• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Feasibility Study on Common Methods for Wave Force Estimation of Deep Water Combined Breakwaters

    2015-06-01 09:24:20YUDingyongTANGPengandSONGQingguo
    Journal of Ocean University of China 2015年4期

    YU Dingyong, TANG Peng, and SONG Qingguo

    College of Engineering,Ocean University of China,Qingdao266100,P. R. China

    Feasibility Study on Common Methods for Wave Force Estimation of Deep Water Combined Breakwaters

    YU Dingyong*, TANG Peng, and SONG Qingguo

    College of Engineering,Ocean University of China,Qingdao266100,P. R. China

    China’s newly enacted Breakwater Design Specifications (JTS154-2011) explicitly state that breakwaters with water depths greater than 20 m are categorized as deep-water breakwaters, and emphasize that design principles, methods and construction requirements are different from those of common shallow water breakwaters. However, the specifications do not make any mention of how to choose wave force calculation methods of deep-water breakwaters. To study the feasibility of different formulae for wave force estimation of deep water combined breakwaters, the wave force calculated by the Sainflou’s, Goda’s, modified Goda’s and specifications’ methods are compared for various water depths and wave heights in this paper. The calculated results are also compared with experimental data. The total horizontal forcing and the pattern of pressure distributions are presented. Comparisons show that the wave pressure distributions by the four methods are similar, but the total horizontal forces are different. The results obtained by the Goda’s method and the specified formulae are much closer to the experimental data. As for the wave force estimation for the deepwater mixed embankment foundation bed parapet, the Goda’s formula is applied in the case with a water depth of less than 42 m. The Specifications method is suitable for standing waves. In the wave force estimates of breastworks, Sainflou’s and the modified Gaoda’s formulae are no longer applicable for the foundation bed of mixed embankment.

    combined breakwater; breast; wave force; deep water; feasibility

    1 Introduction

    Breakwater is an important marine/hydraulic structure in coastal engineering commonly-used breakwater structures include the slope, the vertical and the combined types. The type of breakwaters to be built is determined based on natural environment, construction facilities, materials as well as cost. In deep water the vertical type or the slope type is normally a good choice in terms of the cost, but the combined one is usually the first choice. There are different descriptions on the combined structure. Xie (1994) pointed out that although enginners began to pay attention to deep water structures, the concept of the combined deep water breakwater has not been clear until the 1990s. Goda (1985) indicated that the vertical breakwater includes both the structure directly placed on the seabed and that built on artificial rubble foundation. Hur and Mizutani (2003) developed numerical models to estimate the wave forces acting on a three-dimensional submerged breakwater. Romitiet al.(1988) that emphasized the combined breakwater can be defined as a structure with the vertical wall placed on a slope rubble bed. This kind of structure can keep the typical characteristicsof the vertical or slope breakwater. Kawasaki (1999) proposed a numerical model to simulate wave deformation and wave breaking based on the SOLA-VOF method originally developed by Hirt and Nichols (1981).

    Breakwater Design and Construction Specifications (JTS154-1-2011) has classified a breakwater constructed in water deeper than 20 m as the deep-water breakwater. Having characteristics and advantages of both the slope and the vertical breakwater, the combined structure is often found in deep water areas with high waves. The Busan Port breakwater was built in 60 m deep water, with 35 m wide slope foundation and 30 m vertical caisson (Su and Qu, 2011). With the development of construction technology, deepwater breakwaters become common, such as the 38 m Ofunato Port breakwater, the 42 m Shimoda Port breakwater, the 50 m Portugal Sine Port breakwater, the 30 m Shanghai Yangshan Port dike, and the 50 m Daishan breakwater (Yu and Su, 2012).

    In deep water areas, it is of great importance to calculate wave loads on structures. Wang (2010) pointed out that more attention should be given to the deepwater embankment because of the powerful wave forces and wave reflection. In Breakwater Design and Construction Specifications (JTS154-1-2011) it is stated that the design principles, methods and construction requirements of breakwaters in deep water is different from those in shallow water; however, no wave force calculation methodsare recommended for deep water breakwaters.

