• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Feasibility Study on Common Methods for Wave Force Estimation of Deep Water Combined Breakwaters

    2015-06-01 09:24:20YUDingyongTANGPengandSONGQingguo
    Journal of Ocean University of China 2015年4期

    YU Dingyong, TANG Peng, and SONG Qingguo

    College of Engineering,Ocean University of China,Qingdao266100,P. R. China

    Feasibility Study on Common Methods for Wave Force Estimation of Deep Water Combined Breakwaters

    YU Dingyong*, TANG Peng, and SONG Qingguo

    College of Engineering,Ocean University of China,Qingdao266100,P. R. China

    China’s newly enacted Breakwater Design Specifications (JTS154-2011) explicitly state that breakwaters with water depths greater than 20 m are categorized as deep-water breakwaters, and emphasize that design principles, methods and construction requirements are different from those of common shallow water breakwaters. However, the specifications do not make any mention of how to choose wave force calculation methods of deep-water breakwaters. To study the feasibility of different formulae for wave force estimation of deep water combined breakwaters, the wave force calculated by the Sainflou’s, Goda’s, modified Goda’s and specifications’ methods are compared for various water depths and wave heights in this paper. The calculated results are also compared with experimental data. The total horizontal forcing and the pattern of pressure distributions are presented. Comparisons show that the wave pressure distributions by the four methods are similar, but the total horizontal forces are different. The results obtained by the Goda’s method and the specified formulae are much closer to the experimental data. As for the wave force estimation for the deepwater mixed embankment foundation bed parapet, the Goda’s formula is applied in the case with a water depth of less than 42 m. The Specifications method is suitable for standing waves. In the wave force estimates of breastworks, Sainflou’s and the modified Gaoda’s formulae are no longer applicable for the foundation bed of mixed embankment.

    combined breakwater; breast; wave force; deep water; feasibility

    1 Introduction

    Breakwater is an important marine/hydraulic structure in coastal engineering commonly-used breakwater structures include the slope, the vertical and the combined types. The type of breakwaters to be built is determined based on natural environment, construction facilities, materials as well as cost. In deep water the vertical type or the slope type is normally a good choice in terms of the cost, but the combined one is usually the first choice. There are different descriptions on the combined structure. Xie (1994) pointed out that although enginners began to pay attention to deep water structures, the concept of the combined deep water breakwater has not been clear until the 1990s. Goda (1985) indicated that the vertical breakwater includes both the structure directly placed on the seabed and that built on artificial rubble foundation. Hur and Mizutani (2003) developed numerical models to estimate the wave forces acting on a three-dimensional submerged breakwater. Romitiet al.(1988) that emphasized the combined breakwater can be defined as a structure with the vertical wall placed on a slope rubble bed. This kind of structure can keep the typical characteristicsof the vertical or slope breakwater. Kawasaki (1999) proposed a numerical model to simulate wave deformation and wave breaking based on the SOLA-VOF method originally developed by Hirt and Nichols (1981).

    Breakwater Design and Construction Specifications (JTS154-1-2011) has classified a breakwater constructed in water deeper than 20 m as the deep-water breakwater. Having characteristics and advantages of both the slope and the vertical breakwater, the combined structure is often found in deep water areas with high waves. The Busan Port breakwater was built in 60 m deep water, with 35 m wide slope foundation and 30 m vertical caisson (Su and Qu, 2011). With the development of construction technology, deepwater breakwaters become common, such as the 38 m Ofunato Port breakwater, the 42 m Shimoda Port breakwater, the 50 m Portugal Sine Port breakwater, the 30 m Shanghai Yangshan Port dike, and the 50 m Daishan breakwater (Yu and Su, 2012).

    In deep water areas, it is of great importance to calculate wave loads on structures. Wang (2010) pointed out that more attention should be given to the deepwater embankment because of the powerful wave forces and wave reflection. In Breakwater Design and Construction Specifications (JTS154-1-2011) it is stated that the design principles, methods and construction requirements of breakwaters in deep water is different from those in shallow water; however, no wave force calculation methodsare recommended for deep water breakwaters.

