• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The Coupling VIV Analysis of SCRs with Rigid Swing

    2015-06-01 09:24:20LIUJuanandHUANGWeiping
    Journal of Ocean University of China 2015年4期

    LIU Juan, and HUANG Weiping

    1)Shandong Key Laboratory of Ocean Engineering,Ocean University of China,Qingdao266100,P. R. China

    2)Institute of Civil Engineering,Agriculture University of Qingdao,Qingdao266009,P. R. China

    The Coupling VIV Analysis of SCRs with Rigid Swing

    LIU Juan1),2), and HUANG Weiping1),*

    1)Shandong Key Laboratory of Ocean Engineering,Ocean University of China,Qingdao266100,P. R. China

    2)Institute of Civil Engineering,Agriculture University of Qingdao,Qingdao266009,P. R. China

    With the development of deepwater oil and gas exploration, Steel Catenary Risers (SCRs) become preferred risers for resource production, import and export. Vortex induced vibration (VIV) is the key problem encountered in the design of SCRs. In this study, a new model, the rigid swing model, is proposed based on the consideration of large curvature of SCRs. The sag bend of SCRs is assumed as a rigid swing system around the axis from the hanging point to the touch down point (TDP) in the model. The torque, produced by the lift force and the swing vector, provides the driving torque for the swing system, and the weight of SCRs provides the restoring torque. The simulated response of rigid swing is coupled with bending vibration, and then the coupling VIV model of SCRs is studied in consideration of bending vibration and rigid motion. The calculated results indicate that the rigid swing has a magnitude equal to that of bending vibration, and the rigid motion affects the dynamic response of SCRs and can not be neglected in the VIV analysis.

    rigid swing; vortex induced vibration; steel catenary riser; dynamic model

    1 Introduction

    With the development of offshore oil and gas industry, deepwater resource exploration is expanding greatly, and various innovative floating structures, such as TLPs and Spars, are developed for operating under severe deepwater environment. Risers, connecting wells and floating platforms for production, import and export of resources, are the key component in deepwater development. As a new type of deepwater risers, Steel Catenary Risers (SCRs) with the advantages of low costs and no need of top tension, have become the preferred riser systems in recent years (Huanget al., 2009). Vortex induced vibration (VIV) is a core problem in the design of SCRs, and special configuration and complex flow make the VIV analysis of SCRs much more complicated than Top Tensioned Risers (TTRs) (Cunffet al., 2004; Mekha, 2002; Meng and Chen, 2012; Gaoet al., 2011).

    Many problems of SCRs have been studied and achievements have been made since the first SCR was installed in 1994 (Nakhaee and Zhang, 2010; Hodder and Byrne, 2010; Lie and Kaasen, 2006; Thethi, 2001; Ioannis, 2010; Holtamet al., 2009). Presently, only bending vibration under lift force is considered in VIV studies of SCRs, while the torque, produced by the lift force and the vector, is often neglected, that is, the swing model around an axisis not considered in dynamic model studies of SCRs. A new model, the rigid swing model, is proposed in this paper. The model is based on the consideration of large curvature of sag bends by taking SCRs as a rigid swing system around the axis from the hanging point to the touch down point (TDP). The swing response is then coupled with bending vibration as inertial force and hydrodynamic damping to study the VIV of SCRs. Numerical simulations show that the rigid swing affects the dynamic response of lower parts greatly and can not be ignored in the VIV study of SCRs.

    2 Rigid Swing Model of SCRs

    The rigid swing model of SCRs is shown in Fig.1, where ODC is the SCRs system, O is the hanging point, D is the touch-down point, and C is the connection point for wells and risers. The sag bend of SCRs is assumed as a rigid swing system around the axis from O to D in the model, where A is an arbitrary point on the sag bend, B is the intersection point of the swing plane of point A and the swing axis OD,ωis the unit vector of axis OD,sis the vector from the axis to point A, andFLis the lift force due to an angle betweenFLand the SCRs plane (xoyplane). The torque is produced by the forceFLand the vectors, which provides the driving force for the swing.mgis the weight per unit length of riser and is the restoring force for the swing. OAD is in thexoyplane when the swing system is in balance, point A' is the position of point A after a swing, andrαis the swing angle.

    The swing equation per unit length of risers is derived based on the theory of momentum moment:

    where,mandmaare the mass and the added-mass per unit length of risers,cais the added-damping coefficient,fLzandfLxare the projections of lift force onz- andx-axis, respectively, andrα,, andare the angular displacement, the velocity, and the acceleration of a rigid swing, respectively.sis the vector from the swing axis to a unit of the riser,.sis the norm of the vectors,s1,s2ands3are the projections ofsonx-,y- andz-axis, respectively,

    where (xA,yA,zA) and (xB,yB,zB) are the coordinates of points A and B, respectively, ands3=0 when the system is in balance (Fig.1).

    wheredis the length of axis OD,

    and (xD,yD,zD) and (xO,yO,zO) are the coordinates of points D and O, respectively.

