• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Feasibility Study on Common Methods for Wave Force Estimation of Deep Water Combined Breakwaters

    2015-06-01 09:24:20YUDingyongTANGPengandSONGQingguo
    Journal of Ocean University of China 2015年4期

    YU Dingyong, TANG Peng, and SONG Qingguo

    College of Engineering,Ocean University of China,Qingdao266100,P. R. China

    Feasibility Study on Common Methods for Wave Force Estimation of Deep Water Combined Breakwaters

    YU Dingyong*, TANG Peng, and SONG Qingguo

    College of Engineering,Ocean University of China,Qingdao266100,P. R. China

    China’s newly enacted Breakwater Design Specifications (JTS154-2011) explicitly state that breakwaters with water depths greater than 20 m are categorized as deep-water breakwaters, and emphasize that design principles, methods and construction requirements are different from those of common shallow water breakwaters. However, the specifications do not make any mention of how to choose wave force calculation methods of deep-water breakwaters. To study the feasibility of different formulae for wave force estimation of deep water combined breakwaters, the wave force calculated by the Sainflou’s, Goda’s, modified Goda’s and specifications’ methods are compared for various water depths and wave heights in this paper. The calculated results are also compared with experimental data. The total horizontal forcing and the pattern of pressure distributions are presented. Comparisons show that the wave pressure distributions by the four methods are similar, but the total horizontal forces are different. The results obtained by the Goda’s method and the specified formulae are much closer to the experimental data. As for the wave force estimation for the deepwater mixed embankment foundation bed parapet, the Goda’s formula is applied in the case with a water depth of less than 42 m. The Specifications method is suitable for standing waves. In the wave force estimates of breastworks, Sainflou’s and the modified Gaoda’s formulae are no longer applicable for the foundation bed of mixed embankment.

    combined breakwater; breast; wave force; deep water; feasibility

    1 Introduction

    Breakwater is an important marine/hydraulic structure in coastal engineering commonly-used breakwater structures include the slope, the vertical and the combined types. The type of breakwaters to be built is determined based on natural environment, construction facilities, materials as well as cost. In deep water the vertical type or the slope type is normally a good choice in terms of the cost, but the combined one is usually the first choice. There are different descriptions on the combined structure. Xie (1994) pointed out that although enginners began to pay attention to deep water structures, the concept of the combined deep water breakwater has not been clear until the 1990s. Goda (1985) indicated that the vertical breakwater includes both the structure directly placed on the seabed and that built on artificial rubble foundation. Hur and Mizutani (2003) developed numerical models to estimate the wave forces acting on a three-dimensional submerged breakwater. Romitiet al.(1988) that emphasized the combined breakwater can be defined as a structure with the vertical wall placed on a slope rubble bed. This kind of structure can keep the typical characteristicsof the vertical or slope breakwater. Kawasaki (1999) proposed a numerical model to simulate wave deformation and wave breaking based on the SOLA-VOF method originally developed by Hirt and Nichols (1981).

    Breakwater Design and Construction Specifications (JTS154-1-2011) has classified a breakwater constructed in water deeper than 20 m as the deep-water breakwater. Having characteristics and advantages of both the slope and the vertical breakwater, the combined structure is often found in deep water areas with high waves. The Busan Port breakwater was built in 60 m deep water, with 35 m wide slope foundation and 30 m vertical caisson (Su and Qu, 2011). With the development of construction technology, deepwater breakwaters become common, such as the 38 m Ofunato Port breakwater, the 42 m Shimoda Port breakwater, the 50 m Portugal Sine Port breakwater, the 30 m Shanghai Yangshan Port dike, and the 50 m Daishan breakwater (Yu and Su, 2012).

    In deep water areas, it is of great importance to calculate wave loads on structures. Wang (2010) pointed out that more attention should be given to the deepwater embankment because of the powerful wave forces and wave reflection. In Breakwater Design and Construction Specifications (JTS154-1-2011) it is stated that the design principles, methods and construction requirements of breakwaters in deep water is different from those in shallow water; however, no wave force calculation methodsare recommended for deep water breakwaters.

