• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The Coupling VIV Analysis of SCRs with Rigid Swing

    2015-06-01 09:24:20LIUJuanandHUANGWeiping
    Journal of Ocean University of China 2015年4期

    LIU Juan, and HUANG Weiping

    1)Shandong Key Laboratory of Ocean Engineering,Ocean University of China,Qingdao266100,P. R. China

    2)Institute of Civil Engineering,Agriculture University of Qingdao,Qingdao266009,P. R. China

    The Coupling VIV Analysis of SCRs with Rigid Swing

    LIU Juan1),2), and HUANG Weiping1),*

    1)Shandong Key Laboratory of Ocean Engineering,Ocean University of China,Qingdao266100,P. R. China

    2)Institute of Civil Engineering,Agriculture University of Qingdao,Qingdao266009,P. R. China

    With the development of deepwater oil and gas exploration, Steel Catenary Risers (SCRs) become preferred risers for resource production, import and export. Vortex induced vibration (VIV) is the key problem encountered in the design of SCRs. In this study, a new model, the rigid swing model, is proposed based on the consideration of large curvature of SCRs. The sag bend of SCRs is assumed as a rigid swing system around the axis from the hanging point to the touch down point (TDP) in the model. The torque, produced by the lift force and the swing vector, provides the driving torque for the swing system, and the weight of SCRs provides the restoring torque. The simulated response of rigid swing is coupled with bending vibration, and then the coupling VIV model of SCRs is studied in consideration of bending vibration and rigid motion. The calculated results indicate that the rigid swing has a magnitude equal to that of bending vibration, and the rigid motion affects the dynamic response of SCRs and can not be neglected in the VIV analysis.

    rigid swing; vortex induced vibration; steel catenary riser; dynamic model

    1 Introduction

    With the development of offshore oil and gas industry, deepwater resource exploration is expanding greatly, and various innovative floating structures, such as TLPs and Spars, are developed for operating under severe deepwater environment. Risers, connecting wells and floating platforms for production, import and export of resources, are the key component in deepwater development. As a new type of deepwater risers, Steel Catenary Risers (SCRs) with the advantages of low costs and no need of top tension, have become the preferred riser systems in recent years (Huanget al., 2009). Vortex induced vibration (VIV) is a core problem in the design of SCRs, and special configuration and complex flow make the VIV analysis of SCRs much more complicated than Top Tensioned Risers (TTRs) (Cunffet al., 2004; Mekha, 2002; Meng and Chen, 2012; Gaoet al., 2011).

    Many problems of SCRs have been studied and achievements have been made since the first SCR was installed in 1994 (Nakhaee and Zhang, 2010; Hodder and Byrne, 2010; Lie and Kaasen, 2006; Thethi, 2001; Ioannis, 2010; Holtamet al., 2009). Presently, only bending vibration under lift force is considered in VIV studies of SCRs, while the torque, produced by the lift force and the vector, is often neglected, that is, the swing model around an axisis not considered in dynamic model studies of SCRs. A new model, the rigid swing model, is proposed in this paper. The model is based on the consideration of large curvature of sag bends by taking SCRs as a rigid swing system around the axis from the hanging point to the touch down point (TDP). The swing response is then coupled with bending vibration as inertial force and hydrodynamic damping to study the VIV of SCRs. Numerical simulations show that the rigid swing affects the dynamic response of lower parts greatly and can not be ignored in the VIV study of SCRs.

    2 Rigid Swing Model of SCRs

    The rigid swing model of SCRs is shown in Fig.1, where ODC is the SCRs system, O is the hanging point, D is the touch-down point, and C is the connection point for wells and risers. The sag bend of SCRs is assumed as a rigid swing system around the axis from O to D in the model, where A is an arbitrary point on the sag bend, B is the intersection point of the swing plane of point A and the swing axis OD,ωis the unit vector of axis OD,sis the vector from the axis to point A, andFLis the lift force due to an angle betweenFLand the SCRs plane (xoyplane). The torque is produced by the forceFLand the vectors, which provides the driving force for the swing.mgis the weight per unit length of riser and is the restoring force for the swing. OAD is in thexoyplane when the swing system is in balance, point A' is the position of point A after a swing, andrαis the swing angle.

    The swing equation per unit length of risers is derived based on the theory of momentum moment:

    where,mandmaare the mass and the added-mass per unit length of risers,cais the added-damping coefficient,fLzandfLxare the projections of lift force onz- andx-axis, respectively, andrα,, andare the angular displacement, the velocity, and the acceleration of a rigid swing, respectively.sis the vector from the swing axis to a unit of the riser,.sis the norm of the vectors,s1,s2ands3are the projections ofsonx-,y- andz-axis, respectively,

    where (xA,yA,zA) and (xB,yB,zB) are the coordinates of points A and B, respectively, ands3=0 when the system is in balance (Fig.1).

    wheredis the length of axis OD,

    and (xD,yD,zD) and (xO,yO,zO) are the coordinates of points D and O, respectively.

