• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Impact of Autumn SST in the Japan Sea on Winter Rainfall and Air Temperature in Northeast China

    2015-06-01 09:24:20SHIXiaomengSUNJilinWUDexingYILiandWEIDongni
    Journal of Ocean University of China 2015年4期

    SHI Xiaomeng, SUN Jilin, WU Dexing YI Li and WEI Dongni

    1)College of Physical and Environmental Oceanography,Ocean University of China,Qingdao266100,P. R. China

    2)Qingdao Meteorological Bureau,Qingdao266003,P. R. China

    3)Dalian Marine Environmental Monitoring Division,State Oceanic Administration,Dalian116015,P. R. China

    Impact of Autumn SST in the Japan Sea on Winter Rainfall and Air Temperature in Northeast China

    SHI Xiaomeng1),2), SUN Jilin1),*, WU Dexing1), YI Li1), and WEI Dongni3)

    1)College of Physical and Environmental Oceanography,Ocean University of China,Qingdao266100,P. R. China

    2)Qingdao Meteorological Bureau,Qingdao266003,P. R. China

    3)Dalian Marine Environmental Monitoring Division,State Oceanic Administration,Dalian116015,P. R. China

    We studied the impact of sea surface temperature anomaly (SSTA) in the Japan Sea and the sea area east of Japan on the winter rainfall and air temperature in Northeast (NE) China using the singular value decomposition (SVD) and empirical orthogonal function (EOF). The monthly-mean rainfall data observed at 160 stations in China, monthly-mean sea surface temperature (SST) of the Hadley Center for Climate Prediction and Research and monthly-mean air temperature from the NCEP reanalysis during 1960-2011 were used. Correlation analysis indicates that the SSTAs in the Japan Sea in September may last for three or four months and are an important index for forecasting the winter rainfall and air temperature in NE China. Positive SSTAs in the central Japan Sea and in the sea area east of Tokyo correspond to positive rainfall anomaly and negative air temperature anomaly in NE China. With the rise of SST in the Japan Sea, a weak cyclone appears over the Japan Sea. The northeasterly wind transports water vapor from the Okhotsk to NE China, resulting in more rainfall and lower air temperature. Negative SSTA years are accompanied by warmer air temperature and less snow in NE China. The 1000 hPa geopotential height anomaly and wind anomaly fields are simulated by IAP-9L model, which supports the analysis results.

    Japan Sea; SSTA; Northeast China; rainfall; air temperature

    1 Introduction

    Northeast (NE) China is located on the east coast of Eurasian continent and is a part of the East Asian monsoon system. The region has large climate variability and frequent natural hazards (Zhou, 1991). Snow, rainfall and severe cold weathers often adversely affect the region’s agriculture, industry, water conservation, and traffic, causing huge amount of economic losses. Snow disaster is often followed by a flood season. Studies on the climate change in NE China will help to improve climate forecast and reduce losses caused by weather-induced disasters.

    The climate change in NE China has been extensively studied (Wanget al., 2013; Zhenget al., 2013). Trend analyses on temperature and rainfall in the northern part of NE China revealed that summer air temperature was increased during 1951-1999 (Zouet al., 2000). The variability of summer air temperature is different in the northern and southern parts of NE China on the interannual and decadal time scales (Sun and Wang, 2006). Zhanget al. (1985) found that larger area of the polar vortex corresponds to colder summer temperature in NEChina. The relationship between NE Asian (including Korea, Japan, and NE China) summer rainfall and monsoon index shows that the abnormally warm sea surface temperature (SST) in the tropical eastern Pacific can force a strong western North Pacific anticyclone in winter before a strong summer monsoon year (Leeet al., 2005). Liet al. (2010) and Sun and An (2003) discovered that the summer precipitation in NE China has a very close relation with the Pacific SST anomaly (SSTA). Time-frequency characteristics analysis shows that the regional climate change over NE China is related to thermal contrast between the Asian continent and mid/high-latitude North Pacific (Liuet al., 2010).

    As one of the marginal seas in Asia, the Japan Sea (including waters around Hokkaido Island and farther southeast parts of the ocean (30°N-50°N, 125°E-150°E)) influences the climate of NE China in autumn and winter. Scholars have found that the Japan Sea SST plays an important role in changing the atmospheric circulation (Uedaet al., 2011; Iizukaet al., 2013). The increasing SST in the Japan Sea in autumn and winter help to develop the polar low over the Japan Sea (Fu, 2001), which would influence the climate variability in NE China. However, previous studies rarely focused on the relationship between winter climate variability in NE China and the Japan Sea SST.

    It is usually accepted that the SST in the mid and higher latitudes is forced by the atmospheric circulation. However, some studies have also found that regional SSTs can affect regional climate in the mid-higher latitudes (Xieet al., 2003; Shi and Sun, 2009; Sunet al., 2012). Shiet al. (2013) showed that higher zonal temperature gradient in the Arctic Ocean coincides with negative NE China precipitation anomalies. Given that regional SST can affect regional climate, it is important to find out how the SSTA in the Japan Sea influences the winter climate in NE China.

    In this paper, the data and methods are described in Section 2. The relationship between the SSTA in the Japan Sea (including the sea area east of Tokyo) and the winter weather in NE China is examined in Section 3. The impact and physical mechanism as well as model results on the regional ocean forcing are explored in Section 4. Discussion and conclusions are provided in Section 5.

    2 Data and Methods

    The SST field was derived from the monthly-mean data of the Hadley Centre for Climate Prediction and Research for the period of 1960-2011. Monthly-mean precipitation anomalies at 160 stations in China were provided by the National Meteorological Information Center. Monthly-mean air temperature, geopotential height fields and water vapor amount were obtained from the NCEP/ NCAR reanalysis data for the same period.

    Statistical methods, such as singular value decomposition (SVD) and empirical orthogonal function (EOF), were used. In order to highlight large-scale patterns of covariability, we used maximum covariance analysis based on SVD of the covariance matrix between rainfall and SSTAs. SVD is widely used in meteorological research and can help to build the best collaborative change coupling model.