    The Sainflou’s, Goda’s, the modified Goda’s formulas and the method in the Code of Hydrology for Sea Harbor (TJ213-98) are the commonly-used methods for wave force estimation for shallow water breakwaters. Goda’s formula has been used in many countries after it was modified in 1975 (Su and Wang, 2003). The British used to apply the Sainflou’s formula in the their standard before it was modified, while the new version of the standard, BS6439, adopted the Goda’s formula. The modified Goda’s formula is applied to open foundation bed with big width base shoulder in various situations, strong wave pressure being calculated using the method in Code of Hydrology for Sea Harbor (TJ213-98). About the wave force calculation in deep water. Zhanget al.(2010) referred to the irregular wave experiment data for deep water mixture basement, in which the embankment body was caisson, the water depth in front of the embankment was 20.6 m,H1/3=8 m, andT1/3=9-13 s. WhenH1/3/dwas larger (H1/3is the significant wave height anddis the water depth), the calculated horizontal wave force was overestimated by Goda’s formula. Unsalan and Gurhan (2005) pointed out that the Goda’s formula has been a good estimator for the maximum pressure values in all cases. Wang (2010) showed that measured data given consistent results by the Chinese standard formula and the Japanese Goda’s formula when standing waves exist and waves are breaking in front of deep water vertical breakwater. After wave breaking, the measured data are significantly greater than the calculated results by the Chinese standard formula and Japanese Goda’s formula. As for the wave force calculation in mixed deep water embankment on middle foundation bed, no definite conclusion has been drawn on selecting a better calculation method.

    In order to study the feasibility of the Sainflou’s, Goda’s, the modified Goda’s formula and the method in the Code of Hydrology for Sea Harbors in estimation of wave loads for combined deep water breakwaters, the wave forces were calculated for four different water depths and three different wave heights in this study. An experimental test was carried out to obtain the wave loads on the vertical wall of the combined breakwater. The calculated results are compared with the measured data. Among the above-mentioned four methods one is suitable for combined deep water breakwater.

    2 Commonly Used Breakwater Wave Force Calculation Methods

    2.1 Goda’s

    Goda (1974) developed an empirical formula to estimate non-breaking and breaking wave pressures on vertical walls, which has been widely used in Japan for the design of vertical caisson type breakwaters and is one of general methods for calculating breakwater wave force. It is mainly applied in standing wave and breaking wave statess. Fig.1 shows the wave pressure distribution by the Goda’s formula, wheredis the water depth in the position 5Hoff the foundation,d1is the height from the top of the foundation to the still water surface,d2is the water depth above the foundation armour,hcis the height of vertical wall above the still water surface,His the wave height,Psis the wave pressure at the still water surface, andPbis the wave pressure at the vertical wall bottom.

    Vertical incidence:η* = 1.5H.

    η* is the height of zero pressure point above the still water surface.

    The total horizontal wave force is:

    Fig.1 Wave pressure distribution by Goda’s formula.

    2.2 Sainflou’s

    Sainflou (1928) proposed a theoretical method for calculating the dynamic pressures due to non-breaking waves on vertical walls. Experimental observations by Rundgren (1958) indicated that the Sainflou’s method may significantly overestimate the non-breaking wave force, particularly for steep waves. Wave pressure distribution by the Sainflou’s formula can be found in Fig.2, where

    h0is the ultra height over the still water surface;Hiisthe wave height;kis the wave number;Lis the wave length.

    Wave pressure on the vertical wall at the foundation armour is:

    Wave pressure at the still water surface is:

    Wave pressure at the vertical wall bottom can be expressed as:

    The total horizontal wave force is:

    Fig.2 Wave pressure distribution by Sainflou’s formula.

    2.3 The Modified Goda’s

    The researchers of the Japan Harbor Research Institute considered that the strong wave pressure can be generated at the front of a vertical wall in the case of higher rubble bed and larger width of base shoulder of mixed embankment. Based on a large number of experiments, they proposed to use the modified Goda’s formula for calculating strong wave pressure (Xie, 1994). Fig.3 shows the wave pressure distribution by the modified Goda’s formula, wherePSis the wave pressure at the still water surface,Pbis the wave pressure at the vertical wall bottom,

    η* is the height of the zero pressure point above the still water surface.

    αI1can be obtained from Fig.4.

    The total horizontal wave force without overtopping is:

    Fig.3 Wave pressure distribution by the modified Goda’s formula.

    Fig.4 Value ofαI1.

    2.4 JTJ213-98’s

    Application conditions for the specification’s formula are described in Code of Hydrology for Sea Harbor(JTJ213-98), according to which the wave state can be determined in front of the breakwater (Table 1). The wave pressure distribution by the JTJ213-98’s formula is shown in Fig.5, where,dis the water depth from the foundation bottom to the still water surface,d2is the water depth in front of the vertical wall.

    Table 1 Wave state

    Fig.5 Wave pressure distribution by the JTJ213-98’s formula.

    Under the condition ofH/L≥1/30 and 0.2<d/L<0.5, the wave force is obtained as follows:

    whereγis the specific gravity of water (kN m-3),Pis the total horizontal wave force in unit length.

    From the four methods shown above, no straightforward correlation between wave force and deep wave depth is given.

    3 Wave Load Comparison of the Results by Four Different Formulae

    3.1 Conditions

    In order to compare the four wave force formulae for deep water, a breakwater with four water depths (30.0, 36.0, 42.0 and 48.0 m) is examined (Table 2). The designed wave height is 6.5, 7.0 and 7.5 m and the wave period in all cases is 11.0 s.

