• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A New κ-Carrageenase CgkS from Marine Bacterium Shewanella sp. Kz7

    2015-06-01 09:24:20WANGLinnaLIShangyongZHANGShilongLIJiejingYUWengongandGONGQianhong
    Journal of Ocean University of China 2015年4期

    WANG Linna, LI Shangyong, ZHANG Shilong, LI Jiejing, YU Wengong, and GONG Qianhong

    Key Laboratory of Marine Drugs of Chinese Ministry of Education,Shandong Provincial Key Laboratory of Glycoscience & Glycotechnology,School of Medicine and Pharmacy,Ocean University of China,Qingdao266003,P. R. China

    A New κ-Carrageenase CgkS from Marine Bacterium Shewanella sp. Kz7

    WANG Linna, LI Shangyong, ZHANG Shilong, LI Jiejing, YU Wengong, and GONG Qianhong*

    Key Laboratory of Marine Drugs of Chinese Ministry of Education,Shandong Provincial Key Laboratory of Glycoscience & Glycotechnology,School of Medicine and Pharmacy,Ocean University of China,Qingdao266003,P. R. China

    A new κ-carrageenase genecgkSwas cloned from marine bacteriumShewanellasp. Kz7 by using degenerate and site-finding PCR. The gene was comprised of an open reading frame of 1224 bp, encoding 407 amino acid residues, with a signal peptide of 24 residues. Based on the deduced amino acid sequence, the κ-carrageenase CgkS was classified into the Glycoside Hydrolase family 16. ThecgkSgene was expressed inEscherichia coli, and the recombinant enzyme was purified to homogeneity with a specific activity of 716.8 U mg-1and a yield of 69%. Recombinant CgkS was most active at 45℃ and pH 8.0. It was stable at pH 6.0-9.0 and below 30℃. The enzyme did not require NaCl for activity, although its activity was enhanced by NaCl. CgkS degraded κ-carrageenan in an endo-fashion releasing tetrasaccharides and disaccharides as main hydrolysis products.

    κ-Carrageenan; cloning; characterization; oligosaccharide;Shewanella

    1 Introduction

    Carrageenans are linear sulfated galactans extracted from red seaweeds and share a common backbone of D-galactose with alternating α (1-3) and β (1-4) linkages (Yaoet al., 2013). Depending on the presence of a 3,6-anhydro bridge in the β-l,4-linked galactose residue and on the position and number of sulfate substituents, they are referred to as κ-, ι-, or λ-carrageenans (Campoet al., 2009).

    Three types of hydrolases, which degrade κ-, ι-, and λ-carrageenans at β-l,4-linkages are named as κ-, ι-, and λ-carrageenases respectively, and belong to different glycoside hydrolase (GH) families in the carbohydrate-active enzymes (CAZy) database (Cantarelet al., 2009). κ-Carrageenases belongs to GH family 16, and cleave κ-carrageenans yielding oligogalactans of the neocarrabiose series. The κ-carrageenan-derived sulfated oligosaccharides have been reported to have anti-viral, anti-tumor anti-inflammation, anti-oxidant and immunolo-regulation activities (Mouet al., 2003; Yuanet al., 2006). κ-Carrageenase could be used as a powerful tool to prepare specific κ-carrageenan oligosaccharides for further study on biological activity-structure relationship and industrial exploitation (Sunet al., 2010). Most of κ-carrageenaseswhich have been characterized were purified from marine wild type bacteria strains (Potinet al., 1991; Barbeyronet al., 1994; Liet al., 2013). The application of natural κ-carrageenases has been limited by complex purification procedures and low yield. Heterologous expression is an efficient way of enhancing enzyme production and the recombinant enzymes can be purified by one-step affinity chromatography with a high yield. But very few recombinant κ-carrageenases have been studied. The recombinant Cgk-K142a fromPseudoalteromonas tetraodonisJAM-K142 has showed very low activity (Kobayashiet al., 2012). The end products of κ-carrageenan hydrolyzed by recombinant CgkZ fromZobelliasp. ZM-2 are complex mixtures and hard to separate (Liuet al., 2013). Therefore, it is essential and important to find new recombinant κ-carrageenase suitable for industrial production and purification of oligosaccharides.

    Here, we cloned and expressed a new κ-carrageenase CgkS fromShewanellasp. Kz7. It degraded κ-carrageenan, yielding κ-carrageenan tetrasaccharides and disaccharides as the main products with a high specific activity of 716.8 U mg-1.

    2 Materials and Methods

    2.1 Strain and Oligonucleotides

    Shewanellasp. Kz7 was isolated from sea mud collected along the coastal zone of Jiaozhou Bay, Qingdao,China, and preserved in China Center for Type Culture Collection (CCTCC) under the accession number AB 2014040. Oligonucleotides used for the gene cloning and expression of CgkS are shown in Table 1.