    First, we list two standardized field SSTS(x, t) and RainfallZ(y,t). LetPkandQkbe the orthonormal vectors ofSandZ. Takingaktandbktas coefficients of the time series, the anomalies can be decomposed into

    Homogeneous and heterogeneous correlation coefficients (r(St,bkt) andr(Zt,akt)) can be acquired by SVD (Wu and Wu, 2005). The homogeneous map shows that the temporal change of one mode of the field is self- affected, whose key area is the most important area of its own change (Fenget al., 2006). Brethertonet al. (1992) found that SVD is superior to the combined principal component analysis. SVD could clearly isolate the two most important extra-tropical modes of variability (Wallaceet al., 1992). SVD hss also been widely used in other studies (e.g., Juet al., 1999; Shabbar and Skinner, 2004; Danforth and Kalnay, 2008; Luet al., 2009).

    3 Relationship Between SSTA in the Japan Sea and Winter Weather in NE China

    3.1 SST Signal in the Japan Sea

    Fig.1 Correlation coefficient between Japan Sea SSTA in September and Japan Sea SSTA in (a) October, (b) November, (c) December, and (d) January in the following year. The shaded area indicates a significant correlation (at 95% significant level byt-test).

    The Japan Sea SSTA in September that persists for 3-4months is an essential prerequisite for the use of the SSTA to predict winter air temperature and rainfall in NE China. In this study, the Japan Sea SST includes SST around Hokkaido Island and farther southeast parts of the ocean, and, of course, the SST in the Japan Sea proper.

    Fig.1 shows the correlation coefficients (R) between Japan Sea SSTA in September and Japan Sea SSTA from October to January (in the following year). In the following discussion,R> 0.3 indicates that the correlation coefficient is above the 95% significant test (P< 0.05), whileR> 0.38 shows that the correlation coefficient is above the 99% significant test (P< 0.01). The shaded area indicates significant correlation (R> 0.3,P< 0.05). In Fig.1a, most areas exhibit typical positive correlation (R> 0.38,P<0.01), whileRreaches 0.8 in the sea east of Tokyo (34°N-39°N, 140°E-145°E). The Japan Sea SSTA in September will continue through October. The September/November correlation is positive (R> 0.3,P< 0.05) and the range is similar to that in Fig.1a, though the maximumRis reduced to 0.7 (Fig.1b). In addition, the positive correlation (R> 0.3,P< 0.05) was reduced in the seas south of the Japan Sea and to the east of Tokyo (Fig.1c). The September SSTA in the seas south of the Japan Sea and to the east of Tokyo can last three months. In Fig.1d, the key area (R> 0.3,P< 0.05) covers the southwest part of the Japan Sea and the sea area east of Tokyo. Fig.1 illustrates that the SST anomalies in the Japan Sea may last for three or four months.

    3.2 Relationship Between Japan Sea September SSTA and NE China Winter Rainfall

    Table 1 shows the first two SVD modes between the September SSTA in the Japan Sea and the sea area off East Japan (30.5°N-50.5°N, 125.5°E-150.5°E) and the winter rainfall anomaly in NE China. Both modes are above the 99% significance test and 95% significance test. The first mode, which is the significant mode (with higher CSCFK), will be analyzed next.

    Table 1 The hetero-correlation coefficients of the first two SVD modes between the September SSTA in the Japan Seaand the winter rainfall anomaly in NE China

    Fig.2 shows the results of the first SVD mode. Figs.2a, 2c, 2e show the homogeneous correlation coefficient of the SST field in September. Fig.2b, 2d, 2f show the heterogeneous correlation coefficient of the rainfall field in December, January, and February, respectively.R= 0.3 (0.38) indicates the 95% (99%) significance level. The key area in Fig.2a includes the central Japan Sea and the sea area east of Tokyo, while the key area in Fig.2b includes Heilongjiang Province, Jilin Province and eastern/central Inner Mongolia. When the SST in the central Japan Sea and the sea area east of Tokyo rises in September, the rainfall in Heilongjiang Province, Jilin Province and eastern/central Inner Mongolia will increase in December; and vice verse. The key areas in Figs.2c and 2e are similar to those in Fig.2a, while the key area in Fig.2d includes Heilongjiang Province. The key area in Fig.2f includes eastern Liaoning Province and North Korea. Positive SSTA in September in the central Japan Sea and the sea area east of Tokyo corresponds to heavy rainfall in Heilongjiang Province in January; and vice versa.

    3.3 Relationship Between the Japan Sea SSTA in September and the NE China Air Temperature in Winter

    From the perspective of actual climate prediction, the positive SSTA in Japan Sea and the sea area east of the Japan Sea are considered. Firstly, the September SSTA in the Japan Sea over the 51 years from 1960 to 2010 was analyzed using EOF. Based on the pattern of the first EOF mode (Fig.3a), the key area is similar to those in Figs.1 and 2. The variance contribution rate in the first mode is 55.37%. The decadal climate variability has occurred since the mid 1970s and the satellite SST data have become widely available since 1979. By designating the years with time series values greater than 100 as positive SST anomaly years, there are 13 positive years in the period 1979-2010 in Fig.3b. They are 1989, 1990, 1994, 1998, 1999, 2000, 2001, 2004, 2005, 2006, 2007, 2008, and 2010.

    The December-February air temperature anomalies in the 13 years of 1979-2010 are composed. The air temperature anomaly over NE China is negative when the September SSTA in the Japan Sea is positive (Figs.4a-b). As the September SST rises in the Japan Sea, the air temperature over NE China in December and January decrease; but in February, the areas with decreasing air temperature are not in NE China. In Figs.2 and 4, the weather in NE China in December and January is significantly affected by the SSTA in the Japan Sea in September. The weather in NE China in February is affected by other factors and needs further investigation.

    Fig.2 The homo/heterogeneous correlation coefficient fields of the first SVD mode between the Japan Sea SSTA in September (homogeneous fields, a, c, and e) and the NE China rainfall anomaly in December, January, and February (heterogeneous fields, b, d, and f). The shaded area indicates a significant correlation (of 95% significantt-test).

    Fig.3 Pattern (a) and time series (b) of the first EOF mode of SSTA in the Japan Sea in September.