    The Sainflou’s, Goda’s, the modified Goda’s formulas and the method in the Code of Hydrology for Sea Harbor (TJ213-98) are the commonly-used methods for wave force estimation for shallow water breakwaters. Goda’s formula has been used in many countries after it was modified in 1975 (Su and Wang, 2003). The British used to apply the Sainflou’s formula in the their standard before it was modified, while the new version of the standard, BS6439, adopted the Goda’s formula. The modified Goda’s formula is applied to open foundation bed with big width base shoulder in various situations, strong wave pressure being calculated using the method in Code of Hydrology for Sea Harbor (TJ213-98). About the wave force calculation in deep water. Zhanget al.(2010) referred to the irregular wave experiment data for deep water mixture basement, in which the embankment body was caisson, the water depth in front of the embankment was 20.6 m,H1/3=8 m, andT1/3=9-13 s. WhenH1/3/dwas larger (H1/3is the significant wave height anddis the water depth), the calculated horizontal wave force was overestimated by Goda’s formula. Unsalan and Gurhan (2005) pointed out that the Goda’s formula has been a good estimator for the maximum pressure values in all cases. Wang (2010) showed that measured data given consistent results by the Chinese standard formula and the Japanese Goda’s formula when standing waves exist and waves are breaking in front of deep water vertical breakwater. After wave breaking, the measured data are significantly greater than the calculated results by the Chinese standard formula and Japanese Goda’s formula. As for the wave force calculation in mixed deep water embankment on middle foundation bed, no definite conclusion has been drawn on selecting a better calculation method.

    In order to study the feasibility of the Sainflou’s, Goda’s, the modified Goda’s formula and the method in the Code of Hydrology for Sea Harbors in estimation of wave loads for combined deep water breakwaters, the wave forces were calculated for four different water depths and three different wave heights in this study. An experimental test was carried out to obtain the wave loads on the vertical wall of the combined breakwater. The calculated results are compared with the measured data. Among the above-mentioned four methods one is suitable for combined deep water breakwater.

    2 Commonly Used Breakwater Wave Force Calculation Methods

    2.1 Goda’s

    Goda (1974) developed an empirical formula to estimate non-breaking and breaking wave pressures on vertical walls, which has been widely used in Japan for the design of vertical caisson type breakwaters and is one of general methods for calculating breakwater wave force. It is mainly applied in standing wave and breaking wave statess. Fig.1 shows the wave pressure distribution by the Goda’s formula, wheredis the water depth in the position 5Hoff the foundation,d1is the height from the top of the foundation to the still water surface,d2is the water depth above the foundation armour,hcis the height of vertical wall above the still water surface,His the wave height,Psis the wave pressure at the still water surface, andPbis the wave pressure at the vertical wall bottom.

    Vertical incidence:η* = 1.5H.

    η* is the height of zero pressure point above the still water surface.

    The total horizontal wave force is:

    Fig.1 Wave pressure distribution by Goda’s formula.

    2.2 Sainflou’s

    Sainflou (1928) proposed a theoretical method for calculating the dynamic pressures due to non-breaking waves on vertical walls. Experimental observations by Rundgren (1958) indicated that the Sainflou’s method may significantly overestimate the non-breaking wave force, particularly for steep waves. Wave pressure distribution by the Sainflou’s formula can be found in Fig.2, where

    h0is the ultra height over the still water surface;Hiisthe wave height;kis the wave number;Lis the wave length.

    Wave pressure on the vertical wall at the foundation armour is:

    Wave pressure at the still water surface is:

    Wave pressure at the vertical wall bottom can be expressed as:

    The total horizontal wave force is:

    Fig.2 Wave pressure distribution by Sainflou’s formula.

    2.3 The Modified Goda’s

    The researchers of the Japan Harbor Research Institute considered that the strong wave pressure can be generated at the front of a vertical wall in the case of higher rubble bed and larger width of base shoulder of mixed embankment. Based on a large number of experiments, they proposed to use the modified Goda’s formula for calculating strong wave pressure (Xie, 1994). Fig.3 shows the wave pressure distribution by the modified Goda’s formula, wherePSis the wave pressure at the still water surface,Pbis the wave pressure at the vertical wall bottom,

    η* is the height of the zero pressure point above the still water surface.

    αI1can be obtained from Fig.4.

    The total horizontal wave force without overtopping is:

    Fig.3 Wave pressure distribution by the modified Goda’s formula.

    Fig.4 Value ofαI1.

    2.4 JTJ213-98’s

    Application conditions for the specification’s formula are described in Code of Hydrology for Sea Harbor(JTJ213-98), according to which the wave state can be determined in front of the breakwater (Table 1). The wave pressure distribution by the JTJ213-98’s formula is shown in Fig.5, where,dis the water depth from the foundation bottom to the still water surface,d2is the water depth in front of the vertical wall.

    Table 1 Wave state

    Fig.5 Wave pressure distribution by the JTJ213-98’s formula.

    Under the condition ofH/L≥1/30 and 0.2<d/L<0.5, the wave force is obtained as follows:

    whereγis the specific gravity of water (kN m-3),Pis the total horizontal wave force in unit length.

    From the four methods shown above, no straightforward correlation between wave force and deep wave depth is given.

    3 Wave Load Comparison of the Results by Four Different Formulae

    3.1 Conditions

    In order to compare the four wave force formulae for deep water, a breakwater with four water depths (30.0, 36.0, 42.0 and 48.0 m) is examined (Table 2). The designed wave height is 6.5, 7.0 and 7.5 m and the wave period in all cases is 11.0 s.