    Table 2 Wave state with 1/3<d2/d1≤2/3

    3.2 Comparison

    Figs.6-8 show the calculated total horizontal wave force for different water depths and wave heights, and Fig.9 shows the distribution of wave pressure by the four formulae.

    Based on the above figures, the calculated total horizontal wave force by the Sainflou’s, Goda’s formula and the modified Goda’s formula increases with water depth and wave height, but it is independent of wave state. By assuming a linear wave pressure distribution the fastest increasing rate of the Sainflou’s formula is calculated. The increasing rates of the Goda’s and the modified Goda’s formula are relatively low.

    The calculated total horizontal wave force by the standard formula increases with water depth and wave height in the standing wave state, and the increasing rate by the standard formula is slightly higher than that of the Goda’s formula. While waves are breaking, the calculated total horizontal wave force increases with the decrease of water depth for the same wave height.

    The calculated total horizontal wave force by theGoda’s formula is close to that by the standard formula, but the calculated results by both formulae are smaller than the results calculated by the Sainflou’s and the modified Goda’s formula.

    Fig.6 The total horizontal forces by the four formulae (H=6.5 m).

    Fig.7 The total horizontal forces by the four formulae (H=7.0 m).

    Fig.8 The total horizontal forces by the four formulae (H=7.5 m).

    Calculated by all four methods, the distribution of parapet wave pressure intensity is similar. The maximum wave pressure appears at still water level. And the wave pressure has a linear distribution from still water level to both sides and gradually decreases. Shown in Fig.9 is the calculated wave pressure distribution for a water depth of 30m and a wave height of 7.0m.

    Fig.9 Pressure distribution by the four formulae.

    4 Comparative Analysis Between Calculated Results and Experimental Data

    The physical model tests in this paper were conducted in a wave tank which has a length of 81 m, a width of 1.4 m, and a height of 2.6 m. The wave tank was divided into two parts by a glass plate placed in the longitudinal direction, each with a width of 0.6 m and 0.8 m, respectively. The physical model tests were conducted in the part with the 0.6 m width and the reflected wave energy was reduced in the part with the 0.8 m width.

    The experimental system before hybrid breakwater breastwork was set up with the four water depths 30 m, 36 m, 42 m, 48 m and three wave heights 6.5 m, 7.0 m, 7.5 m. Wave parameters of the experiments can be found in Table 3.

    Table 3 Experiment wave parameters

    Comparison between the calculations by the four methods and the experimental results is shown in Figs.10-12 with the percentage difference given in Table 4.

    1) The total horizontal wave force calculated by the Goda’s formula for breastwork well agrees with the experimental results and the percentage difference is within10% at a water depth of less than 42 m.

    Fig.10 Comparison between the calculations by the four methods and the experimental data (middle-height foundation,H=6.5 m).

    Fig.11 Comparison between the calculations by the four methods and the experimental data (middle-height foundation,H=7.0 m).

    Fig.12 Comparison between the calculations by the four methods and the experimental data (middle-height foundation,H=7.5 m).

    2) The total horizontal wave force calculated by Code of Hydrology for Sea Harbor (TJ213-98)’s formula is less than the experimental results in the standing wave case and the percentage difference is within 10%. The calculated incrassation ratio between wave height and water depth changes from less than 1% to greater than 15% of the experimental results in the breaking wave case.

    3) The percentage differnce between the calculations by the Sainflou’s formula and the experimental results is larger and varies from 22% to 40%. Because the modified Goda’s formula considers the influence of foundation shoulder width and wave impact load, the percentage differnce of the total horizontal wave force between the calculations and the experimental results is from 8% to 24%. Sainflou’s formula and the modified Goda’s formula had not been applied in our study to calculate wave force in mixed embankment breast wall on middle foundation bed.

    Table 4 Wave force difference between the calculations by the four methods and the experimental results

    5 Conclusions

    As water depth increases, traditional formulae for the estimate of breastwork wave force cannot simply be applied.

    For foundation bed parapet wave force estimates for the deepwater mixed embankment, the Goda’s modified wave pressure formula applies to the case of a water depth of less than 42 m; the method is suitable for the standing wave case.

    For wave force estimates of breastworks on the foundation bed of mixed embankment, the Sainflou’s and the modified Goda’s wave pressure formulas are no longer applicable.

    Acknowledgements

    This work is supported by the Shandong Sci-tech Development Plan (Item No. 2008GGB01099).

    Goda, Y., 1974. New wave pressure formula for composite breakwater.Coastal Engineering Proceeding, 1 (14): 1702-1720.

    Goda, Y., 1985.Random Seas and the Design of Maritime Structures. University of Tokyo Press, Tokyo, 42-56.

    Hirt, C. W., and Nichols, B. D., 1981. Volume of fluid (VOF) method for the dynamics of free boundaries.Journal of Computational Physics, 39 (1): 201-225.