    Fig.1 Rigid swing model of SCRs.

    In the finite element analysis of the rigid motion, an unit of the riser is shown in Fig.2, in whichiandjare the nodes of the unit,x'-axis is the local axis of the unit and the origin is set at nodei.siandsjare the swing vectors of nodesiandj, respectively, and the unit vectorsis expressed by node vectors:

    By substituting the node coordinates and corresponding vectors into Eq. (2), the linear equations about parameteracan be obtained:

    Eq.(3) can be solved as:

    By substituting Eq. (4) into Eq. (2), the unit vector expressed by node vectors is derived as:

    and,

    By bringsands2into Eq. (1), and integrating the equation along the unit and then the riser, the equation of rigid swing of SCRs is derived as:

    whereIis the moment of inertia,Cis the hydrodynamic damping coefficient,Kis the restoring-force coefficient, andMαis the external force moment for rigid swing. Solving Eq. (7) by time-domain method, the swing response of SCRs can be obtained.

    Fig.2 Swing unit of the SCR.

    3 Coupling Analysis of VIV of SCRs

    By considering both bending vibration and rigid swing, VIV of SCRs can be expressed as follows:

    whererb,andare the bending displacement, the velocity and the acceleration of risers, respectively;andare the linear velocity and the acceleration of rigid swing,,, respectively;cis the structure damping andcais the hydrodynamic damping,kis the bending stiffness andfLis the lift force per unit length of risers.

    By moving the terms associated with rigid swing to the right hand side of Eq. (8), the following equation can be obtained:

    Eq. (9) is the popular form of the vibration equation of risers, which shows that the rigid motion is coupled with the bending vibration as inertial force and hydrodynamic damping.

    Eq. (9) can be expressed as coordinate components:

    where (ub,vb,wb),, andare the projections of the bending displacement, the velocity and the acceleration onx-, y-andz-axis, respectively;andare the projections of the linear velocity and the acceleration of rigid swing, where

    whereandare the rigid swing response obtained from Eq. (1).

    Eq. (10) can be solved by the time-domain method and the solutions are the VIV response of SCRs with both bending vibration and rigid swing.

    4 Numerical Simulations

    Based on the nonlinear FEM, a dynamic code of SCRs, Cable3D, was developed (Chen, 2002). The flexible cable theory is applied to simulate risers in the code. By using small extensible slender rods with bending stiffness for SCR modeling, the accurate static configuration and vibration response of SCRs can be obtained with the code (Bai, 2009).

    In this study, the static configuration and the VIV response of a SCR are first simulated using Cable3D, then a dynamic program, named RT_Res, is developed based on the rigid swing model of SCRs. The obtained response is further coupled with bending vibration, a new program, named VRT_Cable, is developed to simulate the VIV of the SCR, and the obtained results are compared with the prediction of Cable3D.

    The SCR is 2500 m long with an outer diameter of 0.355 m and a thickness of 0.025 m. The depth of water is 1100 m and the horizontal distance from the hanging point to the wellhead is 1846 m. The restraint of the hanging point is by hinged joint and the TDP is by elastic restraint. Other main parameters are listed in Table 1. With a top tension of 2100 kN, the static configuration of the SCR is shown in Fig.3; the angle between the tangent direction of the hanging point of the SCR and the vertical is 16°

    Table 1 Key parameters of the SCR and flow

    Fig.3 Static configuration of the SCR.

    The incoming flow is alongx-axis with a speed of 0.20 m s-1and Strouhal constantSt=0.2 (see Table 1 for other flow parameters). The VIV response of the riser is simulated using Cable3D. The history curves of the 18thand 225thnodes are shown in Figs.4-5 and the frequency of the curves is the Strouhal frequency of 0.0769 (see Fig.3 for the location of both nodes).

    Calculated by the program RT_Res in the rigid swing model, the history response of the angular displacement of the riser is shown in Fig.6. It can be seen that the swing angle of the riser is 3×10-4rad. If converted to a linear displacement using the equationrr=ar×s, the linear displacement of the 225thnode is 0.03 m and is equal to that of the bending vibration as shown in Fig.5. The rigid swing of the riser is a forced motion, and therefore the frequency of the swing is the Strouhal frequency 0.0769, which is the same as that of the bending vibration.

    Fig.4 The VIV response history of the 18thnode.

    Fig.5 The VIV response history of the 225thnode.

    Fig.6 The history response of rigid swing of the SCR.