    Table 2 Wave state with 1/3<d2/d1≤2/3

    3.2 Comparison

    Figs.6-8 show the calculated total horizontal wave force for different water depths and wave heights, and Fig.9 shows the distribution of wave pressure by the four formulae.

    Based on the above figures, the calculated total horizontal wave force by the Sainflou’s, Goda’s formula and the modified Goda’s formula increases with water depth and wave height, but it is independent of wave state. By assuming a linear wave pressure distribution the fastest increasing rate of the Sainflou’s formula is calculated. The increasing rates of the Goda’s and the modified Goda’s formula are relatively low.

    The calculated total horizontal wave force by the standard formula increases with water depth and wave height in the standing wave state, and the increasing rate by the standard formula is slightly higher than that of the Goda’s formula. While waves are breaking, the calculated total horizontal wave force increases with the decrease of water depth for the same wave height.

    The calculated total horizontal wave force by theGoda’s formula is close to that by the standard formula, but the calculated results by both formulae are smaller than the results calculated by the Sainflou’s and the modified Goda’s formula.

    Fig.6 The total horizontal forces by the four formulae (H=6.5 m).

    Fig.7 The total horizontal forces by the four formulae (H=7.0 m).

    Fig.8 The total horizontal forces by the four formulae (H=7.5 m).

    Calculated by all four methods, the distribution of parapet wave pressure intensity is similar. The maximum wave pressure appears at still water level. And the wave pressure has a linear distribution from still water level to both sides and gradually decreases. Shown in Fig.9 is the calculated wave pressure distribution for a water depth of 30m and a wave height of 7.0m.

    Fig.9 Pressure distribution by the four formulae.

    4 Comparative Analysis Between Calculated Results and Experimental Data

    The physical model tests in this paper were conducted in a wave tank which has a length of 81 m, a width of 1.4 m, and a height of 2.6 m. The wave tank was divided into two parts by a glass plate placed in the longitudinal direction, each with a width of 0.6 m and 0.8 m, respectively. The physical model tests were conducted in the part with the 0.6 m width and the reflected wave energy was reduced in the part with the 0.8 m width.

    The experimental system before hybrid breakwater breastwork was set up with the four water depths 30 m, 36 m, 42 m, 48 m and three wave heights 6.5 m, 7.0 m, 7.5 m. Wave parameters of the experiments can be found in Table 3.

    Table 3 Experiment wave parameters

    Comparison between the calculations by the four methods and the experimental results is shown in Figs.10-12 with the percentage difference given in Table 4.

    1) The total horizontal wave force calculated by the Goda’s formula for breastwork well agrees with the experimental results and the percentage difference is within10% at a water depth of less than 42 m.

    Fig.10 Comparison between the calculations by the four methods and the experimental data (middle-height foundation,H=6.5 m).

    Fig.11 Comparison between the calculations by the four methods and the experimental data (middle-height foundation,H=7.0 m).

    Fig.12 Comparison between the calculations by the four methods and the experimental data (middle-height foundation,H=7.5 m).

    2) The total horizontal wave force calculated by Code of Hydrology for Sea Harbor (TJ213-98)’s formula is less than the experimental results in the standing wave case and the percentage difference is within 10%. The calculated incrassation ratio between wave height and water depth changes from less than 1% to greater than 15% of the experimental results in the breaking wave case.

    3) The percentage differnce between the calculations by the Sainflou’s formula and the experimental results is larger and varies from 22% to 40%. Because the modified Goda’s formula considers the influence of foundation shoulder width and wave impact load, the percentage differnce of the total horizontal wave force between the calculations and the experimental results is from 8% to 24%. Sainflou’s formula and the modified Goda’s formula had not been applied in our study to calculate wave force in mixed embankment breast wall on middle foundation bed.

    Table 4 Wave force difference between the calculations by the four methods and the experimental results

    5 Conclusions

    As water depth increases, traditional formulae for the estimate of breastwork wave force cannot simply be applied.

    For foundation bed parapet wave force estimates for the deepwater mixed embankment, the Goda’s modified wave pressure formula applies to the case of a water depth of less than 42 m; the method is suitable for the standing wave case.

    For wave force estimates of breastworks on the foundation bed of mixed embankment, the Sainflou’s and the modified Goda’s wave pressure formulas are no longer applicable.

    Acknowledgements

    This work is supported by the Shandong Sci-tech Development Plan (Item No. 2008GGB01099).

    Goda, Y., 1974. New wave pressure formula for composite breakwater.Coastal Engineering Proceeding, 1 (14): 1702-1720.

    Goda, Y., 1985.Random Seas and the Design of Maritime Structures. University of Tokyo Press, Tokyo, 42-56.

    Hirt, C. W., and Nichols, B. D., 1981. Volume of fluid (VOF) method for the dynamics of free boundaries.Journal of Computational Physics, 39 (1): 201-225.