    The Sainflou’s, Goda’s, the modified Goda’s formulas and the method in the Code of Hydrology for Sea Harbor (TJ213-98) are the commonly-used methods for wave force estimation for shallow water breakwaters. Goda’s formula has been used in many countries after it was modified in 1975 (Su and Wang, 2003). The British used to apply the Sainflou’s formula in the their standard before it was modified, while the new version of the standard, BS6439, adopted the Goda’s formula. The modified Goda’s formula is applied to open foundation bed with big width base shoulder in various situations, strong wave pressure being calculated using the method in Code of Hydrology for Sea Harbor (TJ213-98). About the wave force calculation in deep water. Zhanget al.(2010) referred to the irregular wave experiment data for deep water mixture basement, in which the embankment body was caisson, the water depth in front of the embankment was 20.6 m,H1/3=8 m, andT1/3=9-13 s. WhenH1/3/dwas larger (H1/3is the significant wave height anddis the water depth), the calculated horizontal wave force was overestimated by Goda’s formula. Unsalan and Gurhan (2005) pointed out that the Goda’s formula has been a good estimator for the maximum pressure values in all cases. Wang (2010) showed that measured data given consistent results by the Chinese standard formula and the Japanese Goda’s formula when standing waves exist and waves are breaking in front of deep water vertical breakwater. After wave breaking, the measured data are significantly greater than the calculated results by the Chinese standard formula and Japanese Goda’s formula. As for the wave force calculation in mixed deep water embankment on middle foundation bed, no definite conclusion has been drawn on selecting a better calculation method.

    In order to study the feasibility of the Sainflou’s, Goda’s, the modified Goda’s formula and the method in the Code of Hydrology for Sea Harbors in estimation of wave loads for combined deep water breakwaters, the wave forces were calculated for four different water depths and three different wave heights in this study. An experimental test was carried out to obtain the wave loads on the vertical wall of the combined breakwater. The calculated results are compared with the measured data. Among the above-mentioned four methods one is suitable for combined deep water breakwater.

    2 Commonly Used Breakwater Wave Force Calculation Methods

    2.1 Goda’s

    Goda (1974) developed an empirical formula to estimate non-breaking and breaking wave pressures on vertical walls, which has been widely used in Japan for the design of vertical caisson type breakwaters and is one of general methods for calculating breakwater wave force. It is mainly applied in standing wave and breaking wave statess. Fig.1 shows the wave pressure distribution by the Goda’s formula, wheredis the water depth in the position 5Hoff the foundation,d1is the height from the top of the foundation to the still water surface,d2is the water depth above the foundation armour,hcis the height of vertical wall above the still water surface,His the wave height,Psis the wave pressure at the still water surface, andPbis the wave pressure at the vertical wall bottom.

    Vertical incidence:η* = 1.5H.

    η* is the height of zero pressure point above the still water surface.

    The total horizontal wave force is:

    Fig.1 Wave pressure distribution by Goda’s formula.

    2.2 Sainflou’s

    Sainflou (1928) proposed a theoretical method for calculating the dynamic pressures due to non-breaking waves on vertical walls. Experimental observations by Rundgren (1958) indicated that the Sainflou’s method may significantly overestimate the non-breaking wave force, particularly for steep waves. Wave pressure distribution by the Sainflou’s formula can be found in Fig.2, where

    h0is the ultra height over the still water surface;Hiisthe wave height;kis the wave number;Lis the wave length.

    Wave pressure on the vertical wall at the foundation armour is:

    Wave pressure at the still water surface is:

    Wave pressure at the vertical wall bottom can be expressed as:

    The total horizontal wave force is:

    Fig.2 Wave pressure distribution by Sainflou’s formula.

    2.3 The Modified Goda’s

    The researchers of the Japan Harbor Research Institute considered that the strong wave pressure can be generated at the front of a vertical wall in the case of higher rubble bed and larger width of base shoulder of mixed embankment. Based on a large number of experiments, they proposed to use the modified Goda’s formula for calculating strong wave pressure (Xie, 1994). Fig.3 shows the wave pressure distribution by the modified Goda’s formula, wherePSis the wave pressure at the still water surface,Pbis the wave pressure at the vertical wall bottom,

    η* is the height of the zero pressure point above the still water surface.

    αI1can be obtained from Fig.4.

    The total horizontal wave force without overtopping is:

    Fig.3 Wave pressure distribution by the modified Goda’s formula.

    Fig.4 Value ofαI1.

    2.4 JTJ213-98’s

    Application conditions for the specification’s formula are described in Code of Hydrology for Sea Harbor(JTJ213-98), according to which the wave state can be determined in front of the breakwater (Table 1). The wave pressure distribution by the JTJ213-98’s formula is shown in Fig.5, where,dis the water depth from the foundation bottom to the still water surface,d2is the water depth in front of the vertical wall.

    Table 1 Wave state

    Fig.5 Wave pressure distribution by the JTJ213-98’s formula.

    Under the condition ofH/L≥1/30 and 0.2<d/L<0.5, the wave force is obtained as follows:

    whereγis the specific gravity of water (kN m-3),Pis the total horizontal wave force in unit length.

    From the four methods shown above, no straightforward correlation between wave force and deep wave depth is given.

    3 Wave Load Comparison of the Results by Four Different Formulae

    3.1 Conditions

    In order to compare the four wave force formulae for deep water, a breakwater with four water depths (30.0, 36.0, 42.0 and 48.0 m) is examined (Table 2). The designed wave height is 6.5, 7.0 and 7.5 m and the wave period in all cases is 11.0 s.

