• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A New κ-Carrageenase CgkS from Marine Bacterium Shewanella sp. Kz7

    2015-06-01 09:24:20WANGLinnaLIShangyongZHANGShilongLIJiejingYUWengongandGONGQianhong
    Journal of Ocean University of China 2015年4期

    WANG Linna, LI Shangyong, ZHANG Shilong, LI Jiejing, YU Wengong, and GONG Qianhong

    Key Laboratory of Marine Drugs of Chinese Ministry of Education,Shandong Provincial Key Laboratory of Glycoscience & Glycotechnology,School of Medicine and Pharmacy,Ocean University of China,Qingdao266003,P. R. China

    A New κ-Carrageenase CgkS from Marine Bacterium Shewanella sp. Kz7

    WANG Linna, LI Shangyong, ZHANG Shilong, LI Jiejing, YU Wengong, and GONG Qianhong*

    Key Laboratory of Marine Drugs of Chinese Ministry of Education,Shandong Provincial Key Laboratory of Glycoscience & Glycotechnology,School of Medicine and Pharmacy,Ocean University of China,Qingdao266003,P. R. China

    A new κ-carrageenase genecgkSwas cloned from marine bacteriumShewanellasp. Kz7 by using degenerate and site-finding PCR. The gene was comprised of an open reading frame of 1224 bp, encoding 407 amino acid residues, with a signal peptide of 24 residues. Based on the deduced amino acid sequence, the κ-carrageenase CgkS was classified into the Glycoside Hydrolase family 16. ThecgkSgene was expressed inEscherichia coli, and the recombinant enzyme was purified to homogeneity with a specific activity of 716.8 U mg-1and a yield of 69%. Recombinant CgkS was most active at 45℃ and pH 8.0. It was stable at pH 6.0-9.0 and below 30℃. The enzyme did not require NaCl for activity, although its activity was enhanced by NaCl. CgkS degraded κ-carrageenan in an endo-fashion releasing tetrasaccharides and disaccharides as main hydrolysis products.

    κ-Carrageenan; cloning; characterization; oligosaccharide;Shewanella

    1 Introduction

    Carrageenans are linear sulfated galactans extracted from red seaweeds and share a common backbone of D-galactose with alternating α (1-3) and β (1-4) linkages (Yaoet al., 2013). Depending on the presence of a 3,6-anhydro bridge in the β-l,4-linked galactose residue and on the position and number of sulfate substituents, they are referred to as κ-, ι-, or λ-carrageenans (Campoet al., 2009).

    Three types of hydrolases, which degrade κ-, ι-, and λ-carrageenans at β-l,4-linkages are named as κ-, ι-, and λ-carrageenases respectively, and belong to different glycoside hydrolase (GH) families in the carbohydrate-active enzymes (CAZy) database (Cantarelet al., 2009). κ-Carrageenases belongs to GH family 16, and cleave κ-carrageenans yielding oligogalactans of the neocarrabiose series. The κ-carrageenan-derived sulfated oligosaccharides have been reported to have anti-viral, anti-tumor anti-inflammation, anti-oxidant and immunolo-regulation activities (Mouet al., 2003; Yuanet al., 2006). κ-Carrageenase could be used as a powerful tool to prepare specific κ-carrageenan oligosaccharides for further study on biological activity-structure relationship and industrial exploitation (Sunet al., 2010). Most of κ-carrageenaseswhich have been characterized were purified from marine wild type bacteria strains (Potinet al., 1991; Barbeyronet al., 1994; Liet al., 2013). The application of natural κ-carrageenases has been limited by complex purification procedures and low yield. Heterologous expression is an efficient way of enhancing enzyme production and the recombinant enzymes can be purified by one-step affinity chromatography with a high yield. But very few recombinant κ-carrageenases have been studied. The recombinant Cgk-K142a fromPseudoalteromonas tetraodonisJAM-K142 has showed very low activity (Kobayashiet al., 2012). The end products of κ-carrageenan hydrolyzed by recombinant CgkZ fromZobelliasp. ZM-2 are complex mixtures and hard to separate (Liuet al., 2013). Therefore, it is essential and important to find new recombinant κ-carrageenase suitable for industrial production and purification of oligosaccharides.

    Here, we cloned and expressed a new κ-carrageenase CgkS fromShewanellasp. Kz7. It degraded κ-carrageenan, yielding κ-carrageenan tetrasaccharides and disaccharides as the main products with a high specific activity of 716.8 U mg-1.

    2 Materials and Methods

    2.1 Strain and Oligonucleotides

    Shewanellasp. Kz7 was isolated from sea mud collected along the coastal zone of Jiaozhou Bay, Qingdao,China, and preserved in China Center for Type Culture Collection (CCTCC) under the accession number AB 2014040. Oligonucleotides used for the gene cloning and expression of CgkS are shown in Table 1.

