• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Impact of Autumn SST in the Japan Sea on Winter Rainfall and Air Temperature in Northeast China

    2015-06-01 09:24:20SHIXiaomengSUNJilinWUDexingYILiandWEIDongni
    Journal of Ocean University of China 2015年4期

    SHI Xiaomeng, SUN Jilin, WU Dexing YI Li and WEI Dongni

    1)College of Physical and Environmental Oceanography,Ocean University of China,Qingdao266100,P. R. China

    2)Qingdao Meteorological Bureau,Qingdao266003,P. R. China

    3)Dalian Marine Environmental Monitoring Division,State Oceanic Administration,Dalian116015,P. R. China

    Impact of Autumn SST in the Japan Sea on Winter Rainfall and Air Temperature in Northeast China

    SHI Xiaomeng1),2), SUN Jilin1),*, WU Dexing1), YI Li1), and WEI Dongni3)

    1)College of Physical and Environmental Oceanography,Ocean University of China,Qingdao266100,P. R. China

    2)Qingdao Meteorological Bureau,Qingdao266003,P. R. China

    3)Dalian Marine Environmental Monitoring Division,State Oceanic Administration,Dalian116015,P. R. China

    We studied the impact of sea surface temperature anomaly (SSTA) in the Japan Sea and the sea area east of Japan on the winter rainfall and air temperature in Northeast (NE) China using the singular value decomposition (SVD) and empirical orthogonal function (EOF). The monthly-mean rainfall data observed at 160 stations in China, monthly-mean sea surface temperature (SST) of the Hadley Center for Climate Prediction and Research and monthly-mean air temperature from the NCEP reanalysis during 1960-2011 were used. Correlation analysis indicates that the SSTAs in the Japan Sea in September may last for three or four months and are an important index for forecasting the winter rainfall and air temperature in NE China. Positive SSTAs in the central Japan Sea and in the sea area east of Tokyo correspond to positive rainfall anomaly and negative air temperature anomaly in NE China. With the rise of SST in the Japan Sea, a weak cyclone appears over the Japan Sea. The northeasterly wind transports water vapor from the Okhotsk to NE China, resulting in more rainfall and lower air temperature. Negative SSTA years are accompanied by warmer air temperature and less snow in NE China. The 1000 hPa geopotential height anomaly and wind anomaly fields are simulated by IAP-9L model, which supports the analysis results.

    Japan Sea; SSTA; Northeast China; rainfall; air temperature

    1 Introduction

    Northeast (NE) China is located on the east coast of Eurasian continent and is a part of the East Asian monsoon system. The region has large climate variability and frequent natural hazards (Zhou, 1991). Snow, rainfall and severe cold weathers often adversely affect the region’s agriculture, industry, water conservation, and traffic, causing huge amount of economic losses. Snow disaster is often followed by a flood season. Studies on the climate change in NE China will help to improve climate forecast and reduce losses caused by weather-induced disasters.

    The climate change in NE China has been extensively studied (Wanget al., 2013; Zhenget al., 2013). Trend analyses on temperature and rainfall in the northern part of NE China revealed that summer air temperature was increased during 1951-1999 (Zouet al., 2000). The variability of summer air temperature is different in the northern and southern parts of NE China on the interannual and decadal time scales (Sun and Wang, 2006). Zhanget al. (1985) found that larger area of the polar vortex corresponds to colder summer temperature in NEChina. The relationship between NE Asian (including Korea, Japan, and NE China) summer rainfall and monsoon index shows that the abnormally warm sea surface temperature (SST) in the tropical eastern Pacific can force a strong western North Pacific anticyclone in winter before a strong summer monsoon year (Leeet al., 2005). Liet al. (2010) and Sun and An (2003) discovered that the summer precipitation in NE China has a very close relation with the Pacific SST anomaly (SSTA). Time-frequency characteristics analysis shows that the regional climate change over NE China is related to thermal contrast between the Asian continent and mid/high-latitude North Pacific (Liuet al., 2010).