    Figs.7-8 are the VIV history curves of the 18thand 225thnodes with rigid swing simulated by VRT_Cable. It can be seen that the swing response has a small effect on the 18thnode but a great effect on the 225thnode. Because the swing vector at the lower part of the riser is larger than that at the upper part, the linear displacement at the lower part is greater for the case of the same swing angle, and, therefore, the swing responses affect the lower part of risers more significantly and should be considered as an important factor in the VIV analysis of SCRs.

    Fig.7 The response history of the 18thnode with rigid swing.

    Fig.8 The response history of the 225thnode with rigid swing.

    Huanget al.(2011, 2012) studied the VIV of flexible cylinders based on model experiments, their results indicated that when VIV is beyond the lock-in district, the vortex frequency of the model is not equal to Strouhal frequency and it changes with different natural frequencies of the model; besides, the VIV of a cross flow is a strong random vibration and the response frequency is in a wide range, that is, the vortex shedding mode of the wake is very unstable due to the vibration of cylinders. Based on the results, Liu and Huang (2013) developed a lift force model by considering structure vibration and its coupling with fluid, and this revised model describes the stochastic force with varying frequencies and amplitudes.

    Based on the revised lift force model the program CPVRT_Cable is updated to simulate the VIV of a SCR, and the response of the riser is a stochastic vibration with varying frequencies and amplitudes. Figs.9 and 10 are the responses of the 84thand 276thnodes of the riser; the dashed line and the solid line are history curves with and without rigid swing, respectively. The location of both nodes is shown in Fig.3, and Figs.9 and 10 also show that the rigid swing affects the upper part of the riser slightly but has a great effect on the lower part.

    Fig.9 The VIV history of the 84thnode with rigid swing.

    Fig.10 The VIV history of the 276thnode with rigid swing.

    Fig.11 Response spectrum of the 276thnode without rigid swing.

    Fig.12 Response spectrum of the 276thnode with rigid swing.

    Fig.11 is the VIV response spectrum of the 276thnode without the rigid swing, and the peak frequency of the curve is slightly lower than the Strouhal frequency of 0.0769. Fig.12 is the spectrum of the node with the rigid swing. Comparing the two figures, it can be seen that the curve of Fig.12 contains more frequency components, and the peak and bandwidth are rather large. The comparison also indicates that the response of the riser and the corresponding added damping of the fluid have increased significantly with the rigid swing of the SCR.

    5 Conclusions

    SCRs, connecting floating platforms and wellheads as both flow lines and risers, have become the popular riser system in marine resource exploration. Many studies have been conducted in the past several decades, such as dynamic characteristics of SCRs, SCR coupled with platforms and VIV models of SCRs.

    In this study, the dynamic modeling results of the vortex induced vibration of SCRs are examined. By introducing the concept of rigid swing, a new dynamic model in the VIV study of SCRs is developed. The model can be used to simulate the dynamic characteristics of SCRs and to reproduce the out-of-plane motion of SCRs reasonably well. Simulation results show that the swing responses have the same order of magnitude as the bending vibration, and affect the lower part of risers more significantly and should not be ignored in the VIV analysis of SCRs.

    The assumption that the touch down point is a fixed point may introduce errors to model results, and further research is necessary on the rigid swing model of SCRs.

    Acknowledgements

    The study is funded by the National Natural Science Foundation of China (51079136, 51179179, 51239008), and our thanks also go to Professor Jun Zhang of Texas A&M University, the copyright owner of Cable3D.

    Bai, X. L., 2009. Study on method for nonlinear analysis of deepwater SCR based on inertial coupling. PhD thesis. Ocean University of China, 38-48 (in Chinese with English abstract).

    Chen, X. H., 2002. Studies on dynamic interaction between deep-water floating structures and their mooring/tendon system. PhD thesis. Civil Engineering Department, Texas A&M University, 15-28.

    Cunff, C. L., Averbuch, D., and Biolley, F., 2004. Influence of current direction on VIV of a steel catenary riser.Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering. Vancouver, Canada, ASME, 1: 23-30.

    Gao, Y., Zong, Z., and Sun, L., 2011. Numerical prediction of fatigue damage in steel catenary riser due to vortex-induced vibration.Journal of Hydrodynamics (Ser. B), 23 (2): 154-163.

    Hodder, M. S., and Byrne, B. W., 2010. 3D experiments investigating the interaction of a model SCR with the seabed.Applied Ocean Research, 32: 146-157.

    Holtam, C. M., Baxter, D. P., Thomson, R. C., and Ashcroft, I. A., 2009. Influence of fatigue loading on the engineering critical assessment of steel catenary risers in sour deepwater oil and gas developments.Key Engineering Materials, 834 (413): 313-325.