    Fig.1 Rigid swing model of SCRs.

    In the finite element analysis of the rigid motion, an unit of the riser is shown in Fig.2, in whichiandjare the nodes of the unit,x'-axis is the local axis of the unit and the origin is set at nodei.siandsjare the swing vectors of nodesiandj, respectively, and the unit vectorsis expressed by node vectors:

    By substituting the node coordinates and corresponding vectors into Eq. (2), the linear equations about parameteracan be obtained:

    Eq.(3) can be solved as:

    By substituting Eq. (4) into Eq. (2), the unit vector expressed by node vectors is derived as:

    and,

    By bringsands2into Eq. (1), and integrating the equation along the unit and then the riser, the equation of rigid swing of SCRs is derived as:

    whereIis the moment of inertia,Cis the hydrodynamic damping coefficient,Kis the restoring-force coefficient, andMαis the external force moment for rigid swing. Solving Eq. (7) by time-domain method, the swing response of SCRs can be obtained.

    Fig.2 Swing unit of the SCR.

    3 Coupling Analysis of VIV of SCRs

    By considering both bending vibration and rigid swing, VIV of SCRs can be expressed as follows:

    whererb,andare the bending displacement, the velocity and the acceleration of risers, respectively;andare the linear velocity and the acceleration of rigid swing,,, respectively;cis the structure damping andcais the hydrodynamic damping,kis the bending stiffness andfLis the lift force per unit length of risers.

    By moving the terms associated with rigid swing to the right hand side of Eq. (8), the following equation can be obtained:

    Eq. (9) is the popular form of the vibration equation of risers, which shows that the rigid motion is coupled with the bending vibration as inertial force and hydrodynamic damping.

    Eq. (9) can be expressed as coordinate components:

    where (ub,vb,wb),, andare the projections of the bending displacement, the velocity and the acceleration onx-, y-andz-axis, respectively;andare the projections of the linear velocity and the acceleration of rigid swing, where

    whereandare the rigid swing response obtained from Eq. (1).

    Eq. (10) can be solved by the time-domain method and the solutions are the VIV response of SCRs with both bending vibration and rigid swing.

    4 Numerical Simulations

    Based on the nonlinear FEM, a dynamic code of SCRs, Cable3D, was developed (Chen, 2002). The flexible cable theory is applied to simulate risers in the code. By using small extensible slender rods with bending stiffness for SCR modeling, the accurate static configuration and vibration response of SCRs can be obtained with the code (Bai, 2009).

    In this study, the static configuration and the VIV response of a SCR are first simulated using Cable3D, then a dynamic program, named RT_Res, is developed based on the rigid swing model of SCRs. The obtained response is further coupled with bending vibration, a new program, named VRT_Cable, is developed to simulate the VIV of the SCR, and the obtained results are compared with the prediction of Cable3D.

    The SCR is 2500 m long with an outer diameter of 0.355 m and a thickness of 0.025 m. The depth of water is 1100 m and the horizontal distance from the hanging point to the wellhead is 1846 m. The restraint of the hanging point is by hinged joint and the TDP is by elastic restraint. Other main parameters are listed in Table 1. With a top tension of 2100 kN, the static configuration of the SCR is shown in Fig.3; the angle between the tangent direction of the hanging point of the SCR and the vertical is 16°

    Table 1 Key parameters of the SCR and flow

    Fig.3 Static configuration of the SCR.

    The incoming flow is alongx-axis with a speed of 0.20 m s-1and Strouhal constantSt=0.2 (see Table 1 for other flow parameters). The VIV response of the riser is simulated using Cable3D. The history curves of the 18thand 225thnodes are shown in Figs.4-5 and the frequency of the curves is the Strouhal frequency of 0.0769 (see Fig.3 for the location of both nodes).

    Calculated by the program RT_Res in the rigid swing model, the history response of the angular displacement of the riser is shown in Fig.6. It can be seen that the swing angle of the riser is 3×10-4rad. If converted to a linear displacement using the equationrr=ar×s, the linear displacement of the 225thnode is 0.03 m and is equal to that of the bending vibration as shown in Fig.5. The rigid swing of the riser is a forced motion, and therefore the frequency of the swing is the Strouhal frequency 0.0769, which is the same as that of the bending vibration.

    Fig.4 The VIV response history of the 18thnode.

    Fig.5 The VIV response history of the 225thnode.

    Fig.6 The history response of rigid swing of the SCR.