    Fig.4 Composite analysis of air temperature anomaly in NE China from December to February (a-c) in significantly positive September SSTA years after 1979. The shaded area indicates negative air temperature anomaly.

    4 Mechanism

    4.1 Data Analysis

    Figs.2-4 show that the positive SSTA in September, especially in the area between central Japan Sea and the sea area east of Tokyo, corresponds to the positive rainfall anomaly and negative air temperature anomaly in NE China in December and January. The composite analysis of wind anomaly and water vapor transport anomaly in December in the 13 years are shown in Fig.5. In Fig.5a, a weak cyclone (solid line/circle) appears over the Japan Sea and NE China. Meanwhile, abnormal northeasterly wind (Fig.5a, solid line/square frame) blows from the Okhotsk and transports water vapor to NE China (Fig.5b). In the negative anomaly years, no abnormal cyclonic circulation appears, and less moisture is transported to NE China (we omitted the map for lack of space), which easily results in warmer temperature and less snow in winter.

    Fig.5 Composite analysis of (a) 1000 hPa wind anomaly and (b) 1000 hPa water vapor transport anomaly in December during prominently positive September SSTA years after 1979. The circle and square in (a) indicate the abnormal cyclone and northeasterly wind, respectively.

    Snowstorm in NE China can easily cause huge agricultural and other losses. Given the need of seasonal weather forecast, the mechanism in positive SSTA years is worth exploring. This correlation can be explained by a large-scale air-sea interaction. In early winter, the land temperature declines quickly due to heat loss of earth. When the SST is abnormally high in the Japan Sea, the sea-land air temperature difference will be larger. The500hPa potential height over the region of warm sea water has positive anomaly while negative anomaly occurs over the NE China (cold land). Then the potential height contours bend to the high-latitude, forming the thermal forced trough. In the Petterssen cyclone/anticyclone development equation (Wu, 1999)

    ‘0’ indicates 1000 hPa while ‘5’ shows 500 hPa. The first right term is vorticity advection. Positive vorticity advection (in front of the trough) promotes the development of surface cyclone. With the collective effects of positive vorticity advection in front of the trough, surface water vapor and diabatic heating, water vapor can be easily transported from the Okhotsk to NE China, resulting in more rainfall and lower air temperature. In addition, the east part of the surface cyclone brings abnormal southerly, which can reduce the southward cold water transport from the Oyashio, thereby keeping the Japan Sea SSTA positive.

    The high-altitude circulation pattern is connected with the location of the anomalous thermal wave in the mid/ high-latitude ocean of the Northern Hemisphere. In prominently positive September SSTA years, the 500 hPa geopotential height anomaly in December has two patterns: one is higher in South China and lower in North China, and the other is the opposite.

    Table 2 The North Atlantic Oscillation (NAO) index and the location of cold center at 500hPa in prominently positive September SSTA years after 1979

    The North Atlantic Oscillation (NAO) index and the location of cold center at 500hPa in December of the 13 years are shown in Table 2. In general, Iceland Low is strengthened when the cold center is located in North America and the NAO is positive at the same time. The 500 hPa geopotential height increases over the Bering Sea and the Bering Strait, with a blocking high in the high altitude of the Pacific. A cold eddy appears west of the blocking high and causes a 500 hPa geopotential height anomaly in December, leading to the first pattern. The negative NAO phase corresponds to lower Iceland Low, and the cold center appears in Novaya Zemlya. The planetary-scale wave over NE China is a high ridge, leading to the second pattern. Therefore, the high-altitude circulation pattern needs to be explored in future.

    4.2 Model Results

    Fig.6 Maps of simulated 1000 hPa geopotential height anomaly (hPa, solid black line) and 1000 hPa wind anomaly (m s-1, gray arrow) in (a) December, (b) January, (c) February. The positive SSTA remains from September to December in the Japan Sea.

    The IAP-2L AGCM is the two-level atmospheric general circulation model of the Institute of Atmospheric Physics. The IAP-9L AGCM is a coupled atmosphereocean general circulation model with a horizontal resolution of 5°× 4° (Zenget al., 1987; Zhang, 1990). The model has nine unevenly spaced levels in the vertical direction with a top at 10 hPa. The moist adjustment process is as-sumed to occur in the free atmosphere. It is assumed that the PBL top has the same water vapor content as the model lowest layer. The module consists of a two-layer soil model, a surface energy balance model, and a primitive plant canopy model coupled with a PBL model. The land contours and terrain height data were provided by the Navy Fleet Numerical Oceanography Center at Monterey, US. The SST data were obtained from Alexander and Mobley (1976). Detailed description of the IAP-9L model can be found in Bi (1993). Through comparison between model results and observations, Bi (1993) showed that the model is able to simulate a realistic climate mean state. Xueet al. (2001) had succeeded in modeling the seasonal monsoon variation in the middle and lower troposphere. Wang (2002) used the IAP-9L in simulating the paleo-climate.

    The 1000 hPa geopotential height anomaly and wind anomaly fields from September to February were simulated by the IAP-9L. The positive SSTA in the Japan Sea (30°N-50°N, 125°E-150°E) is offset from September to December. Taking into account the low resolution of this model, the positive SSTA are given from +3.6℃-+4.5℃in this model. Ten simulations are taken in every other 0.1℃. Fig.6 lists the numerical results of geopotential height anomaly and wind anomaly in December, January and February. In Fig.6a, negative geopotential height anomaly appears over north of the Japan Sea and abnormal wind blows from the Okhotsk and transports water vapor to NE China. In Fig.6b, the abnormal cyclone is moving northward and diminishing its impact on NE China. The positive geopotential height anomaly replaces the negative anomaly in February (Fig.6c) and NE China’s weather is unaffected by the abnormal cyclone.

    Although the weak cyclone anomaly moves 3-4 degrees northeastward compared with the statistical results, the simulated anomalies in Figs.6a-c match the statistical results in Sections 3.2 and 3.3 fairly well, considering the low resolution of IAP-9L.

    5 Summary and Discussion

    1) Correlation analysis shows that the September SSTA in the Japan Sea can last for at least three months and even continue through the following January in the key area.