    2.2 Cloning of the κ-Carrageenase Gene and Sequence Analysis

    Degenerate primers (CgkS-F, CgkS-R) were designed according to the conserved sequences of GH family 16 κ-carrageenases to amplify the partial sequence of κ-carrageenase gene. A 690-bp DNA fragment was obtained and sequenced. The flanking sequences were obtained using the SiteFinding-PCR method (Tanet al., 2005) with nine nested specific primers (SFP1&2&3, Down-CgkS-sf-sF1&2&3, Up-CgkS-sf-asF1&2&3). The signal peptide was predicted using SignalP 4.0 server (http://www. cbs.dtu.dk/ services/SignalP). Theoretical molecular weight and isoelectric point (pI) were then calculated using Compute pI/Mw tool (http://us.expasy.org/tools/pi_tool. html).

    2.3 Expression and Purification of Recombinant CgkS

    For expression of His-tagged CgkS, the DNA fragment containingcgkSgene without signal sequence and stop codon was amplified using the primers (CgkS-EF and CgkS-ER), and then ligated into theNdeI andXhoI sites of expression plasmid pET28a (Novagen, USA). The resulting expression plasmid pET28-cgkS was transformed into the expression strainE.coliBL21 (DE3). Protein expression was induced at OD600of 0.8 with 0.5 mmol L-1isopropyl-β-thiogalactoside (IPTG) for 36 h at 25℃ and 100 r min-1in LB medium containing 30 μg kanamycin mL-1. Cells were harvested and disrupted by sonication, and then cell debris and unbroken cell were removed by centrifuge. The recombinant CgkS was purified from the soluble fraction using a Ni-Sepharose column. The purity and molecular weight of purified CgkS were determined by SDS-PAGE on a 10% resolving gel.

    2.4 κ-Carrageenase Activity Assay and Protein Determination

    κ-Carrageenase activity was measured by using the 3,5-dinitrosalicylic acid (DNS) method. The enzymatic hydrolysis reaction was conducted in 20 mmolL-1phosphate buffer (pH 8.0) containing 0.2% (w/v) κ-carrageenan (Sigma) at 45℃ for 10 min. One unit (1 U) of enzyme activity was defined as the amount of enzyme that released 1 μmol reducing sugar (measured as D-galactose) per minute under the above conditions. The protein concentration was measured using the method of Bradford with bovine serum albumin as the standard.

    2.5 Determination of Kinetic Parameters

    Initial velocities were determined in the standard assay mixture at 20 mmolL-1phosphate buffer (pH 8.0). The kinetic parameters of CgkS were measured by using ten different concentrations of κ-carrageenan (ranging from 0.1 to 5 mg mL-1). TheKmandVmaxwere then analyzed by using Lineweaver-Burk methods.

    2.6 Analysis of Hydrolysis Product and Pattern of CgkS

    The reaction mixture containing 0.5 mL (10 U) purified enzyme and 2 mL κ-carrageenan (2 g κ-carrageenan L-1) in 20 mmolL-1phosphate buffer (pH 8.0) was incubated overnight at 45℃, then the hydrolysis products were analyzed by thin layer chromatography (TLC) (Huet al., 2013). To determine the hydrolysis pattern, the reducing sugars were monitored by DNS method, and the relative viscosity was measured by a viscometer at time intervals as described previously by Kobayashiet al. (2009).

    2.7 Nucleotide Sequence Accession Numbers

    The nucleotide sequence forcgkSwas deposited in GenBank under the accession number KJ000056.

    3 Results and Discussion

    3.1 Cloning and Sequence Analysis of the κ-Carrageenase Gene

    The κ-carrageenase gene,cgkS, consisted of an open reading frame of 1224 bp, encoding 407 amino acid residues, including a signal peptide of 24 residues. The molecular weight and pI of the mature enzyme deduced from its amino acid sequence were 42 743 Da and 9.1, respectively. CgkS had the highest identity of 70% with κ-carrageenase (Genbank ADD92366) fromPseudoalteromonassp. LL1, and had the identity of 68% with alkaline κ-carrageenase Cgk-K142a (Genbank AB572925) fromP. tetraodonisJAM-K142. Based on the catalytic domain (Glu163-Asp165-Glu168), the enzyme is a new member of GH family 16 (Liuet al., 2013).

    3.2 Purification and Biochemical Characterization of CgkS

    Fig.1 SDS-PAGE of CgkS. LaneM, molecular weight markers; Lane 1, purified CgkS.

    The recombinant CgkS was purified to apparent homogeneity with a 69% yield by one-step affinity chro-matography, and migrated as a band of 45 kDa on SDSPAGE (Fig.1), which was in good agreement with the calculated molecular weight of fusion protein. The specific activity of the recombinant CgkS was 716.8 U mg-1, and much higher than those of the recombinant CgkZ (107.3 U mg-1) and Cgk-K142a (8.16 U mg-1). Although the natural κ-carrageenase CgkP shows a higher specific activity (1121.7 U mg-1), the application of CgkP has been limited by complex purification procedures and low yield (26.9%) (Liet al., 2013).

    CgkS showed an apparentKm of 0.15 ± 0.04 mg mL-1and aVmax of 807.6 ± 82.6 U mg-1protein. The optimal temperature of CgkS was 45℃ (Fig.2a), and 85% of the enzymatic activities remained after being incubated at 30℃ for 1 h (Fig.2b). CgkS showed the highest activity in phosphate buffer at pH 8.0 (Fig.2c) and it was stable within a range of pH 6.0-9.0 (Fig.2d).