    Hur, D.-S., and Mizutani, N., 2003. Numerical estimation of the wave forces acting on a three-dimensional body on submerged breakwater.Coastal Engineering, 47 (3): 329-345.

    Kawasaki, K., 1999. Numerical simulation of breaking and postbreaking wave deformation process around a submerged breakwater.Coastal Enginerring Journal, 41 (3-4): 201-223.

    Ministry of Transportation, 1998.Code of Hydrology for Sea Harbor (JTJ213-98). People’s Communication Press, Beijing, 52-66.

    Ministry of Transportation, 2011.Breakwater Design and Construction Specifications (JTS154-1-2011). People’s Communication Press, Beijing, 23-27.

    Romiti, C., 1988. Italian hybrid breakwater experience.Port Engineering Technology, 51: 11-18.

    Rundgren, L., 1958.Water Wave Forces. Bulletin No. 54, Royal Institute of Technology, Division of Hydraulics, Stockholm, Sweden, 112-125.

    Sainflou, M., 1928.Treatise on Vertical Breakwaters. Annales des Ponts et Chaussees, Paris, 45-75.

    Su, N., and Wang, M. Y., 2003. Application of goda formula for wave pressure in british standard.China Harbour Engineering, 1: 18-22.

    Su, Y., and Qu, Y., 2011. Progress in methods for calculating wave loads on breakwater crown wall in deep water.Coastal Engineering, 3: 43-48.

    Unsalan, D., and Gurhan, G., 2005. A comparative study of the first and second order theories and Goda’s formula for waveinduced pressure on a vertical breakwater with irregular waves.Ocean Engineering, 32 (17-18): 2182-2194.

    Wang M. R., 2010. Inquiry on design method for deep-water breakwater.Port Engineering Technology, 47 (3): 1-7.

    Xie, S. L., 1994. Latest advances in deepwater breakwater.Port Engineering Technology, 2: 1-10.

    Yu, D. Y., and Su, Y., 2012. Study on calculation method for wave loads on deep water breakwater crown wall.Periodical of Ocean University of China, 42 (1-2): 136-140.

    Zhang, S. S., Zhang, X. W., and Li, Y. B., 2010. Progress in the research of irregular wave force on vertical wall.Port Engineering Technology, 19 (5): 79-86.

    (Edited by Xie Jun)

    (Received May 23, 2013; revised July 2, 2013; accepted April 7, 2015)

    ? Ocean University of China, Science Press and Springer-Verlag Berlin Heidelberg 2015