    2) The September SSTA in the Japan Sea and the sea area east of Japan is an important index for forecasting the winter rainfall and air temperature in NE China. Positive SSTA corresponds to positive rainfall anomaly and negative air temperature anomaly in December and January in NE China. In the respect, the weather in NE China in February needs further investigation.

    3) The relevant mechanism is as follows. The positive SSTA enhances the land-sea thermal difference, which can influence the atmospheric circulation. With the combined effect of the thermal difference and diabatic heating, a weak cyclone appears over the Japan Sea. The east part of the surface cyclone brings in abnormal southerly, which weakened the southward cold water transport from the Oyashio, thereby keeping the Japan Sea SSTA positive. The northeasterly wind transports water vapor from the Okhotsk to NE China, resulting in more rainfall and lower air temperature. The high-altitude circulation pattern is affected by the anomalous circulation of the Northern Hemisphere and ocean thermal forcing. The positive NAO phase corresponds to higher geopotential height in South China and lower geopotential height in North China, while the negative NAO phase functions in the opposite way.

    Acknowledgements

    The authors thank Prof. Qinyu Liu for her suggestions about the persistence of the Japan Sea SSTA. This work was supported by Innovation and Research Foundation of Ocean University of China (No. 201261009), the National Natural Science Foundation of China (Nos. 40930844 and 10735030) and the National Basic Research Program of China (the 973 Program) under grant No. 2005CB422 301.

    Alexander, R. C., and Mobley, R. L., 1976. Monthly average sea-surface temperature and ice-pack limits on a 1° global grid.Monthly Weather Review, 104: 143-148.

    Bi, X. Q., 1993. IAP 9-level atmospheric general circulation model and climate simulation. PhD thesis. Institute of Atmospheric Physics, Chinese Academy of Sciendes, Beijing (in Chinese with English abstract).

    Bretherton, C. S., Smith, C., and Wallace, J. M., 1992. An intercomparison of methods for finding coupled patterns in climate data.Journal of Climate, 5: 541-560.

    Danforth, C. M., and Kalnay, E., 2008. Using singular value decomposition to parameterize state-dependent model errors.Journal of the Atmosphere Sciences, 65: 1467-1478, DOI:10.1175/2007JAS2419.1.

    Feng, X., Wang, X., and Wang, Y., 2006. Anomalies of the Northeast China floods season precipitation and SVD analysis with SSTA in world Oceans.Journal of Tropical Meteorology, 22 (4): 367-373 (in Chinese with English abstract).

    Fu, G., 2001.Polar Lows: Intense Cyclones in Winter. China Meteorological Press, Beijing, 164-172.

    Iizuka, S., Shiota, M., Kawamura, R., and Hatsushika, H., 2013. Influence of the monsoon variability and sea surface temperature front on the explosive cyclone activity in the vicinity of Japan during Northern Winter.SOLA, 9 (0): 1-4.

    Ju, J. H., Deng, S., Chen, X. F., and Yan, H. S., 1999. Field correlation analysis between the monthly-mean 500 hPa height anomaly from January to May and rainfall of china in summer.Journal of Tropical Meteorology, 15: 154-161 (in Chinese with English abstract).

    Lee, E. J., Jhun, J. G., and Park, C. K., 2005. Remote connection of the Northeast Asian summer rainfall variation revealed by a newly defined monsoon index.Journal of Climate, 18:4381-4393.

    Li, F., Li, J., and Guan, Z. Y., 2010. Inter-decadal variations of summer temperature in Northeast China and relationships with Pacific SSTA.Journal of Meteorology and Environment, 26 (3): 19-26 (in Chinese with English abstract).

    Liu, S., Yang, S., Lian, Y., Zhang, D. W., Wen, M., Tu, G., Shen,B. Z., Gao, Z. T., and Wang, D. H., 2010. Time-frequency characteristics of regional climate over Northeast China and their relationships with atmospheric circulation patterns.Journal of Climate, 23: 4956-4972.

    Lu, C. H., Guan, Z. Y., Wang, P. X., and Duan, M. K., 2009. Detecting the relationship between summer rainfall anomalies in Eastern China and the SSTA in the global domain with a new significance test method.Journal of Ocean University of China, 8: 15-22.

    Shabbar, A., and Skinner, W., 2004. Summer drought patterns in Canada and the relationship to global sea surface temperatures.Journal of Climate, 17: 2866-2880.

    Shi, D. D., and Sun, J. L., 2009. Study on seasonal variation of heat content in marginal seas in the east of China.Periodical of Ocean University of China, 39: 274-280 (in Chinese with English abstract).

    Shi, X. M., Sun, Y. W., and Sun, J. L., 2013. The impact of zonal temperature gradient in the Arctic Ocean on the summer precipitation over Northeast China.Periodical of Ocean University of China, 44 (2): 11-16 (in Chinese with English abstract).

    Sun, L., and An, G., 2003. The effect of north Pacific sea surface temperature anomaly on the summer precipitation in Northeast China.Acta Meteorological Sinica, 61 (3): 346-353 (in Chinese with English abstract).

    Sun, J. L., Cong, M., Wu, D. X., and Gao, S. H., 2012. The effect of meridional thermal difference in eastern marginal seas of China to climate change in Nanjing during summer.Periodical of Ocean University of China, 42 (5): 001-006 (in Chinese with English abstract).

    Sun, J. Q., and Wang, H. J., 2006. Regional difference of summer air temperature anomalies in Northeast China and its relationship to atmospheric general circulation and sea surface temperature.Chinese Journal of Geophysics,49 (3): 588-598.

    Ueda, A., Yamamoto, M., and Hirose, N., 2011. Meteorological influences of SST anomaly over the East Asian marginal sea on subpolar and polar regions: A case of an extratropical cyclone on 5-8 November 2006.Polar Science, 5 (1): 1-10.

    Wallace, J. M., Smith, C., and Bretherton, C. S., 1992. Singular value decomposition of wintertime sea surface temperature and 500-mb height anomalies.Journal of Climate, 5: 561-576.

    Wang, H., Liu, Q. Y., and Zheng, J., 2013. Formation mechanism for the anomalous anticyclonic circulation over Northeast Asia and the Japan Sea in boreal winter 1997/98 and the spring of 1998.Journal of Ocean University of China, 12 (2):312-317.

