 5 s. The cDNA mix was 10 times diluted and stored at -20℃ for subsequent quantitative real-time PCR.

    2.5 Quantitative Real-Time PCR (qRT-PCR)

    The qRT-PCR was carried out in a total volume of 20 μL using ABI 7500 Real-Time PCR System (Applied Biosystems, Foster City, CA, USA) and SYBR Green Master Mix (Takara Bio. Co. Ltd., Dalian, China) follow-ing the manufactures’ instructions. Two special primers,sox2-F 5’-GAGGTGCTTGACTATTGGAGAC-3’ andsox2-R 5’-CCGAGAGACTGTTGTAACTGAG-3’ were designed based on the full-length sequence ofC. farreri sox2for amplifying a 285 bp fragment using the sample cDNA as template andef-1α(elongation factor 1 alpha) of scallop was used as a reference gene (Zhouet al., 2012). A melting curve analysis was performed to confirm that only one PCR product was amplified. Data were analyzed by ABI 7500 system SDS software version 1.4 (Applied Biosystems). The 2-ΔΔCtmethod was used to determine the mRNA abundance.

    All data were presented as mean ± SEM (n= 3). Differences were tested using one-way analysis of variance followed by the least significant difference test (SPSS software version 18.0; SPSS Inc., Chicago, IL, USA) with a significant level set atP< 0.01.

    2.6In situHybridization

    2.6.1 Probe synthesis

    A fragment of 555 bp was amplified using two specific primers, sense 5’-CCGGAATTCGCACATTTATTGGAA CATTC-3’ and antisense 5’-CCCAAGCTTCATGTTTCT TTTACATGTCC-3’, based on the full-length sequence ofC. farrerisox2cDNA. DIG-labeled RNA sense and antisense probes were synthesized using a DIG RNA Labeling Kit (SP6/T7, Roche) according to the instructions.

    2.6.2 Whole mountin situhybridization

    Whole mountin situhybridization was conducted as described with slight modifications (Fenget al., 2011). The samples were digested with protease K of 2 μg mL-1, and the umbo larvae were sonicated in PBST for 10 s before digested for 45 min. TheC. farreri sox2RNA probe was employed as the hybridization probe. Observation and digital images were taken with a Nikon E80i microscope.

    3 Results

    3.1 Sequence and Characterization ofCf-sox2

    Fig.1 Nucleotide sequence ofChlamys farreri sox2cDNA and its deduced amino acid sequence. Start (ATG) and stop (TAA) codons are indicated with asterisks. The HMG-box is underlined. The group B motif is shaded. The DNA-binding sites are boxed. The polyadenylation signal AATAAA is double underlined.

    Fig.2 Sequence comparison of SOX2 protein from different species. a, multiple alignment of the deduced amino acid sequence with other known SOX2s. The HMG-box has a single overline; the group B motif has a double overline; the Serrich regions and glycine repeats, which are characteristics of vertebrates, are boxed in solid and dotted line, respectively. b, phylogenetic relationships among SOX2 from all species. Numbers in the branches represent bootstrap values (percentage) with 1000 replicates. The scale bar indicates an evolutionary distance of 0.1 amino acid substitutions per site.

    Two fragments, 530 bp and 1950 bp respectively, wereisolated. The assembled full-length cDNA was 2194 bp (KF836755), which consisted of an open reading frame of 981 bp encoding a protein of 327 amino acids. The PI (isoelectric point) of the deduced protein was 9.71, and the molecular mass was 36 kD. A 259 bp 5’ untranslated region (UTR) and a 954 bp 3’UTR bounded the ORF (Fig.1).

    Homology analysis revealed that the deduced amino acid sequence showed a high similarity with other known SOX2s. For example, it was 71% similar to that of oyster (Crassostrea gigas), 72% to that of pearl oyster (Pinctada fucata), 51% to that of chicken (G. gallus) and human (H. sapiens). Multiple alignment analysis indicated that the deduced amino acid sequence contained a conserved domain HMG-box and a group B motif which were presented in all eukaryote SOX2, while lacked poly-glycine domain in N-terminal region and Ser-rich domain in C-terminal region (Fig.2a). A phylogenetic tree based on amino acid alignment was constructed (Fig.2b), which indicated thatC. farreriSOX2 was clustered primarily with those ofC. gigasandP. fucata.

    3.2 Temporal Expression ofCf-sox2During Early Development Stages

    The abundance ofCf-sox2transcript increased significantly (P <0.01) from unfertilized oocytes, fertilized eggs to blastula, and reached the maximum in blastula. Then it decreased significantly (P <0.01) after blastula and touched the minimum in umbo larva (Fig.3). Before and after fertilization, a significant difference (P <0.01) ofCfsox2expression was found. The abundance was 0.82-fold higher in fertilized eggs than in unfertilized oocytes. During the cleavage, the expression difference was pronounced further, 2.57-fold higher in blastula than in 4-cells embryo. After that, the abundance ofCf-sox2transcript dropped significantly (P <0.01) to 55.3% (in gastrula), 21.0% (in trochophore), 14.5% (in veliger) and 4.2% (in umbo larva) of that in blastula, respectively.

    Fig.3 Expression ofCf-sox2detected by qRT-PCR inChlamys farreriduring early development. The expression level of umbo larva is set as 1.00 to calibrate the relative levels in other embryos and larvae. Values are the mean ± SEM (n=3). Different letters (a-h) indicate statistically significant differences (P <0.01).

    3.3 Location ofCf-sox2in Embryos and Larvae

    TheCf-sox2was detected in all samples examined. However, its distribution mode was different. In the unfertilized oocytes and fertilized eggs, positive signals were presented in the central region (Figs.4A and 4B), and then became obvious gradually and filled throughout embryos until the gastrula (Figs.4C-4G). In trochophore, strong hybridization signals were restricted in 4 regions, and the distribution feature was maintained in the veliger larva, in which the signals were located in visceral mass (Fig.4I). Thereafter, most signals disappeared in the umbo larva. Only faint signals were detected around the location where the presumptive visceral ganglia and pedal ganglia may be formed (Fig.4J).