    NaCl was not necessary for the enzymatic activity, though it enhanced the activity (Table 1). However, all of tested divalent and trivalent metal ions, such as Cu2+, Ni2+, Zn2+, Mg2+, Al3+, Fe3+, showed a significantly inhibitory effect except for Ca2+and Mn2+. The chelating agent EDTA slightly inhibited the activity of CgkS, suggesting that this enzyme is not a metalloenzyme (Bernardoet al., 2004). Detergent SDS reduced the activity of CgkS, which was the same with most κ-carrageenases reported previously. CgkS specifically hydrolyzed κ-carrageenan. No activity was observed on λ-, ι-carrageenan or agar (data not shown).

    Table 1 Effect of metal ions, chelators and detergents on the activity of CgkS

    Fig.2 Effects of pH and temperature on the activity and stability of CgkS. a) The optimal temperature of CgkS was determined by measuring the activity at various temperatures (20-70℃). b) The optimal pH of CgkS was determined measuring the activity at 45℃ in 50 mmol L-1Na2HPO4-citric acid (open rhombus), 50 mmol L-1Na2HPO4-NaH2PO4(filled circle), 100 mmol L-1Tris-HCl (open triangle) and 50 mmol L-1Gly-NaOH (filled rhombus). c) The thermostability of CgkS was studied by measuring the residual activity after the enzymes were incubated at different temperatures for 1 h in 20 mmol L-1phosphate buffer (pH 7.0). d) pH stability of CgkS. The residual activity was measured at 45℃ in 20 mmol L-1phosphate buffer (pH 8.0) after incubation from pH 4 to 9.6 with the above buffers for 6 h at 4℃. 100% activity= 22.6 U mL-1.

    3.3 Analysis of Hydrolysis Product and Pattern

    After completion of κ-carrageenan degradation by CgkS, the main products were tetrasaccharides and disaccharides by TLC analysis (Fig.3). Then the main products were purified by a Biogel-P6 column and analyzed by negative-ion electrospray ionization mass spectrometry (ESI-MS). The spectra (data not shown) showed good agreement with those of κ-carrageenan-derived neocarratetraose and neocarrahexraose, which was reported previously (Duanet al., 2010).

    Fig.3 TLC analysis of the oligosaccharides derived from κ-carrageenan. CgkS, 0.5 mL, (20 U mL-1) was incubated with 2 mL κ-carrageenan (2 g L-1in 20 mmol L-1phosphate buffer, pH 8.0) overnight at 45℃. The reaction products were separated on a HPTLC plate withn-butanol/formic acid/water (2:1:1) and color-developed. Lane M, standard mixture, κ-neocarratetraose and κ-neocarrabiose; Lane 1, κ-carrageenan; Lane 2, reaction products of κ-car- rageenan hydrolyzed by CgkS.

    Fig.4 Decrease of κ-carrageenan viscosity during enzymatic degradation. Mixtures of 5 mL CgkS (5 U mL-1) and 50 mL κ-carrageenan (2 g L-1in 20 mmol L-1phosphate buffer, pH 8.0) were incubated at 45℃ for up to 60 min. An aliquot of hydrolysis product (0.5 mL) was taken out at different times (1, 5, 10, 15, 30 and 60 min) in order to determine the viscosity and reduce the sugar. Filled circles with a solid line, the rate of viscosity; open circles with a dotted line, the absorbance at 520 nm.

    The κ-carrageenan has also been degraded into disaccharide and tetrasaccharide by the natural κ-carrageenases which are purified from the genus ofPseudoalteromonas,PseudomonasandVibrio(Liuet al., 2010). However, the end products of κ-carrageenan hydrolyzed by recombinant CgkZ are tetrasaccharides, hexasaccharides, octasaccharides, and decasaccharides (Liuet al., 2013).

    The hydrolysis pattern of CgkS was determined by viscometric assay. The viscosity rapidly decreased to 10% of the original during the first 5 min of incubation, and decreased slowly by only 5% during the later 55 min of incubation. However, the amount of reducing sugar (A520) increased steadily during the whole 60 min period (Fig.4). These results revealed that CgkS degraded κ-carrageenan in an endo-fashion.

    4 Conclusion

    The biological activities of κ-Carrageenan oligosaccharides are closely related with the degree of polymers. To prepare specific κ-carrageenan oligosaccharides for further structure-activity relationship study, it is essential to use suitable κ-carrageenases. The application of natural κ-carrageenases has been limited by complex purification procedures and low yield. The known recombinant κ-carrageenases are also not suitable for application because of low activity or complex mixture of degradation products (Liuet al., 2013; Kobayashiet al., 2012). The new recombinant κ-carrageenase CgkS exhibits a high specific activity to κ-carrageenan in the absence of NaCl, yielding κ-carrageenan-derived neocarratetraose and neocarrahexraose as the main products. Therefore, CgkS would play a significant role in further industial application of κ-carrageenan oligosaccharides.

    Acknowledgements

    The research was supported by the Key Technologies Research and Development Program of China (2013BA B01B02), National Science Foundation of China (310707 12), Special Fund for Marine Scientific Research in the Public Interest (201005024 and 201105027) and National Hightech R&D Program of China (2011AA09070304).