    Table 2 Wave state with 1/3<d2/d1≤2/3

    3.2 Comparison

    Figs.6-8 show the calculated total horizontal wave force for different water depths and wave heights, and Fig.9 shows the distribution of wave pressure by the four formulae.

    Based on the above figures, the calculated total horizontal wave force by the Sainflou’s, Goda’s formula and the modified Goda’s formula increases with water depth and wave height, but it is independent of wave state. By assuming a linear wave pressure distribution the fastest increasing rate of the Sainflou’s formula is calculated. The increasing rates of the Goda’s and the modified Goda’s formula are relatively low.

    The calculated total horizontal wave force by the standard formula increases with water depth and wave height in the standing wave state, and the increasing rate by the standard formula is slightly higher than that of the Goda’s formula. While waves are breaking, the calculated total horizontal wave force increases with the decrease of water depth for the same wave height.

    The calculated total horizontal wave force by theGoda’s formula is close to that by the standard formula, but the calculated results by both formulae are smaller than the results calculated by the Sainflou’s and the modified Goda’s formula.

    Fig.6 The total horizontal forces by the four formulae (H=6.5 m).

    Fig.7 The total horizontal forces by the four formulae (H=7.0 m).

    Fig.8 The total horizontal forces by the four formulae (H=7.5 m).

    Calculated by all four methods, the distribution of parapet wave pressure intensity is similar. The maximum wave pressure appears at still water level. And the wave pressure has a linear distribution from still water level to both sides and gradually decreases. Shown in Fig.9 is the calculated wave pressure distribution for a water depth of 30m and a wave height of 7.0m.

    Fig.9 Pressure distribution by the four formulae.

    4 Comparative Analysis Between Calculated Results and Experimental Data

    The physical model tests in this paper were conducted in a wave tank which has a length of 81 m, a width of 1.4 m, and a height of 2.6 m. The wave tank was divided into two parts by a glass plate placed in the longitudinal direction, each with a width of 0.6 m and 0.8 m, respectively. The physical model tests were conducted in the part with the 0.6 m width and the reflected wave energy was reduced in the part with the 0.8 m width.

    The experimental system before hybrid breakwater breastwork was set up with the four water depths 30 m, 36 m, 42 m, 48 m and three wave heights 6.5 m, 7.0 m, 7.5 m. Wave parameters of the experiments can be found in Table 3.

    Table 3 Experiment wave parameters

    Comparison between the calculations by the four methods and the experimental results is shown in Figs.10-12 with the percentage difference given in Table 4.

    1) The total horizontal wave force calculated by the Goda’s formula for breastwork well agrees with the experimental results and the percentage difference is within10% at a water depth of less than 42 m.

    Fig.10 Comparison between the calculations by the four methods and the experimental data (middle-height foundation,H=6.5 m).

    Fig.11 Comparison between the calculations by the four methods and the experimental data (middle-height foundation,H=7.0 m).

    Fig.12 Comparison between the calculations by the four methods and the experimental data (middle-height foundation,H=7.5 m).

    2) The total horizontal wave force calculated by Code of Hydrology for Sea Harbor (TJ213-98)’s formula is less than the experimental results in the standing wave case and the percentage difference is within 10%. The calculated incrassation ratio between wave height and water depth changes from less than 1% to greater than 15% of the experimental results in the breaking wave case.

    3) The percentage differnce between the calculations by the Sainflou’s formula and the experimental results is larger and varies from 22% to 40%. Because the modified Goda’s formula considers the influence of foundation shoulder width and wave impact load, the percentage differnce of the total horizontal wave force between the calculations and the experimental results is from 8% to 24%. Sainflou’s formula and the modified Goda’s formula had not been applied in our study to calculate wave force in mixed embankment breast wall on middle foundation bed.

    Table 4 Wave force difference between the calculations by the four methods and the experimental results

    5 Conclusions

    As water depth increases, traditional formulae for the estimate of breastwork wave force cannot simply be applied.

    For foundation bed parapet wave force estimates for the deepwater mixed embankment, the Goda’s modified wave pressure formula applies to the case of a water depth of less than 42 m; the method is suitable for the standing wave case.

    For wave force estimates of breastworks on the foundation bed of mixed embankment, the Sainflou’s and the modified Goda’s wave pressure formulas are no longer applicable.

    Acknowledgements

    This work is supported by the Shandong Sci-tech Development Plan (Item No. 2008GGB01099).

    Goda, Y., 1974. New wave pressure formula for composite breakwater.Coastal Engineering Proceeding, 1 (14): 1702-1720.

    Goda, Y., 1985.Random Seas and the Design of Maritime Structures. University of Tokyo Press, Tokyo, 42-56.