    As one of the marginal seas in Asia, the Japan Sea (including waters around Hokkaido Island and farther southeast parts of the ocean (30°N-50°N, 125°E-150°E)) influences the climate of NE China in autumn and winter. Scholars have found that the Japan Sea SST plays an important role in changing the atmospheric circulation (Uedaet al., 2011; Iizukaet al., 2013). The increasing SST in the Japan Sea in autumn and winter help to develop the polar low over the Japan Sea (Fu, 2001), which would influence the climate variability in NE China. However, previous studies rarely focused on the relationship between winter climate variability in NE China and the Japan Sea SST.

    It is usually accepted that the SST in the mid and higher latitudes is forced by the atmospheric circulation. However, some studies have also found that regional SSTs can affect regional climate in the mid-higher latitudes (Xieet al., 2003; Shi and Sun, 2009; Sunet al., 2012). Shiet al. (2013) showed that higher zonal temperature gradient in the Arctic Ocean coincides with negative NE China precipitation anomalies. Given that regional SST can affect regional climate, it is important to find out how the SSTA in the Japan Sea influences the winter climate in NE China.

    In this paper, the data and methods are described in Section 2. The relationship between the SSTA in the Japan Sea (including the sea area east of Tokyo) and the winter weather in NE China is examined in Section 3. The impact and physical mechanism as well as model results on the regional ocean forcing are explored in Section 4. Discussion and conclusions are provided in Section 5.

    2 Data and Methods

    The SST field was derived from the monthly-mean data of the Hadley Centre for Climate Prediction and Research for the period of 1960-2011. Monthly-mean precipitation anomalies at 160 stations in China were provided by the National Meteorological Information Center. Monthly-mean air temperature, geopotential height fields and water vapor amount were obtained from the NCEP/ NCAR reanalysis data for the same period.

    Statistical methods, such as singular value decomposition (SVD) and empirical orthogonal function (EOF), were used. In order to highlight large-scale patterns of covariability, we used maximum covariance analysis based on SVD of the covariance matrix between rainfall and SSTAs. SVD is widely used in meteorological research and can help to build the best collaborative change coupling model.

    First, we list two standardized field SSTS(x, t) and RainfallZ(y,t). LetPkandQkbe the orthonormal vectors ofSandZ. Takingaktandbktas coefficients of the time series, the anomalies can be decomposed into

    Homogeneous and heterogeneous correlation coefficients (r(St,bkt) andr(Zt,akt)) can be acquired by SVD (Wu and Wu, 2005). The homogeneous map shows that the temporal change of one mode of the field is self- affected, whose key area is the most important area of its own change (Fenget al., 2006). Brethertonet al. (1992) found that SVD is superior to the combined principal component analysis. SVD could clearly isolate the two most important extra-tropical modes of variability (Wallaceet al., 1992). SVD hss also been widely used in other studies (e.g., Juet al., 1999; Shabbar and Skinner, 2004; Danforth and Kalnay, 2008; Luet al., 2009).

    3 Relationship Between SSTA in the Japan Sea and Winter Weather in NE China

    3.1 SST Signal in the Japan Sea

    Fig.1 Correlation coefficient between Japan Sea SSTA in September and Japan Sea SSTA in (a) October, (b) November, (c) December, and (d) January in the following year. The shaded area indicates a significant correlation (at 95% significant level byt-test).

    The Japan Sea SSTA in September that persists for 3-4months is an essential prerequisite for the use of the SSTA to predict winter air temperature and rainfall in NE China. In this study, the Japan Sea SST includes SST around Hokkaido Island and farther southeast parts of the ocean, and, of course, the SST in the Japan Sea proper.