    4 Discussion

    In the present study, a full-length cDNA ofCf-sox2was cloned and characterized. The deduced amino acid sequence contained a highly conserved HMG-box of the SOX family and a group B motif of the SOXB subfamily. Nevertheless, the poly-glycine domain in N-terminal region and the Ser-rich domain in C-terminal region of vertebrate SOX2 (Bowleset al., 2000) were not found in Cf-SOX2 (Fig.2a), as in oyster Cg-SOX2 (EKC24855.1) and pearl oyster Pf-SOX2 (AGS18764.1). Therefore, we speculated that the absence of poly-glycine domain and Serrich domain may be a characteristic of SOX2 in mollusk or invertebrates. Comparatively, the Cf-SOX2 sequence in N-terminal region was more divergent than that in C-terminal region, which is similar with other known SOX2 in invertebrates, and is unlike SOX2 in vertebrates. In vertebrates, it has been proved that the C-terminal region was important for transactivation (Kamachiet al., 1998) and activation of thefgf4enhancer in mouse (Yuanet al., 1995). Thus, we deduced that the C-terminal region of Cf-SOX2 might also play a role in transactivation.

    We found thatCf-sox2was expressed in unfertilized oocyte (Figs.3, 4A) although the expression level was significantly lower than that in fertilized egg and other embryos (Fig.3). This indicated that theCf-sox2transcript is maternally inherited inC. farreri. Similar expression characteristic ofsox2has been described inM. musculus(Keramariet al., 2010; Pan and Schultz, 2011). However, the maternal heredity ofsox2seems to be different among fishes. In zebrafish (Danio rerio) (Okudaet al., 2006) and goldfish (Carassius auratus) (Marandelet al., 2012), the transcript ofsox2is first detected in gastrula; while in medaka (Oryzias oryziaslatipes) it is first detected in blastula (Cuiet al., 2011).

    Fig.4 Location ofCf-sox2in embryos and larvae of scallop. The positive signals are in blue or dark blue (A-J), whereas controls are not stained (A0-J0). A, unfertilized egg; B, fertilized oocyte; C, 2-cell embryo; D, 4-cell embryo; E, 8-cell embryo; F, blastula; G, gastrula; H, trochophore; I, veliger larva; J, umbo larva. Sclar bar, 10 μm.

    During the cleavage, the expression level ofCf-sox2increased significantly from 4-cell embryo to 16-cell embryo, and peaked in blastula (Fig.3). Furthermore, theCfsox2signals dispersed and filled in the embryos before hatching. The expression characteristic inC. farreriis similar to that of theMm-sox2in mouse cleavage embryos, but different from that of other fish embryos, such asD. rerioandC. auratus(Marandelet al., 2012; Okudaet al., 2006). InM. musculus,sox2mRNA and protein are detectable from 2-cell to 8-cell, and then becomes abundant in blastocyst (Keramariet al., 2010; Pan and Schultz, 2011). However,sox2expression can not be detected in cleavage embryos and blastula inD. rerioandC. auratusuntil gastrula (Marandelet al., 2012; Okudaet al., 2006), or only weak expression can be detected inO. oryziaslatipesblastula (Cuiet al., 2011). It is interesting thatsox2transcript presents variant expression characteristic among these species, especially among fishes. The expression difference betweenC. farreri, amniotes and fish may be partly explained by the diversity of species. The reference genes used insox2relative expression level detection are different among those fishes. InO. oryziaslatipes,β-actinwas applied as the reference gene, whileluciferaseandef-1α were applied as reference genes inD. rerioandC. auratusrespectively (Cuiet al., 2011; Marandelet al., 2012; Okudaet al., 2006). Maybe the different reference genes arouse the distinction in the detection ofsox2relative expression level. Although,sox2initial expression during cleavage stages is different among these fishes, but in all three fishes,sox2is expressed consistently at 24 h and 48 h after fertilization. Based on the consistency ofsox2expression during the cleavage embryos between the scallopC.farreriand the mouseM. musculus, we deduced that theCf-sox2may participate in the regulation of embryogenesis inC. farreri.

    Sox2plays an important role in the maintenance of cell pluripotency, CNS development in vertebrates. InM. musculus,sox2mRNA is present persistently in the ICM, the epiblast and extraembryonic ectoderm of blastocyst,and then it becomes restricted in chorion, the presumptive neuroectoderm in the anterior of mid-late-streak embryo, chorion, headfolds and neural tube at 8.5-dpc (days postcoitum). After that, it is located throughout the nervous system, sensory placodes, branchial arches and gut by 9.5-dpc (Avilionet al., 2003). InX. laevis,sox2is first detected in the presumptive dorsal side of gastrula, and then restricted to CNS through early development (Mizusekiet al., 1998). InD. rerio, the expression ofsox2is also restricted in the early neuroectoderm and is very low in the posterior CNS (Okudaet al., 2006). In this study, the distribution ofCf-sox2transcript became restricted from diffusion in the cleavage embryos and blastula to regional concentration in larvae (Figs.4H-4J). InC. farreritrochophore, the four regions of hybridization signals were observed in the top and middle parts of the larva. In veliger larva, the anti-sense hybridization signals were presented in 4 regions of visceral mass (Fig.4I). After that, in umbo larva, the positive signals restricted to the locations where the presumptive visceral ganglia and pedal ganglia may be formed, although the expression level ofCf-sox2was low. We found the distribution characteristic ofsox2inC. farreriduring early embryonic development is similar to that in vertebrates, implying Cf-SOX2 plays some roles during the early development, which is similar to that in vertebrates. However, the located regions ofCf-sox2were different in the scallopC. farrerifrom vertebrates. The difference may be caused by different morphological structures between the scallop and vertebrates.