    Hirt, C. W., and Nichols, B. D., 1981. Volume of fluid (VOF) method for the dynamics of free boundaries.Journal of Computational Physics, 39 (1): 201-225.

    Hur, D.-S., and Mizutani, N., 2003. Numerical estimation of the wave forces acting on a three-dimensional body on submerged breakwater.Coastal Engineering, 47 (3): 329-345.

    Kawasaki, K., 1999. Numerical simulation of breaking and postbreaking wave deformation process around a submerged breakwater.Coastal Enginerring Journal, 41 (3-4): 201-223.

    Ministry of Transportation, 1998.Code of Hydrology for Sea Harbor (JTJ213-98). People’s Communication Press, Beijing, 52-66.

    Ministry of Transportation, 2011.Breakwater Design and Construction Specifications (JTS154-1-2011). People’s Communication Press, Beijing, 23-27.

    Romiti, C., 1988. Italian hybrid breakwater experience.Port Engineering Technology, 51: 11-18.

    Rundgren, L., 1958.Water Wave Forces. Bulletin No. 54, Royal Institute of Technology, Division of Hydraulics, Stockholm, Sweden, 112-125.

    Sainflou, M., 1928.Treatise on Vertical Breakwaters. Annales des Ponts et Chaussees, Paris, 45-75.

    Su, N., and Wang, M. Y., 2003. Application of goda formula for wave pressure in british standard.China Harbour Engineering, 1: 18-22.

    Su, Y., and Qu, Y., 2011. Progress in methods for calculating wave loads on breakwater crown wall in deep water.Coastal Engineering, 3: 43-48.

    Unsalan, D., and Gurhan, G., 2005. A comparative study of the first and second order theories and Goda’s formula for waveinduced pressure on a vertical breakwater with irregular waves.Ocean Engineering, 32 (17-18): 2182-2194.

    Wang M. R., 2010. Inquiry on design method for deep-water breakwater.Port Engineering Technology, 47 (3): 1-7.

    Xie, S. L., 1994. Latest advances in deepwater breakwater.Port Engineering Technology, 2: 1-10.

    Yu, D. Y., and Su, Y., 2012. Study on calculation method for wave loads on deep water breakwater crown wall.Periodical of Ocean University of China, 42 (1-2): 136-140.

    Zhang, S. S., Zhang, X. W., and Li, Y. B., 2010. Progress in the research of irregular wave force on vertical wall.Port Engineering Technology, 19 (5): 79-86.

    (Edited by Xie Jun)

    (Received May 23, 2013; revised July 2, 2013; accepted April 7, 2015)

    ? Ocean University of China, Science Press and Springer-Verlag Berlin Heidelberg 2015