    Fig.1 shows the correlation coefficients (R) between Japan Sea SSTA in September and Japan Sea SSTA from October to January (in the following year). In the following discussion,R> 0.3 indicates that the correlation coefficient is above the 95% significant test (P< 0.05), whileR> 0.38 shows that the correlation coefficient is above the 99% significant test (P< 0.01). The shaded area indicates significant correlation (R> 0.3,P< 0.05). In Fig.1a, most areas exhibit typical positive correlation (R> 0.38,P<0.01), whileRreaches 0.8 in the sea east of Tokyo (34°N-39°N, 140°E-145°E). The Japan Sea SSTA in September will continue through October. The September/November correlation is positive (R> 0.3,P< 0.05) and the range is similar to that in Fig.1a, though the maximumRis reduced to 0.7 (Fig.1b). In addition, the positive correlation (R> 0.3,P< 0.05) was reduced in the seas south of the Japan Sea and to the east of Tokyo (Fig.1c). The September SSTA in the seas south of the Japan Sea and to the east of Tokyo can last three months. In Fig.1d, the key area (R> 0.3,P< 0.05) covers the southwest part of the Japan Sea and the sea area east of Tokyo. Fig.1 illustrates that the SST anomalies in the Japan Sea may last for three or four months.

    3.2 Relationship Between Japan Sea September SSTA and NE China Winter Rainfall

    Table 1 shows the first two SVD modes between the September SSTA in the Japan Sea and the sea area off East Japan (30.5°N-50.5°N, 125.5°E-150.5°E) and the winter rainfall anomaly in NE China. Both modes are above the 99% significance test and 95% significance test. The first mode, which is the significant mode (with higher CSCFK), will be analyzed next.

    Table 1 The hetero-correlation coefficients of the first two SVD modes between the September SSTA in the Japan Seaand the winter rainfall anomaly in NE China

    Fig.2 shows the results of the first SVD mode. Figs.2a, 2c, 2e show the homogeneous correlation coefficient of the SST field in September. Fig.2b, 2d, 2f show the heterogeneous correlation coefficient of the rainfall field in December, January, and February, respectively.R= 0.3 (0.38) indicates the 95% (99%) significance level. The key area in Fig.2a includes the central Japan Sea and the sea area east of Tokyo, while the key area in Fig.2b includes Heilongjiang Province, Jilin Province and eastern/central Inner Mongolia. When the SST in the central Japan Sea and the sea area east of Tokyo rises in September, the rainfall in Heilongjiang Province, Jilin Province and eastern/central Inner Mongolia will increase in December; and vice verse. The key areas in Figs.2c and 2e are similar to those in Fig.2a, while the key area in Fig.2d includes Heilongjiang Province. The key area in Fig.2f includes eastern Liaoning Province and North Korea. Positive SSTA in September in the central Japan Sea and the sea area east of Tokyo corresponds to heavy rainfall in Heilongjiang Province in January; and vice versa.

    3.3 Relationship Between the Japan Sea SSTA in September and the NE China Air Temperature in Winter

    From the perspective of actual climate prediction, the positive SSTA in Japan Sea and the sea area east of the Japan Sea are considered. Firstly, the September SSTA in the Japan Sea over the 51 years from 1960 to 2010 was analyzed using EOF. Based on the pattern of the first EOF mode (Fig.3a), the key area is similar to those in Figs.1 and 2. The variance contribution rate in the first mode is 55.37%. The decadal climate variability has occurred since the mid 1970s and the satellite SST data have become widely available since 1979. By designating the years with time series values greater than 100 as positive SST anomaly years, there are 13 positive years in the period 1979-2010 in Fig.3b. They are 1989, 1990, 1994, 1998, 1999, 2000, 2001, 2004, 2005, 2006, 2007, 2008, and 2010.

    The December-February air temperature anomalies in the 13 years of 1979-2010 are composed. The air temperature anomaly over NE China is negative when the September SSTA in the Japan Sea is positive (Figs.4a-b). As the September SST rises in the Japan Sea, the air temperature over NE China in December and January decrease; but in February, the areas with decreasing air temperature are not in NE China. In Figs.2 and 4, the weather in NE China in December and January is significantly affected by the SSTA in the Japan Sea in September. The weather in NE China in February is affected by other factors and needs further investigation.

    Fig.2 The homo/heterogeneous correlation coefficient fields of the first SVD mode between the Japan Sea SSTA in September (homogeneous fields, a, c, and e) and the NE China rainfall anomaly in December, January, and February (heterogeneous fields, b, d, and f). The shaded area indicates a significant correlation (of 95% significantt-test).

    Fig.3 Pattern (a) and time series (b) of the first EOF mode of SSTA in the Japan Sea in September.