    Barbeyron, T., Henrissat, B., and Kloareg, B., 1994. The gene encoding the kappa-carrageenase ofAlteromonas carrageenovorais related to beta-1,3-1,4-glucanases.Gene, 139: 105-109.

    Bernardo, R. Z., Yuridia, M. F., César, H. R., and Lourdes, V. T., 2004. Puri fi cation and characterization of lysine amino peptidase fromKluyveromyces marxiamus.Fems Microbiology Letters, 235: 369-375.

    Campo, V. L., Kawano, D. F., Silva, D. B., and Carvalho, L., 2009. Carrageenans: Biological properties, chemical modi fi cations and structural analysis - A review.Carbohydrate Polymers, 77: 167-180.

    Cantarel, B. L., Coutinho, P. M., Rancurel, C., Bernard, T., Lombard, V., and Henrissat, B., 2009. The Carbohydrate- Ac-tive EnZymes database (CAZy): An expert resource for glycogenomics.Nucleic Acids Research, 37: 233-238.

    Duan, G. F., Su, B., Han, F., and Yu, W. G., 2010. Purification and characterization of a κ-carrageenase from marinePseudoalteromonassp. QY202.Journal of Ocean University of China, 40: 95-100.

    Hu, T., Li, C. X., Zhao, X., Li, G. S., Yu, G. L., and Guan, H. S., 2013. Preparation and characterization of guluronic acid oligosaccharides degraded by a rapid microwave irradiation method.Carbohydrate Polymers, 373: 53-58.

    Kobayashi, T., Uchimura, K., Miyazaki, M., Nogi, Y., and Horikoshi, K., 2009. A new high-alkaline alginate lyase from a deep-sea bacteriumAgarivoranssp.Extremophiles, 13:121-129.

    Kobayashi, T., Uchimura, K., Koide, O., Deguchi, S., and Horikoshi, K., 2012. Genetic and biochemical characterization of thePseudoalteromonas tetraodonisalkaline κ-carrageenase.Bioscience Biotechnology and Biochemistry, 76:506-511.

    Li, S. Y., Jia, P. P., Wang, L. N., Yu, W. G., and Han, F., 2013. Purification and characterization of a new thermostable κ-carrageenase from the marine bacteriumPseudoalteromonassp. QY203.Journal of Ocean University of China, 12:155-159.

    Liu, Z. M., Li, G. Y., Mo, Z. L., and Mou, H. J., 2013. Molecular cloning, characterization, and heterologous expression of a new κ-carrageenase gene from marine bacteriumZobelliasp. ZM-2.Applied Microbiology and Biotechnology, l97: 10057-10067.

    Ma, S., Tan, Y. L., Yu, W. G., and Han, F., 2013. Cloning, expression and characterization of a new ι-carrageenase from marine bacterium,Cellulophagasp.Biotechnology Letters, 35: 1617-1622.

    Mou, H., Jiang, X. L., and Guan, H. S., 2003. A κ-carrageenan derived oligosaccharide prepared by enzymatic degradation containing anti-tumor activity.Journal of Applied Phycology, 15: 297-303.

    Potin, P., Sanseau, A., Gall, Y., Rochas, C., and Kloareg, B., 1991. Purification and characterization of a new kappa-carrageenase from a marineCytophaga-like bacterium.European Journal of Biochemistry, 201: 241-247.

    Sun, F. X., Ma, Y. X., Wang, Y., and Liu, Q., 2010. Purification and characterization of novel κ-carrageenase from marineTamlanasp. HC4.Chinese Journal of Oceanology and Limnology, 28: 1139-1145.

    Tan, G. H., Gao, Y., Shi, M., Zhang, X. Y., He, S. P., Chen, Z. L., and An, C. C., 2005. SiteFinding-PCR: A simple and efficient PCR method for chromosome walking.Nucleic Acids Research, 33: e122.

    Yao, Z., Wang, F. F., Gao, Z., Jin, L. M., and Wu, H. J., 2013. Characterization of a κ-carrageenase from marineCellulophaga lyticastrain N5-2 and analysis of its degradation products.International Journal of Molecular Sciences, 14:24592-24602.

    Yuan, H., Songa, J., Li, X.G., Li, N., and Dai, J., 2006. Immunomodulation and antitumor activity of κ-carrageenan oligosaccharides.Cancer Letters, 243: 228-234.

    (Edited by Ji Dechun)

    (Received July 10, 2014; revised February 29, 2015; accepted March 21, 2015)

    ? Ocean University of China, Science Press and Springer-Verlag Berlin Heidelberg 2015