    Hur, D.-S., and Mizutani, N., 2003. Numerical estimation of the wave forces acting on a three-dimensional body on submerged breakwater.Coastal Engineering, 47 (3): 329-345.

    Kawasaki, K., 1999. Numerical simulation of breaking and postbreaking wave deformation process around a submerged breakwater.Coastal Enginerring Journal, 41 (3-4): 201-223.

    Ministry of Transportation, 1998.Code of Hydrology for Sea Harbor (JTJ213-98). People’s Communication Press, Beijing, 52-66.

    Ministry of Transportation, 2011.Breakwater Design and Construction Specifications (JTS154-1-2011). People’s Communication Press, Beijing, 23-27.

    Romiti, C., 1988. Italian hybrid breakwater experience.Port Engineering Technology, 51: 11-18.

    Rundgren, L., 1958.Water Wave Forces. Bulletin No. 54, Royal Institute of Technology, Division of Hydraulics, Stockholm, Sweden, 112-125.

    Sainflou, M., 1928.Treatise on Vertical Breakwaters. Annales des Ponts et Chaussees, Paris, 45-75.

    Su, N., and Wang, M. Y., 2003. Application of goda formula for wave pressure in british standard.China Harbour Engineering, 1: 18-22.

    Su, Y., and Qu, Y., 2011. Progress in methods for calculating wave loads on breakwater crown wall in deep water.Coastal Engineering, 3: 43-48.

    Unsalan, D., and Gurhan, G., 2005. A comparative study of the first and second order theories and Goda’s formula for waveinduced pressure on a vertical breakwater with irregular waves.Ocean Engineering, 32 (17-18): 2182-2194.

    Wang M. R., 2010. Inquiry on design method for deep-water breakwater.Port Engineering Technology, 47 (3): 1-7.

    Xie, S. L., 1994. Latest advances in deepwater breakwater.Port Engineering Technology, 2: 1-10.

    Yu, D. Y., and Su, Y., 2012. Study on calculation method for wave loads on deep water breakwater crown wall.Periodical of Ocean University of China, 42 (1-2): 136-140.

    Zhang, S. S., Zhang, X. W., and Li, Y. B., 2010. Progress in the research of irregular wave force on vertical wall.Port Engineering Technology, 19 (5): 79-86.

    (Edited by Xie Jun)

    (Received May 23, 2013; revised July 2, 2013; accepted April 7, 2015)

    ? Ocean University of China, Science Press and Springer-Verlag Berlin Heidelberg 2015