    Fig.4 Composite analysis of air temperature anomaly in NE China from December to February (a-c) in significantly positive September SSTA years after 1979. The shaded area indicates negative air temperature anomaly.

    4 Mechanism

    4.1 Data Analysis

    Figs.2-4 show that the positive SSTA in September, especially in the area between central Japan Sea and the sea area east of Tokyo, corresponds to the positive rainfall anomaly and negative air temperature anomaly in NE China in December and January. The composite analysis of wind anomaly and water vapor transport anomaly in December in the 13 years are shown in Fig.5. In Fig.5a, a weak cyclone (solid line/circle) appears over the Japan Sea and NE China. Meanwhile, abnormal northeasterly wind (Fig.5a, solid line/square frame) blows from the Okhotsk and transports water vapor to NE China (Fig.5b). In the negative anomaly years, no abnormal cyclonic circulation appears, and less moisture is transported to NE China (we omitted the map for lack of space), which easily results in warmer temperature and less snow in winter.

    Fig.5 Composite analysis of (a) 1000 hPa wind anomaly and (b) 1000 hPa water vapor transport anomaly in December during prominently positive September SSTA years after 1979. The circle and square in (a) indicate the abnormal cyclone and northeasterly wind, respectively.

    Snowstorm in NE China can easily cause huge agricultural and other losses. Given the need of seasonal weather forecast, the mechanism in positive SSTA years is worth exploring. This correlation can be explained by a large-scale air-sea interaction. In early winter, the land temperature declines quickly due to heat loss of earth. When the SST is abnormally high in the Japan Sea, the sea-land air temperature difference will be larger. The500hPa potential height over the region of warm sea water has positive anomaly while negative anomaly occurs over the NE China (cold land). Then the potential height contours bend to the high-latitude, forming the thermal forced trough. In the Petterssen cyclone/anticyclone development equation (Wu, 1999)

    ‘0’ indicates 1000 hPa while ‘5’ shows 500 hPa. The first right term is vorticity advection. Positive vorticity advection (in front of the trough) promotes the development of surface cyclone. With the collective effects of positive vorticity advection in front of the trough, surface water vapor and diabatic heating, water vapor can be easily transported from the Okhotsk to NE China, resulting in more rainfall and lower air temperature. In addition, the east part of the surface cyclone brings abnormal southerly, which can reduce the southward cold water transport from the Oyashio, thereby keeping the Japan Sea SSTA positive.

    The high-altitude circulation pattern is connected with the location of the anomalous thermal wave in the mid/ high-latitude ocean of the Northern Hemisphere. In prominently positive September SSTA years, the 500 hPa geopotential height anomaly in December has two patterns: one is higher in South China and lower in North China, and the other is the opposite.

    Table 2 The North Atlantic Oscillation (NAO) index and the location of cold center at 500hPa in prominently positive September SSTA years after 1979

    The North Atlantic Oscillation (NAO) index and the location of cold center at 500hPa in December of the 13 years are shown in Table 2. In general, Iceland Low is strengthened when the cold center is located in North America and the NAO is positive at the same time. The 500 hPa geopotential height increases over the Bering Sea and the Bering Strait, with a blocking high in the high altitude of the Pacific. A cold eddy appears west of the blocking high and causes a 500 hPa geopotential height anomaly in December, leading to the first pattern. The negative NAO phase corresponds to lower Iceland Low, and the cold center appears in Novaya Zemlya. The planetary-scale wave over NE China is a high ridge, leading to the second pattern. Therefore, the high-altitude circulation pattern needs to be explored in future.

    4.2 Model Results

    Fig.6 Maps of simulated 1000 hPa geopotential height anomaly (hPa, solid black line) and 1000 hPa wind anomaly (m s-1, gray arrow) in (a) December, (b) January, (c) February. The positive SSTA remains from September to December in the Japan Sea.

