• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A New κ-Carrageenase CgkS from Marine Bacterium Shewanella sp. Kz7

    2015-06-01 09:24:20WANGLinnaLIShangyongZHANGShilongLIJiejingYUWengongandGONGQianhong
    Journal of Ocean University of China 2015年4期

    WANG Linna, LI Shangyong, ZHANG Shilong, LI Jiejing, YU Wengong, and GONG Qianhong

    Key Laboratory of Marine Drugs of Chinese Ministry of Education,Shandong Provincial Key Laboratory of Glycoscience & Glycotechnology,School of Medicine and Pharmacy,Ocean University of China,Qingdao266003,P. R. China

    A New κ-Carrageenase CgkS from Marine Bacterium Shewanella sp. Kz7

    WANG Linna, LI Shangyong, ZHANG Shilong, LI Jiejing, YU Wengong, and GONG Qianhong*

    Key Laboratory of Marine Drugs of Chinese Ministry of Education,Shandong Provincial Key Laboratory of Glycoscience & Glycotechnology,School of Medicine and Pharmacy,Ocean University of China,Qingdao266003,P. R. China

    A new κ-carrageenase genecgkSwas cloned from marine bacteriumShewanellasp. Kz7 by using degenerate and site-finding PCR. The gene was comprised of an open reading frame of 1224 bp, encoding 407 amino acid residues, with a signal peptide of 24 residues. Based on the deduced amino acid sequence, the κ-carrageenase CgkS was classified into the Glycoside Hydrolase family 16. ThecgkSgene was expressed inEscherichia coli, and the recombinant enzyme was purified to homogeneity with a specific activity of 716.8 U mg-1and a yield of 69%. Recombinant CgkS was most active at 45℃ and pH 8.0. It was stable at pH 6.0-9.0 and below 30℃. The enzyme did not require NaCl for activity, although its activity was enhanced by NaCl. CgkS degraded κ-carrageenan in an endo-fashion releasing tetrasaccharides and disaccharides as main hydrolysis products.

    κ-Carrageenan; cloning; characterization; oligosaccharide;Shewanella

    1 Introduction

    Carrageenans are linear sulfated galactans extracted from red seaweeds and share a common backbone of D-galactose with alternating α (1-3) and β (1-4) linkages (Yaoet al., 2013). Depending on the presence of a 3,6-anhydro bridge in the β-l,4-linked galactose residue and on the position and number of sulfate substituents, they are referred to as κ-, ι-, or λ-carrageenans (Campoet al., 2009).

    Three types of hydrolases, which degrade κ-, ι-, and λ-carrageenans at β-l,4-linkages are named as κ-, ι-, and λ-carrageenases respectively, and belong to different glycoside hydrolase (GH) families in the carbohydrate-active enzymes (CAZy) database (Cantarelet al., 2009). κ-Carrageenases belongs to GH family 16, and cleave κ-carrageenans yielding oligogalactans of the neocarrabiose series. The κ-carrageenan-derived sulfated oligosaccharides have been reported to have anti-viral, anti-tumor anti-inflammation, anti-oxidant and immunolo-regulation activities (Mouet al., 2003; Yuanet al., 2006). κ-Carrageenase could be used as a powerful tool to prepare specific κ-carrageenan oligosaccharides for further study on biological activity-structure relationship and industrial exploitation (Sunet al., 2010). Most of κ-carrageenaseswhich have been characterized were purified from marine wild type bacteria strains (Potinet al., 1991; Barbeyronet al., 1994; Liet al., 2013). The application of natural κ-carrageenases has been limited by complex purification procedures and low yield. Heterologous expression is an efficient way of enhancing enzyme production and the recombinant enzymes can be purified by one-step affinity chromatography with a high yield. But very few recombinant κ-carrageenases have been studied. The recombinant Cgk-K142a fromPseudoalteromonas tetraodonisJAM-K142 has showed very low activity (Kobayashiet al., 2012). The end products of κ-carrageenan hydrolyzed by recombinant CgkZ fromZobelliasp. ZM-2 are complex mixtures and hard to separate (Liuet al., 2013). Therefore, it is essential and important to find new recombinant κ-carrageenase suitable for industrial production and purification of oligosaccharides.

    Here, we cloned and expressed a new κ-carrageenase CgkS fromShewanellasp. Kz7. It degraded κ-carrageenan, yielding κ-carrageenan tetrasaccharides and disaccharides as the main products with a high specific activity of 716.8 U mg-1.

    2 Materials and Methods

    2.1 Strain and Oligonucleotides

    Shewanellasp. Kz7 was isolated from sea mud collected along the coastal zone of Jiaozhou Bay, Qingdao,China, and preserved in China Center for Type Culture Collection (CCTCC) under the accession number AB 2014040. Oligonucleotides used for the gene cloning and expression of CgkS are shown in Table 1.