    * Corresponding author. Tel: 0086-532-66786009 E-mail: dyyu01@ouc.edu.cn

    婷婷成人精品国产| 一级a爱视频在线免费观看| 丝袜人妻中文字幕| 亚洲精品美女久久av网站| 免费看av在线观看网站| 美国免费a级毛片| 久久ye,这里只有精品| 国产成人91sexporn| 丝袜美腿诱惑在线| 大香蕉久久网| av线在线观看网站| 欧美日韩av久久| 爱豆传媒免费全集在线观看| 嫁个100分男人电影在线观看 | 中国美女看黄片| 欧美黄色片欧美黄色片| 日韩精品免费视频一区二区三区| 搡老岳熟女国产| 亚洲国产成人一精品久久久| xxxhd国产人妻xxx| 一本—道久久a久久精品蜜桃钙片| 亚洲国产欧美一区二区综合| 免费高清在线观看日韩| 宅男免费午夜| 无遮挡黄片免费观看| 伊人久久大香线蕉亚洲五| 一区二区三区激情视频| 国语对白做爰xxxⅹ性视频网站| 久久人人爽av亚洲精品天堂| 欧美人与性动交α欧美精品济南到| 成人亚洲欧美一区二区av| 欧美日韩成人在线一区二区| 欧美日韩亚洲高清精品| 曰老女人黄片| 欧美久久黑人一区二区| 自拍欧美九色日韩亚洲蝌蚪91| 日韩一卡2卡3卡4卡2021年| 日本一区二区免费在线视频| 久久精品国产亚洲av高清一级| 美女高潮到喷水免费观看| 国产精品久久久人人做人人爽| 18禁观看日本| 建设人人有责人人尽责人人享有的| 99九九在线精品视频| 最黄视频免费看| videosex国产| 一个人免费看片子| 国产片特级美女逼逼视频| 亚洲色图综合在线观看| xxx大片免费视频| 国产成人一区二区三区免费视频网站 | xxxhd国产人妻xxx| 色婷婷av一区二区三区视频| 婷婷色麻豆天堂久久| 精品久久久久久久毛片微露脸 | 一级黄色大片毛片| 亚洲欧美一区二区三区久久| 欧美少妇被猛烈插入视频| 少妇的丰满在线观看| 欧美人与性动交α欧美精品济南到| 精品免费久久久久久久清纯 | www.av在线官网国产| 日韩视频在线欧美| 女人被躁到高潮嗷嗷叫费观| 一本久久精品| 王馨瑶露胸无遮挡在线观看| av在线播放精品| 亚洲成人手机| 欧美日韩视频高清一区二区三区二| 高清av免费在线| 国产激情久久老熟女| 国产激情久久老熟女| www.熟女人妻精品国产| 成人国产av品久久久| 日日摸夜夜添夜夜爱| 一级片'在线观看视频| 日韩一卡2卡3卡4卡2021年| 在线观看免费午夜福利视频| 国产精品成人在线| 色精品久久人妻99蜜桃| 香蕉丝袜av| 看十八女毛片水多多多| 热99久久久久精品小说推荐| 巨乳人妻的诱惑在线观看| 狠狠精品人妻久久久久久综合| 秋霞在线观看毛片| 黄片播放在线免费| 久久ye,这里只有精品| 成人三级做爰电影| 亚洲av成人精品一二三区| av福利片在线| 色精品久久人妻99蜜桃| a级毛片在线看网站| 色精品久久人妻99蜜桃| 国产精品偷伦视频观看了| 汤姆久久久久久久影院中文字幕| 少妇裸体淫交视频免费看高清 | 丝袜喷水一区| 女人被躁到高潮嗷嗷叫费观| 激情视频va一区二区三区| 亚洲欧美日韩另类电影网站| 免费日韩欧美在线观看| 人妻人人澡人人爽人人| 免费一级毛片在线播放高清视频 | 亚洲av片天天在线观看| 国产成人av激情在线播放| 777米奇影视久久| 亚洲免费av在线视频| 又大又黄又爽视频免费| 欧美人与性动交α欧美精品济南到| 免费高清在线观看视频在线观看| 国产亚洲精品久久久久5区| 91精品三级在线观看| 岛国毛片在线播放| 亚洲成色77777| 日韩,欧美,国产一区二区三区| 午夜福利一区二区在线看| 欧美黑人精品巨大| 久久精品熟女亚洲av麻豆精品| 国产日韩欧美在线精品| 人人妻,人人澡人人爽秒播 | av线在线观看网站| 韩国精品一区二区三区| 婷婷色av中文字幕| 老司机在亚洲福利影院| 欧美日韩国产mv在线观看视频| 在线观看国产h片| 国产精品一区二区免费欧美 | 亚洲国产中文字幕在线视频| 十分钟在线观看高清视频www| 首页视频小说图片口味搜索 | 女人高潮潮喷娇喘18禁视频| 欧美av亚洲av综合av国产av| 80岁老熟妇乱子伦牲交| 亚洲,欧美,日韩| 黄色一级大片看看| 成人亚洲精品一区在线观看| 五月开心婷婷网| 成人亚洲欧美一区二区av| av有码第一页| 大话2 男鬼变身卡| 18禁黄网站禁片午夜丰满| 日韩av免费高清视频| 9色porny在线观看| 日日爽夜夜爽网站| 