    * Corresponding author. Tel: 0086-532-66786009 E-mail: dyyu01@ouc.edu.cn

    久久国内精品自在自线图片| 免费观看的影片在线观看| 亚洲国产欧美人成| 婷婷色综合大香蕉| 六月丁香七月| 国产成人91sexporn| 黄色视频,在线免费观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 日韩欧美 国产精品| 中文字幕熟女人妻在线| 少妇熟女aⅴ在线视频| 波多野结衣高清作品| 亚洲第一电影网av| 国产伦一二天堂av在线观看| 一夜夜www| 亚洲人成网站在线观看播放| 亚洲第一区二区三区不卡| 能在线免费看毛片的网站| 亚洲欧美精品综合久久99| 日日撸夜夜添| 日韩视频在线欧美| 国产精品乱码一区二三区的特点| 欧美xxxx黑人xx丫x性爽| 色综合色国产| 蜜臀久久99精品久久宅男| 欧美3d第一页| 欧美日韩精品成人综合77777| 免费看av在线观看网站| 亚洲天堂国产精品一区在线| 狂野欧美激情性xxxx在线观看| av专区在线播放| 搞女人的毛片| 成人无遮挡网站| 亚洲aⅴ乱码一区二区在线播放| 啦啦啦观看免费观看视频高清| 美女黄网站色视频| 我要看日韩黄色一级片| 黄色配什么色好看| 亚洲国产精品sss在线观看| 青春草亚洲视频在线观看| 天天一区二区日本电影三级| 99国产极品粉嫩在线观看| 亚洲乱码一区二区免费版| 插逼视频在线观看| 1024手机看黄色片| 真实男女啪啪啪动态图| av在线播放精品| 麻豆成人午夜福利视频| 亚洲精华国产精华液的使用体验 | 伦精品一区二区三区| 亚洲成人av在线免费| 亚洲av免费高清在线观看| 久久草成人影院| 欧美日本视频| 亚洲乱码一区二区免费版| 国产淫片久久久久久久久| 国产在视频线在精品| 一个人看的www免费观看视频| 精品久久久久久久久亚洲| 欧美3d第一页| 欧美成人a在线观看| 97超碰精品成人国产| 国产日本99.免费观看| 亚洲成a人片在线一区二区| 国产精品久久电影中文字幕| 全区人妻精品视频| 成年女人看的毛片在线观看| 亚洲av中文av极速乱| av免费观看日本| 国产精品女同一区二区软件| 国产伦在线观看视频一区| 国内精品一区二区在线观看| 亚洲精品乱码久久久久久按摩| 国产69精品久久久久777片| 久久久久久九九精品二区国产| 国产精品久久久久久精品电影| 精品久久久久久久久久久久久| 我的女老师完整版在线观看| 97热精品久久久久久| 成人美女网站在线观看视频| 国产精品久久视频播放| 村上凉子中文字幕在线| 一级二级三级毛片免费看| 欧美日韩综合久久久久久| 午夜激情欧美在线| 国产成人午夜福利电影在线观看| 亚洲五月天丁香| 中文字幕制服av| 日韩精品有码人妻一区| 成人一区二区视频在线观看| 22中文网久久字幕| 欧美丝袜亚洲另类| 草草在线视频免费看| 成人美女网站在线观看视频| 一区二区三区高清视频在线| 高清毛片免费看| 岛国毛片在线播放| 性色avwww在线观看| 又爽又黄a免费视频| 狂野欧美激情性xxxx在线观看| 国产成人aa在线观看| 亚洲av中文字字幕乱码综合| 中国美女看黄片| 十八禁国产超污无遮挡网站| 美女xxoo啪啪120秒动态图| 狂野欧美白嫩少妇大欣赏| 日韩欧美在线乱码| 欧美色视频一区免费| 精品久久久久久久久久免费视频| 自拍偷自拍亚洲精品老妇| 高清在线视频一区二区三区 | 久久亚洲精品不卡| 免费人成视频x8x8入口观看| 久久久精品大字幕| 最近手机中文字幕大全| 欧美最黄视频在线播放免费| 99久久无色码亚洲精品果冻| 国产又黄又爽又无遮挡在线| 久久欧美精品欧美久久欧美| 黄色欧美视频在线观看| 成人毛片60女人毛片免费| 国产麻豆成人av免费视频| 麻豆av噜噜一区二区三区| av.