    2.2 Cloning of the κ-Carrageenase Gene and Sequence Analysis

    Degenerate primers (CgkS-F, CgkS-R) were designed according to the conserved sequences of GH family 16 κ-carrageenases to amplify the partial sequence of κ-carrageenase gene. A 690-bp DNA fragment was obtained and sequenced. The flanking sequences were obtained using the SiteFinding-PCR method (Tanet al., 2005) with nine nested specific primers (SFP1&2&3, Down-CgkS-sf-sF1&2&3, Up-CgkS-sf-asF1&2&3). The signal peptide was predicted using SignalP 4.0 server (http://www. cbs.dtu.dk/ services/SignalP). Theoretical molecular weight and isoelectric point (pI) were then calculated using Compute pI/Mw tool (http://us.expasy.org/tools/pi_tool. html).

    2.3 Expression and Purification of Recombinant CgkS

    For expression of His-tagged CgkS, the DNA fragment containingcgkSgene without signal sequence and stop codon was amplified using the primers (CgkS-EF and CgkS-ER), and then ligated into theNdeI andXhoI sites of expression plasmid pET28a (Novagen, USA). The resulting expression plasmid pET28-cgkS was transformed into the expression strainE.coliBL21 (DE3). Protein expression was induced at OD600of 0.8 with 0.5 mmol L-1isopropyl-β-thiogalactoside (IPTG) for 36 h at 25℃ and 100 r min-1in LB medium containing 30 μg kanamycin mL-1. Cells were harvested and disrupted by sonication, and then cell debris and unbroken cell were removed by centrifuge. The recombinant CgkS was purified from the soluble fraction using a Ni-Sepharose column. The purity and molecular weight of purified CgkS were determined by SDS-PAGE on a 10% resolving gel.

    2.4 κ-Carrageenase Activity Assay and Protein Determination

    κ-Carrageenase activity was measured by using the 3,5-dinitrosalicylic acid (DNS) method. The enzymatic hydrolysis reaction was conducted in 20 mmolL-1phosphate buffer (pH 8.0) containing 0.2% (w/v) κ-carrageenan (Sigma) at 45℃ for 10 min. One unit (1 U) of enzyme activity was defined as the amount of enzyme that released 1 μmol reducing sugar (measured as D-galactose) per minute under the above conditions. The protein concentration was measured using the method of Bradford with bovine serum albumin as the standard.

    2.5 Determination of Kinetic Parameters

    Initial velocities were determined in the standard assay mixture at 20 mmolL-1phosphate buffer (pH 8.0). The kinetic parameters of CgkS were measured by using ten different concentrations of κ-carrageenan (ranging from 0.1 to 5 mg mL-1). TheKmandVmaxwere then analyzed by using Lineweaver-Burk methods.

    2.6 Analysis of Hydrolysis Product and Pattern of CgkS

    The reaction mixture containing 0.5 mL (10 U) purified enzyme and 2 mL κ-carrageenan (2 g κ-carrageenan L-1) in 20 mmolL-1phosphate buffer (pH 8.0) was incubated overnight at 45℃, then the hydrolysis products were analyzed by thin layer chromatography (TLC) (Huet al., 2013). To determine the hydrolysis pattern, the reducing sugars were monitored by DNS method, and the relative viscosity was measured by a viscometer at time intervals as described previously by Kobayashiet al. (2009).

    2.7 Nucleotide Sequence Accession Numbers

    The nucleotide sequence forcgkSwas deposited in GenBank under the accession number KJ000056.

    3 Results and Discussion

    3.1 Cloning and Sequence Analysis of the κ-Carrageenase Gene

    The κ-carrageenase gene,cgkS, consisted of an open reading frame of 1224 bp, encoding 407 amino acid residues, including a signal peptide of 24 residues. The molecular weight and pI of the mature enzyme deduced from its amino acid sequence were 42 743 Da and 9.1, respectively. CgkS had the highest identity of 70% with κ-carrageenase (Genbank ADD92366) fromPseudoalteromonassp. LL1, and had the identity of 68% with alkaline κ-carrageenase Cgk-K142a (Genbank AB572925) fromP. tetraodonisJAM-K142. Based on the catalytic domain (Glu163-Asp165-Glu168), the enzyme is a new member of GH family 16 (Liuet al., 2013).

    3.2 Purification and Biochemical Characterization of CgkS

    Fig.1 SDS-PAGE of CgkS. LaneM, molecular weight markers; Lane 1, purified CgkS.

    The recombinant CgkS was purified to apparent homogeneity with a 69% yield by one-step affinity chro-matography, and migrated as a band of 45 kDa on SDSPAGE (Fig.1), which was in good agreement with the calculated molecular weight of fusion protein. The specific activity of the recombinant CgkS was 716.8 U mg-1, and much higher than those of the recombinant CgkZ (107.3 U mg-1) and Cgk-K142a (8.16 U mg-1). Although the natural κ-carrageenase CgkP shows a higher specific activity (1121.7 U mg-1), the application of CgkP has been limited by complex purification procedures and low yield (26.9%) (Liet al., 2013).

    CgkS showed an apparentKm of 0.15 ± 0.04 mg mL-1and aVmax of 807.6 ± 82.6 U mg-1protein. The optimal temperature of CgkS was 45℃ (Fig.2a), and 85% of the enzymatic activities remained after being incubated at 30℃ for 1 h (Fig.2b). CgkS showed the highest activity in phosphate buffer at pH 8.0 (Fig.2c) and it was stable within a range of pH 6.0-9.0 (Fig.2d).