热re99久久国产66热| 欧美 亚洲 国产 日韩一| 女人爽到高潮嗷嗷叫在线视频| 欧美日韩av久久| 亚洲精品国产av蜜桃| 亚洲国产看品久久| 亚洲人成网站在线观看播放| 久久人妻熟女aⅴ| 美女主播在线视频| 两个人看的免费小视频| 免费在线观看视频国产中文字幕亚洲 | 波多野结衣一区麻豆| 精品久久久久久电影网| 别揉我奶头~嗯~啊~动态视频 | 久久天堂一区二区三区四区| 中国国产av一级| 王馨瑶露胸无遮挡在线观看| 亚洲一区中文字幕在线| 国产精品一二三区在线看| 午夜福利视频在线观看免费| 亚洲精品一二三| 国产一区二区三区综合在线观看| 免费观看av网站的网址| 中国美女看黄片| 99香蕉大伊视频| 亚洲免费av在线视频| 国产视频首页在线观看| 91九色精品人成在线观看| 国产老妇伦熟女老妇高清| 日韩免费高清中文字幕av| 国产精品免费视频内射| 狠狠精品人妻久久久久久综合| 少妇被粗大的猛进出69影院| 久久女婷五月综合色啪小说| 18在线观看网站| 国产成人一区二区三区免费视频网站 | 九草在线视频观看| av网站免费在线观看视频| 亚洲精品久久久久久婷婷小说| 日本wwww免费看| 久久午夜综合久久蜜桃| 国产精品熟女久久久久浪| 一区二区三区激情视频| 亚洲精品国产区一区二| 国产亚洲av片在线观看秒播厂| 成年动漫av网址| 亚洲av电影在线进入| 久久天躁狠狠躁夜夜2o2o | 久久久久久久国产电影| avwww免费| www.av在线官网国产| 天天躁夜夜躁狠狠久久av| 国产成人av教育| 美女扒开内裤让男人捅视频| 男男h啪啪无遮挡| 不卡av一区二区三区| 老司机靠b影院| 国产xxxxx性猛交| 日本黄色日本黄色录像| 纵有疾风起免费观看全集完整版| 亚洲伊人久久精品综合| 亚洲,一卡二卡三卡| 妹子高潮喷水视频| 欧美激情 高清一区二区三区| 大陆偷拍与自拍| av片东京热男人的天堂| 久久久久网色| 亚洲少妇的诱惑av| 51午夜福利影视在线观看| 成人国产av品久久久| 啦啦啦 在线观看视频| 国产麻豆69| 超碰成人久久| 精品国产一区二区三区四区第35| 麻豆av在线久日| 国产片内射在线| 亚洲成人免费电影在线观看 | xxxhd国产人妻xxx| 亚洲伊人色综图| av有码第一页| 成人国产av品久久久| 91精品三级在线观看| av福利片在线| 日日夜夜操网爽| 亚洲欧美清纯卡通| 韩国精品一区二区三区| 在线天堂中文资源库| av福利片在线| 欧美日韩视频高清一区二区三区二| 欧美性长视频在线观看| 丝瓜视频免费看黄片| 一二三四社区在线视频社区8| 欧美精品人与动牲交sv欧美| 又大又黄又爽视频免费| 黄色a级毛片大全视频| 我要看黄色一级片免费的| 秋霞在线观看毛片| 免费黄频网站在线观看国产| 久久av网站| 最近最新中文字幕大全免费视频 | 国产精品一区二区精品视频观看| 国产精品麻豆人妻色哟哟久久| 日本黄色日本黄色录像| 亚洲精品日韩在线中文字幕| 美女扒开内裤让男人捅视频| 大片免费播放器 马上看| 99热全是精品| 赤兔流量卡办理| 成人免费观看视频高清| 天天操日日干夜夜撸| 亚洲国产av影院在线观看| 亚洲情色 制服丝袜| 亚洲一区中文字幕在线| 男人舔女人的私密视频| 精品一品国产午夜福利视频| 日韩熟女老妇一区二区性免费视频| 超色免费av| 777米奇影视久久| 国产免费一区二区三区四区乱码| 亚洲熟女毛片儿| 亚洲国产看品久久| 永久免费av网站大全| 免费不卡黄色视频| 在线观看免费高清a一片| 国产亚洲一区二区精品| av欧美777| 国产亚洲精品久久久久5区| 中文字幕人妻熟女乱码| 国产视频首页在线观看| 久久精品亚洲熟妇少妇任你| 国产一级毛片在线| 欧美在线黄色| 免费观看av网站的网址| 午夜av观看不卡| 欧美精品av麻豆av| a级毛片黄视频| 久久久国产欧美日韩av| 成年人免费黄色播放视频| 这个男人来自地球电影免费观看| 最新在线观看一区二区三区 | a 毛片基地| 国产日韩欧美在线精品| 日韩熟女老妇一区二区性免费视频| 日韩人妻精品一区2区三区| 精品久久蜜臀av无| 中文字幕高清在线视频| 天堂俺去俺来也www色官网| 国产xxxxx性猛交| 黄频高清免费视频| 国产精品人妻久久久影院| 我要看黄色一级片免费的| 乱人伦中国视频| 欧美日本中文国产一区发布| 日本av免费视频播放| 久久久精品94久久精品| a 毛片基地| 亚洲人成网站在线观看播放| 欧美精品人与动牲交sv欧美| 男女边摸边吃奶| 