    In conclusion, we isolated a full-length cDNA, 2194 bp in length. Multiple alignment and phylogenetic analysis showed that it issox2of scallop (C. farreri). The expression pattern ofCf-sox2in unfertilized oocyte, fertilized egg, embryos and larvae suggested thatCf-sox2is maternally expressed, and may participate in the early development ofC. farreri. Further studies are necessary to clarify the exact function of Cf-SOX2, which can optimize the culture condition ofC. farreriembryosin vitro.

    Acknowledgements

    This work was supported by the National High Technology Research and Development Program of China (863 Program) (2012AA10A402).

    Avilion, A. A., Nicolis, S. K., Pevny, L. H., Perez, L., Vivian, N., and Lovell-Badge, R., 2003. Multipotent cell lineages in early mouse development depend on SOX2 function.Genes and Development, 17 (1): 126-140, DOI: 10.1101/gad.224503.

    Bishop, C. E., Whitworth, D. J., Qin, Y., Agoulnik, A. I., Agoulnik, I. U., Harrison, W. R., Behringer, R. R., and Overbeek, P. A., 2000. A transgenic insertion upstream ofsox9is associated with dominant XX sex reversal in the mouse.Nature Genetics, 26 (4): 490-494, DOI: 10.1038/82652.

    Bowles, J., Schepers, G., and Koopman, P., 2000. Phylogeny of the SOX family of developmental transcription factors based on sequence and structural indicators.Developmental Biology, 227 (2): 239-255, DOI: 10.1006/abio.2000.9883.

    Bylund, M., Andersson, E., Novitch, B. G., and Muhr, J., 2003. Vertebrate neurogenesis is counteracted bySox1-3activity.Nature Neuroscience, 6 (11): 1162-1168, DOI: 10.1038/nn1131.

    Chaboissier, M. C., Kobayashi, A., Vidal, V. I., Lützkendorf, S., van de Kant, H. J., Wegner, M., Rooij de, D. J., Behringer, R. R., and Schedl, A., 2004. Functional analysis ofSox8andSox9during sex determination in the mouse.Development, 131 (9): 1891-1901, DOI: 10.1242/dev.01087.

    Collignon, J., Sockanathan, S., Hacker, A., Cohen-Tannoudji, M., Norris, D., Rastan, S., Stevanovic, M., Googfellow, P. N., and Lovell-Badge, R., 1996. A comparison of the properties ofSox3withSryand two related genes,Sox1andSox2.Development, 122 (2): 509-520.

    Cui, J., Shen, X., Zhao, H., and Nagahama, Y., 2011. Genomewide analysis ofSoxgenes in Medaka (Oryzias latipes) and their expression pattern in embryonic development.Cytogenetic and Genome Research, 134 (4): 283-294, DOI: 10.1159/ 000329480.

    Dimos, J. T., Rodolfa, K. T., Niakan, K. K., Weisenthal, L. M., Mitsumoto, H., Chung, W., Croft, G. F., Saphier, G., Leibel, R., Goland, R., Wichterle, H., Henderson, C. E., and Eggan, K., 2008. Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons.Science, 321 (5893): 1218-1221, DOI: 10.1126/science.1158799.

    Ferri, A. L., Cavallaro, M., Braida, D., Di Cristofano, A., Canta, A., Vezzani, A., Ottolenghi, S., Pandolfi, P. P., Sala, M., De-Biasi, S., and Nicolis, S. K., 2004.Sox2deficiency causes neurodegeneration and impaired neurogenesis in the adult mouse brain.Development, 131 (15): 3805-3819, DOI: 10. 1242/dev.01204.

    Feng, Z. F., Zhang, Z. F., Shao, M. Y., and Zhu, W., 2011. Development expression pattern of theFc-vasa-likegene, gonadogenesis and development of germ cell in Chinese shrimp,Fenneropenaeus chinensis. Aquaculture, 314: 202-209, DOI:10.1016/j.aquaculture.2011.02.017.

    Gubbay, J., Collignon, J., Koopman, P., Capel, B., Economou, A., Münsterberg, A., Vivian, N., Goodfellow, P., and Lovell-Badge, R., 1990. A gene mapping to the sex-determining region of the mouse Y chromosome is a member of a novel family of embryonically expressed genes.Nature, 346 (6281):245-250, DOI: 10.1038/346245a0.

    Graham, V., Khudyakov, J., Ellis, P., and Pevny, L., 2003. SOX2 functions to maintain neural progenitor identity.Neuron, 39 (5): 749-765, DOI: 10.1016/S0896-6273(03)00497-5.

    Kamachi, Y., Uchikawa, M., Collignon, J., Lovell-Badge, R., and Kondoh, H., 1998. Involvement ofSox1,2and3in the early and subsequent molecular events of lens induction.Development, 125 (13): 2521-2532.

    Keramari, M., Razavi, J., Ingman, K. A., Patsch, C., Edenhofer, F., Ward, C. M., and Kimber, S. J., 2010.Sox2is essential for formation of trophectoderm in the preimplantation embryo.PloS one, 5 (11): e13952, DOI: 10.1371/journal.pone.0013952.

    Kim, J., Lengner, C. J., Kirak, O., Hanna, J., Cassady, J. P., Lodato, M. A., Wu, S., Faddah, D. A., Steine, E. J., Gao, Q., Fu, D. D., Dawlaty, M., and Jaenisch, R., 2011. Reprogramming of postnatal neurons into induced pluripotent stem cells by defined factors.Stem Cells, 29 (6): 992-1000, DOI: 10.1002/ stem. 641.

    Koopman, P., 2005. Sex determination: A tale of twoSoxgenes.Trends in Genetics, 21 (7): 367-370, DOI: 10.1016/j.tig.2005. 05.006.

    Kriks, S., Shim, J. W., Piao, J., Ganat, Y. M., Wakeman, D. R., Xie, Z., CarrilloReid, L., Auyeung, G., Antonacci, C., Buch,A., Yang, L. C., Beal, M. F., Surmeier, J., and Kordower, J. H., 2011. Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson’s disease.Nature, 480 (7378): 547-551, DOI: 10.1038/nature10648.