    2.2 Cloning of the κ-Carrageenase Gene and Sequence Analysis

    Degenerate primers (CgkS-F, CgkS-R) were designed according to the conserved sequences of GH family 16 κ-carrageenases to amplify the partial sequence of κ-carrageenase gene. A 690-bp DNA fragment was obtained and sequenced. The flanking sequences were obtained using the SiteFinding-PCR method (Tanet al., 2005) with nine nested specific primers (SFP1&2&3, Down-CgkS-sf-sF1&2&3, Up-CgkS-sf-asF1&2&3). The signal peptide was predicted using SignalP 4.0 server (http://www. cbs.dtu.dk/ services/SignalP). Theoretical molecular weight and isoelectric point (pI) were then calculated using Compute pI/Mw tool (http://us.expasy.org/tools/pi_tool. html).

    2.3 Expression and Purification of Recombinant CgkS

    For expression of His-tagged CgkS, the DNA fragment containingcgkSgene without signal sequence and stop codon was amplified using the primers (CgkS-EF and CgkS-ER), and then ligated into theNdeI andXhoI sites of expression plasmid pET28a (Novagen, USA). The resulting expression plasmid pET28-cgkS was transformed into the expression strainE.coliBL21 (DE3). Protein expression was induced at OD600of 0.8 with 0.5 mmol L-1isopropyl-β-thiogalactoside (IPTG) for 36 h at 25℃ and 100 r min-1in LB medium containing 30 μg kanamycin mL-1. Cells were harvested and disrupted by sonication, and then cell debris and unbroken cell were removed by centrifuge. The recombinant CgkS was purified from the soluble fraction using a Ni-Sepharose column. The purity and molecular weight of purified CgkS were determined by SDS-PAGE on a 10% resolving gel.

    2.4 κ-Carrageenase Activity Assay and Protein Determination

    κ-Carrageenase activity was measured by using the 3,5-dinitrosalicylic acid (DNS) method. The enzymatic hydrolysis reaction was conducted in 20 mmolL-1phosphate buffer (pH 8.0) containing 0.2% (w/v) κ-carrageenan (Sigma) at 45℃ for 10 min. One unit (1 U) of enzyme activity was defined as the amount of enzyme that released 1 μmol reducing sugar (measured as D-galactose) per minute under the above conditions. The protein concentration was measured using the method of Bradford with bovine serum albumin as the standard.

    2.5 Determination of Kinetic Parameters

    Initial velocities were determined in the standard assay mixture at 20 mmolL-1phosphate buffer (pH 8.0). The kinetic parameters of CgkS were measured by using ten different concentrations of κ-carrageenan (ranging from 0.1 to 5 mg mL-1). TheKmandVmaxwere then analyzed by using Lineweaver-Burk methods.

    2.6 Analysis of Hydrolysis Product and Pattern of CgkS

    The reaction mixture containing 0.5 mL (10 U) purified enzyme and 2 mL κ-carrageenan (2 g κ-carrageenan L-1) in 20 mmolL-1phosphate buffer (pH 8.0) was incubated overnight at 45℃, then the hydrolysis products were analyzed by thin layer chromatography (TLC) (Huet al., 2013). To determine the hydrolysis pattern, the reducing sugars were monitored by DNS method, and the relative viscosity was measured by a viscometer at time intervals as described previously by Kobayashiet al. (2009).

    2.7 Nucleotide Sequence Accession Numbers

    The nucleotide sequence forcgkSwas deposited in GenBank under the accession number KJ000056.

    3 Results and Discussion

    3.1 Cloning and Sequence Analysis of the κ-Carrageenase Gene

    The κ-carrageenase gene,cgkS, consisted of an open reading frame of 1224 bp, encoding 407 amino acid residues, including a signal peptide of 24 residues. The molecular weight and pI of the mature enzyme deduced from its amino acid sequence were 42 743 Da and 9.1, respectively. CgkS had the highest identity of 70% with κ-carrageenase (Genbank ADD92366) fromPseudoalteromonassp. LL1, and had the identity of 68% with alkaline κ-carrageenase Cgk-K142a (Genbank AB572925) fromP. tetraodonisJAM-K142. Based on the catalytic domain (Glu163-Asp165-Glu168), the enzyme is a new member of GH family 16 (Liuet al., 2013).

    3.2 Purification and Biochemical Characterization of CgkS

    Fig.1 SDS-PAGE of CgkS. LaneM, molecular weight markers; Lane 1, purified CgkS.

    The recombinant CgkS was purified to apparent homogeneity with a 69% yield by one-step affinity chro-matography, and migrated as a band of 45 kDa on SDSPAGE (Fig.1), which was in good agreement with the calculated molecular weight of fusion protein. The specific activity of the recombinant CgkS was 716.8 U mg-1, and much higher than those of the recombinant CgkZ (107.3 U mg-1) and Cgk-K142a (8.16 U mg-1). Although the natural κ-carrageenase CgkP shows a higher specific activity (1121.7 U mg-1), the application of CgkP has been limited by complex purification procedures and low yield (26.9%) (Liet al., 2013).

    CgkS showed an apparentKm of 0.15 ± 0.04 mg mL-1and aVmax of 807.6 ± 82.6 U mg-1protein. The optimal temperature of CgkS was 45℃ (Fig.2a), and 85% of the enzymatic activities remained after being incubated at 30℃ for 1 h (Fig.2b). CgkS showed the highest activity in phosphate buffer at pH 8.0 (Fig.2c) and it was stable within a range of pH 6.0-9.0 (Fig.2d).