    NaCl was not necessary for the enzymatic activity, though it enhanced the activity (Table 1). However, all of tested divalent and trivalent metal ions, such as Cu2+, Ni2+, Zn2+, Mg2+, Al3+, Fe3+, showed a significantly inhibitory effect except for Ca2+and Mn2+. The chelating agent EDTA slightly inhibited the activity of CgkS, suggesting that this enzyme is not a metalloenzyme (Bernardoet al., 2004). Detergent SDS reduced the activity of CgkS, which was the same with most κ-carrageenases reported previously. CgkS specifically hydrolyzed κ-carrageenan. No activity was observed on λ-, ι-carrageenan or agar (data not shown).

    Table 1 Effect of metal ions, chelators and detergents on the activity of CgkS

    Fig.2 Effects of pH and temperature on the activity and stability of CgkS. a) The optimal temperature of CgkS was determined by measuring the activity at various temperatures (20-70℃). b) The optimal pH of CgkS was determined measuring the activity at 45℃ in 50 mmol L-1Na2HPO4-citric acid (open rhombus), 50 mmol L-1Na2HPO4-NaH2PO4(filled circle), 100 mmol L-1Tris-HCl (open triangle) and 50 mmol L-1Gly-NaOH (filled rhombus). c) The thermostability of CgkS was studied by measuring the residual activity after the enzymes were incubated at different temperatures for 1 h in 20 mmol L-1phosphate buffer (pH 7.0). d) pH stability of CgkS. The residual activity was measured at 45℃ in 20 mmol L-1phosphate buffer (pH 8.0) after incubation from pH 4 to 9.6 with the above buffers for 6 h at 4℃. 100% activity= 22.6 U mL-1.

    3.3 Analysis of Hydrolysis Product and Pattern

    After completion of κ-carrageenan degradation by CgkS, the main products were tetrasaccharides and disaccharides by TLC analysis (Fig.3). Then the main products were purified by a Biogel-P6 column and analyzed by negative-ion electrospray ionization mass spectrometry (ESI-MS). The spectra (data not shown) showed good agreement with those of κ-carrageenan-derived neocarratetraose and neocarrahexraose, which was reported previously (Duanet al., 2010).

    Fig.3 TLC analysis of the oligosaccharides derived from κ-carrageenan. CgkS, 0.5 mL, (20 U mL-1) was incubated with 2 mL κ-carrageenan (2 g L-1in 20 mmol L-1phosphate buffer, pH 8.0) overnight at 45℃. The reaction products were separated on a HPTLC plate withn-butanol/formic acid/water (2:1:1) and color-developed. Lane M, standard mixture, κ-neocarratetraose and κ-neocarrabiose; Lane 1, κ-carrageenan; Lane 2, reaction products of κ-car- rageenan hydrolyzed by CgkS.

    Fig.4 Decrease of κ-carrageenan viscosity during enzymatic degradation. Mixtures of 5 mL CgkS (5 U mL-1) and 50 mL κ-carrageenan (2 g L-1in 20 mmol L-1phosphate buffer, pH 8.0) were incubated at 45℃ for up to 60 min. An aliquot of hydrolysis product (0.5 mL) was taken out at different times (1, 5, 10, 15, 30 and 60 min) in order to determine the viscosity and reduce the sugar. Filled circles with a solid line, the rate of viscosity; open circles with a dotted line, the absorbance at 520 nm.

    The κ-carrageenan has also been degraded into disaccharide and tetrasaccharide by the natural κ-carrageenases which are purified from the genus ofPseudoalteromonas,PseudomonasandVibrio(Liuet al., 2010). However, the end products of κ-carrageenan hydrolyzed by recombinant CgkZ are tetrasaccharides, hexasaccharides, octasaccharides, and decasaccharides (Liuet al., 2013).

    The hydrolysis pattern of CgkS was determined by viscometric assay. The viscosity rapidly decreased to 10% of the original during the first 5 min of incubation, and decreased slowly by only 5% during the later 55 min of incubation. However, the amount of reducing sugar (A520) increased steadily during the whole 60 min period (Fig.4). These results revealed that CgkS degraded κ-carrageenan in an endo-fashion.

    4 Conclusion

    The biological activities of κ-Carrageenan oligosaccharides are closely related with the degree of polymers. To prepare specific κ-carrageenan oligosaccharides for further structure-activity relationship study, it is essential to use suitable κ-carrageenases. The application of natural κ-carrageenases has been limited by complex purification procedures and low yield. The known recombinant κ-carrageenases are also not suitable for application because of low activity or complex mixture of degradation products (Liuet al., 2013; Kobayashiet al., 2012). The new recombinant κ-carrageenase CgkS exhibits a high specific activity to κ-carrageenan in the absence of NaCl, yielding κ-carrageenan-derived neocarratetraose and neocarrahexraose as the main products. Therefore, CgkS would play a significant role in further industial application of κ-carrageenan oligosaccharides.

    Acknowledgements

    The research was supported by the Key Technologies Research and Development Program of China (2013BA B01B02), National Science Foundation of China (310707 12), Special Fund for Marine Scientific Research in the Public Interest (201005024 and 201105027) and National Hightech R&D Program of China (2011AA09070304).