    * Corresponding author. Tel: 0086-532-66786009 E-mail: dyyu01@ouc.edu.cn

    91国产中文字幕| 99riav亚洲国产免费| av免费在线观看网站| 午夜老司机福利片| 国产精品九九99| 蜜桃国产av成人99| 亚洲色图综合在线观看| 亚洲天堂av无毛| 欧美日本中文国产一区发布| 国产精品亚洲一级av第二区| 黑人猛操日本美女一级片| 黄色视频,在线免费观看| 亚洲专区中文字幕在线| 在线观看免费高清a一片| 最黄视频免费看| 一二三四社区在线视频社区8| 日本黄色视频三级网站网址 | 三级毛片av免费| 久久国产精品大桥未久av| www.自偷自拍.com| 人人妻人人添人人爽欧美一区卜| 午夜精品久久久久久毛片777| 国产在线免费精品| 99久久人妻综合| 欧美国产精品va在线观看不卡| 美女扒开内裤让男人捅视频| 免费看十八禁软件| 久久久精品免费免费高清| 欧美 亚洲 国产 日韩一| 黄色视频,在线免费观看| 成人永久免费在线观看视频 | 在线观看免费午夜福利视频| 建设人人有责人人尽责人人享有的| 欧美精品人与动牲交sv欧美| 欧美日韩av久久| 久久免费观看电影| 少妇 在线观看| 黄片大片在线免费观看| 国产精品亚洲一级av第二区| 丝袜人妻中文字幕| 亚洲五月色婷婷综合| 久久天躁狠狠躁夜夜2o2o| 国产老妇伦熟女老妇高清| 国产福利在线免费观看视频| 人人妻,人人澡人人爽秒播| 亚洲自偷自拍图片 自拍| 一本大道久久a久久精品| 日本av手机在线免费观看| 18在线观看网站| 国产在线视频一区二区| www.自偷自拍.com| 午夜免费鲁丝| 黄频高清免费视频| 精品亚洲成国产av| av福利片在线| 成人亚洲精品一区在线观看| 97在线人人人人妻| 在线 av 中文字幕| 制服人妻中文乱码| 久9热在线精品视频| 国产免费现黄频在线看| 极品少妇高潮喷水抽搐| 无限看片的www在线观看| 色综合欧美亚洲国产小说| 国产黄色免费在线视频| 亚洲久久久国产精品| 欧美日韩亚洲高清精品| 亚洲国产欧美网| 777久久人妻少妇嫩草av网站| 日日夜夜操网爽| 成人国语在线视频| 中国美女看黄片| 大香蕉久久网| 国产在线观看jvid| 在线观看www视频免费| 9191精品国产免费久久| 亚洲avbb在线观看| 一区在线观看完整版| 18禁美女被吸乳视频| 亚洲视频免费观看视频| 乱人伦中国视频| 成年版毛片免费区| 一级毛片精品| 精品午夜福利视频在线观看一区 | 操美女的视频在线观看| 久久亚洲真实| 欧美激情极品国产一区二区三区| 亚洲成人免费av在线播放| 国产亚洲一区二区精品| 搡老熟女国产l中国老女人| 久久午夜综合久久蜜桃| 国产一区二区在线观看av| 大型av网站在线播放| 深夜精品福利| 新久久久久国产一级毛片| 国产精品一区二区精品视频观看| 精品少妇久久久久久888优播| 久久久久久亚洲精品国产蜜桃av| 中亚洲国语对白在线视频| 国产一区二区激情短视频| 国产精品香港三级国产av潘金莲| 亚洲精品国产区一区二| 高清欧美精品videossex| 黄色丝袜av网址大全| 别揉我奶头~嗯~啊~动态视频| 久热这里只有精品99| 伊人久久大香线蕉亚洲五| 少妇 在线观看| 中文字幕精品免费在线观看视频| 久久热在线av| 中文字幕色久视频| 欧美日韩福利视频一区二区| 久久亚洲真实| 91av网站免费观看| 久久久久精品人妻al黑| 国产精品香港三级国产av潘金莲| 精品亚洲乱码少妇综合久久| 欧美亚洲日本最大视频资源| 老熟妇乱子伦视频在线观看| 王馨瑶露胸无遮挡在线观看| 亚洲情色 制服丝袜| 人妻久久中文字幕网| 免费不卡黄色视频| 亚洲色图 男人天堂 中文字幕| 日韩人妻精品一区2区三区| 亚洲九九香蕉| 国产一区二区激情短视频| 亚洲,欧美精品.| h视频一区二区三区| 女人高潮潮喷娇喘18禁视频| 国产无遮挡羞羞视频在线观看| 日韩一区二区三区影片| 国产精品影院久久| 伊人久久大香线蕉亚洲五| 亚洲美女黄片视频| 狠狠精品人妻久久久久久综合| 亚洲五月色婷婷综合| 久久久久网色| 成人永久免费在线观看视频 | 亚洲av美国av| 日韩欧美一区视频在线观看| tube8黄色片| 嫩草影视91久久| 50天的宝宝边吃奶边哭怎么回事| 桃花免费在线播放| 视频区图区小说| 久久精品亚洲av国产电影网| 国产成人精品无人区| 免费高清在线观看日韩| 十八禁网站网址无遮挡| 久久av网站| 一区二区日韩欧美中文字幕| 午夜福利视频在线观看免费| www.