国产视频首页在线观看| 久久国产精品影院| 热99久久久久精品小说推荐| 这个男人来自地球电影免费观看| 中文字幕色久视频| av国产久精品久网站免费入址| 精品国产超薄肉色丝袜足j| 午夜福利一区二区在线看| 51午夜福利影视在线观看| 啦啦啦在线观看免费高清www| 免费日韩欧美在线观看| 美女中出高潮动态图| 精品国产乱码久久久久久男人| 国产极品粉嫩免费观看在线| 91精品伊人久久大香线蕉| 乱人伦中国视频| 国产伦人伦偷精品视频| xxx大片免费视频| 免费在线观看视频国产中文字幕亚洲 | 又粗又硬又长又爽又黄的视频| 热99国产精品久久久久久7| 91成人精品电影| 男女下面插进去视频免费观看| 又粗又硬又长又爽又黄的视频| 欧美精品啪啪一区二区三区 | 亚洲精品日本国产第一区| 久久国产精品男人的天堂亚洲| 国产亚洲精品久久久久5区| 18禁裸乳无遮挡动漫免费视频| 色播在线永久视频| 国产日韩欧美视频二区| 熟女av电影| 亚洲天堂av无毛| 精品少妇内射三级| 精品人妻一区二区三区麻豆| 亚洲国产精品一区二区三区在线| 精品一区在线观看国产| 亚洲成人免费电影在线观看 | 黑人猛操日本美女一级片| 一级a爱视频在线免费观看| 日韩欧美一区视频在线观看| 日韩大码丰满熟妇| 脱女人内裤的视频| 老熟女久久久| 免费观看人在逋| 欧美另类一区| 男人舔女人的私密视频| 51午夜福利影视在线观看| 亚洲国产中文字幕在线视频| 麻豆乱淫一区二区| 看免费成人av毛片| 老司机午夜十八禁免费视频| 婷婷色综合www| 日韩欧美一区视频在线观看| 国产女主播在线喷水免费视频网站| 欧美精品av麻豆av| 纯流量卡能插随身wifi吗| 中文字幕人妻丝袜制服| 伦理电影免费视频| 建设人人有责人人尽责人人享有的| 国产欧美亚洲国产| 狂野欧美激情性xxxx| 午夜两性在线视频| 90打野战视频偷拍视频| 日韩av免费高清视频| 丝袜在线中文字幕| 国产精品九九99| 男女国产视频网站| 亚洲精品国产区一区二| 国产熟女欧美一区二区| 欧美精品av麻豆av| 每晚都被弄得嗷嗷叫到高潮| 黄频高清免费视频| 久久国产精品人妻蜜桃| 男人舔女人的私密视频| 精品久久久久久久毛片微露脸 | 在线看a的网站| 人人澡人人妻人| 免费少妇av软件| 免费人妻精品一区二区三区视频| 男男h啪啪无遮挡| 成年动漫av网址| 波多野结衣一区麻豆| 高清欧美精品videossex| 久久亚洲精品不卡| 久9热在线精品视频| 天天躁日日躁夜夜躁夜夜| 久久国产精品男人的天堂亚洲| 男女边摸边吃奶| 亚洲精品久久午夜乱码| 18禁观看日本| 亚洲成色77777| 777米奇影视久久| 老汉色∧v一级毛片| 精品免费久久久久久久清纯 | 丰满少妇做爰视频| 欧美精品高潮呻吟av久久| 91国产中文字幕| netflix在线观看网站| 男人添女人高潮全过程视频| 亚洲五月婷婷丁香| 亚洲国产欧美网| 欧美黑人精品巨大| 日本午夜av视频| 热99国产精品久久久久久7| a级片在线免费高清观看视频| 如日韩欧美国产精品一区二区三区| 精品久久久精品久久久| 免费看不卡的av| 日本vs欧美在线观看视频| 国产黄色视频一区二区在线观看| 女性生殖器流出的白浆| 久久久久国产一级毛片高清牌| 国产精品国产三级国产专区5o| 女人久久www免费人成看片| 又粗又硬又长又爽又黄的视频| 蜜桃国产av成人99| 国产熟女欧美一区二区| 久久久久精品国产欧美久久久 | 日本av手机在线免费观看| 国产精品久久久av美女十八| 久久精品亚洲av国产电影网| 国产成人精品久久二区二区免费| 成年动漫av网址| 亚洲伊人久久精品综合| 日韩 亚洲 欧美在线| 90打野战视频偷拍视频| 亚洲精品国产色婷婷电影| 精品人妻一区二区三区麻豆| 丝袜人妻中文字幕| 人妻人人澡人人爽人人| 视频在线观看一区二区三区| 国产成人91sexporn| 秋霞在线观看毛片| 午夜福利在线免费观看网站| 亚洲精品久久午夜乱码| 日日夜夜操网爽| 日本欧美视频一区| 大香蕉久久成人网| 欧美乱码精品一区二区三区| 精品人妻在线不人妻| 日本wwww免费看| 国产日韩欧美视频二区| 少妇裸体淫交视频免费看高清 | 一区在线观看完整版| 91精品国产国语对白视频| 久久久精品免费免费高清| 久久精品成人免费网站| 亚洲情色 制服丝袜| 精品一区二区三卡| 黄色片一级片一级黄色片| 一级黄色大片毛片| 90打野战视频偷拍视频| 99热网站在线观看| 热99国产精品久久久久久7| 