    Huang, W. P., Bai, X. L., and Li, H. J., 2009. State of the art ofresearch and development of overseas deepwater steel catenary risers.Periodical of Ocean University of China, 39 (2):290-294 (in Chinese with English abstract).

    Huang, W. P., Cao, J., Zhang, E. Y., and Tang, S. Z., 2011. Study on vortex induced vibration in two-degree-of-freedoms of flexible cylinders.Chinese Journal of Theoretical and Applied Mechanics, 43 (2): 436-440 (in Chinese with English abstract).

    Huang, W. P., Liu, J., and Wang, A. Q., 2012. A spectrum of the lift force on a cylinder with fluid-structure interaction based on experiment.Engineering Mechanics, 29 (2): 192-196, 204 (in Chinese with English abstract).

    Ioannis, K. C., 2010. On the effect of internal flow on vibrating catenary risers in three dimensions.Engineering Structures, 32 (10): 3313-3329.

    Lie, H., and Kaasen, K. E., 2006. Modal analysis of measurements from a large-scale VIV model test of a riser in linearly sheared flow.Journal of Fluids and Structures, 22: 557-575.

    Liu, J., and Huang, W. P., 2013. A nonlinear vortex induced vibration model of marine risers.Journal of Ocean University of China, 12 (1): 32-36.

    Mekha, B. B., 2002. On the wave and VIV fatigue of steel catenary risers connected to floating structures.Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering. Oslo, Norway, ASME, 1: 57-63.

    Meng, D., and Chen, L., 2012. Nonlinear free vibrations and vortex-induced vibrations of fluid-conveying steel catenary riser.Applied Ocean Research, 34: 52-67.

    Nakhaee, A., and Zhang, J., 2010. Trenching effects on dynamic behavior of a steel catenary riser.Ocean Engineering, 37 (2):277-288.

    Thethi, R., 2001. Soil interaction effect on simply catenary riser response.Pipe & Pipeline International, 46 (3): 15-24.

    (Edited by Xie Jun)

    (Received April 7, 2013; revised May 9, 2013; accepted January 6, 2015)

    ? Ocean University of China, Science Press and Springer-Verlag Berlin Heidelberg 2015