    * Corresponding author. Tel: 0086-532-82032067 E-mail: gongqh@ouc.edu.cn

    欧美日韩视频高清一区二区三区二| 波多野结衣av一区二区av| 国产成人免费无遮挡视频| 高清av免费在线| 少妇被粗大猛烈的视频| 国产精品国产三级专区第一集| 男女下面插进去视频免费观看| 永久网站在线| videosex国产| 蜜桃在线观看..| 国产日韩欧美在线精品| 午夜福利视频在线观看免费| 韩国精品一区二区三区| 国产精品蜜桃在线观看| 美女xxoo啪啪120秒动态图| 亚洲av福利一区| 精品国产乱码久久久久久小说| 免费观看a级毛片全部| 男人操女人黄网站| 制服丝袜香蕉在线| 中文字幕人妻丝袜制服| 制服丝袜香蕉在线| 成人毛片a级毛片在线播放| 男的添女的下面高潮视频| 男女免费视频国产| 亚洲第一区二区三区不卡| 狠狠婷婷综合久久久久久88av| 美女脱内裤让男人舔精品视频| 国产有黄有色有爽视频| 精品国产一区二区三区久久久樱花| 日本-黄色视频高清免费观看| 色网站视频免费| 国产高清不卡午夜福利| 久久女婷五月综合色啪小说| 中文字幕人妻丝袜一区二区 | 国产爽快片一区二区三区| 女的被弄到高潮叫床怎么办| 中文字幕制服av| 天天躁夜夜躁狠狠躁躁| 国产欧美日韩一区二区三区在线| 香蕉精品网在线| 国产成人欧美| 久热久热在线精品观看| 纯流量卡能插随身wifi吗| 中文字幕亚洲精品专区| 18禁动态无遮挡网站| 妹子高潮喷水视频| 麻豆精品久久久久久蜜桃| 午夜激情av网站| 激情视频va一区二区三区| 飞空精品影院首页| 另类精品久久| 亚洲精品国产av蜜桃| 熟妇人妻不卡中文字幕| 精品亚洲乱码少妇综合久久| 伊人久久国产一区二区| 亚洲三级黄色毛片| 午夜福利乱码中文字幕| 精品亚洲乱码少妇综合久久| 九九爱精品视频在线观看| 伊人久久大香线蕉亚洲五| 精品亚洲成a人片在线观看| 精品亚洲成国产av| 国产无遮挡羞羞视频在线观看| 大香蕉久久网| 久热这里只有精品99| 青春草国产在线视频| 色婷婷久久久亚洲欧美| 丝袜美足系列| 国精品久久久久久国模美| 久久ye,这里只有精品| 中文字幕最新亚洲高清| 亚洲美女视频黄频| 天天操日日干夜夜撸| 亚洲成av片中文字幕在线观看 | 国产精品久久久久久精品古装| 国产精品成人在线| 亚洲视频免费观看视频| 九色亚洲精品在线播放| 日韩,欧美,国产一区二区三区| 国产亚洲精品第一综合不卡| 国产亚洲精品第一综合不卡| 久久国产精品男人的天堂亚洲| 欧美av亚洲av综合av国产av | 国产野战对白在线观看| 久久av网站| 久久久久国产网址| 女性生殖器流出的白浆| 国产在线视频一区二区| 日韩熟女老妇一区二区性免费视频| 亚洲精品美女久久av网站| 香蕉丝袜av| 人成视频在线观看免费观看| 免费人妻精品一区二区三区视频| 欧美日韩视频精品一区| 亚洲熟女精品中文字幕| 一区二区av电影网| 国产片内射在线| 91在线精品国自产拍蜜月| 我的亚洲天堂| 王馨瑶露胸无遮挡在线观看| 黄色视频在线播放观看不卡| 成人二区视频| 老熟女久久久| 丝袜人妻中文字幕| 亚洲精品,欧美精品| 最黄视频免费看| 国产精品人妻久久久影院| 国产精品 欧美亚洲| 日韩成人av中文字幕在线观看| 嫩草影院入口| 久久久久网色| 欧美成人精品欧美一级黄| 国产亚洲av片在线观看秒播厂| 青春草视频在线免费观看| 亚洲精品一二三| 成人免费观看视频高清| 满18在线观看网站| 亚洲天堂av无毛| 中国三级夫妇交换| 久久午夜综合久久蜜桃| 国产av国产精品国产| 中文字幕精品免费在线观看视频| 亚洲欧美一区二区三区国产| 热re99久久精品国产66热6| 亚洲美女搞黄在线观看| 久久婷婷青草| 日韩熟女老妇一区二区性免费视频| 精品福利永久在线观看| 午夜av观看不卡| 菩萨蛮人人尽说江南好唐韦庄| 大码成人一级视频| 亚洲av电影在线观看一区二区三区| 精品少妇内射三级| 久久久久网色| 久久久久久久大尺度免费视频| 少妇精品久久久久久久| 秋霞伦理黄片| 人人妻人人爽人人添夜夜欢视频| 色94色欧美一区二区| 寂寞人妻少妇视频99o| 制服诱惑二区| 中国三级夫妇交换| 9色porny在线观看| 我要看黄色一级片免费的| 97精品久久久久久久久久精品| 欧美成人午夜免费资源| 国产日韩欧美在线精品| 不卡视频在线观看欧美| 欧美日韩一区二区视频在线观看视频在线| 