    Wang, H. J., 2002. The Mid-Holocene climate simulated by a grid-point AGCM coupled with a biome model.Advances in Atmospheric Sciences, 19 (2): 205-218.

    Wu, H. B., and Wu, L., 2005.Climate Variability Diagnosis and Prediction Methods. China Meteorological Press, Beijing, 103-163 (in Chinese).

    Wu, R. S., 1999.Principles of Modern Synoptic Meteorology. Higher Education Press, Beijing, 136-140 (in Chinese).

    Xie, S. P., Xie, Q., Wang, D., and Liu, W. T., 2003. Summer upwelling in South China Sea and its role in regional climate variations.Journal of Geophysical Research-Oceans, 108 (C8): 17.1-17.13, DOI: 10.1029/2003JC001867.

    Xue, F., Bi, X. Q., and Lin, Y. H., 2001. Modeling the global monsoon system by IAP 9L AGCM.Advances in Atmospheric Sciences, 18 (3): 404-412.

    Zeng, Q. C., Yuan, C. G., Zhang, X. Z., Liang, X. Z., and Bao, N., 1987. A global gridpoint general circulation model.Collection of Paper Presented at the WMO/IUGG NWP Symposium, Tokyo, 421-430.

    Zhang, S. Q., Yu, T. J., Li, F. Y., Wang, X. M., Wang, X. F., and Wu, W. M., 1985. The seasonal variations of area and intensity of polar vortex in northern hemisphere and relationship with temperature in northeast China.Scientic Atmospherica Sinica, 9 (2): 178-185 (in Chinese with English abstract).

    Zhang, X. H., 1990. Dynamial framework of IAP fine-level atmospheric general circulation model.Advances in Atmospheric Sciences, 7 (1): 67-77.

    Zheng, H. F., Mclaughlin, N. B., He, X. Y., Yu, X. Y., Ren, Z. B., and Zhang, D., 2013. Temporal and geographical variation in the onset of climatological spring in Northeast China.Theoretical and Applied Climatology, 114 (3-4): 605-613, DOI: 10.1007/s00704-013-0869-1.

    Zhou, L., 1991.Climate of Northeast China. China Meteorological Press, Beijing, 125pp (in Chinese).

    Zou, L. Y., Ma, J. X., and Zhou, J. L., 2000. Preliminary study on trends of temperature and precipitation in the north of the northeast China.Journal of Nanjing Institute of Meteorology, 23 (4): 560-567 (in Chinese with English abstract).

    (Edited by Xie Jun)

    (Received September 10, 2013; revised October 15, 2013; accepted May 30, 2015)

    ? Ocean University of China, Science Press and Spring-Verlag Berlin Heidelberg 2015