    * Corresponding author. Tel: 0086-532-66781850 E-mail: wphuang@ouc.edu.cn

    国产精品久久久久久精品古装| 亚洲一区中文字幕在线| 伊人久久大香线蕉亚洲五| 亚洲男人天堂网一区| 一级片免费观看大全| 免费不卡黄色视频| 黑人欧美特级aaaaaa片| 黑人操中国人逼视频| 亚洲精品国产一区二区精华液| 久久精品熟女亚洲av麻豆精品| 免费在线观看视频国产中文字幕亚洲| 两个人看的免费小视频| 夜夜躁狠狠躁天天躁| 一级毛片精品| 怎么达到女性高潮| 美女福利国产在线| 日日摸夜夜添夜夜添小说| 91精品国产国语对白视频| 亚洲专区字幕在线| 欧美不卡视频在线免费观看 | 亚洲欧美激情综合另类| 一区在线观看完整版| 国产亚洲欧美98| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲avbb在线观看| 欧美日韩av久久| 亚洲国产毛片av蜜桃av| 亚洲av第一区精品v没综合| 精品一区二区三区四区五区乱码| 中文字幕高清在线视频| av免费在线观看网站| 999久久久精品免费观看国产| 久久久精品免费免费高清| 久久99一区二区三区| 久久精品成人免费网站| 少妇的丰满在线观看| av一本久久久久| 国产1区2区3区精品| 每晚都被弄得嗷嗷叫到高潮| 在线天堂中文资源库| 男人操女人黄网站| 人人澡人人妻人| 亚洲成人免费电影在线观看| 精品乱码久久久久久99久播| tocl精华| 国产成人免费无遮挡视频| 悠悠久久av| 天堂动漫精品| 在线观看免费午夜福利视频| 国精品久久久久久国模美| 国产成人欧美| 亚洲中文av在线| 久99久视频精品免费| 亚洲 欧美一区二区三区| 999久久久精品免费观看国产| 欧美黄色片欧美黄色片| 一级a爱片免费观看的视频| 99热只有精品国产| 青草久久国产| 国精品久久久久久国模美| 久久久久久人人人人人| 亚洲人成77777在线视频| 成人黄色视频免费在线看| 国产极品粉嫩免费观看在线| 丝瓜视频免费看黄片| 夜夜躁狠狠躁天天躁| 国产亚洲欧美98| 亚洲成国产人片在线观看| 大码成人一级视频| 国内久久婷婷六月综合欲色啪| 精品午夜福利视频在线观看一区| 国内久久婷婷六月综合欲色啪| 啦啦啦视频在线资源免费观看| 欧美乱码精品一区二区三区| 一二三四在线观看免费中文在| 一进一出抽搐gif免费好疼 | av电影中文网址| 国产成人一区二区三区免费视频网站| 制服人妻中文乱码| 一级a爱视频在线免费观看| tube8黄色片| 午夜福利免费观看在线| 欧美亚洲 丝袜 人妻 在线| 国产亚洲欧美98| 成人精品一区二区免费| 一区二区三区激情视频| 精品一区二区三卡| 捣出白浆h1v1| 少妇被粗大的猛进出69影院| 狠狠狠狠99中文字幕| 成人国语在线视频| 国产亚洲精品一区二区www | 嫁个100分男人电影在线观看| 丰满人妻熟妇乱又伦精品不卡| 下体分泌物呈黄色| 亚洲欧美色中文字幕在线| 久久中文字幕人妻熟女| 亚洲一区二区三区欧美精品| 久久久国产成人精品二区 | 好看av亚洲va欧美ⅴa在| 日韩欧美国产一区二区入口| 欧美日本中文国产一区发布| 一级作爱视频免费观看| 一级毛片女人18水好多| 亚洲精品中文字幕在线视频| 欧美黄色片欧美黄色片| 久久精品91无色码中文字幕| 国产男女内射视频| 日韩免费高清中文字幕av| 老熟女久久久| 国产精品九九99| 国产精品久久视频播放| 可以免费在线观看a视频的电影网站| 亚洲精品av麻豆狂野| 激情在线观看视频在线高清 | 国产国语露脸激情在线看| 国产人伦9x9x在线观看| 国产精品一区二区精品视频观看| 久久国产乱子伦精品免费另类| 日本黄色日本黄色录像| а√天堂www在线а√下载 | 99久久人妻综合| 天堂√8在线中文| 日韩大码丰满熟妇| 久久久久精品国产欧美久久久| av不卡在线播放| 亚洲av成人不卡在线观看播放网| 日本黄色日本黄色录像| 欧美日韩成人在线一区二区| 免费av中文字幕在线| 天天躁日日躁夜夜躁夜夜| 亚洲精品国产区一区二| 日韩精品免费视频一区二区三区| 国产成人精品在线电影| 欧美色视频一区免费| 亚洲精品国产色婷婷电影| 9191精品国产免费久久| 亚洲专区国产一区二区| 纯流量卡能插随身wifi吗| 国产一区有黄有色的免费视频| 一个人免费在线观看的高清视频| 99香蕉大伊视频| 成人18禁高潮啪啪吃奶动态图| 老司机亚洲免费影院| 久久人人97超碰香蕉20202| 宅男免费午夜| 一级,二级,三级黄色视频| 日韩有码中文字幕| 亚洲情色 制服丝袜| av免费在线观看网站| 男女午夜视频在线观看| 久久精品国产清高在天天线| 男女之事视频高清在线观看| 视频区图区小说| www.