国产在线视频一区二区| 777米奇影视久久| 亚洲国产成人一精品久久久| 日韩av不卡免费在线播放| av国产久精品久网站免费入址| kizo精华| 首页视频小说图片口味搜索 | 色精品久久人妻99蜜桃| 一本综合久久免费| 国产一区二区激情短视频 | 亚洲国产欧美在线一区| 啦啦啦啦在线视频资源| 欧美xxⅹ黑人| 激情五月婷婷亚洲| av天堂在线播放| 大话2 男鬼变身卡| 我的亚洲天堂| 亚洲av成人不卡在线观看播放网 | av网站免费在线观看视频| 国产成人av激情在线播放| 国产野战对白在线观看| 国产黄频视频在线观看| 男人爽女人下面视频在线观看| 国产av一区二区精品久久| 亚洲欧美成人综合另类久久久| 久久久久国产精品人妻一区二区| 精品久久久久久久毛片微露脸 | 男女之事视频高清在线观看 | 久久久久久免费高清国产稀缺| 精品免费久久久久久久清纯 | 99久久99久久久精品蜜桃| 国产又色又爽无遮挡免| 亚洲国产欧美在线一区| 老汉色∧v一级毛片| 老司机影院毛片| 9色porny在线观看| 一个人免费看片子| 亚洲欧美成人综合另类久久久| 午夜两性在线视频| 99精国产麻豆久久婷婷| 在线观看国产h片| 午夜福利视频在线观看免费| 嫁个100分男人电影在线观看 | kizo精华| 99久久精品国产亚洲精品| 妹子高潮喷水视频| 久久久久久久久久久久大奶| 一本大道久久a久久精品| 国产精品九九99| 成人18禁高潮啪啪吃奶动态图| 午夜福利视频在线观看免费| 国产黄色免费在线视频| 免费日韩欧美在线观看| 精品国产一区二区三区久久久樱花| 色视频在线一区二区三区| 另类亚洲欧美激情| 久久久久久亚洲精品国产蜜桃av| 欧美亚洲日本最大视频资源| 亚洲一码二码三码区别大吗| 精品少妇内射三级| 国产成人一区二区在线| 久久ye,这里只有精品| 亚洲国产看品久久| 女人精品久久久久毛片| 国产无遮挡羞羞视频在线观看| 在线看a的网站| 亚洲国产欧美网| 国产欧美日韩精品亚洲av| 久久ye,这里只有精品| 久热这里只有精品99| 爱豆传媒免费全集在线观看| 丝袜在线中文字幕| 在线观看免费日韩欧美大片| 免费日韩欧美在线观看| 大陆偷拍与自拍| 9色porny在线观看| 午夜福利乱码中文字幕| 一本—道久久a久久精品蜜桃钙片| 悠悠久久av| 亚洲黑人精品在线| 午夜91福利影院| www.999成人在线观看| 2018国产大陆天天弄谢| 国产亚洲精品第一综合不卡| 国产国语露脸激情在线看| 每晚都被弄得嗷嗷叫到高潮| 日韩大码丰满熟妇| 日韩中文字幕欧美一区二区 | 人妻人人澡人人爽人人| 90打野战视频偷拍视频| 9色porny在线观看| 91麻豆精品激情在线观看国产 | 亚洲男人天堂网一区| 久久人人爽av亚洲精品天堂| 久热这里只有精品99| 国产亚洲欧美精品永久| 午夜影院在线不卡| 国产深夜福利视频在线观看| 亚洲人成电影免费在线| 免费在线观看影片大全网站 | 男女国产视频网站| 美女中出高潮动态图| 国产精品秋霞免费鲁丝片| 国产爽快片一区二区三区| 国产国语露脸激情在线看| 久久人人97超碰香蕉20202| 操出白浆在线播放| 免费在线观看影片大全网站 | 校园人妻丝袜中文字幕| 精品少妇黑人巨大在线播放| 我的亚洲天堂| 老汉色av国产亚洲站长工具| 亚洲精品av麻豆狂野| 久久精品人人爽人人爽视色| 91精品伊人久久大香线蕉| 国产成人精品在线电影| 一本久久精品| 性色av乱码一区二区三区2| 日日摸夜夜添夜夜爱| 亚洲人成网站在线观看播放| 国产男女内射视频| 人妻 亚洲 视频| 极品人妻少妇av视频| 激情视频va一区二区三区| 香蕉国产在线看| 纯流量卡能插随身wifi吗| 极品人妻少妇av视频| 丁香六月天网| av又黄又爽大尺度在线免费看| 国产精品久久久av美女十八| 国产亚洲欧美精品永久| 午夜福利一区二区在线看| 欧美精品av麻豆av| 国产伦理片在线播放av一区| 午夜免费鲁丝| 亚洲成色77777| 人妻人人澡人人爽人人| 在线看a的网站| 久久人人爽人人片av| 波多野结衣一区麻豆| 18禁观看日本| 国产97色在线日韩免费| tube8黄色片| 欧美另类一区| 亚洲av美国av| 亚洲色图综合在线观看| videosex国产| 中文字幕精品免费在线观看视频| 亚洲一码二码三码区别大吗| 97人妻天天添夜夜摸| 91国产中文字幕| 中文字幕亚洲精品专区| 免费不卡黄色视频| 天天影视国产精品| 亚洲精品国产色婷婷电影| 人妻一区二区av|