    The IAP-2L AGCM is the two-level atmospheric general circulation model of the Institute of Atmospheric Physics. The IAP-9L AGCM is a coupled atmosphereocean general circulation model with a horizontal resolution of 5°× 4° (Zenget al., 1987; Zhang, 1990). The model has nine unevenly spaced levels in the vertical direction with a top at 10 hPa. The moist adjustment process is as-sumed to occur in the free atmosphere. It is assumed that the PBL top has the same water vapor content as the model lowest layer. The module consists of a two-layer soil model, a surface energy balance model, and a primitive plant canopy model coupled with a PBL model. The land contours and terrain height data were provided by the Navy Fleet Numerical Oceanography Center at Monterey, US. The SST data were obtained from Alexander and Mobley (1976). Detailed description of the IAP-9L model can be found in Bi (1993). Through comparison between model results and observations, Bi (1993) showed that the model is able to simulate a realistic climate mean state. Xueet al. (2001) had succeeded in modeling the seasonal monsoon variation in the middle and lower troposphere. Wang (2002) used the IAP-9L in simulating the paleo-climate.

    The 1000 hPa geopotential height anomaly and wind anomaly fields from September to February were simulated by the IAP-9L. The positive SSTA in the Japan Sea (30°N-50°N, 125°E-150°E) is offset from September to December. Taking into account the low resolution of this model, the positive SSTA are given from +3.6℃-+4.5℃in this model. Ten simulations are taken in every other 0.1℃. Fig.6 lists the numerical results of geopotential height anomaly and wind anomaly in December, January and February. In Fig.6a, negative geopotential height anomaly appears over north of the Japan Sea and abnormal wind blows from the Okhotsk and transports water vapor to NE China. In Fig.6b, the abnormal cyclone is moving northward and diminishing its impact on NE China. The positive geopotential height anomaly replaces the negative anomaly in February (Fig.6c) and NE China’s weather is unaffected by the abnormal cyclone.

    Although the weak cyclone anomaly moves 3-4 degrees northeastward compared with the statistical results, the simulated anomalies in Figs.6a-c match the statistical results in Sections 3.2 and 3.3 fairly well, considering the low resolution of IAP-9L.

    5 Summary and Discussion

    1) Correlation analysis shows that the September SSTA in the Japan Sea can last for at least three months and even continue through the following January in the key area.

    2) The September SSTA in the Japan Sea and the sea area east of Japan is an important index for forecasting the winter rainfall and air temperature in NE China. Positive SSTA corresponds to positive rainfall anomaly and negative air temperature anomaly in December and January in NE China. In the respect, the weather in NE China in February needs further investigation.

    3) The relevant mechanism is as follows. The positive SSTA enhances the land-sea thermal difference, which can influence the atmospheric circulation. With the combined effect of the thermal difference and diabatic heating, a weak cyclone appears over the Japan Sea. The east part of the surface cyclone brings in abnormal southerly, which weakened the southward cold water transport from the Oyashio, thereby keeping the Japan Sea SSTA positive. The northeasterly wind transports water vapor from the Okhotsk to NE China, resulting in more rainfall and lower air temperature. The high-altitude circulation pattern is affected by the anomalous circulation of the Northern Hemisphere and ocean thermal forcing. The positive NAO phase corresponds to higher geopotential height in South China and lower geopotential height in North China, while the negative NAO phase functions in the opposite way.

    Acknowledgements

    The authors thank Prof. Qinyu Liu for her suggestions about the persistence of the Japan Sea SSTA. This work was supported by Innovation and Research Foundation of Ocean University of China (No. 201261009), the National Natural Science Foundation of China (Nos. 40930844 and 10735030) and the National Basic Research Program of China (the 973 Program) under grant No. 2005CB422 301.

    Alexander, R. C., and Mobley, R. L., 1976. Monthly average sea-surface temperature and ice-pack limits on a 1° global grid.Monthly Weather Review, 104: 143-148.

    Bi, X. Q., 1993. IAP 9-level atmospheric general circulation model and climate simulation. PhD thesis. Institute of Atmospheric Physics, Chinese Academy of Sciendes, Beijing (in Chinese with English abstract).

    Bretherton, C. S., Smith, C., and Wallace, J. M., 1992. An intercomparison of methods for finding coupled patterns in climate data.Journal of Climate, 5: 541-560.