    Li, M., Pevny, L., Lovell-Badge, R., and Smith, A., 1998. Generation of purified neural precursors from embryonic stem cells by lineage selection.Current Biology, 8 (17): 971-S2, DOI: 10.1016/S0960-9822(98)70399-9.

    Liu, H., Zhu, F., Yong, J., Zhang, P., Hou, P., Li, H., Jiang, W., Cai, J., Liu, M., Cui, K., Qu, X. X., Xiang, T. T., Lu, D. Y., Chi, X. C., Gao, G., Ji, W. Z., Ding, M. X., and Deng, H. K., 2008. Generation of induced pluripotent stem cells from adult rhesus monkey fibroblasts.Cell Stem Cell, 3 (6): 587-590, DOI: 10.1016/j.stem.2008.10.014.

    Loh, Y. H., Agarwal, S., Park, I. H., Urbach, A., Huo, H., Heffner, G. C., Kim, K., Miller, J. D., Ng, K., and Daley, G. Q., 2009. Generation of induced pluripotent stem cells from human blood.Blood, 113 (22): 5476-5479, DOI: 10.1182/blood-2009-02-204800.

    Marandel, L., Labbe, C., Bobe, J., Jammes, H., Lareyre, J. J., and Le Bail, P. Y., 2012. Do not put all teleosts in one net:Focus on thesox2andpou2genes.Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 164 (2): 69-79, DOI: 10.1016/j.cbpb.2012.10.005.

    Mizuseki, K., Kishi, M., Matsui, M., Nakanishi, S., and Sasai, Y., 1998. Xenopus Zic-related-1 and SOX2, two factors induced by chordin, have distinct activities in the initiation of neural induction.Development, 125 (4): 579-587.

    Okita, K., Nakagawa, M., Hyenjong, H., Ichisaka, T., and Yamanaka, S., 2008. Generation of mouse induced pluripotent stem cells without viral vectors.Science, 322 (5903): 949-953, DOI: 10.1126/science.1164270.

    Okuda, Y., Yoda, H., Uchikawa, M., Furutani-Seiki, M., Takeda, H., Kondoh, H., and Kamachi, Y., 2006. Comparative genomic and expression analysis of group B1soxgenes in zebrafish indicates their diversification during vertebrate evolution.Developmental Dynamics, 235 (3): 811-825, DOI: 10. 1002/dvdy.20678.

    Pan, H., and Schultz, R. M., 2011. SOX2 modulates reprogramming of gene expression in two-cell mouse embryos.Biology of Reproduction, 85 (2): 409-416, DOI: 10.1095/boilreprod.111.090886.

    Park, I. H., Arora, N., Huo, H., Maherali, N., Ahfeldt, T., Shimamura, A., Lensch, M. W., Cowan, C., Hochedlinger, K., and Daley, G. Q., 2008. Disease-specific induced pluripotent stem cells.Cell, 134 (5): 877-886, DOI: 10.1016/j.cell.2008. 07.041.

    Payen, E., Pailhoux, E., Gianquinto, L., Hayes, H., Le Pennec, N., Bezard, J., and Cotinot, C., 1997. The ovineSox2gene:Sequence, chromosomal localization and gonadal expression.Gene, 189 (1): 143-147, DOI: 10.1016/S0378-1119(96)00782-2.

    Rex, M., Orme, A., Uwanogho, D., Tointon, K., Wigmore, P. M., Sharpe, P. T., and Scotting, P. J., 1997. Dynamic expression of chickenSox2andSox3genes in ectoderm induced to form neural tissue.Developmental Dynamics, 209 (3): 323-332, DOI:10. 1002/(SICI)1097-0177(199707)209:3<323::AID-AJA7>3. 0.CO;2-K.

    Sandberg, M., K?llstr?m, M., and Muhr, J., 2005.Sox21promotes the progression of vertebrate neurogenesis.NatureNeuroscience, 8 (8): 995-1001, DOI: 10.1038/nn1493.

    Shimada, H., Nakada, A., Hashimoto, Y., Shigeno, K., Shionoya, Y., and Nakamura, T., 2010. Generation of canine induced pluripotent stem cells by retroviral transduction and chemical inhibitors.Molecular Reproduction and Development, 77 (1):2, DOI: 10.1002/mrd. 21117.

    Stevanovic, M., Zuffardi, O., Collignon, J., Lovell-Badge, R., and Goodfellow, P., 1994. The cDNA sequence and chromosomal location of the humanSox2gene.Mammalian Genome, 5 (10): 640-642, DOI: 10.1007/BF00411460.

    Takahashi, K., and Yamanaka, S., 2006. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors.Cell, 126 (4): 663-676, DOI: 10. 1016/j.cell.2006.07.024.

    Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., and Yamanaka, S., 2007. Induction of pluripotent stem cells from adult human fibroblasts by defined factors.Cell, 131 (5): 861-872, DOI: 10.1016/j.cell.2007.11.019.

    Takayama, N., Nishimura, S., Nakamura, S., Shimizu, T., Ohnishi, R., Endo, H., Yamaguchi, T., Otsu, M., Nishimura, K., Nakanishi, M., Sawaguchi, A., Nagai, R., Takahashi, K., Yamanaka, S., Nakauchi, H., and Eto, K., 2010. Transient activation of C-MYC expression is critical for efficient platelet generation from human induced pluripotent stem cells.The Journal of Experimental Medicine, 207 (13): 2817-2830, DOI:10.1084/jem.20100844.

    Uwanogho, D., Rex, M., Cartwright, E. J., Pearl, G., Healy, C., Scotting, P. J., and Sharpe, P. T., 1995. Embryonic expression of the chickenSox2,Sox3andSox11genes suggests an interactive role in neuronal development.Mechanisms of Development, 49 (1): 23-36, DOI: 10.1016/0925-4773(94)00299-3.