    Barbeyron, T., Henrissat, B., and Kloareg, B., 1994. The gene encoding the kappa-carrageenase ofAlteromonas carrageenovorais related to beta-1,3-1,4-glucanases.Gene, 139: 105-109.

    Bernardo, R. Z., Yuridia, M. F., César, H. R., and Lourdes, V. T., 2004. Puri fi cation and characterization of lysine amino peptidase fromKluyveromyces marxiamus.Fems Microbiology Letters, 235: 369-375.

    Campo, V. L., Kawano, D. F., Silva, D. B., and Carvalho, L., 2009. Carrageenans: Biological properties, chemical modi fi cations and structural analysis - A review.Carbohydrate Polymers, 77: 167-180.

    Cantarel, B. L., Coutinho, P. M., Rancurel, C., Bernard, T., Lombard, V., and Henrissat, B., 2009. The Carbohydrate- Ac-tive EnZymes database (CAZy): An expert resource for glycogenomics.Nucleic Acids Research, 37: 233-238.

    Duan, G. F., Su, B., Han, F., and Yu, W. G., 2010. Purification and characterization of a κ-carrageenase from marinePseudoalteromonassp. QY202.Journal of Ocean University of China, 40: 95-100.

    Hu, T., Li, C. X., Zhao, X., Li, G. S., Yu, G. L., and Guan, H. S., 2013. Preparation and characterization of guluronic acid oligosaccharides degraded by a rapid microwave irradiation method.Carbohydrate Polymers, 373: 53-58.

    Kobayashi, T., Uchimura, K., Miyazaki, M., Nogi, Y., and Horikoshi, K., 2009. A new high-alkaline alginate lyase from a deep-sea bacteriumAgarivoranssp.Extremophiles, 13:121-129.

    Kobayashi, T., Uchimura, K., Koide, O., Deguchi, S., and Horikoshi, K., 2012. Genetic and biochemical characterization of thePseudoalteromonas tetraodonisalkaline κ-carrageenase.Bioscience Biotechnology and Biochemistry, 76:506-511.

    Li, S. Y., Jia, P. P., Wang, L. N., Yu, W. G., and Han, F., 2013. Purification and characterization of a new thermostable κ-carrageenase from the marine bacteriumPseudoalteromonassp. QY203.Journal of Ocean University of China, 12:155-159.

    Liu, Z. M., Li, G. Y., Mo, Z. L., and Mou, H. J., 2013. Molecular cloning, characterization, and heterologous expression of a new κ-carrageenase gene from marine bacteriumZobelliasp. ZM-2.Applied Microbiology and Biotechnology, l97: 10057-10067.

    Ma, S., Tan, Y. L., Yu, W. G., and Han, F., 2013. Cloning, expression and characterization of a new ι-carrageenase from marine bacterium,Cellulophagasp.Biotechnology Letters, 35: 1617-1622.

    Mou, H., Jiang, X. L., and Guan, H. S., 2003. A κ-carrageenan derived oligosaccharide prepared by enzymatic degradation containing anti-tumor activity.Journal of Applied Phycology, 15: 297-303.

    Potin, P., Sanseau, A., Gall, Y., Rochas, C., and Kloareg, B., 1991. Purification and characterization of a new kappa-carrageenase from a marineCytophaga-like bacterium.European Journal of Biochemistry, 201: 241-247.

    Sun, F. X., Ma, Y. X., Wang, Y., and Liu, Q., 2010. Purification and characterization of novel κ-carrageenase from marineTamlanasp. HC4.Chinese Journal of Oceanology and Limnology, 28: 1139-1145.

    Tan, G. H., Gao, Y., Shi, M., Zhang, X. Y., He, S. P., Chen, Z. L., and An, C. C., 2005. SiteFinding-PCR: A simple and efficient PCR method for chromosome walking.Nucleic Acids Research, 33: e122.

    Yao, Z., Wang, F. F., Gao, Z., Jin, L. M., and Wu, H. J., 2013. Characterization of a κ-carrageenase from marineCellulophaga lyticastrain N5-2 and analysis of its degradation products.International Journal of Molecular Sciences, 14:24592-24602.

    Yuan, H., Songa, J., Li, X.G., Li, N., and Dai, J., 2006. Immunomodulation and antitumor activity of κ-carrageenan oligosaccharides.Cancer Letters, 243: 228-234.