熟女人妻精品国产| 欧美不卡视频在线免费观看 | 欧美一级毛片孕妇| 看片在线看免费视频| 成年版毛片免费区| 亚洲av成人不卡在线观看播放网| 久久精品国产清高在天天线| 亚洲av日韩在线播放| 99久久国产精品久久久| 国产成人av激情在线播放| 精品福利观看| 国产一区有黄有色的免费视频| 女性生殖器流出的白浆| 最近最新中文字幕大全电影3 | 999久久久国产精品视频| 久久中文字幕人妻熟女| 亚洲精品国产色婷婷电影| 午夜视频精品福利| 亚洲黑人精品在线| 看片在线看免费视频| 亚洲欧美色中文字幕在线| 18在线观看网站| 国产1区2区3区精品| 巨乳人妻的诱惑在线观看| 国产成人影院久久av| 久久 成人 亚洲| 亚洲国产毛片av蜜桃av| 国产欧美日韩一区二区精品| 岛国在线观看网站| 国产一区二区激情短视频| 99热网站在线观看| 国产精品亚洲一级av第二区| 大陆偷拍与自拍| 高清在线国产一区| 午夜影院日韩av| 1024视频免费在线观看| 亚洲av片天天在线观看| 人妻 亚洲 视频| 欧美日韩一级在线毛片| 一二三四在线观看免费中文在| 亚洲熟妇熟女久久| 免费久久久久久久精品成人欧美视频| 999久久久国产精品视频| 亚洲国产精品一区二区三区在线| 黄色毛片三级朝国网站| 成年动漫av网址| 后天国语完整版免费观看| 一本综合久久免费| 高清视频免费观看一区二区| 老司机福利观看| 老司机靠b影院| 国产伦人伦偷精品视频| 亚洲在线自拍视频| 国产不卡一卡二| 在线观看免费日韩欧美大片| 不卡av一区二区三区| 亚洲欧美色中文字幕在线| 亚洲av欧美aⅴ国产| 欧美av亚洲av综合av国产av| 久久中文字幕人妻熟女| e午夜精品久久久久久久| 99精品在免费线老司机午夜| 欧美+亚洲+日韩+国产| 美女高潮到喷水免费观看| 别揉我奶头~嗯~啊~动态视频| e午夜精品久久久久久久| 在线十欧美十亚洲十日本专区| 久热这里只有精品99| 亚洲九九香蕉| bbb黄色大片| 久久人人爽av亚洲精品天堂| 亚洲五月色婷婷综合| 女人高潮潮喷娇喘18禁视频| 亚洲av熟女| 两个人看的免费小视频| 婷婷成人精品国产| videosex国产| 老司机福利观看| 女同久久另类99精品国产91| 精品乱码久久久久久99久播| 十八禁人妻一区二区| 91老司机精品| 老熟妇仑乱视频hdxx| 成年人免费黄色播放视频| 女警被强在线播放| 啦啦啦视频在线资源免费观看| 久久人人97超碰香蕉20202| 欧美日韩中文字幕国产精品一区二区三区 | 午夜免费成人在线视频| 中文字幕另类日韩欧美亚洲嫩草| 无人区码免费观看不卡| 久久青草综合色| 99久久人妻综合| 成人免费观看视频高清| 亚洲一区高清亚洲精品| 成人永久免费在线观看视频| 亚洲av成人不卡在线观看播放网| 亚洲久久久国产精品| 国产成人影院久久av| 国产高清国产精品国产三级| www日本在线高清视频| 日韩 欧美 亚洲 中文字幕| av网站免费在线观看视频| 丰满迷人的少妇在线观看| 亚洲欧美激情在线| 亚洲欧美色中文字幕在线| 亚洲av欧美aⅴ国产| 精品国产一区二区久久| 99精品在免费线老司机午夜| 身体一侧抽搐| 五月开心婷婷网| 99精品久久久久人妻精品| 99精品在免费线老司机午夜| 18禁观看日本| 成人亚洲精品一区在线观看| 国产精品秋霞免费鲁丝片| 亚洲午夜理论影院| 亚洲精品在线观看二区| 黑丝袜美女国产一区| 亚洲成国产人片在线观看| 热99国产精品久久久久久7| 女人被躁到高潮嗷嗷叫费观| 国产xxxxx性猛交| 色94色欧美一区二区| 在线天堂中文资源库| 国产精华一区二区三区| 久久热在线av| 日韩免费av在线播放| 人人妻人人爽人人添夜夜欢视频| 成人手机av| netflix在线观看网站| 老司机靠b影院| av天堂在线播放| 12—13女人毛片做爰片一| 国产精品99久久99久久久不卡| 九色亚洲精品在线播放| 自线自在国产av| 一区二区日韩欧美中文字幕| 色94色欧美一区二区| 亚洲成a人片在线一区二区| 亚洲自偷自拍图片 自拍| 亚洲第一av免费看| 国产成人精品久久二区二区91| 两性夫妻黄色片| 日日摸夜夜添夜夜添小说| 女人高潮潮喷娇喘18禁视频| 18禁美女被吸乳视频| 久久久久国产一级毛片高清牌| 欧美精品亚洲一区二区| a级片在线免费高清观看视频| 