    NaCl was not necessary for the enzymatic activity, though it enhanced the activity (Table 1). However, all of tested divalent and trivalent metal ions, such as Cu2+, Ni2+, Zn2+, Mg2+, Al3+, Fe3+, showed a significantly inhibitory effect except for Ca2+and Mn2+. The chelating agent EDTA slightly inhibited the activity of CgkS, suggesting that this enzyme is not a metalloenzyme (Bernardoet al., 2004). Detergent SDS reduced the activity of CgkS, which was the same with most κ-carrageenases reported previously. CgkS specifically hydrolyzed κ-carrageenan. No activity was observed on λ-, ι-carrageenan or agar (data not shown).

    Table 1 Effect of metal ions, chelators and detergents on the activity of CgkS

    Fig.2 Effects of pH and temperature on the activity and stability of CgkS. a) The optimal temperature of CgkS was determined by measuring the activity at various temperatures (20-70℃). b) The optimal pH of CgkS was determined measuring the activity at 45℃ in 50 mmol L-1Na2HPO4-citric acid (open rhombus), 50 mmol L-1Na2HPO4-NaH2PO4(filled circle), 100 mmol L-1Tris-HCl (open triangle) and 50 mmol L-1Gly-NaOH (filled rhombus). c) The thermostability of CgkS was studied by measuring the residual activity after the enzymes were incubated at different temperatures for 1 h in 20 mmol L-1phosphate buffer (pH 7.0). d) pH stability of CgkS. The residual activity was measured at 45℃ in 20 mmol L-1phosphate buffer (pH 8.0) after incubation from pH 4 to 9.6 with the above buffers for 6 h at 4℃. 100% activity= 22.6 U mL-1.

    3.3 Analysis of Hydrolysis Product and Pattern

    After completion of κ-carrageenan degradation by CgkS, the main products were tetrasaccharides and disaccharides by TLC analysis (Fig.3). Then the main products were purified by a Biogel-P6 column and analyzed by negative-ion electrospray ionization mass spectrometry (ESI-MS). The spectra (data not shown) showed good agreement with those of κ-carrageenan-derived neocarratetraose and neocarrahexraose, which was reported previously (Duanet al., 2010).

    Fig.3 TLC analysis of the oligosaccharides derived from κ-carrageenan. CgkS, 0.5 mL, (20 U mL-1) was incubated with 2 mL κ-carrageenan (2 g L-1in 20 mmol L-1phosphate buffer, pH 8.0) overnight at 45℃. The reaction products were separated on a HPTLC plate withn-butanol/formic acid/water (2:1:1) and color-developed. Lane M, standard mixture, κ-neocarratetraose and κ-neocarrabiose; Lane 1, κ-carrageenan; Lane 2, reaction products of κ-car- rageenan hydrolyzed by CgkS.

    Fig.4 Decrease of κ-carrageenan viscosity during enzymatic degradation. Mixtures of 5 mL CgkS (5 U mL-1) and 50 mL κ-carrageenan (2 g L-1in 20 mmol L-1phosphate buffer, pH 8.0) were incubated at 45℃ for up to 60 min. An aliquot of hydrolysis product (0.5 mL) was taken out at different times (1, 5, 10, 15, 30 and 60 min) in order to determine the viscosity and reduce the sugar. Filled circles with a solid line, the rate of viscosity; open circles with a dotted line, the absorbance at 520 nm.

    The κ-carrageenan has also been degraded into disaccharide and tetrasaccharide by the natural κ-carrageenases which are purified from the genus ofPseudoalteromonas,PseudomonasandVibrio(Liuet al., 2010). However, the end products of κ-carrageenan hydrolyzed by recombinant CgkZ are tetrasaccharides, hexasaccharides, octasaccharides, and decasaccharides (Liuet al., 2013).

    The hydrolysis pattern of CgkS was determined by viscometric assay. The viscosity rapidly decreased to 10% of the original during the first 5 min of incubation, and decreased slowly by only 5% during the later 55 min of incubation. However, the amount of reducing sugar (A520) increased steadily during the whole 60 min period (Fig.4). These results revealed that CgkS degraded κ-carrageenan in an endo-fashion.

    4 Conclusion

    The biological activities of κ-Carrageenan oligosaccharides are closely related with the degree of polymers. To prepare specific κ-carrageenan oligosaccharides for further structure-activity relationship study, it is essential to use suitable κ-carrageenases. The application of natural κ-carrageenases has been limited by complex purification procedures and low yield. The known recombinant κ-carrageenases are also not suitable for application because of low activity or complex mixture of degradation products (Liuet al., 2013; Kobayashiet al., 2012). The new recombinant κ-carrageenase CgkS exhibits a high specific activity to κ-carrageenan in the absence of NaCl, yielding κ-carrageenan-derived neocarratetraose and neocarrahexraose as the main products. Therefore, CgkS would play a significant role in further industial application of κ-carrageenan oligosaccharides.

    Acknowledgements

    The research was supported by the Key Technologies Research and Development Program of China (2013BA B01B02), National Science Foundation of China (310707 12), Special Fund for Marine Scientific Research in the Public Interest (201005024 and 201105027) and National Hightech R&D Program of China (2011AA09070304).