自偷自拍.com| 纯流量卡能插随身wifi吗| 激情视频va一区二区三区| 侵犯人妻中文字幕一二三四区| 欧美 亚洲 国产 日韩一| 在线观看舔阴道视频| 男男h啪啪无遮挡| 久久青草综合色| 欧美久久黑人一区二区| 一级毛片电影观看| 国产成人啪精品午夜网站| 亚洲第一欧美日韩一区二区三区 | 怎么达到女性高潮| 黄片播放在线免费| av天堂久久9| 国产片内射在线| 国产亚洲午夜精品一区二区久久| 老司机福利观看| 色综合欧美亚洲国产小说| 日韩中文字幕视频在线看片| 99久久精品国产亚洲精品| 精品国产乱码久久久久久小说| 成人黄色视频免费在线看| 欧美成狂野欧美在线观看| 欧美日韩成人在线一区二区| 中亚洲国语对白在线视频| 一级片免费观看大全| 交换朋友夫妻互换小说| 夜夜爽天天搞| 欧美在线一区亚洲| 亚洲av欧美aⅴ国产| 老鸭窝网址在线观看| 欧美在线一区亚洲| 电影成人av| a级毛片在线看网站| 国产精品久久久久久人妻精品电影 | 99精品欧美一区二区三区四区| 欧美老熟妇乱子伦牲交| 久久久欧美国产精品| 宅男免费午夜| 午夜福利,免费看| 人人妻人人爽人人添夜夜欢视频| 国产91精品成人一区二区三区 | 亚洲综合色网址| 国产亚洲午夜精品一区二区久久| 99国产极品粉嫩在线观看| 日韩一区二区三区影片| 在线观看www视频免费| 国产成人欧美| 天天躁夜夜躁狠狠躁躁| 99国产极品粉嫩在线观看| 丝袜喷水一区| 少妇精品久久久久久久| 搡老岳熟女国产| 欧美在线黄色| av视频免费观看在线观看| 日韩欧美三级三区| 99精品欧美一区二区三区四区| 日本黄色日本黄色录像| 19禁男女啪啪无遮挡网站| 黑丝袜美女国产一区| 亚洲av第一区精品v没综合| 国产精品久久久久久人妻精品电影 | 老司机午夜十八禁免费视频| 少妇的丰满在线观看| √禁漫天堂资源中文www| 男女高潮啪啪啪动态图| 久久热在线av| 少妇猛男粗大的猛烈进出视频| 天天躁日日躁夜夜躁夜夜| 欧美国产精品va在线观看不卡| 国产精品1区2区在线观看. | 亚洲avbb在线观看| 一级毛片电影观看| 精品少妇久久久久久888优播| 精品少妇内射三级| 国产在视频线精品| 欧美精品啪啪一区二区三区| 国产精品1区2区在线观看. | 国产一区二区 视频在线| 啦啦啦视频在线资源免费观看| 夫妻午夜视频| 99久久国产精品久久久| 在线观看免费午夜福利视频| 国产国语露脸激情在线看| e午夜精品久久久久久久| www.精华液| 怎么达到女性高潮| 女人爽到高潮嗷嗷叫在线视频| 欧美人与性动交α欧美软件| 麻豆成人av在线观看| 老熟妇仑乱视频hdxx| 精品亚洲乱码少妇综合久久| 国产淫语在线视频| 天堂动漫精品| 国产有黄有色有爽视频| 电影成人av| 最黄视频免费看| 色综合欧美亚洲国产小说| 两个人看的免费小视频| 色播在线永久视频| 老司机在亚洲福利影院| 亚洲国产欧美日韩在线播放| 精品亚洲成国产av| av有码第一页| 69av精品久久久久久 | 少妇 在线观看| 久久久久久久国产电影| 精品一区二区三卡| 捣出白浆h1v1| 香蕉丝袜av| 亚洲五月婷婷丁香| 热99re8久久精品国产| 亚洲综合色网址| 久久青草综合色| 757午夜福利合集在线观看| 日韩中文字幕欧美一区二区| 欧美+亚洲+日韩+国产| 国产主播在线观看一区二区| www.999成人在线观看| 性色av乱码一区二区三区2| 老鸭窝网址在线观看| 女警被强在线播放| 亚洲熟女毛片儿| 亚洲 国产 在线| 久久精品aⅴ一区二区三区四区| 亚洲第一青青草原| 亚洲伊人久久精品综合| 69av精品久久久久久 | 91老司机精品| 熟女少妇亚洲综合色aaa.| 91大片在线观看| 9191精品国产免费久久| 国产一区二区 视频在线| 美女福利国产在线| 99re6热这里在线精品视频| 另类亚洲欧美激情| 天天添夜夜摸| 高清毛片免费观看视频网站 | 一级毛片女人18水好多| 在线十欧美十亚洲十日本专区| 激情视频va一区二区三区| 丝袜喷水一区| 精品人妻熟女毛片av久久网站| 精品免费久久久久久久清纯 | 国模一区二区三区四区视频 | 每晚都被弄得嗷嗷叫到高潮| 国产又色又爽无遮挡免费看| 亚洲熟妇中文字幕五十中出| 听说在线观看完整版免费高清| 一本久久中文字幕| 国产成人欧美在线观看| 日韩大尺度精品在线看网址| 老熟妇乱子伦视频在线观看| www.