亚洲熟女精品中文字幕| 一级毛片精品| 亚洲国产精品sss在线观看 | 99riav亚洲国产免费| 黄色丝袜av网址大全| 一进一出抽搐gif免费好疼 | 亚洲av熟女| 欧美久久黑人一区二区| 久久国产乱子伦精品免费另类| 最近最新免费中文字幕在线| av国产精品久久久久影院| 中文字幕制服av| 成人亚洲精品一区在线观看| 99久久国产精品久久久| 欧美人与性动交α欧美软件| 色在线成人网| 亚洲七黄色美女视频| 高清在线国产一区| 一边摸一边做爽爽视频免费| 天堂动漫精品| 99精品久久久久人妻精品| 久久精品国产综合久久久| av天堂在线播放| 亚洲黑人精品在线| 正在播放国产对白刺激| 黄色 视频免费看| 老司机影院毛片| 亚洲第一欧美日韩一区二区三区| 亚洲一区中文字幕在线| 日韩成人在线观看一区二区三区| 极品人妻少妇av视频| 日韩免费av在线播放| 欧美色视频一区免费| 国产视频一区二区在线看| 亚洲国产欧美一区二区综合| 久久久久国产精品人妻aⅴ院 | 国产精品一区二区精品视频观看| av超薄肉色丝袜交足视频| 色老头精品视频在线观看| 亚洲av日韩精品久久久久久密| 熟女少妇亚洲综合色aaa.| 91老司机精品| 看片在线看免费视频| 大型黄色视频在线免费观看| 露出奶头的视频| 亚洲综合色网址| 欧美成人午夜精品| 女性生殖器流出的白浆| 欧美黄色淫秽网站| 午夜激情av网站| 国产一区二区激情短视频| 国产精品免费大片| 乱人伦中国视频| 午夜福利在线观看吧| 欧美精品一区二区免费开放| 亚洲综合色网址| 国产99白浆流出| 亚洲熟妇熟女久久| 国产麻豆69| 国产精品亚洲一级av第二区| 午夜福利免费观看在线| 精品午夜福利视频在线观看一区| 欧美日韩黄片免| 最新美女视频免费是黄的| 欧美精品啪啪一区二区三区| 国产一区二区激情短视频| 成熟少妇高潮喷水视频| 动漫黄色视频在线观看| 成年人免费黄色播放视频| 亚洲一区高清亚洲精品| 九色亚洲精品在线播放| 国产真人三级小视频在线观看| 天天躁夜夜躁狠狠躁躁| 女人久久www免费人成看片| 亚洲成国产人片在线观看| 欧美成人午夜精品| 国产精品.久久久| 欧美黄色淫秽网站| 麻豆乱淫一区二区| 国产精品九九99| 精品午夜福利视频在线观看一区| 日本黄色视频三级网站网址 | 可以免费在线观看a视频的电影网站| 国产成人免费无遮挡视频| 欧美黑人精品巨大| 18禁黄网站禁片午夜丰满| 777久久人妻少妇嫩草av网站| 19禁男女啪啪无遮挡网站| av网站在线播放免费| 热re99久久精品国产66热6| 免费高清在线观看日韩| 成人18禁在线播放| a级片在线免费高清观看视频| 成人18禁高潮啪啪吃奶动态图| 亚洲,欧美精品.| 最近最新中文字幕大全电影3 | 久久精品国产99精品国产亚洲性色 | 女人被狂操c到高潮| 亚洲美女黄片视频| 老司机福利观看| 久久精品aⅴ一区二区三区四区| 亚洲avbb在线观看| 午夜影院日韩av| 午夜精品久久久久久毛片777| 国产一区二区三区视频了| 99香蕉大伊视频| 亚洲 国产 在线| 免费在线观看黄色视频的| 乱人伦中国视频| 首页视频小说图片口味搜索| 久久亚洲精品不卡| 久久国产精品人妻蜜桃| 久久久久精品人妻al黑| 精品国产国语对白av| 少妇裸体淫交视频免费看高清 | 一区二区三区激情视频| 欧美日韩福利视频一区二区| 午夜影院日韩av| av网站在线播放免费| 久久精品国产亚洲av香蕉五月 | 黑丝袜美女国产一区| 一本大道久久a久久精品| 在线看a的网站| 国产精品免费视频内射| 国产精品成人在线| 男人舔女人的私密视频| 国产成人欧美在线观看 | 一级毛片女人18水好多| 日韩视频一区二区在线观看| 亚洲午夜精品一区,二区,三区| 视频在线观看一区二区三区| 美女视频免费永久观看网站| 在线观看午夜福利视频| 不卡av一区二区三区| 亚洲全国av大片| 日本黄色日本黄色录像| 国产人伦9x9x在线观看| 18在线观看网站| 少妇猛男粗大的猛烈进出视频| 亚洲久久久国产精品| 91大片在线观看| 久久天堂一区二区三区四区| 国产精品永久免费网站| 热99久久久久精品小说推荐| 高清在线国产一区| 精品国产一区二区三区四区第35| 夜夜夜夜夜久久久久| 精品国产超薄肉色丝袜足j| 天堂中文最新版在线下载| 国产精品永久免费网站| 亚洲国产中文字幕在线视频| 亚洲av成人不卡在线观看播放网| 国产精华一区二区三区| 水蜜桃什么品种好| 国产亚洲精品久久久久5区| 男男h啪啪无遮挡| 一二三四社区在线视频社区8| 