    West, F. D., Terlouw, S. L., Kwon, D. J., Mumaw, J. L., Dhara, S. K., Hasneen, K., Dobrinsky, J. R., and Stice, S. L., 2010. Porcine induced pluripotent stem cells produce chimeric offspring.Stem Cells and Development, 19 (8): 1211-1220, DOI:10.1089/scd.2009.0458.

    Yu, J., Vodyanik, M. A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J. L., Tian, S., Nie, J., Jonsdottir, G. A., Ruotti, V., Stewart, R., Slukvin, I. I., and Thomson, J. A., 2007. Induced pluripotent stem cell lines derived from human somatic cells.Science, 318 (5858): 1917-1920, DOI: 10.1126/science.115 1526.

    Yuan, H., Corbi, N., Basilico, C., and Dailey, L., 1995. Developmental-specific activity of the FGF-4 enhancer requires the synergistic action ofSox2andOct-3.Genes and Development, 9 (21): 2635-2645, DOI: 10.1101/gad.9.21.2635.

    Zappone, M. V., Galli, R., Catena, R., Meani, N., De Biasi, S., Mattei, E., Tiveron, C., Vescovi, A. L., Lovell-Badge, R., Ottolenghi, S., and Nicolis, S. K., 2000.Sox2regulatory sequences direct expression of a (beta)-geo transgene to telencephalic neural stem cells and precursors of the mouse embryo, revealing regionalization of gene expression in CNS stem cells.Development, 127 (11): 2367-2382.

    Zhou, Z., Wang, L., Shi, X., Yue, F., Wang, M., Zhang, H., and Song, L., 2012. The expression of dopa decarboxylase and dopamine beta hydroxylase and their responding to bacterial challenge during the ontogenesis of scallopChlamys farreri.Fish and Shellfish Immunology, 33 (1): 67-74, DOI: 10.1016/ j.fsi.2012.04.002.

    (Edited by Qiu Yantao)

    (Received December 12, 2013; revised March 31, 2014; accepted May 21, 2015)

    ? Ocean University of China, Science Press and Spring-Verlag Berlin Heidelberg 2015