    * Corresponding author. Tel: 0086-532-66782127 E-mail: rainbetimes@163.com

    国产成人精品久久二区二区91 | 国产欧美日韩一区二区三区在线| 中文字幕亚洲精品专区| 国产精品国产av在线观看| 深夜精品福利| 一级,二级,三级黄色视频| 亚洲色图 男人天堂 中文字幕| 日韩中文字幕视频在线看片| 好男人视频免费观看在线| 黄网站色视频无遮挡免费观看| videos熟女内射| 久久久欧美国产精品| 丝袜美腿诱惑在线| 久久精品久久久久久噜噜老黄| 如日韩欧美国产精品一区二区三区| 一级毛片 在线播放| 国产亚洲最大av| 热re99久久国产66热| 亚洲欧美一区二区三区国产| 精品国产一区二区三区四区第35| 一本一本久久a久久精品综合妖精| 欧美激情高清一区二区三区 | 狂野欧美激情性bbbbbb| 少妇精品久久久久久久| 久久鲁丝午夜福利片| 精品福利永久在线观看| 日韩av在线免费看完整版不卡| 99精品久久久久人妻精品| 免费久久久久久久精品成人欧美视频| 日韩精品有码人妻一区| 精品国产乱码久久久久久男人| 捣出白浆h1v1| 国产精品国产av在线观看| 欧美在线黄色| 亚洲国产成人一精品久久久| 欧美 日韩 精品 国产| 亚洲国产欧美日韩在线播放| 一级,二级,三级黄色视频| 免费女性裸体啪啪无遮挡网站| 大陆偷拍与自拍| 国产av码专区亚洲av| 看免费成人av毛片| 国产午夜精品一二区理论片| 久久狼人影院| 极品少妇高潮喷水抽搐| 悠悠久久av| www日本在线高清视频| 国产精品 欧美亚洲| av网站在线播放免费| 大码成人一级视频| 美女主播在线视频| 欧美在线黄色| 两个人免费观看高清视频| 91精品三级在线观看| 欧美人与善性xxx| 人人妻人人澡人人爽人人夜夜| 电影成人av| 哪个播放器可以免费观看大片| 99热网站在线观看| 久久精品久久久久久噜噜老黄| 爱豆传媒免费全集在线观看| 亚洲综合色网址| 日韩av免费高清视频| 一本色道久久久久久精品综合| 大片电影免费在线观看免费| 人人澡人人妻人| 9色porny在线观看| 色婷婷av一区二区三区视频| 精品视频人人做人人爽| 国产在视频线精品| 国产一区二区 视频在线| 中国三级夫妇交换| 美女大奶头黄色视频| 日韩,欧美,国产一区二区三区| 熟女av电影| 高清视频免费观看一区二区| 大香蕉久久网| 女性生殖器流出的白浆| 天天添夜夜摸| 香蕉丝袜av| 交换朋友夫妻互换小说| 亚洲av国产av综合av卡| 中文欧美无线码| 亚洲欧洲国产日韩| svipshipincom国产片| 欧美 亚洲 国产 日韩一| 欧美日韩亚洲高清精品| 两个人免费观看高清视频| 肉色欧美久久久久久久蜜桃| 中国三级夫妇交换| 99久国产av精品国产电影| 精品人妻一区二区三区麻豆| 美女高潮到喷水免费观看| 一区在线观看完整版| 青春草亚洲视频在线观看| 老司机亚洲免费影院| 黄网站色视频无遮挡免费观看| 久热爱精品视频在线9| 狂野欧美激情性bbbbbb| 国产精品一区二区精品视频观看| 少妇人妻精品综合一区二区| 日韩 亚洲 欧美在线| 亚洲成人一二三区av| 九九爱精品视频在线观看| 丝袜喷水一区| 国产精品国产av在线观看| 亚洲,欧美,日韩| 90打野战视频偷拍视频| 成年美女黄网站色视频大全免费| 777米奇影视久久| 亚洲综合精品二区| 在线观看免费视频网站a站| 亚洲国产精品一区二区三区在线| 国产亚洲欧美精品永久| 一级a爱视频在线免费观看| 巨乳人妻的诱惑在线观看| 国产av精品麻豆| av片东京热男人的天堂| 2021少妇久久久久久久久久久| 亚洲欧美激情在线| 国产又爽黄色视频| 国产福利在线免费观看视频| 香蕉国产在线看| 中文字幕最新亚洲高清| 999精品在线视频| 欧美黄色片欧美黄色片| 在线观看免费午夜福利视频| 大片免费播放器 马上看| 天天躁夜夜躁狠狠躁躁| 国产成人精品福利久久| 十分钟在线观看高清视频www| 丰满少妇做爰视频| 亚洲第一av免费看| 母亲3免费完整高清在线观看| 狂野欧美激情性xxxx| 中文字幕精品免费在线观看视频| 亚洲国产看品久久| 国产福利在线免费观看视频| av天堂久久9| 亚洲五月色婷婷综合| 亚洲精品一二三| 视频在线观看一区二区三区| 高清不卡的av网站| 波多野结衣av一区二区av| 欧美黑人欧美精品刺激| 黄片无遮挡物在线观看| 久久精品久久精品一区二区三区| 人人妻,人人澡人人爽秒播 | 久久久久久免费高清国产稀缺| 久久毛片免费看一区二区三区| 欧美在线一区亚洲| 在线观看三级黄色| 亚洲欧美一区二区三区国产| 午夜福利,免费看| 日本av免费视频播放| av国产精品久久久久影院| 纯流量卡能插随身wifi吗| 国产精品国产av在线观看| 国产极品天堂在线| 久久青草综合色| 纯流量卡能插随身wifi吗| 亚洲成色77777| 99久久精品国产亚洲精品| 亚洲自偷自拍图片 自拍| 搡老岳熟女国产| 成年美女黄网站色视频大全免费| 国产一区亚洲一区在线观看| 麻豆乱淫一区二区| 91精品三级在线观看| 观看av在线不卡| 毛片一级片免费看久久久久| 91成人精品电影| 亚洲av日韩在线播放| 免费av中文字幕在线| 国产亚洲av高清不卡| 亚洲男人天堂网一区| 成人黄色视频免费在线看| 我的亚洲天堂| 欧美精品高潮呻吟av久久| 国产有黄有色有爽视频| 男女高潮啪啪啪动态图| 久久久久久久国产电影| 你懂的网址亚洲精品在线观看| 成年女人毛片免费观看观看9 | 欧美少妇被猛烈插入视频| 亚洲熟女毛片儿| 久久久久久久久久久免费av| 在线观看国产h片| 亚洲美女搞黄在线观看| 在线观看免费日韩欧美大片| 日本欧美国产在线视频| 亚洲精品美女久久av网站| 精品久久久久久电影网| 人妻人人澡人人爽人人| 日韩中文字幕欧美一区二区 | 巨乳人妻的诱惑在线观看| 国产免费福利视频在线观看| 久久人人爽av亚洲精品天堂| av在线老鸭窝| 国产免费福利视频在线观看| 亚洲 欧美一区二区三区| 久久久久久人妻| av有码第一页| 