    Figs.7-8 are the VIV history curves of the 18thand 225thnodes with rigid swing simulated by VRT_Cable. It can be seen that the swing response has a small effect on the 18thnode but a great effect on the 225thnode. Because the swing vector at the lower part of the riser is larger than that at the upper part, the linear displacement at the lower part is greater for the case of the same swing angle, and, therefore, the swing responses affect the lower part of risers more significantly and should be considered as an important factor in the VIV analysis of SCRs.

    Fig.7 The response history of the 18thnode with rigid swing.

    Fig.8 The response history of the 225thnode with rigid swing.

    Huanget al.(2011, 2012) studied the VIV of flexible cylinders based on model experiments, their results indicated that when VIV is beyond the lock-in district, the vortex frequency of the model is not equal to Strouhal frequency and it changes with different natural frequencies of the model; besides, the VIV of a cross flow is a strong random vibration and the response frequency is in a wide range, that is, the vortex shedding mode of the wake is very unstable due to the vibration of cylinders. Based on the results, Liu and Huang (2013) developed a lift force model by considering structure vibration and its coupling with fluid, and this revised model describes the stochastic force with varying frequencies and amplitudes.

    Based on the revised lift force model the program CPVRT_Cable is updated to simulate the VIV of a SCR, and the response of the riser is a stochastic vibration with varying frequencies and amplitudes. Figs.9 and 10 are the responses of the 84thand 276thnodes of the riser; the dashed line and the solid line are history curves with and without rigid swing, respectively. The location of both nodes is shown in Fig.3, and Figs.9 and 10 also show that the rigid swing affects the upper part of the riser slightly but has a great effect on the lower part.

    Fig.9 The VIV history of the 84thnode with rigid swing.

    Fig.10 The VIV history of the 276thnode with rigid swing.

    Fig.11 Response spectrum of the 276thnode without rigid swing.

    Fig.12 Response spectrum of the 276thnode with rigid swing.

    Fig.11 is the VIV response spectrum of the 276thnode without the rigid swing, and the peak frequency of the curve is slightly lower than the Strouhal frequency of 0.0769. Fig.12 is the spectrum of the node with the rigid swing. Comparing the two figures, it can be seen that the curve of Fig.12 contains more frequency components, and the peak and bandwidth are rather large. The comparison also indicates that the response of the riser and the corresponding added damping of the fluid have increased significantly with the rigid swing of the SCR.

    5 Conclusions

    SCRs, connecting floating platforms and wellheads as both flow lines and risers, have become the popular riser system in marine resource exploration. Many studies have been conducted in the past several decades, such as dynamic characteristics of SCRs, SCR coupled with platforms and VIV models of SCRs.

    In this study, the dynamic modeling results of the vortex induced vibration of SCRs are examined. By introducing the concept of rigid swing, a new dynamic model in the VIV study of SCRs is developed. The model can be used to simulate the dynamic characteristics of SCRs and to reproduce the out-of-plane motion of SCRs reasonably well. Simulation results show that the swing responses have the same order of magnitude as the bending vibration, and affect the lower part of risers more significantly and should not be ignored in the VIV analysis of SCRs.

    The assumption that the touch down point is a fixed point may introduce errors to model results, and further research is necessary on the rigid swing model of SCRs.

    Acknowledgements

    The study is funded by the National Natural Science Foundation of China (51079136, 51179179, 51239008), and our thanks also go to Professor Jun Zhang of Texas A&M University, the copyright owner of Cable3D.

    Bai, X. L., 2009. Study on method for nonlinear analysis of deepwater SCR based on inertial coupling. PhD thesis. Ocean University of China, 38-48 (in Chinese with English abstract).

    Chen, X. H., 2002. Studies on dynamic interaction between deep-water floating structures and their mooring/tendon system. PhD thesis. Civil Engineering Department, Texas A&M University, 15-28.

    Cunff, C. L., Averbuch, D., and Biolley, F., 2004. Influence of current direction on VIV of a steel catenary riser.Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering. Vancouver, Canada, ASME, 1: 23-30.

    Gao, Y., Zong, Z., and Sun, L., 2011. Numerical prediction of fatigue damage in steel catenary riser due to vortex-induced vibration.Journal of Hydrodynamics (Ser. B), 23 (2): 154-163.

    Hodder, M. S., and Byrne, B. W., 2010. 3D experiments investigating the interaction of a model SCR with the seabed.Applied Ocean Research, 32: 146-157.

    Holtam, C. M., Baxter, D. P., Thomson, R. C., and Ashcroft, I. A., 2009. Influence of fatigue loading on the engineering critical assessment of steel catenary risers in sour deepwater oil and gas developments.Key Engineering Materials, 834 (413): 313-325.