街头女战士在线观看网站| 女人精品久久久久毛片| 日韩大片免费观看网站| 成年女人毛片免费观看观看9 | 哪个播放器可以免费观看大片| 亚洲伊人久久精品综合| 国产激情久久老熟女| 亚洲精品av麻豆狂野| 亚洲欧美一区二区三区国产| 伊人久久国产一区二区| 欧美黄色片欧美黄色片| 国产成人精品久久二区二区91 | 精品一区二区三卡| 18禁国产床啪视频网站| 99国产综合亚洲精品| 久久99蜜桃精品久久| 日韩中文字幕视频在线看片| 午夜免费鲁丝| 亚洲五月色婷婷综合| 亚洲伊人色综图| 人人妻人人爽人人添夜夜欢视频| 寂寞人妻少妇视频99o| 看非洲黑人一级黄片| 国产精品欧美亚洲77777| 亚洲国产欧美网| 999精品在线视频| 欧美在线黄色| av有码第一页| 天天躁夜夜躁狠狠久久av| 日韩一卡2卡3卡4卡2021年| 国产亚洲最大av| 色播在线永久视频| 一边摸一边做爽爽视频免费| 97在线人人人人妻| 欧美+日韩+精品| 亚洲精品自拍成人| 国产一区亚洲一区在线观看| xxxhd国产人妻xxx| 久久久久国产精品人妻一区二区| 晚上一个人看的免费电影| 午夜福利乱码中文字幕| 日本免费在线观看一区| 久久免费观看电影| av在线观看视频网站免费| 18禁裸乳无遮挡动漫免费视频| 久久久久人妻精品一区果冻| 又黄又粗又硬又大视频| 中文字幕制服av| kizo精华| 亚洲国产精品一区二区三区在线| 久久99蜜桃精品久久| www.精华液| 不卡av一区二区三区| 熟妇人妻不卡中文字幕| 亚洲成av片中文字幕在线观看 | 少妇的丰满在线观看| 国精品久久久久久国模美| 久久久精品区二区三区| 亚洲三级黄色毛片| 欧美xxⅹ黑人| 国产97色在线日韩免费| 一区二区三区四区激情视频| 日韩成人av中文字幕在线观看| 中文乱码字字幕精品一区二区三区| 韩国精品一区二区三区| 久久久久国产网址| 国产精品国产三级专区第一集| 日韩中文字幕视频在线看片| 王馨瑶露胸无遮挡在线观看| 亚洲精品在线美女| 考比视频在线观看| 国产成人精品久久久久久| 国产精品秋霞免费鲁丝片| 色视频在线一区二区三区| 日韩一区二区三区影片| 国产色婷婷99| 香蕉丝袜av| 亚洲国产av影院在线观看| 黄色毛片三级朝国网站| 丝袜在线中文字幕| 欧美激情 高清一区二区三区| 久久99一区二区三区| 亚洲国产欧美在线一区| 丰满少妇做爰视频| 黄色 视频免费看| 久久久久精品人妻al黑| 香蕉国产在线看| 国产人伦9x9x在线观看 | 午夜福利在线免费观看网站| 制服诱惑二区| 久久热在线av| 麻豆精品久久久久久蜜桃| 午夜福利乱码中文字幕| 免费观看av网站的网址| 国产一区二区在线观看av| 国产1区2区3区精品| 免费看av在线观看网站| 少妇的逼水好多| 国产成人精品久久二区二区91 | 丝袜人妻中文字幕| 久久综合国产亚洲精品| 国产男女内射视频| 啦啦啦在线免费观看视频4| 新久久久久国产一级毛片| 久久久亚洲精品成人影院| 久久久久久久久免费视频了| 久久精品国产鲁丝片午夜精品| 亚洲国产精品一区二区三区在线| 欧美中文综合在线视频| 丰满饥渴人妻一区二区三| 不卡视频在线观看欧美| 桃花免费在线播放| 精品少妇一区二区三区视频日本电影 | 人体艺术视频欧美日本| 精品久久蜜臀av无| www日本在线高清视频| 国产成人一区二区在线| 搡女人真爽免费视频火全软件| 老司机亚洲免费影院| 欧美+日韩+精品| 精品一区二区三区四区五区乱码 | 久久女婷五月综合色啪小说| 女人精品久久久久毛片| 五月天丁香电影| 久久久精品免费免费高清| 91aial.com中文字幕在线观看| 亚洲国产最新在线播放| 青春草视频在线免费观看| 老鸭窝网址在线观看| 成人影院久久| 国产成人aa在线观看| 日韩电影二区| 国产成人aa在线观看| 亚洲第一av免费看| 中文字幕人妻丝袜制服| 亚洲国产av新网站| 国产1区2区3区精品| 三上悠亚av全集在线观看| 国产一区二区激情短视频 | 五月伊人婷婷丁香| 天美传媒精品一区二区| 国产精品久久久久久久久免| 老汉色∧v一级毛片| 亚洲美女视频黄频| 人人妻人人添人人爽欧美一区卜| 春色校园在线视频观看| 国产无遮挡羞羞视频在线观看| 亚洲av电影在线进入| 国产极品天堂在线| 精品国产国语对白av| 女人高潮潮喷娇喘18禁视频| 久久国产精品大桥未久av| 爱豆传媒免费全集在线观看| 亚洲欧美日韩另类电影网站| 巨乳人妻的诱惑在线观看| 黄色一级大片看看| 久久免费观看电影| 