    Barbeyron, T., Henrissat, B., and Kloareg, B., 1994. The gene encoding the kappa-carrageenase ofAlteromonas carrageenovorais related to beta-1,3-1,4-glucanases.Gene, 139: 105-109.

    Bernardo, R. Z., Yuridia, M. F., César, H. R., and Lourdes, V. T., 2004. Puri fi cation and characterization of lysine amino peptidase fromKluyveromyces marxiamus.Fems Microbiology Letters, 235: 369-375.

    Campo, V. L., Kawano, D. F., Silva, D. B., and Carvalho, L., 2009. Carrageenans: Biological properties, chemical modi fi cations and structural analysis - A review.Carbohydrate Polymers, 77: 167-180.

    Cantarel, B. L., Coutinho, P. M., Rancurel, C., Bernard, T., Lombard, V., and Henrissat, B., 2009. The Carbohydrate- Ac-tive EnZymes database (CAZy): An expert resource for glycogenomics.Nucleic Acids Research, 37: 233-238.

    Duan, G. F., Su, B., Han, F., and Yu, W. G., 2010. Purification and characterization of a κ-carrageenase from marinePseudoalteromonassp. QY202.Journal of Ocean University of China, 40: 95-100.

    Hu, T., Li, C. X., Zhao, X., Li, G. S., Yu, G. L., and Guan, H. S., 2013. Preparation and characterization of guluronic acid oligosaccharides degraded by a rapid microwave irradiation method.Carbohydrate Polymers, 373: 53-58.

    Kobayashi, T., Uchimura, K., Miyazaki, M., Nogi, Y., and Horikoshi, K., 2009. A new high-alkaline alginate lyase from a deep-sea bacteriumAgarivoranssp.Extremophiles, 13:121-129.

    Kobayashi, T., Uchimura, K., Koide, O., Deguchi, S., and Horikoshi, K., 2012. Genetic and biochemical characterization of thePseudoalteromonas tetraodonisalkaline κ-carrageenase.Bioscience Biotechnology and Biochemistry, 76:506-511.

    Li, S. Y., Jia, P. P., Wang, L. N., Yu, W. G., and Han, F., 2013. Purification and characterization of a new thermostable κ-carrageenase from the marine bacteriumPseudoalteromonassp. QY203.Journal of Ocean University of China, 12:155-159.

    Liu, Z. M., Li, G. Y., Mo, Z. L., and Mou, H. J., 2013. Molecular cloning, characterization, and heterologous expression of a new κ-carrageenase gene from marine bacteriumZobelliasp. ZM-2.Applied Microbiology and Biotechnology, l97: 10057-10067.

    Ma, S., Tan, Y. L., Yu, W. G., and Han, F., 2013. Cloning, expression and characterization of a new ι-carrageenase from marine bacterium,Cellulophagasp.Biotechnology Letters, 35: 1617-1622.

    Mou, H., Jiang, X. L., and Guan, H. S., 2003. A κ-carrageenan derived oligosaccharide prepared by enzymatic degradation containing anti-tumor activity.Journal of Applied Phycology, 15: 297-303.

    Potin, P., Sanseau, A., Gall, Y., Rochas, C., and Kloareg, B., 1991. Purification and characterization of a new kappa-carrageenase from a marineCytophaga-like bacterium.European Journal of Biochemistry, 201: 241-247.

    Sun, F. X., Ma, Y. X., Wang, Y., and Liu, Q., 2010. Purification and characterization of novel κ-carrageenase from marineTamlanasp. HC4.Chinese Journal of Oceanology and Limnology, 28: 1139-1145.

    Tan, G. H., Gao, Y., Shi, M., Zhang, X. Y., He, S. P., Chen, Z. L., and An, C. C., 2005. SiteFinding-PCR: A simple and efficient PCR method for chromosome walking.Nucleic Acids Research, 33: e122.

    Yao, Z., Wang, F. F., Gao, Z., Jin, L. M., and Wu, H. J., 2013. Characterization of a κ-carrageenase from marineCellulophaga lyticastrain N5-2 and analysis of its degradation products.International Journal of Molecular Sciences, 14:24592-24602.

    Yuan, H., Songa, J., Li, X.G., Li, N., and Dai, J., 2006. Immunomodulation and antitumor activity of κ-carrageenan oligosaccharides.Cancer Letters, 243: 228-234.

    (Edited by Ji Dechun)

    (Received July 10, 2014; revised February 29, 2015; accepted March 21, 2015)

    ? Ocean University of China, Science Press and Springer-Verlag Berlin Heidelberg 2015