    (Edited by Ji Dechun)

    (Received July 10, 2014; revised February 29, 2015; accepted March 21, 2015)

    ? Ocean University of China, Science Press and Springer-Verlag Berlin Heidelberg 2015

    * Corresponding author. Tel: 0086-532-82032067 E-mail: gongqh@ouc.edu.cn

    久久久久久久国产电影| 自线自在国产av| a级毛色黄片| 热re99久久精品国产66热6| 人妻系列 视频| av黄色大香蕉| 久久这里有精品视频免费| 亚洲在久久综合| 亚洲第一区二区三区不卡| 亚洲真实伦在线观看| 各种免费的搞黄视频| 在线观看美女被高潮喷水网站| 免费大片18禁| 99九九线精品视频在线观看视频| 国产精品免费大片| 少妇被粗大猛烈的视频| 爱豆传媒免费全集在线观看| 亚洲熟女精品中文字幕| av.在线天堂| 内射极品少妇av片p| 精品人妻熟女毛片av久久网站| 国产精品国产av在线观看| 两个人免费观看高清视频 | 精品亚洲成a人片在线观看| 国产亚洲av片在线观看秒播厂| 国产爽快片一区二区三区| videos熟女内射| 自线自在国产av| av线在线观看网站| 亚洲国产精品国产精品| 婷婷色av中文字幕| 国产黄色视频一区二区在线观看| 国产精品久久久久久精品电影小说| 美女cb高潮喷水在线观看| 欧美国产精品一级二级三级 | 在线免费观看不下载黄p国产| 亚洲综合精品二区| 久久99热这里只频精品6学生| 黄色怎么调成土黄色| 成人特级av手机在线观看| 91在线精品国自产拍蜜月| 午夜福利视频精品| 综合色丁香网| 日本爱情动作片www.在线观看| 日韩强制内射视频| 狂野欧美激情性xxxx在线观看| 国国产精品蜜臀av免费| 丰满迷人的少妇在线观看| 美女福利国产在线| 一区二区三区免费毛片| 国产免费视频播放在线视频| 国产成人a∨麻豆精品| 午夜福利视频精品| 免费观看性生交大片5| 噜噜噜噜噜久久久久久91| 五月伊人婷婷丁香| 日韩人妻高清精品专区| 国产高清三级在线| 久久久久久久久久久丰满| 青春草视频在线免费观看| 伊人久久国产一区二区| 日韩电影二区| 成人午夜精彩视频在线观看| 久久精品国产a三级三级三级| 极品教师在线视频| 丝袜在线中文字幕| 国语对白做爰xxxⅹ性视频网站| 美女cb高潮喷水在线观看| 最近2019中文字幕mv第一页| 国产精品国产三级国产专区5o| 韩国高清视频一区二区三区| 亚洲欧美一区二区三区国产| 精品人妻熟女av久视频| 水蜜桃什么品种好| 啦啦啦啦在线视频资源| 欧美精品亚洲一区二区| 纯流量卡能插随身wifi吗| 精品人妻一区二区三区麻豆| 乱码一卡2卡4卡精品| 国产爽快片一区二区三区| 国产精品蜜桃在线观看| 国产精品伦人一区二区| 超碰97精品在线观看| 精品人妻一区二区三区麻豆| 91成人精品电影| 少妇的逼水好多| 看免费成人av毛片| 看免费成人av毛片| 国产永久视频网站| 亚洲av欧美aⅴ国产| 中文在线观看免费www的网站| 女的被弄到高潮叫床怎么办| 免费黄色在线免费观看| 免费黄色在线免费观看| 十八禁高潮呻吟视频 | 国产成人精品福利久久| 色94色欧美一区二区| 日本黄色日本黄色录像| 国产在线视频一区二区| 我的老师免费观看完整版| 欧美日韩视频精品一区| 亚洲自偷自拍三级| √禁漫天堂资源中文www| 色吧在线观看| 亚洲av男天堂| 久久久久精品久久久久真实原创| 国产成人91sexporn| 日本猛色少妇xxxxx猛交久久| 精品一区在线观看国产| 久久99热这里只频精品6学生| 国语对白做爰xxxⅹ性视频网站| 一级黄片播放器| 国产在线免费精品| 精品国产一区二区三区久久久樱花| 黑丝袜美女国产一区| 99久久综合免费| 久久午夜福利片| 国产日韩欧美视频二区| 成年av动漫网址| av专区在线播放| 色网站视频免费| 在线观看免费日韩欧美大片 | 伦理电影大哥的女人| 亚洲第一区二区三区不卡| 观看av在线不卡| 亚洲欧洲精品一区二区精品久久久 | 女人精品久久久久毛片| 噜噜噜噜噜久久久久久91| 91久久精品国产一区二区成人| 国产在视频线精品| 欧美 亚洲 国产 日韩一| 免费看av在线观看网站| 国产色爽女视频免费观看| 亚洲av成人精品一区久久| 秋霞伦理黄片| 