2018国产大陆天天弄谢| 亚洲欧美精品综合一区二区三区 | 1024视频免费在线观看| 青青草视频在线视频观看| 久久久久久久国产电影| 亚洲经典国产精华液单| 自拍欧美九色日韩亚洲蝌蚪91| 人妻少妇偷人精品九色| 日韩欧美一区视频在线观看| 一级,二级,三级黄色视频| 国产综合精华液| 亚洲伊人色综图| 午夜福利网站1000一区二区三区| 亚洲欧洲精品一区二区精品久久久 | 成人免费观看视频高清| 国产 一区精品| 久久综合国产亚洲精品| 国产精品久久久久久久久免| 亚洲人成77777在线视频| 各种免费的搞黄视频| 美女国产高潮福利片在线看| 18+在线观看网站| 波多野结衣一区麻豆| 久久精品国产综合久久久| 男人添女人高潮全过程视频| 亚洲精品日韩在线中文字幕| 黄色怎么调成土黄色| 午夜福利视频在线观看免费| av网站免费在线观看视频| 久久精品久久精品一区二区三区| 亚洲图色成人| 天堂中文最新版在线下载| 中文字幕最新亚洲高清| 亚洲av在线观看美女高潮| 亚洲精品aⅴ在线观看| 国产精品女同一区二区软件| 晚上一个人看的免费电影| 99国产综合亚洲精品| 国产人伦9x9x在线观看 | 亚洲av中文av极速乱| 91在线精品国自产拍蜜月| 国产亚洲av片在线观看秒播厂| 天天躁夜夜躁狠狠久久av| 看免费av毛片| 欧美av亚洲av综合av国产av | 波多野结衣一区麻豆| 99九九在线精品视频| 成年女人在线观看亚洲视频| 青草久久国产| 精品国产国语对白av| 久久精品aⅴ一区二区三区四区 | 久久ye,这里只有精品| 成年av动漫网址| 寂寞人妻少妇视频99o| 国产精品女同一区二区软件| 久久精品国产亚洲av天美| 亚洲av日韩在线播放| 97在线视频观看| www.自偷自拍.com| 老鸭窝网址在线观看| 日日摸夜夜添夜夜爱| 欧美变态另类bdsm刘玥| 国产国语露脸激情在线看| 下体分泌物呈黄色| 久久久久久久久久久免费av| 多毛熟女@视频| 午夜精品国产一区二区电影| 免费女性裸体啪啪无遮挡网站| 国产片内射在线| 久久精品国产鲁丝片午夜精品| 丝袜人妻中文字幕| 卡戴珊不雅视频在线播放| 秋霞伦理黄片| 国产精品秋霞免费鲁丝片| 777久久人妻少妇嫩草av网站| 免费高清在线观看日韩| 国产高清国产精品国产三级| 免费黄网站久久成人精品| 老鸭窝网址在线观看| 亚洲婷婷狠狠爱综合网| 亚洲三级黄色毛片| av福利片在线| 五月天丁香电影| 日韩,欧美,国产一区二区三区| 亚洲人成电影观看| 久久热在线av| 国产野战对白在线观看| 欧美亚洲 丝袜 人妻 在线| 亚洲 欧美一区二区三区| 日韩中文字幕欧美一区二区 | 中文字幕人妻熟女乱码| 99久久精品国产国产毛片| 伦精品一区二区三区| 一本色道久久久久久精品综合| 一级黄片播放器| 丝袜美腿诱惑在线| 黑人欧美特级aaaaaa片| 精品亚洲成国产av| 大香蕉久久成人网| 国产在视频线精品| 久久久久国产网址| 久久ye,这里只有精品| 午夜福利视频在线观看免费| 大香蕉久久成人网| 一本久久精品| 精品人妻熟女毛片av久久网站| 国产精品 欧美亚洲| 精品亚洲成a人片在线观看| 青草久久国产| 男人爽女人下面视频在线观看| 中文字幕人妻丝袜一区二区 | 国产精品人妻久久久影院| 久久久久久久大尺度免费视频| 老鸭窝网址在线观看| 王馨瑶露胸无遮挡在线观看| 亚洲欧美成人精品一区二区| 爱豆传媒免费全集在线观看| 中文字幕亚洲精品专区| 欧美亚洲 丝袜 人妻 在线| 成年人午夜在线观看视频| 成人免费观看视频高清| 黑人猛操日本美女一级片| 精品亚洲成国产av| 青草久久国产| 久久久久久久精品精品| 国产日韩欧美亚洲二区| 日本午夜av视频| 99热全是精品| 久久人妻熟女aⅴ| 国产一区二区 视频在线| 午夜影院在线不卡| 国产极品粉嫩免费观看在线| 又黄又粗又硬又大视频| 久久鲁丝午夜福利片| 国产精品三级大全| 国产一区有黄有色的免费视频| 观看av在线不卡| 少妇 在线观看| 天堂中文最新版在线下载| 亚洲国产欧美网| 亚洲精品久久成人aⅴ小说| 成人国产麻豆网| 亚洲三区欧美一区| 天堂中文最新版在线下载| 王馨瑶露胸无遮挡在线观看| 老汉色av国产亚洲站长工具| 又粗又硬又长又爽又黄的视频| 伊人久久国产一区二区| 日韩精品免费视频一区二区三区| 色网站视频免费| 亚洲欧洲精品一区二区精品久久久 | av在线老鸭窝| 欧美精品一区二区免费开放| 九色亚洲精品在线播放| 最近中文字幕2019免费版| 