    * Corresponding author. Tel: 0086-532-82032067 E-mail: gongqh@ouc.edu.cn

    亚洲精品一区蜜桃| 一级,二级,三级黄色视频| 国产又色又爽无遮挡免| 成年女人在线观看亚洲视频| 九色亚洲精品在线播放| 日韩精品有码人妻一区| 国产av精品麻豆| 亚洲第一青青草原| 97在线人人人人妻| 乱人伦中国视频| 一区福利在线观看| 高清在线视频一区二区三区| 欧美中文综合在线视频| √禁漫天堂资源中文www| 伦理电影免费视频| 日本爱情动作片www.在线观看| 少妇猛男粗大的猛烈进出视频| 免费在线观看视频国产中文字幕亚洲 | 亚洲精品国产一区二区精华液| 精品久久久精品久久久| 日本91视频免费播放| 黄色配什么色好看| 日本wwww免费看| 我的亚洲天堂| 亚洲国产成人一精品久久久| 夫妻性生交免费视频一级片| 看非洲黑人一级黄片| 91久久精品国产一区二区三区| 在线 av 中文字幕| 久久这里有精品视频免费| 国产免费福利视频在线观看| 七月丁香在线播放| 日韩中文字幕视频在线看片| 亚洲精品久久成人aⅴ小说| 少妇熟女欧美另类| 亚洲av综合色区一区| av在线老鸭窝| 色94色欧美一区二区| 亚洲人成电影观看| av又黄又爽大尺度在线免费看| 国产1区2区3区精品| 国产成人aa在线观看| 午夜福利视频在线观看免费| 大香蕉久久网| 日韩av在线免费看完整版不卡| 亚洲精品美女久久av网站| 伦精品一区二区三区| 国产男女超爽视频在线观看| 久久久久久久久久久久大奶| 国产97色在线日韩免费| 91久久精品国产一区二区三区| 91精品伊人久久大香线蕉| 麻豆乱淫一区二区| tube8黄色片| 久久久久精品人妻al黑| 日本午夜av视频| 亚洲av.av天堂| 久久人人爽av亚洲精品天堂| 99九九在线精品视频| 亚洲精品第二区| 天天躁夜夜躁狠狠躁躁| 欧美黄色片欧美黄色片| 国产一区二区激情短视频 | 人妻 亚洲 视频| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 久久av网站| 亚洲成人av在线免费| 国产极品天堂在线| 中文字幕色久视频| 高清不卡的av网站| 男人爽女人下面视频在线观看| 久久久久久人妻| 国产精品不卡视频一区二区| 看十八女毛片水多多多| 成人毛片60女人毛片免费| 性少妇av在线| av国产精品久久久久影院| 九色亚洲精品在线播放| 国产xxxxx性猛交| 岛国毛片在线播放| 国产成人精品久久久久久| 国产极品粉嫩免费观看在线| 欧美中文综合在线视频| 午夜91福利影院| 亚洲国产色片| 亚洲精品国产av蜜桃| 久久久国产欧美日韩av| 国产成人午夜福利电影在线观看| 国产精品av久久久久免费| 中文天堂在线官网| 最近最新中文字幕免费大全7| 男男h啪啪无遮挡| 观看av在线不卡| 午夜福利一区二区在线看| 肉色欧美久久久久久久蜜桃| 日韩大片免费观看网站| 9191精品国产免费久久| 老熟女久久久| 免费高清在线观看日韩| 中文字幕人妻熟女乱码| 亚洲精品久久午夜乱码| 超碰97精品在线观看| 欧美黄色片欧美黄色片| 成人手机av| 成人漫画全彩无遮挡| 欧美日韩精品网址| 久久精品aⅴ一区二区三区四区 | 可以免费在线观看a视频的电影网站 | 可以免费在线观看a视频的电影网站 | 夫妻午夜视频| 最近手机中文字幕大全| 亚洲av在线观看美女高潮| 亚洲男人天堂网一区| 国产福利在线免费观看视频| 99热网站在线观看| 啦啦啦视频在线资源免费观看| 亚洲欧美一区二区三区国产| 丝袜喷水一区| 伦理电影大哥的女人| 日产精品乱码卡一卡2卡三| 国产一区亚洲一区在线观看| 美国免费a级毛片| 国产深夜福利视频在线观看| 黄片小视频在线播放| 99re6热这里在线精品视频| 亚洲人成77777在线视频| 亚洲精品自拍成人| 99热国产这里只有精品6| 在线观看三级黄色| 午夜日韩欧美国产| 黄色 视频免费看| 精品亚洲成a人片在线观看| 午夜免费观看性视频| 夫妻性生交免费视频一级片| 777米奇影视久久| 久久久久久久大尺度免费视频| 巨乳人妻的诱惑在线观看| 久久久久精品人妻al黑| 午夜日本视频在线| 99久久中文字幕三级久久日本| 在线观看国产h片| 最近手机中文字幕大全| 黄色 视频免费看| 国产成人午夜福利电影在线观看| 天堂中文最新版在线下载| 欧美人与性动交α欧美精品济南到 | 亚洲天堂av无毛| 亚洲婷婷狠狠爱综合网| 