在线天堂| 男的添女的下面高潮视频| 九九热线精品视视频播放| 久久99热6这里只有精品| 成人二区视频| 成年女人永久免费观看视频| 亚洲欧美精品综合久久99| 高清毛片免费看| 午夜福利在线观看免费完整高清在 | 深爱激情五月婷婷| 啦啦啦观看免费观看视频高清| 中文亚洲av片在线观看爽| 麻豆国产av国片精品| 欧美日韩精品成人综合77777| 嫩草影院新地址| 亚洲中文字幕一区二区三区有码在线看| 午夜激情欧美在线| 欧美激情国产日韩精品一区| 亚洲国产精品成人久久小说 | 99在线人妻在线中文字幕| 麻豆精品久久久久久蜜桃| 国产色爽女视频免费观看| 中文字幕av成人在线电影| 99九九线精品视频在线观看视频| 国产一级毛片在线| 午夜福利成人在线免费观看| 亚洲色图av天堂| 我的老师免费观看完整版| 免费观看在线日韩| 少妇人妻精品综合一区二区 | 中文字幕av在线有码专区| av天堂中文字幕网| 欧美性猛交黑人性爽| 男女那种视频在线观看| av在线亚洲专区| 12—13女人毛片做爰片一| 三级毛片av免费| 成人午夜精彩视频在线观看| 热99在线观看视频| 亚洲欧美中文字幕日韩二区| 亚洲欧美日韩东京热| 久久亚洲精品不卡| 色5月婷婷丁香| avwww免费| 国产亚洲精品久久久com| 日本五十路高清| 亚洲av熟女| 亚洲天堂国产精品一区在线| 欧美日本亚洲视频在线播放| 一本久久中文字幕| 成人永久免费在线观看视频| 国产精品av视频在线免费观看| 99久国产av精品国产电影| 日韩在线高清观看一区二区三区| 91麻豆精品激情在线观看国产| 少妇丰满av| 国产成人精品一,二区 | 欧美3d第一页| 免费不卡的大黄色大毛片视频在线观看 | av黄色大香蕉| 国产精品女同一区二区软件| 欧美zozozo另类| 在线观看免费视频日本深夜| 蜜桃亚洲精品一区二区三区| 亚洲无线在线观看| 日本-黄色视频高清免费观看| 亚洲第一区二区三区不卡| 啦啦啦啦在线视频资源| 变态另类丝袜制服| 日韩强制内射视频| 22中文网久久字幕| 国产三级在线视频| 中文字幕久久专区| 性插视频无遮挡在线免费观看| 一级毛片久久久久久久久女| 亚洲av成人av| 免费观看在线日韩| 三级国产精品欧美在线观看| 中文字幕免费在线视频6| 三级毛片av免费| 亚洲欧洲国产日韩| 在线国产一区二区在线| 亚洲欧美日韩东京热| 99在线视频只有这里精品首页| 精品欧美国产一区二区三| av国产免费在线观看| 1000部很黄的大片| 又黄又爽又刺激的免费视频.| 国产精品麻豆人妻色哟哟久久 | 又爽又黄a免费视频| 免费人成视频x8x8入口观看| 全区人妻精品视频| 免费电影在线观看免费观看| 免费在线观看成人毛片| 成人高潮视频无遮挡免费网站| 听说在线观看完整版免费高清| 日韩亚洲欧美综合| 久久久欧美国产精品| 啦啦啦观看免费观看视频高清| 免费人成视频x8x8入口观看| 午夜激情福利司机影院| 国产成人精品婷婷| 日本黄色视频三级网站网址| 91av网一区二区| 亚洲精华国产精华液的使用体验 | 国产乱人偷精品视频| 日本爱情动作片www.在线观看| 大型黄色视频在线免费观看| 成人欧美大片| 色综合亚洲欧美另类图片| 麻豆成人av视频| 久久久国产成人免费| 美女国产视频在线观看| 精品熟女少妇av免费看| 欧美高清性xxxxhd video| 中国国产av一级| 九九爱精品视频在线观看| 精品人妻偷拍中文字幕| 国产成人一区二区在线| 国产成年人精品一区二区| 极品教师在线视频| 在线观看午夜福利视频| 久久久欧美国产精品| 美女国产视频在线观看| 不卡一级毛片| 一个人免费在线观看电影| 又黄又爽又刺激的免费视频.| 久久久色成人| 婷婷亚洲欧美| 一夜夜www| 成人综合一区亚洲| 久久久久久久久大av| 全区人妻精品视频| 观看美女的网站| 99热精品在线国产| 一本一本综合久久| 三级经典国产精品| 亚洲不卡免费看| 亚洲一区二区三区色噜噜| 一个人免费在线观看电影| 久久热精品热| 一区二区三区四区激情视频 | 男人和女人高潮做爰伦理| 成人综合一区亚洲| 在线观看午夜福利视频| 亚洲国产精品久久男人天堂| 深夜a级毛片| 久久午夜福利片| 麻豆成人av视频| 国产69精品久久久久777片| 国内精品美女久久久久久| 亚洲在线观看片| 精华霜和精华液先用哪个| 成人永久免费在线观看视频| 国产av不卡久久| 男女啪啪激烈高潮av片| 一级毛片我不卡| 国产精品一区二区三区四区久久| 亚洲av不卡在线观看| 一边摸一边抽搐一进一小说| 精品少妇黑人巨大在线播放 | 国产一级毛片在线| 我要搜黄色片| 免费人成在线观看视频色| 亚洲欧美精品自产自拍| 99在线视频只有这里精品首页| 亚洲成av人片在线播放无| 亚洲欧美日韩卡通动漫| 中文资源天堂在线| 超碰av人人做人人爽久久| 国产成人精品婷婷| 高清毛片免费看| 男女下面进入的视频免费午夜| 日韩大尺度精品在线看网址| 精品久久久久久久末码| 亚洲人成网站在线播| 天天躁日日操中文字幕| 热99在线观看视频| 美女脱内裤让男人舔精品视频 | 国产国拍精品亚洲av在线观看| 美女脱内裤让男人舔精品视频 | 