    * Corresponding author. Tel: 0086-532-82031647 E-mail: zzfp107@ouc.edu.cn

    国产成人免费无遮挡视频| 日韩精品有码人妻一区| 亚洲精品自拍成人| 欧美黑人欧美精品刺激| 日韩制服丝袜自拍偷拍| 99热全是精品| 国产在视频线精品| av一本久久久久| 欧美久久黑人一区二区| 99久国产av精品国产电影| 九色亚洲精品在线播放| 午夜福利影视在线免费观看| 色综合欧美亚洲国产小说| 大话2 男鬼变身卡| 久久精品人人爽人人爽视色| 中文字幕人妻丝袜一区二区 | 精品一区在线观看国产| svipshipincom国产片| 亚洲av欧美aⅴ国产| 亚洲欧美成人精品一区二区| av在线老鸭窝| 极品少妇高潮喷水抽搐| 欧美在线黄色| 女人高潮潮喷娇喘18禁视频| 国产亚洲av高清不卡| 啦啦啦在线免费观看视频4| 亚洲av福利一区| 美女扒开内裤让男人捅视频| 制服人妻中文乱码| 亚洲精品久久午夜乱码| 日韩制服骚丝袜av| 免费高清在线观看视频在线观看| 大话2 男鬼变身卡| 免费观看av网站的网址| 亚洲av国产av综合av卡| 久久久久人妻精品一区果冻| 亚洲 欧美一区二区三区| 一二三四中文在线观看免费高清| 亚洲综合精品二区| 久久热在线av| 亚洲欧洲精品一区二区精品久久久 | 国产精品久久久久久精品古装| 国产精品一区二区精品视频观看| a 毛片基地| 侵犯人妻中文字幕一二三四区| 亚洲五月色婷婷综合| 亚洲图色成人| 日韩视频在线欧美| 国产成人欧美| 久久久久国产精品人妻一区二区| 91精品国产国语对白视频| 毛片一级片免费看久久久久| 青青草视频在线视频观看| 女人爽到高潮嗷嗷叫在线视频| 免费黄网站久久成人精品| 91精品三级在线观看| 交换朋友夫妻互换小说| 日本av免费视频播放| 欧美精品一区二区大全| 欧美激情 高清一区二区三区| 十八禁高潮呻吟视频| 欧美精品高潮呻吟av久久| 国产精品麻豆人妻色哟哟久久| 另类亚洲欧美激情| 欧美精品一区二区免费开放| 国产精品女同一区二区软件| 国产精品久久久久成人av| 精品国产国语对白av| 亚洲国产精品一区三区| 国产精品亚洲av一区麻豆 | 久久人人爽人人片av| 婷婷成人精品国产| 国产色婷婷99| 最新的欧美精品一区二区| 日韩一卡2卡3卡4卡2021年| 亚洲国产欧美在线一区| 亚洲欧洲国产日韩| 欧美人与性动交α欧美精品济南到| a级毛片在线看网站| 亚洲人成电影观看| 久久精品亚洲av国产电影网| 亚洲国产av新网站| 国产片特级美女逼逼视频| 美女中出高潮动态图| 午夜福利网站1000一区二区三区| 熟女少妇亚洲综合色aaa.| 国产精品久久久久成人av| 如何舔出高潮| 亚洲av成人不卡在线观看播放网 | 欧美黑人欧美精品刺激| 两个人免费观看高清视频| 日韩 欧美 亚洲 中文字幕| 女人高潮潮喷娇喘18禁视频| 精品视频人人做人人爽| 女性被躁到高潮视频| 美女福利国产在线| 一级毛片我不卡| 精品国产国语对白av| 最近2019中文字幕mv第一页| 日韩中文字幕欧美一区二区 | 欧美在线黄色| 又大又爽又粗| 自拍欧美九色日韩亚洲蝌蚪91| 啦啦啦中文免费视频观看日本| 啦啦啦视频在线资源免费观看| 亚洲情色 制服丝袜| 欧美中文综合在线视频| 精品一区二区三区av网在线观看 | svipshipincom国产片| 一级黄片播放器| 亚洲,欧美,日韩| 观看av在线不卡| 成人漫画全彩无遮挡| 亚洲四区av| 在线观看www视频免费| 熟妇人妻不卡中文字幕| 天天躁夜夜躁狠狠躁躁| 久久精品国产a三级三级三级| 精品亚洲成a人片在线观看| 在线观看人妻少妇| 黑丝袜美女国产一区| 成人手机av| 国产成人91sexporn| 最新在线观看一区二区三区 | 免费看不卡的av| 成年人免费黄色播放视频| 亚洲美女黄色视频免费看| 国产一区二区 视频在线| 超碰成人久久| 亚洲国产精品成人久久小说| av国产久精品久网站免费入址| 欧美日韩国产mv在线观看视频| 色播在线永久视频| 日韩 亚洲 欧美在线| 伊人久久大香线蕉亚洲五| 亚洲,欧美精品.| 精品免费久久久久久久清纯 | 亚洲精品日韩在线中文字幕| 看十八女毛片水多多多| 人人妻人人澡人人看| 一级毛片电影观看| 大片免费播放器 马上看| 亚洲国产欧美网| 精品久久久精品久久久| av卡一久久| 丝袜脚勾引网站| 亚洲精品国产av蜜桃| 欧美97在线视频| 日韩熟女老妇一区二区性免费视频| av片东京热男人的天堂| 亚洲国产欧美网| 丝袜在线中文字幕| 天天躁夜夜躁狠狠躁躁| 天天躁夜夜躁狠狠躁躁| 日日啪夜夜爽| 久热这里只有精品99| 国产一区二区三区综合在线观看| 欧美在线一区亚洲| 男女高潮啪啪啪动态图| 黄色 视频免费看| 久久国产精品大桥未久av| 日韩av免费高清视频| 日韩中文字幕欧美一区二区 | 久久性视频一级片| 精品国产国语对白av| 欧美黑人精品巨大| 亚洲欧洲国产日韩| 一边摸一边做爽爽视频免费| 精品少妇黑人巨大在线播放| 亚洲天堂av无毛| 国产亚洲最大av| 丰满乱子伦码专区| 久久久久精品国产欧美久久久 | 丰满饥渴人妻一区二区三| 极品少妇高潮喷水抽搐| 人人妻人人澡人人爽人人夜夜| 777米奇影视久久| 麻豆乱淫一区二区| 性高湖久久久久久久久免费观看| 欧美精品av麻豆av| 午夜影院在线不卡| 日本一区二区免费在线视频| 一边摸一边做爽爽视频免费| 精品国产一区二区三区久久久樱花| 国产男人的电影天堂91| 中文字幕精品免费在线观看视频| 纯流量卡能插随身wifi吗| 91成人精品电影| 男女无遮挡免费网站观看| 国产精品久久久人人做人人爽| 午夜福利在线免费观看网站| 成人手机av| av一本久久久久| 18禁观看日本| 久久久久久久久久久久大奶| 欧美日韩视频高清一区二区三区二| 亚洲精品一区蜜桃| 色网站视频免费| 国产精品秋霞免费鲁丝片| 午夜久久久在线观看| 国产人伦9x9x在线观看| 少妇被粗大猛烈的视频| 免费久久久久久久精品成人欧美视频| 