久久久精品免费免费高清| 国产精品偷伦视频观看了| 91精品伊人久久大香线蕉| 毛片一级片免费看久久久久| 九九爱精品视频在线观看| 欧美日韩一区二区视频在线观看视频在线| 国产人伦9x9x在线观看 | 日韩大片免费观看网站| 久久精品夜色国产| 在线天堂中文资源库| 99久久中文字幕三级久久日本| 777久久人妻少妇嫩草av网站| 深夜精品福利| 爱豆传媒免费全集在线观看| 精品国产超薄肉色丝袜足j| 老汉色av国产亚洲站长工具| 亚洲综合色惰| 在线观看www视频免费| 国产一区二区激情短视频 | 少妇的逼水好多| 欧美人与性动交α欧美精品济南到 | 国产亚洲精品第一综合不卡| 亚洲av国产av综合av卡| 9191精品国产免费久久| 亚洲,欧美精品.| 成人国产麻豆网| 成年人午夜在线观看视频| 中文字幕人妻丝袜一区二区 | 性色avwww在线观看| 午夜福利视频在线观看免费| 婷婷色麻豆天堂久久| 美女xxoo啪啪120秒动态图| 乱人伦中国视频| 一级片免费观看大全| 黄色怎么调成土黄色| 高清在线视频一区二区三区| 91国产中文字幕| 色播在线永久视频| 18禁国产床啪视频网站| 成人国产av品久久久| 十八禁高潮呻吟视频| 天天躁夜夜躁狠狠久久av| 啦啦啦中文免费视频观看日本| 波多野结衣av一区二区av| 亚洲精品自拍成人| 免费在线观看视频国产中文字幕亚洲 | 亚洲一级一片aⅴ在线观看| 一级黄片播放器| 国产精品.久久久| 亚洲av福利一区| 麻豆乱淫一区二区| 免费观看av网站的网址| 黄色毛片三级朝国网站| a级片在线免费高清观看视频| 亚洲欧美成人综合另类久久久| 欧美国产精品va在线观看不卡| 欧美人与善性xxx| 免费不卡的大黄色大毛片视频在线观看| 青春草国产在线视频| 老司机影院毛片| 多毛熟女@视频| 久久久久久人人人人人| 亚洲精品自拍成人| 一级毛片我不卡| 免费看不卡的av| 少妇人妻久久综合中文| 啦啦啦啦在线视频资源| 一级,二级,三级黄色视频| 毛片一级片免费看久久久久| 高清视频免费观看一区二区| 久久久久久伊人网av| 久久国内精品自在自线图片| 亚洲国产欧美日韩在线播放| 久久婷婷青草| 最近最新中文字幕大全免费视频 | 如日韩欧美国产精品一区二区三区| 日本猛色少妇xxxxx猛交久久| 王馨瑶露胸无遮挡在线观看| 男女午夜视频在线观看| 欧美激情高清一区二区三区 | 国产成人免费观看mmmm| xxxhd国产人妻xxx| 狠狠精品人妻久久久久久综合| 美女脱内裤让男人舔精品视频| 色吧在线观看| 天天躁日日躁夜夜躁夜夜| 丁香六月天网| 成人毛片60女人毛片免费| 久久久精品94久久精品| 精品国产超薄肉色丝袜足j| 99国产精品免费福利视频| 亚洲熟女精品中文字幕| 久久精品久久精品一区二区三区| 亚洲av综合色区一区| 99re6热这里在线精品视频| 午夜av观看不卡| 国产成人a∨麻豆精品| 精品99又大又爽又粗少妇毛片| 久久人妻熟女aⅴ| 桃花免费在线播放| 9热在线视频观看99| 亚洲欧美日韩另类电影网站| 国产午夜精品一二区理论片| 欧美日韩视频精品一区| 天堂8中文在线网| 久久久久久人人人人人| 久久精品人人爽人人爽视色| 街头女战士在线观看网站| 男女边吃奶边做爰视频| 在现免费观看毛片| 日本91视频免费播放| 女人久久www免费人成看片| 成人国语在线视频| 午夜老司机福利剧场| 日韩精品免费视频一区二区三区| 欧美日韩视频精品一区| 久久精品国产综合久久久| 最近中文字幕2019免费版| 亚洲成人手机| 秋霞伦理黄片| 一级,二级,三级黄色视频| 国产精品三级大全| 国产无遮挡羞羞视频在线观看| 久久精品人人爽人人爽视色| 国产激情久久老熟女| 亚洲熟女精品中文字幕| 亚洲综合色网址| 下体分泌物呈黄色| 18+在线观看网站| 69精品国产乱码久久久| 日日爽夜夜爽网站| 亚洲欧美色中文字幕在线| 中文字幕另类日韩欧美亚洲嫩草| 国产男人的电影天堂91| 国产无遮挡羞羞视频在线观看| 亚洲成色77777| 七月丁香在线播放| 国产 精品1| 宅男免费午夜| 午夜av观看不卡| 咕卡用的链子| 赤兔流量卡办理| 一区在线观看完整版| 卡戴珊不雅视频在线播放| 丝瓜视频免费看黄片| 母亲3免费完整高清在线观看 | 久久精品国产综合久久久| 久久精品国产a三级三级三级| 中文字幕另类日韩欧美亚洲嫩草| 精品一区在线观看国产| 精品少妇一区二区三区视频日本电影 | av福利片在线| av一本久久久久| 欧美 亚洲 国产 日韩一| 99久久人妻综合| 