自偷自拍.com| 久久中文看片网| 91在线精品国自产拍蜜月 | 欧美乱妇无乱码| 国产精品电影一区二区三区| 又黄又粗又硬又大视频| 精品国产超薄肉色丝袜足j| av国产免费在线观看| 国产精品日韩av在线免费观看| 亚洲黑人精品在线| 桃色一区二区三区在线观看| 久久国产精品人妻蜜桃| 好看av亚洲va欧美ⅴa在| 精品国产亚洲在线| 亚洲国产看品久久| 欧美一区二区国产精品久久精品| 18禁裸乳无遮挡免费网站照片| 久久草成人影院| 中文字幕av在线有码专区| 亚洲 欧美 日韩 在线 免费| 国产又色又爽无遮挡免费看| 久久久精品欧美日韩精品| 日本一二三区视频观看| 99久国产av精品| 一区二区三区国产精品乱码| 国产视频一区二区在线看| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲国产欧美人成| 欧美乱妇无乱码| 国产av一区在线观看免费| 不卡av一区二区三区| 国产精品久久久久久亚洲av鲁大| 日本精品一区二区三区蜜桃| 91久久精品国产一区二区成人 | 欧美日韩中文字幕国产精品一区二区三区| 俺也久久电影网| 老司机福利观看| 欧美乱色亚洲激情| 国产乱人视频| 久久精品影院6| 禁无遮挡网站| 亚洲欧洲精品一区二区精品久久久| 午夜日韩欧美国产| 人妻夜夜爽99麻豆av| 亚洲,欧美精品.| 一边摸一边抽搐一进一小说| 亚洲精品456在线播放app | 国产1区2区3区精品| 亚洲中文字幕一区二区三区有码在线看 | 国产av不卡久久| 毛片女人毛片| 亚洲天堂国产精品一区在线| 亚洲色图av天堂| 少妇丰满av| 亚洲欧美日韩卡通动漫| 国产日本99.免费观看| 可以在线观看毛片的网站| 国产一级毛片七仙女欲春2| 色综合亚洲欧美另类图片| 久久亚洲真实| 精品99又大又爽又粗少妇毛片 | 国产毛片a区久久久久| 97人妻精品一区二区三区麻豆| 噜噜噜噜噜久久久久久91| 别揉我奶头~嗯~啊~动态视频| 亚洲在线观看片| 午夜两性在线视频| 91麻豆精品激情在线观看国产| 亚洲aⅴ乱码一区二区在线播放| 桃色一区二区三区在线观看| 9191精品国产免费久久| av欧美777| 99精品久久久久人妻精品| xxx96com| 欧美三级亚洲精品| 欧美黄色片欧美黄色片| 美女cb高潮喷水在线观看 | 国产精品香港三级国产av潘金莲| 精品国产乱码久久久久久男人| 非洲黑人性xxxx精品又粗又长| 小蜜桃在线观看免费完整版高清| 久久久久久九九精品二区国产| 亚洲精品粉嫩美女一区| 99在线视频只有这里精品首页| 最近最新中文字幕大全电影3| 久久国产精品影院| 久久这里只有精品中国| 国内毛片毛片毛片毛片毛片| 亚洲精品久久国产高清桃花| 午夜福利成人在线免费观看| 激情在线观看视频在线高清| 国产一区在线观看成人免费| cao死你这个sao货| 亚洲av电影不卡..在线观看| 亚洲午夜精品一区,二区,三区| 少妇丰满av| 久久亚洲真实| 99久久成人亚洲精品观看| 黄色成人免费大全| 国产精品久久久久久精品电影| 久久久久九九精品影院| 国产高清videossex| 免费av不卡在线播放| 久久99热这里只有精品18| 18禁裸乳无遮挡免费网站照片| 久久久久精品国产欧美久久久| 黑人巨大精品欧美一区二区mp4| 国产私拍福利视频在线观看| 午夜免费激情av| 啦啦啦韩国在线观看视频| 999久久久精品免费观看国产| 1024香蕉在线观看| 午夜精品在线福利| 欧美黄色淫秽网站| netflix在线观看网站| 久久久国产欧美日韩av| 91久久精品国产一区二区成人 | 亚洲av第一区精品v没综合| 蜜桃久久精品国产亚洲av| 婷婷精品国产亚洲av| 日韩 欧美 亚洲 中文字幕| 极品教师在线免费播放| 成人亚洲精品av一区二区| 亚洲精品一卡2卡三卡4卡5卡| 久久亚洲精品不卡| 一本久久中文字幕| 国产精品电影一区二区三区| www.自偷自拍.com| 少妇裸体淫交视频免费看高清| 精品日产1卡2卡| 全区人妻精品视频| 长腿黑丝高跟| 免费在线观看成人毛片| 超碰成人久久| 黄色女人牲交| tocl精华| 成人精品一区二区免费| 午夜福利在线在线| 两个人视频免费观看高清| 国产成人啪精品午夜网站| 全区人妻精品视频| 国产精品日韩av在线免费观看| 亚洲成a人片在线一区二区| 成人高潮视频无遮挡免费网站| 久久精品国产亚洲av香蕉五月| 毛片女人毛片| 亚洲中文日韩欧美视频| 日本与韩国留学比较| 午夜日韩欧美国产| 午夜福利在线在线| 国产成人精品久久二区二区91| 久久久久精品国产欧美久久久| 亚洲电影在线观看av| 久久久国产精品麻豆| 亚洲第一欧美日韩一区二区三区| 婷婷精品国产亚洲av| 亚洲熟妇中文字幕五十中出| x7x7x7水蜜桃| 国产精品一区二区精品视频观看| 美女高潮喷水抽搐中文字幕| 成人性生交大片免费视频hd| 亚洲专区字幕在线| 色吧在线观看| 美女 人体艺术 gogo| 亚洲国产精品合色在线| 亚洲,欧美精品.