    Danforth, C. M., and Kalnay, E., 2008. Using singular value decomposition to parameterize state-dependent model errors.Journal of the Atmosphere Sciences, 65: 1467-1478, DOI:10.1175/2007JAS2419.1.

    Feng, X., Wang, X., and Wang, Y., 2006. Anomalies of the Northeast China floods season precipitation and SVD analysis with SSTA in world Oceans.Journal of Tropical Meteorology, 22 (4): 367-373 (in Chinese with English abstract).

    Fu, G., 2001.Polar Lows: Intense Cyclones in Winter. China Meteorological Press, Beijing, 164-172.

    Iizuka, S., Shiota, M., Kawamura, R., and Hatsushika, H., 2013. Influence of the monsoon variability and sea surface temperature front on the explosive cyclone activity in the vicinity of Japan during Northern Winter.SOLA, 9 (0): 1-4.

    Ju, J. H., Deng, S., Chen, X. F., and Yan, H. S., 1999. Field correlation analysis between the monthly-mean 500 hPa height anomaly from January to May and rainfall of china in summer.Journal of Tropical Meteorology, 15: 154-161 (in Chinese with English abstract).

    Lee, E. J., Jhun, J. G., and Park, C. K., 2005. Remote connection of the Northeast Asian summer rainfall variation revealed by a newly defined monsoon index.Journal of Climate, 18:4381-4393.

    Li, F., Li, J., and Guan, Z. Y., 2010. Inter-decadal variations of summer temperature in Northeast China and relationships with Pacific SSTA.Journal of Meteorology and Environment, 26 (3): 19-26 (in Chinese with English abstract).

    Liu, S., Yang, S., Lian, Y., Zhang, D. W., Wen, M., Tu, G., Shen,B. Z., Gao, Z. T., and Wang, D. H., 2010. Time-frequency characteristics of regional climate over Northeast China and their relationships with atmospheric circulation patterns.Journal of Climate, 23: 4956-4972.

    Lu, C. H., Guan, Z. Y., Wang, P. X., and Duan, M. K., 2009. Detecting the relationship between summer rainfall anomalies in Eastern China and the SSTA in the global domain with a new significance test method.Journal of Ocean University of China, 8: 15-22.

    Shabbar, A., and Skinner, W., 2004. Summer drought patterns in Canada and the relationship to global sea surface temperatures.Journal of Climate, 17: 2866-2880.

    Shi, D. D., and Sun, J. L., 2009. Study on seasonal variation of heat content in marginal seas in the east of China.Periodical of Ocean University of China, 39: 274-280 (in Chinese with English abstract).

    Shi, X. M., Sun, Y. W., and Sun, J. L., 2013. The impact of zonal temperature gradient in the Arctic Ocean on the summer precipitation over Northeast China.Periodical of Ocean University of China, 44 (2): 11-16 (in Chinese with English abstract).

    Sun, L., and An, G., 2003. The effect of north Pacific sea surface temperature anomaly on the summer precipitation in Northeast China.Acta Meteorological Sinica, 61 (3): 346-353 (in Chinese with English abstract).

    Sun, J. L., Cong, M., Wu, D. X., and Gao, S. H., 2012. The effect of meridional thermal difference in eastern marginal seas of China to climate change in Nanjing during summer.Periodical of Ocean University of China, 42 (5): 001-006 (in Chinese with English abstract).

    Sun, J. Q., and Wang, H. J., 2006. Regional difference of summer air temperature anomalies in Northeast China and its relationship to atmospheric general circulation and sea surface temperature.Chinese Journal of Geophysics,49 (3): 588-598.

    Ueda, A., Yamamoto, M., and Hirose, N., 2011. Meteorological influences of SST anomaly over the East Asian marginal sea on subpolar and polar regions: A case of an extratropical cyclone on 5-8 November 2006.Polar Science, 5 (1): 1-10.

    Wallace, J. M., Smith, C., and Bretherton, C. S., 1992. Singular value decomposition of wintertime sea surface temperature and 500-mb height anomalies.Journal of Climate, 5: 561-576.