    Huang, W. P., Bai, X. L., and Li, H. J., 2009. State of the art ofresearch and development of overseas deepwater steel catenary risers.Periodical of Ocean University of China, 39 (2):290-294 (in Chinese with English abstract).

    Huang, W. P., Cao, J., Zhang, E. Y., and Tang, S. Z., 2011. Study on vortex induced vibration in two-degree-of-freedoms of flexible cylinders.Chinese Journal of Theoretical and Applied Mechanics, 43 (2): 436-440 (in Chinese with English abstract).

    Huang, W. P., Liu, J., and Wang, A. Q., 2012. A spectrum of the lift force on a cylinder with fluid-structure interaction based on experiment.Engineering Mechanics, 29 (2): 192-196, 204 (in Chinese with English abstract).

    Ioannis, K. C., 2010. On the effect of internal flow on vibrating catenary risers in three dimensions.Engineering Structures, 32 (10): 3313-3329.

    Lie, H., and Kaasen, K. E., 2006. Modal analysis of measurements from a large-scale VIV model test of a riser in linearly sheared flow.Journal of Fluids and Structures, 22: 557-575.

    Liu, J., and Huang, W. P., 2013. A nonlinear vortex induced vibration model of marine risers.Journal of Ocean University of China, 12 (1): 32-36.

    Mekha, B. B., 2002. On the wave and VIV fatigue of steel catenary risers connected to floating structures.Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering. Oslo, Norway, ASME, 1: 57-63.

    Meng, D., and Chen, L., 2012. Nonlinear free vibrations and vortex-induced vibrations of fluid-conveying steel catenary riser.Applied Ocean Research, 34: 52-67.

    Nakhaee, A., and Zhang, J., 2010. Trenching effects on dynamic behavior of a steel catenary riser.Ocean Engineering, 37 (2):277-288.

    Thethi, R., 2001. Soil interaction effect on simply catenary riser response.Pipe & Pipeline International, 46 (3): 15-24.

    (Edited by Xie Jun)

    (Received April 7, 2013; revised May 9, 2013; accepted January 6, 2015)

    ? Ocean University of China, Science Press and Springer-Verlag Berlin Heidelberg 2015