日韩成人伦理影院| 国产黄片美女视频| 欧美精品一区二区大全| 国产免费一级a男人的天堂| 99热国产这里只有精品6| 亚洲av福利一区| 亚洲,一卡二卡三卡| 亚洲欧洲精品一区二区精品久久久 | 乱人伦中国视频| 日日啪夜夜爽| 欧美精品亚洲一区二区| 黄色视频在线播放观看不卡| 六月丁香七月| 亚洲国产精品一区三区| 成人特级av手机在线观看| 桃花免费在线播放| av在线观看视频网站免费| 黄色日韩在线| 国产毛片在线视频| 亚洲av成人精品一区久久| 国产色爽女视频免费观看| 久久精品熟女亚洲av麻豆精品| kizo精华| 高清视频免费观看一区二区| 成年美女黄网站色视频大全免费 | 在线播放无遮挡| .国产精品久久| 午夜av观看不卡| 桃花免费在线播放| √禁漫天堂资源中文www| 亚洲,一卡二卡三卡| 一区二区三区乱码不卡18| 亚洲精品第二区| 晚上一个人看的免费电影| 午夜影院在线不卡| 国产免费又黄又爽又色| 观看免费一级毛片| 亚洲av成人精品一区久久| 国产成人午夜福利电影在线观看| 在线观看一区二区三区激情| 青春草视频在线免费观看| av在线老鸭窝| 国产精品一二三区在线看| 精品99又大又爽又粗少妇毛片| 日日啪夜夜爽| 亚洲精品一区蜜桃| 嘟嘟电影网在线观看| 亚洲四区av| 色网站视频免费| av.在线天堂| 黄色一级大片看看| 免费看不卡的av| 欧美一级a爱片免费观看看| 极品教师在线视频| 亚洲欧美一区二区三区国产| 少妇猛男粗大的猛烈进出视频| 久久久精品94久久精品| 日本vs欧美在线观看视频 | 精品一区二区免费观看| 国产黄频视频在线观看| 日韩,欧美,国产一区二区三区| 久久亚洲国产成人精品v| 午夜视频国产福利| 秋霞伦理黄片| 国产色婷婷99| 中文字幕人妻熟人妻熟丝袜美| 如何舔出高潮| 超碰97精品在线观看| 国产成人a∨麻豆精品| 综合色丁香网| 嫩草影院新地址| 嫩草影院新地址| 日韩中文字幕视频在线看片| 色婷婷av一区二区三区视频| 黑人巨大精品欧美一区二区蜜桃 | 精品一区二区三卡| 伊人久久国产一区二区| 精品亚洲成a人片在线观看| av在线app专区| 又黄又爽又刺激的免费视频.| 成年女人在线观看亚洲视频| www.av在线官网国产| 亚洲国产日韩一区二区| 一个人看视频在线观看www免费| 五月开心婷婷网| 久久久久久久久久久久大奶| 少妇人妻一区二区三区视频| 国产精品人妻久久久影院| 一区二区三区四区激情视频| 热99国产精品久久久久久7| 97在线人人人人妻| 国产在线视频一区二区| 久久热精品热| 国国产精品蜜臀av免费| 欧美日韩国产mv在线观看视频| 欧美xxxx性猛交bbbb| 日韩免费高清中文字幕av| 国产免费一区二区三区四区乱码| 亚洲va在线va天堂va国产| 久久6这里有精品| 99九九线精品视频在线观看视频| 国国产精品蜜臀av免费| 亚洲av福利一区| 亚洲一级一片aⅴ在线观看| 国产欧美另类精品又又久久亚洲欧美| 在线观看免费日韩欧美大片 | 亚洲人与动物交配视频| 黄色视频在线播放观看不卡| 最近手机中文字幕大全| 性色avwww在线观看| 有码 亚洲区| 五月伊人婷婷丁香| 亚洲美女黄色视频免费看| 亚洲精品aⅴ在线观看| 最近中文字幕2019免费版| av有码第一页| 欧美老熟妇乱子伦牲交| 久久久欧美国产精品| 久久狼人影院| 欧美97在线视频| 美女中出高潮动态图| 黄色欧美视频在线观看| 99热这里只有是精品50| 欧美一级a爱片免费观看看| 少妇被粗大的猛进出69影院 | 美女cb高潮喷水在线观看| 99久久精品国产国产毛片| 久久青草综合色| 中文字幕av电影在线播放| 午夜激情久久久久久久| a级毛片免费高清观看在线播放| 欧美性感艳星| 一级a做视频免费观看| 91精品国产国语对白视频| 99热这里只有是精品在线观看| 久久精品国产亚洲网站| 黄色视频在线播放观看不卡| 老司机亚洲免费影院| 色婷婷久久久亚洲欧美| 久久精品国产a三级三级三级| 新久久久久国产一级毛片| 乱码一卡2卡4卡精品| 国产欧美日韩精品一区二区| 黄色一级大片看看| 伊人亚洲综合成人网| 免费观看a级毛片全部| 日本wwww免费看| 国产精品人妻久久久影院| 免费大片18禁| 日本av手机在线免费观看| 国产免费视频播放在线视频| 精品卡一卡二卡四卡免费| 9色porny在线观看| 偷拍熟女少妇极品色| 免费av中文字幕在线| 伦理电影免费视频| 国产精品三级大全| 国产综合精华液| 9色porny在线观看| 高清不卡的av网站| 嫩草影院入口| 