国精品久久久久久国模美| 国产精品99久久99久久久不卡 | 亚洲国产av影院在线观看| av女优亚洲男人天堂| 啦啦啦 在线观看视频| 国产精品人妻久久久影院| 妹子高潮喷水视频| 一级,二级,三级黄色视频| 毛片一级片免费看久久久久| 国产成人一区二区在线| 国产精品 欧美亚洲| 久久人人97超碰香蕉20202| 在线看a的网站| 久久久国产一区二区| 最近手机中文字幕大全| 建设人人有责人人尽责人人享有的| 三上悠亚av全集在线观看| 精品国产一区二区三区四区第35| 国产男女超爽视频在线观看| 精品久久久久久电影网| 天美传媒精品一区二区| 日韩一区二区三区影片| 叶爱在线成人免费视频播放| 久久精品久久精品一区二区三区| 免费黄频网站在线观看国产| 精品国产一区二区三区久久久樱花| 亚洲欧洲国产日韩| 日本猛色少妇xxxxx猛交久久| 免费观看性生交大片5| 婷婷色综合www| 十八禁高潮呻吟视频| 90打野战视频偷拍视频| 美女主播在线视频| 丁香六月欧美| 人人妻人人爽人人添夜夜欢视频| 国产亚洲午夜精品一区二区久久| 国产精品久久久av美女十八| 一区二区av电影网| 亚洲国产欧美日韩在线播放| 亚洲av中文av极速乱| 卡戴珊不雅视频在线播放| 久久精品aⅴ一区二区三区四区| 操出白浆在线播放| 国产精品久久久久久精品古装| 亚洲av日韩在线播放| 黄色毛片三级朝国网站| av在线老鸭窝| 最近最新中文字幕大全免费视频 | 久久国产精品大桥未久av| 一级,二级,三级黄色视频| 日本vs欧美在线观看视频| 午夜91福利影院| 日本91视频免费播放| 在线天堂最新版资源| av免费观看日本| 亚洲精品av麻豆狂野| 亚洲图色成人| 操出白浆在线播放| 国产亚洲av高清不卡| 亚洲欧美一区二区三区黑人| 美国免费a级毛片| 精品人妻熟女毛片av久久网站| 国产男人的电影天堂91| 波多野结衣av一区二区av| 看非洲黑人一级黄片| 亚洲欧美精品综合一区二区三区| 午夜福利网站1000一区二区三区| 2021少妇久久久久久久久久久| 看免费成人av毛片| 成人国产av品久久久| 日韩不卡一区二区三区视频在线| 国产片内射在线| 日韩 亚洲 欧美在线| 热99久久久久精品小说推荐| 电影成人av| 国产日韩一区二区三区精品不卡| 国产深夜福利视频在线观看| 别揉我奶头~嗯~啊~动态视频 | 天天躁日日躁夜夜躁夜夜| 高清视频免费观看一区二区| 欧美精品av麻豆av| 欧美变态另类bdsm刘玥| 欧美中文综合在线视频| 国产精品香港三级国产av潘金莲 | 丰满少妇做爰视频| 午夜福利在线免费观看网站| 美女福利国产在线| 女人久久www免费人成看片| 亚洲情色 制服丝袜| 日韩欧美一区视频在线观看| 国产精品免费大片| 久久国产精品男人的天堂亚洲| 日本wwww免费看| 免费看av在线观看网站| 亚洲精品,欧美精品| 国产 精品1| 亚洲第一区二区三区不卡| 热re99久久国产66热| 不卡视频在线观看欧美| 日本av手机在线免费观看| 国产又色又爽无遮挡免| √禁漫天堂资源中文www| 在线观看一区二区三区激情| 最近最新中文字幕免费大全7| 久久人人97超碰香蕉20202| 如日韩欧美国产精品一区二区三区| 午夜激情av网站| 你懂的网址亚洲精品在线观看| 精品少妇内射三级| 国产精品.久久久| 久久久久久久精品精品| 国产一区二区三区综合在线观看| 久久青草综合色| 久久av网站| 夫妻午夜视频| 少妇被粗大的猛进出69影院| 欧美中文综合在线视频| 人妻 亚洲 视频| 色综合欧美亚洲国产小说| 国产亚洲精品第一综合不卡| 最近最新中文字幕免费大全7| 黑人巨大精品欧美一区二区蜜桃| 亚洲国产av新网站| 亚洲少妇的诱惑av| 精品一区二区免费观看| 久久人人97超碰香蕉20202| 69精品国产乱码久久久| 亚洲国产成人一精品久久久| 又大又黄又爽视频免费| 久久久久久人人人人人| 在线观看免费日韩欧美大片| 老司机深夜福利视频在线观看 | 国产成人欧美在线观看 | 国产免费视频播放在线视频| 99久久人妻综合| 高清黄色对白视频在线免费看| 观看美女的网站| 一区福利在线观看| 男女国产视频网站| 国产又色又爽无遮挡免| 久久久久人妻精品一区果冻| 国产毛片在线视频| 精品一区二区三区av网在线观看 | 国产精品成人在线| 王馨瑶露胸无遮挡在线观看| 亚洲精品国产av蜜桃| 久久精品人人爽人人爽视色| 美女主播在线视频| 亚洲成人手机| 精品亚洲成a人片在线观看| 国产福利在线免费观看视频| 欧美中文综合在线视频| 国产一级毛片在线| 狠狠婷婷综合久久久久久88av| 天堂8中文在线网| 尾随美女入室| 日本爱情动作片www.在线观看| 亚洲欧美色中文字幕在线| 91国产中文字幕| 色视频在线一区二区三区| 黄色 视频免费看| 欧美激情极品国产一区二区三区| 看非洲黑人一级黄片| 无限看片的www在线观看| 久热这里只有精品99| 99精品久久久久人妻精品| 一区二区三区乱码不卡18| 考比视频在线观看| 国产成人啪精品午夜网站| 国产精品香港三级国产av潘金莲 | 亚洲国产最新在线播放| av.在线天堂| 热99国产精品久久久久久7| 亚洲欧美一区二区三区黑人| 99久久综合免费| 久热这里只有精品99| 看非洲黑人一级黄片| 亚洲欧美一区二区三区久久| 一个人免费看片子| 国产成人精品无人区| 2018国产大陆天天弄谢| 精品国产超薄肉色丝袜足j| 黄色一级大片看看| 国产成人免费观看mmmm| 久久人人爽人人片av| 丝袜美腿诱惑在线| 欧美精品av麻豆av| 国产精品免费视频内射| 欧美激情 高清一区二区三区| 欧美日韩一级在线毛片| 久久精品国产综合久久久| 少妇精品久久久久久久| 亚洲精品久久久久久婷婷小说| 精品少妇内射三级| 国产成人精品福利久久| 99九九在线精品视频| 久久鲁丝午夜福利片| 国产亚洲欧美精品永久| 三上悠亚av全集在线观看| 亚洲中文av在线| 十分钟在线观看高清视频www| www日本在线高清视频| 国产一卡二卡三卡精品 | 欧美少妇被猛烈插入视频| 