99久久无色码亚洲精品果冻| 欧美bdsm另类| 伦理电影大哥的女人| 亚洲欧美精品综合久久99| 欧美最黄视频在线播放免费| 亚洲成人久久爱视频| 麻豆国产97在线/欧美| 国产高清不卡午夜福利| 色噜噜av男人的天堂激情| 亚洲最大成人中文| 精品日产1卡2卡| 两个人视频免费观看高清| 亚洲成人久久性| 中国美女看黄片| 免费看a级黄色片| 国模一区二区三区四区视频| 成人av在线播放网站| 亚洲av免费在线观看| 欧美丝袜亚洲另类| 亚洲七黄色美女视频| 蜜臀久久99精品久久宅男| 在线播放无遮挡| 桃色一区二区三区在线观看| 国产精品久久久久久av不卡| 国产一区二区在线观看日韩| 看十八女毛片水多多多| 一个人免费在线观看电影| 免费av毛片视频| 禁无遮挡网站| 国产一区二区三区av在线 | 国产高清不卡午夜福利| 亚洲图色成人| 国产蜜桃级精品一区二区三区| 特大巨黑吊av在线直播| 在线观看一区二区三区| 久久久国产成人精品二区| 神马国产精品三级电影在线观看| 久久久久网色| 一区二区三区四区激情视频 | 狠狠狠狠99中文字幕| 少妇丰满av| 狂野欧美白嫩少妇大欣赏| av又黄又爽大尺度在线免费看 | 可以在线观看的亚洲视频| 日产精品乱码卡一卡2卡三| 欧美性感艳星| 老女人水多毛片| 国产成年人精品一区二区| 久99久视频精品免费| 欧美又色又爽又黄视频| av免费在线看不卡| 亚洲真实伦在线观看| 免费不卡的大黄色大毛片视频在线观看 | h日本视频在线播放| 国产老妇伦熟女老妇高清| 国产成人a区在线观看| 欧美日韩在线观看h| 欧美日本视频| 天堂中文最新版在线下载 | 成人欧美大片| av视频在线观看入口| 亚洲人成网站在线播| 69人妻影院| 亚洲无线观看免费| 久久精品国产鲁丝片午夜精品| 中文欧美无线码| 三级男女做爰猛烈吃奶摸视频| 97在线视频观看| 男女做爰动态图高潮gif福利片| 桃色一区二区三区在线观看| 中文欧美无线码| 免费观看在线日韩| 亚洲精品久久国产高清桃花| 精品熟女少妇av免费看| 欧美激情久久久久久爽电影| 日本爱情动作片www.在线观看| 免费看光身美女| 国产高清有码在线观看视频| 人人妻人人澡人人爽人人夜夜 | 国内揄拍国产精品人妻在线| 欧美精品一区二区大全| 欧美+日韩+精品| 极品教师在线视频| 国产一区二区三区av在线 | 欧美日韩乱码在线| 国产亚洲欧美98| 久久久久久国产a免费观看| 夫妻性生交免费视频一级片| 久久精品久久久久久噜噜老黄 | 国产视频首页在线观看| 国产伦理片在线播放av一区 | 国产精品一区二区三区四区免费观看| 高清毛片免费观看视频网站| 国产一区二区在线av高清观看| 美女被艹到高潮喷水动态| 一本一本综合久久| 国产精品久久久久久亚洲av鲁大| 国产精品电影一区二区三区| 国产黄a三级三级三级人| 人人妻人人澡欧美一区二区| 日本成人三级电影网站| 中文字幕久久专区| 中文精品一卡2卡3卡4更新| 人人妻人人澡人人爽人人夜夜 | 91午夜精品亚洲一区二区三区| 最近手机中文字幕大全| 在线天堂最新版资源| 亚洲人成网站高清观看| 丰满人妻一区二区三区视频av| 亚洲三级黄色毛片| 国产精品久久久久久亚洲av鲁大| 成人特级黄色片久久久久久久| 成人一区二区视频在线观看| 中出人妻视频一区二区| 亚洲精品国产av成人精品| 国产精品久久久久久久电影| 国产一区二区在线观看日韩| 国产亚洲5aaaaa淫片| 老熟妇乱子伦视频在线观看| 可以在线观看毛片的网站| 美女高潮的动态| 18禁在线无遮挡免费观看视频| 老司机福利观看| 午夜福利视频1000在线观看| 日韩强制内射视频| 日韩中字成人| 国产女主播在线喷水免费视频网站 | 成人性生交大片免费视频hd| 欧美日韩乱码在线| 亚洲国产欧洲综合997久久,| 久久精品人妻少妇| 一个人看的www免费观看视频| 午夜福利在线观看吧| 亚洲欧美精品综合久久99| 又爽又黄无遮挡网站| 国产v大片淫在线免费观看| 精品久久久久久久久久免费视频| 精品少妇黑人巨大在线播放 | 乱系列少妇在线播放| 嘟嘟电影网在线观看| 丝袜喷水一区| 亚洲在久久综合| a级毛片免费高清观看在线播放| 免费av观看视频| 深爱激情五月婷婷| 大香蕉久久网| 在线观看午夜福利视频| 日本黄色视频三级网站网址| 国产精品一区www在线观看| 91午夜精品亚洲一区二区三区| 人妻系列 视频| 97人妻精品一区二区三区麻豆| 校园春色视频在线观看| 高清日韩中文字幕在线| 联通29元200g的流量卡| 