成人三级做爰电影| 最近2019中文字幕mv第一页| 国产精品蜜桃在线观看| 精品国产乱码久久久久久男人| 亚洲精品国产一区二区精华液| 一级a爱视频在线免费观看| 国产伦理片在线播放av一区| 日韩制服骚丝袜av| 少妇人妻精品综合一区二区| 免费在线观看完整版高清| 国产精品成人在线| 亚洲精品国产av成人精品| 久久精品熟女亚洲av麻豆精品| 精品免费久久久久久久清纯 | 欧美国产精品va在线观看不卡| 精品一品国产午夜福利视频| 婷婷色综合大香蕉| 王馨瑶露胸无遮挡在线观看| 久久久欧美国产精品| 男的添女的下面高潮视频| 亚洲欧洲精品一区二区精品久久久 | 韩国精品一区二区三区| 国产探花极品一区二区| 国产精品人妻久久久影院| 国产精品99久久99久久久不卡 | 亚洲一卡2卡3卡4卡5卡精品中文| 国产在视频线精品| 亚洲精华国产精华液的使用体验| 日韩制服骚丝袜av| 麻豆精品久久久久久蜜桃| 成人免费观看视频高清| 18禁裸乳无遮挡动漫免费视频| 亚洲欧美精品综合一区二区三区| 亚洲人成网站在线观看播放| 国产 一区精品| 精品卡一卡二卡四卡免费| 九九爱精品视频在线观看| 欧美xxⅹ黑人| 午夜免费鲁丝| 国产一区有黄有色的免费视频| 国产黄色免费在线视频| 高清不卡的av网站| 秋霞伦理黄片| 又大又黄又爽视频免费| 成年人午夜在线观看视频| 99精品久久久久人妻精品| 女人爽到高潮嗷嗷叫在线视频| 精品国产一区二区三区四区第35| 波多野结衣一区麻豆| 99九九在线精品视频| 男女无遮挡免费网站观看| 如日韩欧美国产精品一区二区三区| 91精品伊人久久大香线蕉| 男人添女人高潮全过程视频| 亚洲欧美一区二区三区黑人| 午夜免费鲁丝| 美女中出高潮动态图| 欧美精品一区二区免费开放| 亚洲精品国产一区二区精华液| 老司机深夜福利视频在线观看 | 天天操日日干夜夜撸| 两性夫妻黄色片| 18禁裸乳无遮挡动漫免费视频| 午夜免费鲁丝| 99久国产av精品国产电影| 亚洲精品一区蜜桃| 国产欧美亚洲国产| 这个男人来自地球电影免费观看 | 久久ye,这里只有精品| 色婷婷久久久亚洲欧美| 中文字幕制服av| 国产一卡二卡三卡精品 | 久久久久久久久免费视频了| 天天躁夜夜躁狠狠躁躁| 婷婷色麻豆天堂久久| 久久国产亚洲av麻豆专区| 欧美97在线视频| 国产精品偷伦视频观看了| 咕卡用的链子| kizo精华| 一级毛片 在线播放| 精品少妇一区二区三区视频日本电影 | 欧美黄色片欧美黄色片| 一级片'在线观看视频| 婷婷成人精品国产| 欧美在线一区亚洲| 99久久精品国产亚洲精品| 亚洲国产最新在线播放| av线在线观看网站| 国产免费现黄频在线看| 国产极品粉嫩免费观看在线| 91老司机精品| 日本欧美国产在线视频| 精品亚洲成国产av| 午夜福利在线免费观看网站| bbb黄色大片| 欧美久久黑人一区二区| 韩国高清视频一区二区三区| 日韩免费高清中文字幕av| 成年av动漫网址| 一级毛片黄色毛片免费观看视频| 国产成人啪精品午夜网站| 久久精品久久久久久久性| 亚洲av电影在线进入| 国产亚洲欧美精品永久| 另类精品久久| 满18在线观看网站| 亚洲精品日本国产第一区| 叶爱在线成人免费视频播放| 9191精品国产免费久久| 亚洲人成77777在线视频| 久久久久久久精品精品| 1024香蕉在线观看| 久久影院123| 两个人免费观看高清视频| 欧美日韩亚洲国产一区二区在线观看 | 久久久久国产精品人妻一区二区| 色精品久久人妻99蜜桃| 最近的中文字幕免费完整| 欧美xxⅹ黑人| 亚洲精品日本国产第一区| 欧美激情高清一区二区三区 | 天天躁夜夜躁狠狠久久av| 免费在线观看视频国产中文字幕亚洲 | 男人舔女人的私密视频| 亚洲欧洲国产日韩| www.自偷自拍.com| 亚洲伊人久久精品综合| 国产野战对白在线观看| 桃花免费在线播放| 亚洲国产毛片av蜜桃av| 亚洲精品乱久久久久久| 在线观看一区二区三区激情| 精品久久蜜臀av无| 免费少妇av软件| 久久久久视频综合| 国产色婷婷99| 2018国产大陆天天弄谢| 国产淫语在线视频| 欧美中文综合在线视频| 精品人妻在线不人妻| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲少妇的诱惑av| 国产成人欧美在线观看 | 亚洲欧美一区二区三区黑人| 免费日韩欧美在线观看| 最近最新中文字幕大全免费视频 | 久久精品熟女亚洲av麻豆精品| 国产精品人妻久久久影院| 丝袜喷水一区| 中文精品一卡2卡3卡4更新| 国产成人系列免费观看| 亚洲色图 男人天堂 中文字幕| 日韩成人av中文字幕在线观看| 精品午夜福利在线看| 国产精品久久久久成人av| h视频一区二区三区| 亚洲av欧美aⅴ国产| 国精品久久久久久国模美| 国产免费又黄又爽又色| 只有这里有精品99| 精品久久久精品久久久| 国产成人午夜福利电影在线观看| 午夜老司机福利片| 老司机在亚洲福利影院| 美女高潮到喷水免费观看| 亚洲国产中文字幕在线视频| 午夜精品国产一区二区电影| 伊人亚洲综合成人网| 午夜福利视频精品| 午夜福利一区二区在线看| 一区二区av电影网| 国产精品免费视频内射| 国产福利在线免费观看视频| 最近的中文字幕免费完整| 视频在线观看一区二区三区| 妹子高潮喷水视频| 国产极品粉嫩免费观看在线| 新久久久久国产一级毛片| 国产97色在线日韩免费| 日韩 欧美 亚洲 中文字幕| 美女扒开内裤让男人捅视频| 亚洲精华国产精华液的使用体验| 观看美女的网站| 十八禁网站网址无遮挡| 丝袜美足系列| 51午夜福利影视在线观看| 在现免费观看毛片| 亚洲精品日韩在线中文字幕| 妹子高潮喷水视频| 人人妻人人澡人人看| 免费黄网站久久成人精品| 精品久久久久久电影网| 国产免费又黄又爽又色| 国产亚洲最大av| a级片在线免费高清观看视频| 国产日韩一区二区三区精品不卡| 日本黄色日本黄色录像| 精品卡一卡二卡四卡免费| 天天添夜夜摸| a级毛片黄视频| 一级,二级,三级黄色视频| 国产乱来视频区| 婷婷色麻豆天堂久久| 日韩中文字幕欧美一区二区 | 日韩中文字幕视频在线看片| 成人午夜精彩视频在线观看| 亚洲欧洲精品一区二区精品久久久 | 满18在线观看网站| 亚洲精品成人av观看孕妇| 在线观看免费日韩欧美大片| 国产爽快片一区二区三区| 99久久精品国产亚洲精品| 亚洲欧美色中文字幕在线| 熟女少妇亚洲综合色aaa.