狠狠精品人妻久久久久久综合| 成人亚洲精品一区在线观看| 国产片内射在线| 丁香六月天网| 国产熟女午夜一区二区三区| 午夜91福利影院| 欧美精品高潮呻吟av久久| 亚洲一区二区三区欧美精品| 中文字幕av电影在线播放| 丁香六月天网| 亚洲人成电影观看| 午夜免费鲁丝| 久久精品熟女亚洲av麻豆精品| 久久久久精品久久久久真实原创| 在线免费观看不下载黄p国产| 欧美最新免费一区二区三区| 国产男女内射视频| 999精品在线视频| 国产av码专区亚洲av| 国产精品一区二区在线不卡| 天天躁夜夜躁狠狠躁躁| 中文天堂在线官网| av国产精品久久久久影院| 精品视频人人做人人爽| 成人国产av品久久久| 国产熟女午夜一区二区三区| 高清在线视频一区二区三区| 成人三级做爰电影| 亚洲国产精品999| 亚洲精品av麻豆狂野| 成人亚洲欧美一区二区av| 在现免费观看毛片| 亚洲人成电影观看| 伊人久久大香线蕉亚洲五| 一本色道久久久久久精品综合| 在线观看免费视频网站a站| 久久影院123| 欧美激情极品国产一区二区三区| 纯流量卡能插随身wifi吗| 午夜福利乱码中文字幕| 爱豆传媒免费全集在线观看| av线在线观看网站| 久久这里只有精品19| 纯流量卡能插随身wifi吗| 国产精品偷伦视频观看了| 一本大道久久a久久精品| 欧美激情极品国产一区二区三区| 精品午夜福利在线看| 18禁动态无遮挡网站| 亚洲av欧美aⅴ国产| 咕卡用的链子| 看免费成人av毛片| 伦理电影免费视频| 美女午夜性视频免费| av片东京热男人的天堂| 美女午夜性视频免费| 亚洲av电影在线观看一区二区三区| 精品人妻熟女毛片av久久网站| 精品国产国语对白av| 亚洲一码二码三码区别大吗| 另类精品久久| 别揉我奶头~嗯~啊~动态视频 | 久久久久久久久久久久大奶| 高清不卡的av网站| 80岁老熟妇乱子伦牲交| 亚洲av男天堂| 亚洲av综合色区一区| 高清黄色对白视频在线免费看| 精品一区二区三区av网在线观看 | 天天添夜夜摸| 少妇猛男粗大的猛烈进出视频| 欧美人与善性xxx| 国产成人啪精品午夜网站| 熟妇人妻不卡中文字幕| 亚洲激情五月婷婷啪啪| 王馨瑶露胸无遮挡在线观看| 男女床上黄色一级片免费看| 伦理电影免费视频| 国产又爽黄色视频| 十分钟在线观看高清视频www| 国产深夜福利视频在线观看| 18禁裸乳无遮挡动漫免费视频| 国产av一区二区精品久久| 精品少妇久久久久久888优播| 丝袜美腿诱惑在线| 国产日韩欧美视频二区| 国产精品久久久久久精品电影小说| av.在线天堂| 99热全是精品| 亚洲伊人久久精品综合| 国产午夜精品一二区理论片| 激情五月婷婷亚洲| 两个人免费观看高清视频| 国产精品人妻久久久影院| 国产爽快片一区二区三区| 久久精品亚洲av国产电影网| 老司机影院成人| 国产成人精品在线电影| 成人漫画全彩无遮挡| 久久狼人影院| 国产一区二区在线观看av| 亚洲图色成人| 久久精品久久久久久噜噜老黄| 久久久精品区二区三区| 国产黄频视频在线观看| 久久久久久免费高清国产稀缺| 精品一区二区三区四区五区乱码 | 在线观看免费视频网站a站| 啦啦啦中文免费视频观看日本| 久久人妻熟女aⅴ| 久久精品久久久久久久性| e午夜精品久久久久久久| 丁香六月天网| 777米奇影视久久| 国产xxxxx性猛交| 国产精品亚洲av一区麻豆 | 一级片免费观看大全| 国产在视频线精品| 国产男女超爽视频在线观看| 亚洲精品久久午夜乱码| 熟女av电影| 欧美少妇被猛烈插入视频| 成年动漫av网址| 欧美少妇被猛烈插入视频| 亚洲男人天堂网一区| 日本爱情动作片www.在线观看| 欧美日本中文国产一区发布| 免费观看性生交大片5| 久久精品国产亚洲av涩爱| 亚洲欧洲精品一区二区精品久久久 | 国产精品99久久99久久久不卡 | av卡一久久| 精品酒店卫生间| 国产免费视频播放在线视频| 女人久久www免费人成看片| 我要看黄色一级片免费的| 只有这里有精品99| 亚洲国产毛片av蜜桃av| 久久人人爽av亚洲精品天堂| 天堂中文最新版在线下载| 亚洲精品中文字幕在线视频| 亚洲综合色网址| 捣出白浆h1v1| 亚洲国产精品成人久久小说| 人人妻人人澡人人看| 少妇被粗大的猛进出69影院| 午夜91福利影院| 国产黄频视频在线观看| 国产日韩欧美在线精品| 久久综合国产亚洲精品| 亚洲国产日韩一区二区| 黄色毛片三级朝国网站| 亚洲成色77777| 欧美日韩国产mv在线观看视频| 午夜福利在线免费观看网站| 午夜福利视频精品| 国产成人一区二区在线| 国产精品 欧美亚洲| 国产成人午夜福利电影在线观看| 国产精品三级大全| 午夜免费男女啪啪视频观看| 国产成人啪精品午夜网站| 亚洲精华国产精华液的使用体验| 男女高潮啪啪啪动态图| 亚洲视频免费观看视频| 欧美久久黑人一区二区| 黄色视频不卡| 中文字幕精品免费在线观看视频| 成人黄色视频免费在线看| 青春草视频在线免费观看| 美女福利国产在线| 亚洲精品久久久久久婷婷小说| tube8黄色片| 国产av国产精品国产| 亚洲av日韩在线播放| 成年av动漫网址| 2018国产大陆天天弄谢| 亚洲国产精品999| 亚洲精品av麻豆狂野| 国产成人精品在线电影| 99久久99久久久精品蜜桃| 99国产综合亚洲精品| 中文字幕精品免费在线观看视频| 狠狠婷婷综合久久久久久88av| 女性被躁到高潮视频| 男的添女的下面高潮视频| av女优亚洲男人天堂| 午夜日本视频在线| 免费看av在线观看网站| 日韩伦理黄色片| 在线观看人妻少妇| www.熟女人妻精品国产| 99re6热这里在线精品视频| 精品少妇内射三级| 亚洲av日韩在线播放| 亚洲三区欧美一区| 99精品久久久久人妻精品| 免费黄网站久久成人精品| 菩萨蛮人人尽说江南好唐韦庄| 新久久久久国产一级毛片| 亚洲精品乱久久久久久| 日本欧美视频一区| 精品一区在线观看国产| 亚洲,欧美,日韩| 嫩草影院入口| 男女之事视频高清在线观看 | 中文精品一卡2卡3卡4更新| 热99久久久久精品小说推荐|