国产成人av激情在线播放| 久久精品人人爽人人爽视色| 一本大道久久a久久精品| 一级片免费观看大全| 国产一区二区三区视频了| 久久这里只有精品19| 日本欧美视频一区| 国产精品一区二区在线不卡| 女性生殖器流出的白浆| 757午夜福利合集在线观看| 1024视频免费在线观看| 日韩免费av在线播放| 狂野欧美激情性xxxx| 国产欧美日韩一区二区三| 日日爽夜夜爽网站| 一夜夜www| 亚洲专区国产一区二区| 国产精品美女特级片免费视频播放器 | 午夜成年电影在线免费观看| 亚洲av成人av| 老司机深夜福利视频在线观看| 视频在线观看一区二区三区| 亚洲 国产 在线| 婷婷丁香在线五月| 人人妻人人爽人人添夜夜欢视频| 在线观看舔阴道视频| 99国产精品一区二区蜜桃av | 久久久精品国产亚洲av高清涩受| 国产淫语在线视频| 国产成人av激情在线播放| 天堂√8在线中文| 窝窝影院91人妻| 精品一区二区三卡| 一二三四社区在线视频社区8| 成熟少妇高潮喷水视频| 男女午夜视频在线观看| 国产欧美日韩综合在线一区二区| 国产视频一区二区在线看| 一级片免费观看大全| 热99国产精品久久久久久7| 香蕉丝袜av| 美女福利国产在线| 国产欧美亚洲国产| 国产aⅴ精品一区二区三区波| 人妻 亚洲 视频| 国产精品 欧美亚洲| 亚洲片人在线观看| 久久久国产一区二区| 精品视频人人做人人爽| 大香蕉久久网| 天堂动漫精品| 亚洲成人手机| 男女床上黄色一级片免费看| 看片在线看免费视频| 91av网站免费观看| 亚洲一区二区三区不卡视频| 男女之事视频高清在线观看| 欧美人与性动交α欧美软件| 亚洲av熟女| 欧美成人午夜精品| 欧美成狂野欧美在线观看| 悠悠久久av| av福利片在线| 美女视频免费永久观看网站| 国产熟女午夜一区二区三区| 女人被躁到高潮嗷嗷叫费观| 后天国语完整版免费观看| 老汉色∧v一级毛片| 电影成人av| 欧美成人午夜精品| 最新的欧美精品一区二区| 亚洲五月色婷婷综合| 国产视频一区二区在线看| 国产精品久久久久久人妻精品电影| 欧美国产精品va在线观看不卡| 叶爱在线成人免费视频播放| av电影中文网址| 成人免费观看视频高清| 一区二区三区国产精品乱码| 久久精品人人爽人人爽视色| 国产成人精品久久二区二区免费| 91成年电影在线观看| 丁香六月欧美| 国产免费现黄频在线看| 精品高清国产在线一区| 国产精品九九99| 久久 成人 亚洲| 亚洲熟妇中文字幕五十中出 | 国产激情久久老熟女| 国产高清激情床上av| 国产精品欧美亚洲77777| 午夜福利一区二区在线看| www.熟女人妻精品国产| 午夜福利,免费看| 久久午夜综合久久蜜桃| 99re6热这里在线精品视频| 窝窝影院91人妻| 免费高清在线观看日韩| 欧美人与性动交α欧美软件| 精品福利永久在线观看| 日韩中文字幕欧美一区二区| 国产欧美日韩一区二区精品| 国产深夜福利视频在线观看| 成年女人毛片免费观看观看9 | 成年人黄色毛片网站| 每晚都被弄得嗷嗷叫到高潮| 久久久精品国产亚洲av高清涩受| 国产一区有黄有色的免费视频| 国产人伦9x9x在线观看| 日本黄色日本黄色录像| 国产亚洲精品一区二区www | 热re99久久精品国产66热6| 日本vs欧美在线观看视频| 成年动漫av网址| 人人澡人人妻人| 色94色欧美一区二区| 欧美日韩瑟瑟在线播放| 桃红色精品国产亚洲av| 亚洲 国产 在线| 大片电影免费在线观看免费| 免费在线观看完整版高清| 91精品国产国语对白视频| 黄频高清免费视频| 一区二区三区激情视频| 亚洲欧美激情综合另类| 80岁老熟妇乱子伦牲交| 啦啦啦在线免费观看视频4| 国产一区二区三区在线臀色熟女 | 国产精品1区2区在线观看. | 国产成+人综合+亚洲专区| 天天操日日干夜夜撸| 久久久久久免费高清国产稀缺| 三级毛片av免费| 国产真人三级小视频在线观看| 国产高清videossex| 在线天堂中文资源库| 天天躁日日躁夜夜躁夜夜| 国产成人精品无人区| 亚洲精品国产区一区二| 操出白浆在线播放| 亚洲国产精品sss在线观看 | 777米奇影视久久| 黄片小视频在线播放| 中文欧美无线码| 一级片'在线观看视频| videos熟女内射| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲成人国产一区在线观看| 在线观看免费高清a一片| 免费观看人在逋| 亚洲欧美精品综合一区二区三区| 如日韩欧美国产精品一区二区三区| 亚洲伊人色综图| 欧美中文综合在线视频|