纵有疾风起免费观看全集完整版| 啦啦啦在线观看免费高清www| 色婷婷久久久亚洲欧美| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产av国产精品国产| 日本欧美视频一区| 五月伊人婷婷丁香| 2021少妇久久久久久久久久久| 赤兔流量卡办理| 国产欧美日韩综合在线一区二区| 最近手机中文字幕大全| 美女中出高潮动态图| 久久精品亚洲av国产电影网| 中文字幕av电影在线播放| 天天影视国产精品| 免费人妻精品一区二区三区视频| 91在线精品国自产拍蜜月| 在线观看一区二区三区激情| 亚洲精品日韩在线中文字幕| 久久久久久久国产电影| 免费观看av网站的网址| 久久人人爽av亚洲精品天堂| 免费黄网站久久成人精品| 纵有疾风起免费观看全集完整版| 日本av手机在线免费观看| 午夜福利视频在线观看免费| 日韩一本色道免费dvd| av卡一久久| 日韩视频在线欧美| 欧美人与性动交α欧美精品济南到 | 一级毛片 在线播放| 我要看黄色一级片免费的| 日本91视频免费播放| 免费高清在线观看日韩| 精品久久久久久电影网| 欧美人与性动交α欧美软件| 人妻 亚洲 视频| 看非洲黑人一级黄片| 五月天丁香电影| 高清视频免费观看一区二区| 亚洲美女视频黄频| 观看美女的网站| 国产亚洲av片在线观看秒播厂| 国产女主播在线喷水免费视频网站| 9色porny在线观看| 国产日韩欧美亚洲二区| 欧美日韩成人在线一区二区| 91精品伊人久久大香线蕉| 一区福利在线观看| 看非洲黑人一级黄片| 国产 精品1| 日韩熟女老妇一区二区性免费视频| 国产精品免费大片| 高清在线视频一区二区三区| 纵有疾风起免费观看全集完整版| 五月天丁香电影| 亚洲国产精品一区二区三区在线| 色视频在线一区二区三区| 亚洲,欧美精品.| 成人18禁高潮啪啪吃奶动态图| 日韩在线高清观看一区二区三区| 丰满乱子伦码专区| 一区二区日韩欧美中文字幕| 搡老乐熟女国产| 亚洲视频免费观看视频| 国产精品一区二区在线不卡| 91精品三级在线观看| 校园人妻丝袜中文字幕| 看免费成人av毛片| 毛片一级片免费看久久久久| 国产有黄有色有爽视频| 最近手机中文字幕大全| 永久免费av网站大全| av不卡在线播放| 精品久久久精品久久久| 曰老女人黄片| 亚洲av国产av综合av卡| 免费看av在线观看网站| 26uuu在线亚洲综合色| 国产爽快片一区二区三区| 看非洲黑人一级黄片| 国产爽快片一区二区三区| 亚洲美女视频黄频| 丝袜喷水一区| 有码 亚洲区| av视频免费观看在线观看| 日本猛色少妇xxxxx猛交久久| 日韩一区二区视频免费看| 国产男女内射视频| 国产精品不卡视频一区二区| 久久99热这里只频精品6学生| 精品少妇黑人巨大在线播放| 亚洲,一卡二卡三卡| av有码第一页| 日韩免费高清中文字幕av| 午夜福利在线观看免费完整高清在| 老司机亚洲免费影院| 边亲边吃奶的免费视频| 丝袜脚勾引网站| 交换朋友夫妻互换小说| 黄网站色视频无遮挡免费观看| 制服诱惑二区| 丝瓜视频免费看黄片| 亚洲av.av天堂| 久久久久久久亚洲中文字幕| 免费av中文字幕在线| 国产午夜精品一二区理论片| 久久久久久久精品精品| 看十八女毛片水多多多| 免费在线观看视频国产中文字幕亚洲 | 多毛熟女@视频| 欧美老熟妇乱子伦牲交| 亚洲精品av麻豆狂野| 女性生殖器流出的白浆| 欧美 亚洲 国产 日韩一| 交换朋友夫妻互换小说| 久久久精品区二区三区| 成人国产麻豆网| 丁香六月天网| 多毛熟女@视频| 欧美黄色片欧美黄色片| 毛片一级片免费看久久久久| av在线播放精品| 亚洲中文av在线| 丰满少妇做爰视频| 在线看a的网站| 欧美日韩av久久| 亚洲精品日韩在线中文字幕| 如何舔出高潮| av免费在线看不卡| 久久久精品免费免费高清| 国产一区二区 视频在线| 十八禁网站网址无遮挡| 天天躁狠狠躁夜夜躁狠狠躁| 国产亚洲av片在线观看秒播厂| 午夜福利在线免费观看网站| 9色porny在线观看| 免费观看无遮挡的男女| 少妇的逼水好多| 一本—道久久a久久精品蜜桃钙片| 久久韩国三级中文字幕| h视频一区二区三区| 国产日韩一区二区三区精品不卡| 人人妻人人爽人人添夜夜欢视频| 国产免费视频播放在线视频| av.