    * Corresponding author. Tel: 0086-532-66781850 E-mail: wphuang@ouc.edu.cn

    2021天堂中文幕一二区在线观| 午夜爱爱视频在线播放| 久久99热这里只有精品18| 成人毛片a级毛片在线播放| 国产精品1区2区在线观看.| 国产av麻豆久久久久久久| 最近最新中文字幕大全电影3| 亚洲av不卡在线观看| 男女做爰动态图高潮gif福利片| 欧美区成人在线视频| 久久久久久久久久久丰满 | 美女 人体艺术 gogo| 色综合站精品国产| 在线观看66精品国产| 校园春色视频在线观看| 国产欧美日韩一区二区精品| 高清日韩中文字幕在线| 成人永久免费在线观看视频| 国产成人av教育| 亚洲欧美日韩卡通动漫| 深夜精品福利| 伦理电影大哥的女人| 欧美3d第一页| 好男人在线观看高清免费视频| 国产av不卡久久| 日韩中文字幕欧美一区二区| 亚洲精品乱码久久久v下载方式| 成人无遮挡网站| 色播亚洲综合网| videossex国产| 久久久久久伊人网av| av在线亚洲专区| 可以在线观看的亚洲视频| 国产亚洲91精品色在线| 一区二区三区高清视频在线| 99精品在免费线老司机午夜| 国产一区二区激情短视频| 毛片女人毛片| 日本与韩国留学比较| 国产精品电影一区二区三区| 桃红色精品国产亚洲av| 精品久久久久久久久av| 1000部很黄的大片| 蜜桃久久精品国产亚洲av| 久久久久久国产a免费观看| 国产一级毛片七仙女欲春2| 中文资源天堂在线| 亚洲精品乱码久久久v下载方式| 91在线精品国自产拍蜜月| 精品久久久久久,| 少妇高潮的动态图| 国内精品久久久久精免费| 日韩欧美精品免费久久| 欧美bdsm另类| 欧美日韩瑟瑟在线播放| 欧美一级a爱片免费观看看| 人妻少妇偷人精品九色| 99在线人妻在线中文字幕| 国产精品一区二区性色av| netflix在线观看网站| 蜜桃久久精品国产亚洲av| 欧美在线一区亚洲| 国产不卡一卡二| 又黄又爽又免费观看的视频| 级片在线观看| 在现免费观看毛片| 国产精品人妻久久久影院| 亚洲18禁久久av| 亚洲av电影不卡..在线观看| 久久久久久久久大av| 国产一区二区三区视频了| 在线观看舔阴道视频| 欧美三级亚洲精品| 国产精品一及| 我要搜黄色片| 久久草成人影院| 波多野结衣巨乳人妻| 亚洲第一区二区三区不卡| avwww免费| 99九九线精品视频在线观看视频| bbb黄色大片| 啦啦啦韩国在线观看视频| 动漫黄色视频在线观看| 床上黄色一级片| 国产欧美日韩精品亚洲av| 色精品久久人妻99蜜桃| 夜夜夜夜夜久久久久| 观看免费一级毛片| 12—13女人毛片做爰片一| 波多野结衣高清作品| 国产亚洲av嫩草精品影院| 亚洲美女搞黄在线观看 | 久久久成人免费电影| 搡老妇女老女人老熟妇| 亚洲不卡免费看| 看免费成人av毛片| 黄色女人牲交| 午夜精品在线福利| 亚洲中文日韩欧美视频| 日日啪夜夜撸| 国产黄色小视频在线观看| 啦啦啦啦在线视频资源| 网址你懂的国产日韩在线| 日本 av在线| 少妇猛男粗大的猛烈进出视频 | 99热6这里只有精品| 小蜜桃在线观看免费完整版高清| 亚洲精品成人久久久久久| 91在线精品国自产拍蜜月| 欧美成人免费av一区二区三区| 成人高潮视频无遮挡免费网站| 一级a爱片免费观看的视频| 日本免费a在线| 中出人妻视频一区二区| 日韩精品中文字幕看吧| 男人舔女人下体高潮全视频| 久久天躁狠狠躁夜夜2o2o| 国产久久久一区二区三区| 免费av不卡在线播放| 日韩欧美一区二区三区在线观看| 亚洲国产色片| 欧美激情国产日韩精品一区| 他把我摸到了高潮在线观看| 一进一出抽搐动态| 少妇熟女aⅴ在线视频| 男女下面进入的视频免费午夜| 色播亚洲综合网| 亚洲精品乱码久久久v下载方式| 国产精品1区2区在线观看.