2021少妇久久久久久久久久久| 老司机亚洲免费影院| av卡一久久| 黄色毛片三级朝国网站 | 黄色视频在线播放观看不卡| 亚洲精品第二区| 18禁动态无遮挡网站| 久久久久久久国产电影| 老熟女久久久| 久久国产精品男人的天堂亚洲 | 成人美女网站在线观看视频| 久久久久久久亚洲中文字幕| 秋霞伦理黄片| 亚洲欧美日韩东京热| 亚洲精品乱码久久久久久按摩| xxx大片免费视频| 男人和女人高潮做爰伦理| 涩涩av久久男人的天堂| 大香蕉久久网| 亚洲av中文av极速乱| 国产 一区精品| 我的女老师完整版在线观看| 狂野欧美激情性xxxx在线观看| 欧美国产精品一级二级三级 | 国产精品99久久99久久久不卡 | 亚洲成人手机| 亚洲成人手机| 国产乱来视频区| 麻豆成人av视频| 日韩不卡一区二区三区视频在线| 国产精品欧美亚洲77777| 人人澡人人妻人| 在现免费观看毛片| 亚洲精品国产av蜜桃| 一级av片app| 乱人伦中国视频| 亚洲精华国产精华液的使用体验| 伊人久久精品亚洲午夜| 人体艺术视频欧美日本| 22中文网久久字幕| 精品久久久久久久久亚洲| 精品午夜福利在线看| av在线播放精品| 麻豆成人午夜福利视频| 中文字幕免费在线视频6| 99热这里只有是精品50| av有码第一页| 最新的欧美精品一区二区| xxx大片免费视频| 久久国产亚洲av麻豆专区| a级毛色黄片| 久久久久久人妻| 夜夜爽夜夜爽视频| 精品酒店卫生间| 九九在线视频观看精品| 亚洲精品日韩av片在线观看| 五月玫瑰六月丁香| 成人18禁高潮啪啪吃奶动态图 | 卡戴珊不雅视频在线播放| 毛片一级片免费看久久久久| 国模一区二区三区四区视频| 亚洲欧美一区二区三区国产| 国产91av在线免费观看| 久热这里只有精品99| 欧美人与善性xxx| 久久99一区二区三区| 最新中文字幕久久久久| 一级毛片久久久久久久久女| 水蜜桃什么品种好| 少妇精品久久久久久久| 日本黄大片高清| 国产亚洲午夜精品一区二区久久| 韩国高清视频一区二区三区| 精品国产一区二区三区久久久樱花| 国产亚洲午夜精品一区二区久久| 久热久热在线精品观看| 日本-黄色视频高清免费观看| 免费久久久久久久精品成人欧美视频 | 国产永久视频网站| 国产免费一级a男人的天堂| 黑丝袜美女国产一区| 亚洲真实伦在线观看| 十分钟在线观看高清视频www | 亚洲精品第二区| 亚洲,欧美,日韩| 七月丁香在线播放| 日本色播在线视频| 日韩三级伦理在线观看| 美女xxoo啪啪120秒动态图| 99热6这里只有精品| 伦精品一区二区三区| freevideosex欧美| 又粗又硬又长又爽又黄的视频| 午夜福利影视在线免费观看| 男女无遮挡免费网站观看| a级毛片在线看网站| 伦理电影免费视频| 国产乱来视频区| 国产精品一区二区三区四区免费观看| 国产成人91sexporn| 国产精品国产三级国产av玫瑰| 日日摸夜夜添夜夜爱| 久久国内精品自在自线图片| 精品人妻一区二区三区麻豆| 日本-黄色视频高清免费观看| 有码 亚洲区| 如何舔出高潮| 大话2 男鬼变身卡| av天堂久久9| 亚洲国产欧美日韩在线播放 | 亚洲综合色惰| 下体分泌物呈黄色| 免费看光身美女| 女人精品久久久久毛片| 日韩 亚洲 欧美在线| 五月开心婷婷网| 在线观看三级黄色| 国产视频内射| 五月开心婷婷网| 色哟哟·www| 狠狠精品人妻久久久久久综合| 九九在线视频观看精品| 亚洲欧洲日产国产| 久久精品国产亚洲av天美| 人妻夜夜爽99麻豆av| 少妇裸体淫交视频免费看高清| 人妻系列 视频| 少妇被粗大的猛进出69影院 | 一级毛片 在线播放| 久久 成人 亚洲| 日本黄色片子视频| 尾随美女入室| 亚洲av国产av综合av卡| 久久青草综合色| a级毛色黄片| 日韩在线高清观看一区二区三区| 国产一区二区在线观看日韩| 婷婷色综合www| 亚洲国产精品999| 99久久中文字幕三级久久日本| 久久人人爽人人片av| 女性生殖器流出的白浆| 欧美精品国产亚洲| 超碰97精品在线观看| 成年美女黄网站色视频大全免费 | 九色成人免费人妻av| 在线亚洲精品国产二区图片欧美 | 国产成人freesex在线| 国内揄拍国产精品人妻在线| 高清欧美精品videossex| 久久久精品免费免费高清| 交换朋友夫妻互换小说| 成人漫画全彩无遮挡| 美女视频免费永久观看网站| 伦精品一区二区三区| 美女国产视频在线观看| 中文字幕精品免费在线观看视频 | 97超视频在线观看视频| 简卡轻食公司| 不卡视频在线观看欧美| 一本—道久久a久久精品蜜桃钙片| 