校园人妻丝袜中文字幕| 国产精品国产av在线观看| 高清av免费在线| 丁香六月天网| 亚洲欧美成人综合另类久久久| 激情视频va一区二区三区| 亚洲激情五月婷婷啪啪| 国产精品嫩草影院av在线观看| 成人亚洲精品一区在线观看| 日韩成人av中文字幕在线观看| 午夜免费男女啪啪视频观看| 爱豆传媒免费全集在线观看| 久久精品国产a三级三级三级| 成人黄色视频免费在线看| 黄网站色视频无遮挡免费观看| a级毛片在线看网站| 国产精品久久久久久精品电影小说| 在线天堂最新版资源| 午夜福利视频精品| 在线精品无人区一区二区三| 国产精品 欧美亚洲| 天天影视国产精品| 色吧在线观看| www.自偷自拍.com| 欧美日韩视频精品一区| 久久精品久久久久久久性| 国产精品 国内视频| 五月天丁香电影| 国产精品av久久久久免费| 久久精品久久精品一区二区三区| 午夜免费观看性视频| 久久久久国产一级毛片高清牌| 久久久久久久大尺度免费视频| 免费女性裸体啪啪无遮挡网站| 中文字幕最新亚洲高清| 免费黄网站久久成人精品| 亚洲一码二码三码区别大吗| 青春草亚洲视频在线观看| 久久久久久人妻| 国产成人精品无人区| 国产精品女同一区二区软件| 亚洲少妇的诱惑av| 日韩一本色道免费dvd| 久久韩国三级中文字幕| 美女中出高潮动态图| 国产精品一国产av| 不卡av一区二区三区| 高清视频免费观看一区二区| 亚洲av成人精品一二三区| 国产 精品1| 性高湖久久久久久久久免费观看| xxx大片免费视频| 国产无遮挡羞羞视频在线观看| 香蕉丝袜av| 精品第一国产精品| 极品少妇高潮喷水抽搐| 一区二区三区精品91| 国精品久久久久久国模美| 亚洲精品久久成人aⅴ小说| 久久精品国产自在天天线| 热99国产精品久久久久久7| 十八禁网站网址无遮挡| 777米奇影视久久| 日本欧美视频一区| 亚洲av福利一区| 男女无遮挡免费网站观看| 色哟哟·www| 亚洲人成网站在线观看播放| 色哟哟·www| 久久久欧美国产精品| 久久ye,这里只有精品| 熟女av电影| 久久综合国产亚洲精品| 国产精品不卡视频一区二区| 国产综合精华液| 老汉色av国产亚洲站长工具| 久久久久久久精品精品| 亚洲精品美女久久av网站| 啦啦啦视频在线资源免费观看| av有码第一页| 亚洲婷婷狠狠爱综合网| 免费高清在线观看日韩| 婷婷色综合www| 在线看a的网站| av女优亚洲男人天堂| 一级,二级,三级黄色视频| 一二三四在线观看免费中文在| 亚洲精品日韩在线中文字幕| 麻豆乱淫一区二区| 国产 一区精品| 三上悠亚av全集在线观看| 亚洲综合色惰| 欧美精品高潮呻吟av久久| 在线观看三级黄色| 一区福利在线观看| 男女国产视频网站| 亚洲,欧美精品.| 色视频在线一区二区三区| 国产欧美亚洲国产| 大片免费播放器 马上看| 精品国产乱码久久久久久男人| 亚洲四区av| 麻豆av在线久日| 黄网站色视频无遮挡免费观看| 99热国产这里只有精品6| 女人高潮潮喷娇喘18禁视频| 亚洲成国产人片在线观看| 青春草视频在线免费观看| 精品一区在线观看国产| 亚洲,欧美精品.| 黄色怎么调成土黄色| 女性生殖器流出的白浆| 午夜福利影视在线免费观看| 在线看a的网站| 黄色视频在线播放观看不卡| 婷婷色麻豆天堂久久| 婷婷色av中文字幕| 精品一区二区三区四区五区乱码 | 麻豆av在线久日| 超碰97精品在线观看| 久久精品国产自在天天线| 久久久a久久爽久久v久久| 日韩av免费高清视频| 秋霞伦理黄片| 一级毛片电影观看| 国产成人一区二区在线| 久久精品久久精品一区二区三区| 成年人免费黄色播放视频| 精品卡一卡二卡四卡免费| 国产免费福利视频在线观看| 久久人人爽人人片av| 久久99蜜桃精品久久| 日韩制服丝袜自拍偷拍| xxx大片免费视频| 少妇被粗大的猛进出69影院| 人人妻人人添人人爽欧美一区卜| videosex国产| 我要看黄色一级片免费的| 美女大奶头黄色视频| 国产精品国产三级国产专区5o| 美女主播在线视频| 精品亚洲乱码少妇综合久久| 啦啦啦在线观看免费高清www| 另类亚洲欧美激情| 久久99热这里只频精品6学生| 国产男女超爽视频在线观看| 男人爽女人下面视频在线观看| 欧美日韩成人在线一区二区| 三上悠亚av全集在线观看| 国产精品亚洲av一区麻豆 | 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 看免费av毛片| 欧美激情高清一区二区三区 |