| 日日撸夜夜添| 简卡轻食公司| 亚洲欧美日韩东京热| 男女下面进入的视频免费午夜| 精品久久久久久久末码| 99精品在免费线老司机午夜| 精品久久久久久,| 少妇裸体淫交视频免费看高清| 欧美日韩亚洲国产一区二区在线观看| 日韩欧美国产一区二区入口| 国产av不卡久久| 日韩高清综合在线| 中文字幕高清在线视频| 一a级毛片在线观看| 国产精品久久久久久av不卡| 免费人成在线观看视频色| 久久精品人妻少妇| 丝袜美腿在线中文| 国产色婷婷99| 少妇人妻一区二区三区视频| 久久这里只有精品中国| 能在线免费观看的黄片| 成人高潮视频无遮挡免费网站| 99久久精品热视频| 亚洲人与动物交配视频| 日韩精品中文字幕看吧| 哪里可以看免费的av片| 非洲黑人性xxxx精品又粗又长| 亚洲无线观看免费| 一进一出好大好爽视频| 狂野欧美白嫩少妇大欣赏| 欧美日韩国产亚洲二区| 丰满的人妻完整版| 美女 人体艺术 gogo| 伦精品一区二区三区| avwww免费| 给我免费播放毛片高清在线观看| 欧美高清成人免费视频www| eeuss影院久久| 最后的刺客免费高清国语| 国产色婷婷99| 少妇丰满av| 午夜老司机福利剧场| 黄色欧美视频在线观看| 国产 一区精品| 嫩草影院入口| 午夜精品一区二区三区免费看| 亚洲精品亚洲一区二区| 久久亚洲真实| 欧美最黄视频在线播放免费| 精品久久久久久久久亚洲 | 悠悠久久av| 极品教师在线免费播放| 一本精品99久久精品77| 99国产极品粉嫩在线观看| 欧美成人性av电影在线观看| 观看免费一级毛片| 搡老岳熟女国产| 亚洲va在线va天堂va国产| av专区在线播放| 亚洲自拍偷在线| www.www免费av| av专区在线播放| 亚洲精品成人久久久久久| 午夜福利视频1000在线观看| 熟妇人妻久久中文字幕3abv| 天堂动漫精品| 亚洲av电影不卡..在线观看| 国产三级中文精品| videossex国产| 国产精品电影一区二区三区| 日本色播在线视频| 简卡轻食公司| 国产老妇女一区| 国产一区二区激情短视频| 欧美成人免费av一区二区三区| 动漫黄色视频在线观看| 久久久久久久精品吃奶| 国产精品人妻久久久久久| 一a级毛片在线观看| 精品一区二区三区视频在线| 成年版毛片免费区| 日韩强制内射视频| 久久久久精品国产欧美久久久| 大型黄色视频在线免费观看| 一本久久中文字幕| 欧美精品啪啪一区二区三区| 成人特级av手机在线观看| 免费黄网站久久成人精品| 麻豆久久精品国产亚洲av| 一夜夜www| 亚洲在线自拍视频| 九九久久精品国产亚洲av麻豆| 99精品久久久久人妻精品| 人妻制服诱惑在线中文字幕| 91久久精品国产一区二区三区| 蜜桃久久精品国产亚洲av| 日韩精品青青久久久久久| 夜夜爽天天搞| 人人妻人人看人人澡| 亚洲美女视频黄频| 狂野欧美白嫩少妇大欣赏| 在线观看66精品国产| 露出奶头的视频| 亚洲第一电影网av| 国产一区二区三区av在线 | 99国产精品一区二区蜜桃av| 国产探花在线观看一区二区| 在线观看一区二区三区| 桃色一区二区三区在线观看| 日本-黄色视频高清免费观看| 亚洲av一区综合| 久久久精品大字幕| 国产精品av视频在线免费观看| 国产美女午夜福利| av.在线天堂| 欧美日韩乱码在线| 国产精品人妻久久久久久| 亚洲一级一片aⅴ在线观看| 成年免费大片在线观看| 国产三级中文精品| 成人性生交大片免费视频hd| 国产熟女欧美一区二区| 最近最新免费中文字幕在线| 国产精品乱码一区二三区的特点| 狂野欧美激情性xxxx在线观看| 精品人妻一区二区三区麻豆 | 精品一区二区免费观看| 极品教师在线视频| 亚洲成人精品中文字幕电影| 在线免费十八禁| 国产乱人伦免费视频| 乱人视频在线观看| 国产精品一区二区免费欧美| 国内揄拍国产精品人妻在线| 婷婷丁香在线五月| 亚洲欧美日韩无卡精品| 欧美xxxx性猛交bbbb| 在线a可以看的网站| 俄罗斯特黄特色一大片| 免费人成在线观看视频色| 精品一区二区免费观看| 亚洲美女搞黄在线观看 | 国产精品爽爽va在线观看网站| 久久久久精品国产欧美久久久| 一进一出抽搐gif免费好疼| 一个人观看的视频www高清免费观看| 成人精品一区二区免费| 国产av不卡久久| 国产精品久久电影中文字幕| 亚洲 国产 在线| 久久九九热精品免费| 欧美日韩瑟瑟在线播放| 制服丝袜大香蕉在线| 窝窝影院91人妻| 国产精品久久久久久精品电影| 国产亚洲欧美98| 22中文网久久字幕| 99在线视频只有这里精品首页| 欧美日韩综合久久久久久 | 韩国av一区二区三区四区| 日韩欧美三级三区| 精品人妻一区二区三区麻豆 | 十八禁网站免费在线| 精品99又大又爽又粗少妇毛片 | 日本在线视频免费播放| eeuss影院久久| 久久99热6这里只有精品| 欧美一区二区精品小视频在线| 最近最新免费中文字幕在线| 亚洲经典国产精华液单| 女人十人毛片免费观看3o分钟| 中国美白少妇内射xxxbb| 有码 亚洲区| 欧美一区二区亚洲| 成人精品一区二区免费| 