成人特级av手机在线观看| 国产成人午夜福利电影在线观看| 一个人免费在线观看电影| 亚洲欧美日韩东京热| 美女内射精品一级片tv| 国产成人精品久久久久久| 麻豆成人午夜福利视频| 日韩精品青青久久久久久| a级毛色黄片| 深夜a级毛片| 欧洲精品卡2卡3卡4卡5卡区| 免费不卡的大黄色大毛片视频在线观看 | 久久人人精品亚洲av| 亚洲美女视频黄频| 丝袜喷水一区| 三级男女做爰猛烈吃奶摸视频| 天天躁夜夜躁狠狠久久av| 国产私拍福利视频在线观看| 热99在线观看视频| 久久99热这里只有精品18| www日本黄色视频网| 久久久久久久久大av| 亚州av有码| 亚洲精品国产成人久久av| 亚洲av熟女| 国产亚洲av嫩草精品影院| 欧美zozozo另类| 99久久精品国产国产毛片| 久久6这里有精品| 国产成人影院久久av| 人妻少妇偷人精品九色| 亚洲人与动物交配视频| 高清毛片免费看| 成人午夜精彩视频在线观看| 日本色播在线视频| 日韩欧美国产在线观看| 哪里可以看免费的av片| 亚洲,欧美,日韩| 午夜福利在线观看吧| 我的老师免费观看完整版| a级毛色黄片| 久久精品夜夜夜夜夜久久蜜豆| 日本一本二区三区精品| 国产一区二区三区在线臀色熟女| 日韩在线高清观看一区二区三区| 欧美日韩一区二区视频在线观看视频在线 | 欧美最新免费一区二区三区| 婷婷六月久久综合丁香| 插阴视频在线观看视频| 九九爱精品视频在线观看| 日韩亚洲欧美综合| 亚洲欧美日韩高清专用| 日韩一区二区视频免费看| 中文字幕熟女人妻在线| 久久久久久久久久久免费av| 亚洲四区av| av天堂在线播放| 欧美高清性xxxxhd video| 国产精品一区二区三区四区久久| 国产亚洲精品av在线| 国产成人a∨麻豆精品| 人妻夜夜爽99麻豆av| 国产69精品久久久久777片| 国产蜜桃级精品一区二区三区| 免费人成在线观看视频色| 亚洲av一区综合| 女同久久另类99精品国产91| 亚洲人与动物交配视频| 国产不卡一卡二| 国产色婷婷99| 午夜亚洲福利在线播放| 国产精品久久久久久久电影| 精品无人区乱码1区二区| 国内揄拍国产精品人妻在线| 精品国内亚洲2022精品成人| 超碰av人人做人人爽久久| 小说图片视频综合网站| 美女 人体艺术 gogo| 久久精品国产自在天天线| 亚洲在线观看片| 一级毛片久久久久久久久女| 亚洲中文字幕日韩| 99热这里只有是精品在线观看| 日韩制服骚丝袜av| 校园春色视频在线观看| 午夜免费男女啪啪视频观看| 国产精品国产高清国产av| 不卡一级毛片| www日本黄色视频网| 国产国拍精品亚洲av在线观看| 91在线精品国自产拍蜜月| 日韩亚洲欧美综合| 又爽又黄无遮挡网站| 精品久久久久久久久久久久久| 岛国毛片在线播放| 日韩高清综合在线| 2022亚洲国产成人精品| av黄色大香蕉| av在线天堂中文字幕| 美女脱内裤让男人舔精品视频 | 欧美区成人在线视频| 免费在线观看成人毛片| 美女国产视频在线观看| 亚洲国产日韩欧美精品在线观看| 18禁裸乳无遮挡免费网站照片| 99国产极品粉嫩在线观看| 精品久久久久久久久久久久久| 淫秽高清视频在线观看| 国产高清不卡午夜福利| 久久久久性生活片| av免费在线看不卡| 国产伦在线观看视频一区| 禁无遮挡网站| 日本色播在线视频| 亚洲三级黄色毛片| 丝袜美腿在线中文| 又粗又爽又猛毛片免费看| 久久久久久久久久久丰满| 久久久久久大精品| 在线观看66精品国产| 美女 人体艺术 gogo| 丰满的人妻完整版| 久久久久免费精品人妻一区二区| 午夜福利视频1000在线观看| 美女大奶头视频| 99热精品在线国产| 99久久无色码亚洲精品果冻| 亚洲精品乱码久久久久久按摩| 尤物成人国产欧美一区二区三区| 精品少妇黑人巨大在线播放 | 99精品在免费线老司机午夜| 欧美在线一区亚洲| 国内少妇人妻偷人精品xxx网站| 亚洲不卡免费看| 久久久精品欧美日韩精品| 亚洲中文字幕日韩| 亚洲精品456在线播放app| 99在线人妻在线中文字幕| 白带黄色成豆腐渣| 中文字幕精品亚洲无线码一区| 高清日韩中文字幕在线| 欧美人与善性xxx| 99在线视频只有这里精品首页| avwww免费| 国产成人午夜福利电影在线观看| 午夜免费激情av| 18禁黄网站禁片免费观看直播| 国产av麻豆久久久久久久| 久久午夜福利片| 日日啪夜夜撸| 丝袜喷水一区| 久久6这里有精品| 亚洲av中文av极速乱| 久久久a久久爽久久v久久| 久久久久久久午夜电影| 欧美+日韩+精品|