在线天堂| 久久久久精品性色| 国产黄色免费在线视频| 欧美日韩亚洲高清精品| 桃花免费在线播放| 久久这里有精品视频免费| 久久久久久久久免费视频了| 久久久久久久久久久免费av| 亚洲精品日本国产第一区| 日韩av在线免费看完整版不卡| 久久久精品区二区三区| 日韩制服骚丝袜av| 美女中出高潮动态图| 中国国产av一级| 欧美日本中文国产一区发布| 最近手机中文字幕大全| 一级,二级,三级黄色视频| 久热久热在线精品观看| 桃花免费在线播放| 热99久久久久精品小说推荐| 久久青草综合色| 熟女电影av网| 久久久久国产精品人妻一区二区| 亚洲天堂av无毛| 高清在线视频一区二区三区| 免费av中文字幕在线| 伦精品一区二区三区| 91精品国产国语对白视频| 欧美xxⅹ黑人| 建设人人有责人人尽责人人享有的| 国产免费又黄又爽又色| 美女脱内裤让男人舔精品视频| 亚洲av免费高清在线观看| 99国产综合亚洲精品| 丰满少妇做爰视频| 美女脱内裤让男人舔精品视频| 久久ye,这里只有精品| 又黄又粗又硬又大视频| 国产精品香港三级国产av潘金莲 | 在线免费观看不下载黄p国产| 午夜日本视频在线| 人妻系列 视频| 青草久久国产| 国产成人欧美| 伊人亚洲综合成人网| 久久国内精品自在自线图片| 免费女性裸体啪啪无遮挡网站| 男男h啪啪无遮挡| 不卡视频在线观看欧美| 国产激情久久老熟女| 精品一品国产午夜福利视频| 国产国语露脸激情在线看| 另类精品久久| 国产黄频视频在线观看| 97精品久久久久久久久久精品| 天堂中文最新版在线下载| 国精品久久久久久国模美| 久久鲁丝午夜福利片| 久久韩国三级中文字幕| 国产欧美亚洲国产| 久久精品久久精品一区二区三区| 欧美日本中文国产一区发布| xxxhd国产人妻xxx| 日韩,欧美,国产一区二区三区| 亚洲内射少妇av| 久久精品aⅴ一区二区三区四区 | 老司机亚洲免费影院| 91午夜精品亚洲一区二区三区| 国产精品嫩草影院av在线观看| 黑丝袜美女国产一区| 亚洲欧美清纯卡通| 色网站视频免费| 99久久综合免费| 成人亚洲精品一区在线观看| 春色校园在线视频观看| 波野结衣二区三区在线| 亚洲 欧美一区二区三区| 国产一区二区三区综合在线观看| 久久久久人妻精品一区果冻| 男人添女人高潮全过程视频| 亚洲av.av天堂| 老熟女久久久| 菩萨蛮人人尽说江南好唐韦庄| 精品亚洲成a人片在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 国产成人精品一,二区| 色婷婷av一区二区三区视频| 九九爱精品视频在线观看| 少妇人妻久久综合中文| 国产亚洲精品第一综合不卡| 精品午夜福利在线看| 国产又色又爽无遮挡免| 国产综合精华液| 国产毛片在线视频| 精品第一国产精品| 女性生殖器流出的白浆| 在现免费观看毛片| 只有这里有精品99| 黄色 视频免费看| 美女国产视频在线观看| 精品视频人人做人人爽| 亚洲国产精品一区三区| 高清视频免费观看一区二区| 国产av国产精品国产| 人体艺术视频欧美日本| 水蜜桃什么品种好| 亚洲色图 男人天堂 中文字幕| 99久久人妻综合| 亚洲内射少妇av| 不卡视频在线观看欧美| 精品少妇内射三级| 中文字幕人妻丝袜制服| 欧美日韩国产mv在线观看视频| 边亲边吃奶的免费视频| 成人二区视频| 免费观看a级毛片全部| 亚洲美女搞黄在线观看| 一本色道久久久久久精品综合| 80岁老熟妇乱子伦牲交| 多毛熟女@视频| 黄片小视频在线播放| 校园人妻丝袜中文字幕| 黑丝袜美女国产一区| 美女国产高潮福利片在线看| 国产精品一国产av| 亚洲图色成人| 一边亲一边摸免费视频| 深夜精品福利| 亚洲综合精品二区| 国产精品 国内视频| 久久久精品区二区三区| 欧美日韩一级在线毛片| 丝瓜视频免费看黄片| 亚洲av福利一区| 亚洲第一青青草原| 久久精品国产综合久久久| 国产女主播在线喷水免费视频网站| 亚洲av综合色区一区| 色婷婷av一区二区三区视频| 巨乳人妻的诱惑在线观看| 国产人伦9x9x在线观看 | 国产男人的电影天堂91| 日韩在线高清观看一区二区三区| 日日爽夜夜爽网站| 黄色毛片三级朝国网站| 久久久久国产网址| 亚洲精品国产av成人精品| 国产免费福利视频在线观看| 久久久久国产精品人妻一区二区| 91国产中文字幕| 日韩制服丝袜自拍偷拍| 成年女人毛片免费观看观看9 | 丝袜美腿诱惑在线| 国产 精品1| 日本色播在线视频| 亚洲第一av免费看| 亚洲精品国产色婷婷电影| 五月开心婷婷网| videossex国产| 男的添女的下面高潮视频| 亚洲五月色婷婷综合| 精品国产乱码久久久久久小说| 亚洲少妇的诱惑av| 多毛熟女@视频| 捣出白浆h1v1| 人妻人人澡人人爽人人| 日韩一本色道免费dvd|