欧美一区二区国产精品久久精品| 国产伦精品一区二区三区四那| 免费不卡的大黄色大毛片视频在线观看 | 久久精品综合一区二区三区| 免费一级毛片在线播放高清视频| 亚洲av.av天堂| 中文字幕免费在线视频6| 亚洲真实伦在线观看| av女优亚洲男人天堂| 女同久久另类99精品国产91| 亚洲精华国产精华精| 成人高潮视频无遮挡免费网站| 国产精品爽爽va在线观看网站| 黄色欧美视频在线观看| 国产av不卡久久| 十八禁国产超污无遮挡网站| 亚洲自偷自拍三级| 观看免费一级毛片| 国产成年人精品一区二区| 亚洲第一电影网av| 久久国产乱子免费精品| 99热这里只有是精品在线观看| 日韩人妻高清精品专区| 国产人妻一区二区三区在| 亚洲av五月六月丁香网| 少妇裸体淫交视频免费看高清| 国产精品人妻久久久久久| 亚洲国产欧美人成| 国产精品野战在线观看| 欧美性猛交黑人性爽| 日日摸夜夜添夜夜添小说| 亚洲18禁久久av| 精品人妻一区二区三区麻豆 | 久久婷婷人人爽人人干人人爱| 免费看日本二区| 人人妻,人人澡人人爽秒播| 国产亚洲av嫩草精品影院| av福利片在线观看| 一区二区三区免费毛片| 国产精品98久久久久久宅男小说| 我要搜黄色片| 成人高潮视频无遮挡免费网站| 午夜亚洲福利在线播放| 又黄又爽又免费观看的视频| 国产精品久久久久久av不卡| 精品不卡国产一区二区三区| 99久久精品国产国产毛片| 在线a可以看的网站| 精品久久久久久久末码| 中文亚洲av片在线观看爽| 久久久久久久精品吃奶| 国产白丝娇喘喷水9色精品| 国国产精品蜜臀av免费| 国产色婷婷99| 久久精品综合一区二区三区| 91在线观看av| 欧美性猛交黑人性爽| 中文字幕av在线有码专区| 国产成人福利小说| 日韩大尺度精品在线看网址| 久久中文看片网| 99久久成人亚洲精品观看| 亚洲乱码一区二区免费版| 亚洲五月天丁香| 亚洲午夜理论影院| АⅤ资源中文在线天堂| 久久国内精品自在自线图片| 久久99热6这里只有精品| 天堂动漫精品| 亚洲国产色片| 波野结衣二区三区在线| 亚洲av一区综合| 欧美潮喷喷水| 搡老岳熟女国产| 一本一本综合久久| 91在线观看av| 国产精品av视频在线免费观看| 别揉我奶头~嗯~啊~动态视频| 国产亚洲精品av在线| 亚洲一级一片aⅴ在线观看| 女人被狂操c到高潮| 亚洲中文字幕一区二区三区有码在线看| 极品教师在线免费播放| 级片在线观看| 一区二区三区激情视频| 全区人妻精品视频| 国产成年人精品一区二区| 很黄的视频免费| 婷婷精品国产亚洲av| 亚洲一级一片aⅴ在线观看| 无人区码免费观看不卡| 国产伦在线观看视频一区| 88av欧美| 亚洲一区高清亚洲精品| 一进一出抽搐gif免费好疼| 69人妻影院| 中文字幕久久专区| 99久久精品热视频| 久久精品国产亚洲网站| 黄色日韩在线| 听说在线观看完整版免费高清| 国产大屁股一区二区在线视频| 村上凉子中文字幕在线| 日本一二三区视频观看| 国产成人一区二区在线| 国产亚洲91精品色在线| 精品久久久久久成人av| 精品人妻偷拍中文字幕| 久久天躁狠狠躁夜夜2o2o| 国产探花极品一区二区| 国产精品三级大全| 夜夜夜夜夜久久久久| 免费看a级黄色片| 亚洲一区高清亚洲精品| 少妇人妻一区二区三区视频| 高清在线国产一区| 丰满人妻一区二区三区视频av| 十八禁国产超污无遮挡网站| 精品久久久久久久久av| 中国美白少妇内射xxxbb| 国产黄色小视频在线观看| 免费看光身美女| 亚洲欧美日韩卡通动漫| 国产乱人伦免费视频| 性色avwww在线观看| 亚洲电影在线观看av| 精品一区二区三区视频在线| 91午夜精品亚洲一区二区三区 | 久久久久久九九精品二区国产| 午夜爱爱视频在线播放| 国产三级中文精品| 女的被弄到高潮叫床怎么办 | 亚洲在线观看片| 精品久久久久久久久av| 色5月婷婷丁香| 亚洲黑人精品在线| 日本成人三级电影网站| 欧美色视频一区免费| 国产免费一级a男人的天堂| 午夜精品久久久久久毛片777| 欧美又色又爽又黄视频| xxxwww97欧美| 一区福利在线观看| 级片在线观看| 精品久久国产蜜桃| 免费看光身美女| 午夜亚洲福利在线播放| 中文字幕高清在线视频| 不卡视频在线观看欧美| 99久久精品一区二区三区| 此物有八面人人有两片| 日本一二三区视频观看| 变态另类成人亚洲欧美熟女| 最近视频中文字幕2019在线8| 婷婷丁香在线五月| 村上凉子中文字幕在线| 