| 人妻 亚洲 视频| 久久热在线av| 国产免费现黄频在线看| 热99国产精品久久久久久7| 欧美精品人与动牲交sv欧美| 国产亚洲一区二区精品| 少妇人妻 视频| 丝袜喷水一区| 伦理电影免费视频| 啦啦啦 在线观看视频| 中文字幕高清在线视频| 在线看a的网站| 亚洲欧美精品综合一区二区三区| 日韩中文字幕欧美一区二区 | 中文字幕av电影在线播放| 看十八女毛片水多多多| 免费在线观看视频国产中文字幕亚洲 | 久久精品熟女亚洲av麻豆精品| 亚洲精品国产色婷婷电影| 亚洲,欧美,日韩| 丁香六月欧美| 99国产综合亚洲精品| 色婷婷久久久亚洲欧美| 一区二区三区精品91| 国产成人欧美| 成人国产av品久久久| 精品视频人人做人人爽| 色综合欧美亚洲国产小说| 久久精品aⅴ一区二区三区四区| 久久ye,这里只有精品| 捣出白浆h1v1| 无限看片的www在线观看| 黄频高清免费视频| 秋霞在线观看毛片| 日本一区二区免费在线视频| tube8黄色片| www.熟女人妻精品国产| 欧美日本中文国产一区发布| 久久精品国产综合久久久| 制服丝袜香蕉在线| 国产黄色视频一区二区在线观看| 黄片无遮挡物在线观看| 新久久久久国产一级毛片| 午夜久久久在线观看| 人妻一区二区av| 少妇猛男粗大的猛烈进出视频| 免费观看人在逋| 国产黄色视频一区二区在线观看| 成人手机av| 日韩制服丝袜自拍偷拍| 亚洲av福利一区| 午夜免费观看性视频| 欧美精品av麻豆av| 国产免费现黄频在线看| 丝袜脚勾引网站| 91aial.com中文字幕在线观看| 黑人巨大精品欧美一区二区蜜桃| 2018国产大陆天天弄谢| 捣出白浆h1v1| 不卡av一区二区三区| 丝袜人妻中文字幕| 亚洲美女搞黄在线观看| 日本猛色少妇xxxxx猛交久久| 中文字幕人妻丝袜一区二区 | 久久天躁狠狠躁夜夜2o2o | 久久久国产精品麻豆| 热99国产精品久久久久久7| 亚洲人成电影观看| 乱人伦中国视频| 午夜久久久在线观看| 久久久久精品人妻al黑| av不卡在线播放| 免费人妻精品一区二区三区视频| 伊人久久国产一区二区| 欧美国产精品一级二级三级| 女人久久www免费人成看片| 在现免费观看毛片| 欧美日韩视频精品一区| 一级爰片在线观看| 色视频在线一区二区三区| 国产av码专区亚洲av| 一级黄片播放器| 成人国产麻豆网| 日韩精品免费视频一区二区三区| 久久青草综合色| 51午夜福利影视在线观看| 久久久精品区二区三区| 一本—道久久a久久精品蜜桃钙片| 久久久精品免费免费高清| 久久99热这里只频精品6学生| 欧美日韩亚洲综合一区二区三区_| 国产精品一区二区精品视频观看| 日韩精品有码人妻一区| 国产淫语在线视频| 久久 成人 亚洲| 亚洲精品aⅴ在线观看| 如何舔出高潮| 在线观看三级黄色| 国产一区二区三区综合在线观看| 女性被躁到高潮视频| 国产 一区精品| 午夜影院在线不卡| 久久久久久久精品精品| 成人亚洲精品一区在线观看| 国产免费一区二区三区四区乱码| 亚洲欧美成人精品一区二区| 亚洲人成77777在线视频| 夫妻午夜视频| 亚洲第一青青草原| 亚洲色图综合在线观看| 成人免费观看视频高清| 亚洲欧美一区二区三区久久| 丝袜美腿诱惑在线| 高清欧美精品videossex| 成年美女黄网站色视频大全免费| 久久精品亚洲熟妇少妇任你| 中文字幕另类日韩欧美亚洲嫩草| 亚洲 欧美一区二区三区| 九草在线视频观看| 一二三四中文在线观看免费高清| 成人免费观看视频高清| av卡一久久| 免费观看人在逋| 超碰成人久久| 老鸭窝网址在线观看| 少妇 在线观看| 成人手机av| 久久久久久人妻| 最新在线观看一区二区三区 | 欧美久久黑人一区二区| 国产不卡av网站在线观看| 久久久久国产一级毛片高清牌| 国产深夜福利视频在线观看| 日韩大片免费观看网站| 男人舔女人的私密视频| 汤姆久久久久久久影院中文字幕| 一二三四在线观看免费中文在| 最新的欧美精品一区二区| 如何舔出高潮| 精品久久久久久电影网| 精品亚洲乱码少妇综合久久| 国产一区二区在线观看av| 久久国产精品男人的天堂亚洲| 精品一区在线观看国产| 99re6热这里在线精品视频| 亚洲国产精品一区三区| 看免费成人av毛片| 久久精品国产综合久久久| 免费女性裸体啪啪无遮挡网站| 美女国产高潮福利片在线看| 亚洲激情五月婷婷啪啪| 欧美精品亚洲一区二区| 汤姆久久久久久久影院中文字幕| 欧美成人精品欧美一级黄| 亚洲国产欧美在线一区| 五月开心婷婷网| 国产黄色视频一区二区在线观看| 99久久精品国产亚洲精品| 人妻一区二区av| 在线 av 中文字幕| 别揉我奶头~嗯~啊~动态视频 | 在线观看人妻少妇| xxxhd国产人妻xxx| 电影成人av| 国产精品蜜桃在线观看| 日本vs欧美在线观看视频| 国产精品香港三级国产av潘金莲 | 啦啦啦视频在线资源免费观看| 你懂的网址亚洲精品在线观看| 午夜激情av网站| 男人操女人黄网站| 女人高潮潮喷娇喘18禁视频| av网站在线播放免费| 一区二区日韩欧美中文字幕| 久久99热这里只频精品6学生| 人人妻人人澡人人爽人人夜夜| 亚洲自偷自拍图片 自拍| 一级片免费观看大全| 国产精品一区二区精品视频观看| 亚洲美女黄色视频免费看| 黑人巨大精品欧美一区二区蜜桃| 各种免费的搞黄视频| 亚洲人成网站在线观看播放| 成人18禁高潮啪啪吃奶动态图| 人人妻人人爽人人添夜夜欢视频| 成人漫画全彩无遮挡| 伦理电影大哥的女人| av不卡在线播放| 久久久久久久久久久久大奶| 少妇人妻精品综合一区二区| 男人操女人黄网站| 91成人精品电影| 一级毛片电影观看| 国产成人一区二区在线| 少妇猛男粗大的猛烈进出视频| 99精国产麻豆久久婷婷| 国产 精品1|