| 午夜激情福利司机影院| 欧美乱色亚洲激情| 国产精品久久久久久精品电影| 精品一区二区三区视频在线 | 国产欧美日韩精品一区二区| 婷婷精品国产亚洲av在线| 久久久水蜜桃国产精品网| 久久久久九九精品影院| 免费一级毛片在线播放高清视频| 亚洲自拍偷在线| 欧美zozozo另类| 桃色一区二区三区在线观看| 一个人看视频在线观看www免费 | 日本熟妇午夜| 亚洲熟妇中文字幕五十中出| 色视频www国产| 国产精品一区二区精品视频观看| 国产午夜精品久久久久久| 国产成人欧美在线观看| 精品一区二区三区视频在线观看免费| 国产三级黄色录像| 欧美丝袜亚洲另类 | 一二三四在线观看免费中文在| 国产精品一区二区三区四区久久| 精品一区二区三区四区五区乱码| 免费av不卡在线播放| 欧美日韩中文字幕国产精品一区二区三区| 国产v大片淫在线免费观看| 国产精品亚洲一级av第二区| 90打野战视频偷拍视频| 欧洲精品卡2卡3卡4卡5卡区| 午夜视频精品福利| а√天堂www在线а√下载| 淫妇啪啪啪对白视频| ponron亚洲| 一个人观看的视频www高清免费观看 | 欧美极品一区二区三区四区| 精品国产超薄肉色丝袜足j| 免费看a级黄色片| 精品无人区乱码1区二区| 欧美又色又爽又黄视频| 久久这里只有精品19| 一个人看的www免费观看视频| 久久久精品欧美日韩精品| 久久伊人香网站| 日本免费一区二区三区高清不卡| 在线免费观看不下载黄p国产 | 精品不卡国产一区二区三区| 国产亚洲欧美在线一区二区| 精品日产1卡2卡| x7x7x7水蜜桃| 欧美日韩黄片免| 丝袜人妻中文字幕| 网址你懂的国产日韩在线| 天天添夜夜摸| 中文资源天堂在线| 十八禁网站免费在线| 亚洲欧美日韩高清在线视频| 国产真人三级小视频在线观看| 亚洲成a人片在线一区二区| 日本黄大片高清| 欧美乱妇无乱码| 成人高潮视频无遮挡免费网站| 淫秽高清视频在线观看| 亚洲国产日韩欧美精品在线观看 | 国产高清激情床上av| 国产v大片淫在线免费观看| 搡老岳熟女国产| 免费看日本二区| 亚洲 国产 在线| 操出白浆在线播放| 亚洲一区二区三区色噜噜| 国产精华一区二区三区| 亚洲中文字幕日韩| 日韩高清综合在线| 又紧又爽又黄一区二区| 亚洲国产欧美一区二区综合| 国产伦一二天堂av在线观看| 黄色视频,在线免费观看| 日韩欧美在线乱码| 噜噜噜噜噜久久久久久91| 免费在线观看日本一区| 村上凉子中文字幕在线| 日本黄色片子视频| 日本黄大片高清| 99国产精品一区二区蜜桃av| 99精品在免费线老司机午夜| 午夜a级毛片| 美女高潮的动态| 嫩草影视91久久| 老司机午夜十八禁免费视频| 一本精品99久久精品77| 久久久久久九九精品二区国产| 操出白浆在线播放| 每晚都被弄得嗷嗷叫到高潮| 两性夫妻黄色片| 老汉色∧v一级毛片| 麻豆成人午夜福利视频| 人妻夜夜爽99麻豆av| 欧美色视频一区免费| 两个人的视频大全免费| 欧美日韩福利视频一区二区| 国产精品久久久久久久电影 | 国产av不卡久久| 亚洲中文日韩欧美视频| av欧美777| av片东京热男人的天堂| 日韩精品青青久久久久久| 三级毛片av免费| 亚洲中文字幕一区二区三区有码在线看 | 午夜福利在线观看吧| 在线观看66精品国产| a在线观看视频网站| 精品国产超薄肉色丝袜足j| 最近最新免费中文字幕在线| 三级男女做爰猛烈吃奶摸视频| 亚洲精华国产精华精| 久久香蕉精品热| 成年人黄色毛片网站| 国产午夜福利久久久久久| 欧美日韩福利视频一区二区| 好男人电影高清在线观看| 99久久国产精品久久久| 欧美日本亚洲视频在线播放| 老司机午夜福利在线观看视频| www日本黄色视频网| 国产激情久久老熟女| 国产精品,欧美在线| 亚洲人成网站高清观看| 免费高清视频大片| 在线国产一区二区在线| 午夜亚洲福利在线播放| 日韩精品中文字幕看吧| 国产精品久久视频播放| 两个人的视频大全免费| 亚洲成人久久爱视频| 午夜免费成人在线视频| 欧美3d第一页| avwww免费| 久久午夜综合久久蜜桃| 变态另类丝袜制服| 成人永久免费在线观看视频|