精品无人区乱码1区二区| 又粗又爽又猛毛片免费看| 日韩亚洲欧美综合| 国产精品98久久久久久宅男小说| 国产精品三级大全| 久久久久精品国产欧美久久久| 亚洲精品一区av在线观看| 亚洲精华国产精华精| 亚洲性久久影院| 亚洲熟妇中文字幕五十中出| 日韩欧美在线二视频| 伦理电影大哥的女人| 欧美一区二区亚洲| 婷婷精品国产亚洲av| 日本一二三区视频观看| 久久久久久九九精品二区国产| 成人鲁丝片一二三区免费| 久久精品国产自在天天线| 在线播放国产精品三级| 变态另类丝袜制服| 久久久久久久久中文| 俄罗斯特黄特色一大片| 麻豆成人av在线观看| 美女cb高潮喷水在线观看| 亚洲成人久久性| 性欧美人与动物交配| 少妇丰满av| 午夜精品一区二区三区免费看| 狂野欧美激情性xxxx在线观看| 伦精品一区二区三区| 天天躁日日操中文字幕| 夜夜看夜夜爽夜夜摸| 亚洲欧美日韩高清专用| 成人三级黄色视频| 高清在线国产一区| 亚洲无线在线观看| 免费看光身美女| 一个人观看的视频www高清免费观看| 999久久久精品免费观看国产| 国产成人aa在线观看| 久久人人精品亚洲av| 在线播放国产精品三级| 国产av不卡久久| 老司机深夜福利视频在线观看| 男女视频在线观看网站免费| 免费在线观看影片大全网站| 日本撒尿小便嘘嘘汇集6| 欧美日韩精品成人综合77777| 亚洲av成人精品一区久久| 男女边吃奶边做爰视频| 欧美激情国产日韩精品一区| 久久国内精品自在自线图片| 波多野结衣高清无吗| 亚洲av电影不卡..在线观看| 亚洲av美国av| 麻豆一二三区av精品| 免费搜索国产男女视频| 熟女电影av网| 三级毛片av免费| 黄片wwwwww| 真实男女啪啪啪动态图| 亚洲av一区综合| 少妇熟女aⅴ在线视频| 男人的好看免费观看在线视频| 国产三级中文精品| 亚洲第一电影网av| 丰满乱子伦码专区| 亚洲专区国产一区二区| 久久九九热精品免费| 日韩欧美精品v在线| 国产精品一区二区免费欧美| 俄罗斯特黄特色一大片| 夜夜看夜夜爽夜夜摸| 亚洲欧美激情综合另类| 久久99热这里只有精品18| 久久久久久久久中文| 啪啪无遮挡十八禁网站| 身体一侧抽搐| 亚洲欧美激情综合另类| 国产精品,欧美在线| 亚洲av中文字字幕乱码综合| 免费搜索国产男女视频| 亚洲精品亚洲一区二区| 九九爱精品视频在线观看| 欧美日韩中文字幕国产精品一区二区三区| 少妇熟女aⅴ在线视频| 99在线视频只有这里精品首页| 日本与韩国留学比较| 亚洲天堂国产精品一区在线| 九九热线精品视视频播放| 亚洲最大成人中文| 成人性生交大片免费视频hd| 久久精品久久久久久噜噜老黄 | 国产高清视频在线观看网站| 在线国产一区二区在线| 一区二区三区免费毛片| 自拍偷自拍亚洲精品老妇| 99热这里只有是精品在线观看| 国产午夜精品久久久久久一区二区三区 | 成年女人永久免费观看视频| 国产久久久一区二区三区| 一区福利在线观看| 免费黄网站久久成人精品| 丰满的人妻完整版| 日本一本二区三区精品| 五月玫瑰六月丁香| 久久久久久久亚洲中文字幕| 国产精品一及| 又黄又爽又刺激的免费视频.| 国产欧美日韩精品亚洲av| 免费观看精品视频网站| 国产黄a三级三级三级人| 日韩大尺度精品在线看网址| 国产精品日韩av在线免费观看| 亚洲欧美日韩高清在线视频| 国产av不卡久久| 国产精品电影一区二区三区| 免费大片18禁| 又黄又爽又免费观看的视频| 99久久无色码亚洲精品果冻| 精品不卡国产一区二区三区| 亚洲av免费高清在线观看| 99久久久亚洲精品蜜臀av| 午夜精品久久久久久毛片777| 国产男靠女视频免费网站| 亚洲一区高清亚洲精品| 3wmmmm亚洲av在线观看| 高清在线国产一区| 日本精品一区二区三区蜜桃| 大又大粗又爽又黄少妇毛片口| 久久精品影院6| 国产亚洲精品久久久com| 日韩国内少妇激情av| 久久午夜福利片| 久久久久久九九精品二区国产| 综合色av麻豆| 国产亚洲精品av在线| 一区二区三区四区激情视频 | 一a级毛片在线观看| 99久久成人亚洲精品观看| 天堂动漫精品| 搡老熟女国产l中国老女人| 日本a在线网址| 伦精品一区二区三区| 国产精品女同一区二区软件 | 久久天躁狠狠躁夜夜2o2o| 亚洲 国产 在线| 99久国产av精品| 婷婷六月久久综合丁香| 亚洲欧美日韩高清在线视频| 精品久久久久久久久av| 久久精品国产亚洲av涩爱 | .国产精品久久| 欧美黑人巨大hd|