亚洲欧美中文字幕日韩二区| 午夜免费观看性视频| 国产精品福利在线免费观看| 人人澡人人妻人| 精品亚洲成a人片在线观看| 日本-黄色视频高清免费观看| 久久午夜综合久久蜜桃| 欧美 日韩 精品 国产| 在线观看av片永久免费下载| 少妇猛男粗大的猛烈进出视频| 亚洲av成人精品一区久久| 久久99蜜桃精品久久| 最近手机中文字幕大全| av视频免费观看在线观看| 国产中年淑女户外野战色| 色视频www国产| 国产男女超爽视频在线观看| 午夜久久久在线观看| 国产69精品久久久久777片| 亚洲av二区三区四区| 午夜激情久久久久久久| 亚洲成人一二三区av| 欧美日韩一区二区视频在线观看视频在线| 又粗又硬又长又爽又黄的视频| 香蕉精品网在线| 大话2 男鬼变身卡| 久久精品久久精品一区二区三区| 成人美女网站在线观看视频| 欧美日韩在线观看h| 久久久久网色| 久久久久久久久久久免费av| 日韩av免费高清视频| 黑人巨大精品欧美一区二区蜜桃 | 免费大片18禁| 日本欧美视频一区| 男女边摸边吃奶| 欧美日韩视频高清一区二区三区二| 中文字幕久久专区| 精品人妻偷拍中文字幕| 久久97久久精品| 国产精品人妻久久久久久| 各种免费的搞黄视频| 中文字幕亚洲精品专区| 美女大奶头黄色视频| 黄色毛片三级朝国网站 | 亚洲av男天堂| 成人二区视频| 在线观看av片永久免费下载| 亚洲四区av| 国产熟女欧美一区二区| 亚洲,一卡二卡三卡| 久久这里有精品视频免费| 少妇人妻久久综合中文| 国产乱来视频区| 高清黄色对白视频在线免费看 | 久热这里只有精品99| 色婷婷av一区二区三区视频| 国产精品国产三级国产专区5o| av.在线天堂| 啦啦啦视频在线资源免费观看| 午夜免费男女啪啪视频观看| 99热网站在线观看| 日本黄色片子视频| 91久久精品电影网| 一级毛片我不卡| 亚洲久久久国产精品| 国产精品欧美亚洲77777| 乱码一卡2卡4卡精品| 国产真实伦视频高清在线观看| 高清欧美精品videossex| 国产精品.久久久| 一级a做视频免费观看| 极品少妇高潮喷水抽搐| 欧美bdsm另类| 欧美3d第一页| 在线观看免费日韩欧美大片 | av女优亚洲男人天堂| 18+在线观看网站| 九九久久精品国产亚洲av麻豆| 麻豆精品久久久久久蜜桃| 三级国产精品欧美在线观看| 午夜福利视频精品| 久久久久国产网址| 人人澡人人妻人| 久久av网站| 精品午夜福利在线看| 精品亚洲乱码少妇综合久久| 日本av免费视频播放| 男人爽女人下面视频在线观看| 日韩熟女老妇一区二区性免费视频| 青春草亚洲视频在线观看| 国产欧美日韩精品一区二区| 国产一区亚洲一区在线观看| 国产亚洲av片在线观看秒播厂| 草草在线视频免费看| 伊人久久国产一区二区| 日韩伦理黄色片| 亚洲av不卡在线观看| 国产精品成人在线| 99热6这里只有精品| 亚洲激情五月婷婷啪啪| 热99国产精品久久久久久7| 久久国产精品大桥未久av | 久久狼人影院| 免费不卡的大黄色大毛片视频在线观看| 午夜精品国产一区二区电影| 成人黄色视频免费在线看| a 毛片基地| 日本黄大片高清| 老司机亚洲免费影院| 亚洲欧美精品自产自拍| 国产精品嫩草影院av在线观看| 久久久国产精品麻豆| 日本av手机在线免费观看| 精品少妇黑人巨大在线播放| 日韩成人av中文字幕在线观看| 人妻一区二区av| 18禁在线播放成人免费| 在线精品无人区一区二区三| 天美传媒精品一区二区| 一个人看视频在线观看www免费| 久久人人爽av亚洲精品天堂| 国产在线男女| 欧美国产精品一级二级三级 | 国产真实伦视频高清在线观看| 青春草国产在线视频| 日韩av不卡免费在线播放| 国产精品嫩草影院av在线观看| 肉色欧美久久久久久久蜜桃| 嫩草影院入口| 波野结衣二区三区在线| 久久 成人 亚洲| 五月开心婷婷网| 亚洲色图综合在线观看| 内射极品少妇av片p| 18禁在线播放成人免费| 久久av网站| 在线观看美女被高潮喷水网站| 日韩在线高清观看一区二区三区| 色哟哟·www| 在线观看免费视频网站a站| 国产精品人妻久久久影院| 久久久精品免费免费高清| 我要看日韩黄色一级片| 男人添女人高潮全过程视频| 又粗又硬又长又爽又黄的视频| 男人添女人高潮全过程视频| 自拍欧美九色日韩亚洲蝌蚪91 | 午夜av观看不卡| 亚洲精品第二区| 亚洲精品,欧美精品| 色视频www国产| 免费观看a级毛片全部| 一级av片app| 99热国产这里只有精品6| 午夜精品国产一区二区电影| 看非洲黑人一级黄片| 亚洲av综合色区一区|