    Wang, H., Liu, Q. Y., and Zheng, J., 2013. Formation mechanism for the anomalous anticyclonic circulation over Northeast Asia and the Japan Sea in boreal winter 1997/98 and the spring of 1998.Journal of Ocean University of China, 12 (2):312-317.

    Wang, H. J., 2002. The Mid-Holocene climate simulated by a grid-point AGCM coupled with a biome model.Advances in Atmospheric Sciences, 19 (2): 205-218.

    Wu, H. B., and Wu, L., 2005.Climate Variability Diagnosis and Prediction Methods. China Meteorological Press, Beijing, 103-163 (in Chinese).

    Wu, R. S., 1999.Principles of Modern Synoptic Meteorology. Higher Education Press, Beijing, 136-140 (in Chinese).

    Xie, S. P., Xie, Q., Wang, D., and Liu, W. T., 2003. Summer upwelling in South China Sea and its role in regional climate variations.Journal of Geophysical Research-Oceans, 108 (C8): 17.1-17.13, DOI: 10.1029/2003JC001867.

    Xue, F., Bi, X. Q., and Lin, Y. H., 2001. Modeling the global monsoon system by IAP 9L AGCM.Advances in Atmospheric Sciences, 18 (3): 404-412.

    Zeng, Q. C., Yuan, C. G., Zhang, X. Z., Liang, X. Z., and Bao, N., 1987. A global gridpoint general circulation model.Collection of Paper Presented at the WMO/IUGG NWP Symposium, Tokyo, 421-430.

    Zhang, S. Q., Yu, T. J., Li, F. Y., Wang, X. M., Wang, X. F., and Wu, W. M., 1985. The seasonal variations of area and intensity of polar vortex in northern hemisphere and relationship with temperature in northeast China.Scientic Atmospherica Sinica, 9 (2): 178-185 (in Chinese with English abstract).

    Zhang, X. H., 1990. Dynamial framework of IAP fine-level atmospheric general circulation model.Advances in Atmospheric Sciences, 7 (1): 67-77.

    Zheng, H. F., Mclaughlin, N. B., He, X. Y., Yu, X. Y., Ren, Z. B., and Zhang, D., 2013. Temporal and geographical variation in the onset of climatological spring in Northeast China.Theoretical and Applied Climatology, 114 (3-4): 605-613, DOI: 10.1007/s00704-013-0869-1.

    Zhou, L., 1991.Climate of Northeast China. China Meteorological Press, Beijing, 125pp (in Chinese).

    Zou, L. Y., Ma, J. X., and Zhou, J. L., 2000. Preliminary study on trends of temperature and precipitation in the north of the northeast China.Journal of Nanjing Institute of Meteorology, 23 (4): 560-567 (in Chinese with English abstract).

    (Edited by Xie Jun)

    (Received September 10, 2013; revised October 15, 2013; accepted May 30, 2015)

    ? Ocean University of China, Science Press and Spring-Verlag Berlin Heidelberg 2015

    * Corresponding author. Tel: 0086-532-66782127 E-mail: rainbetimes@163.com

    岛国在线观看网站| 久久精品国产亚洲av高清一级| 99re在线观看精品视频| 少妇粗大呻吟视频| av免费在线观看网站| 午夜日韩欧美国产| xxxhd国产人妻xxx| 国产亚洲午夜精品一区二区久久| 亚洲成a人片在线一区二区| 99久久国产精品久久久| 免费看十八禁软件| 国产福利在线免费观看视频| 久久国产精品大桥未久av| 亚洲成人国产一区在线观看| 久久精品aⅴ一区二区三区四区| 国产精品久久久av美女十八| 免费黄频网站在线观看国产| 飞空精品影院首页| 国产视频一区二区在线看| 成年人午夜在线观看视频| 天天躁日日躁夜夜躁夜夜| xxxhd国产人妻xxx| 在线播放国产精品三级| 亚洲av第一区精品v没综合| 久久中文字幕人妻熟女| 国产午夜精品久久久久久| 人人妻人人爽人人添夜夜欢视频| 国产不卡一卡二| 国产精品麻豆人妻色哟哟久久| 老熟妇仑乱视频hdxx| 999久久久精品免费观看国产| 亚洲成人手机| 国产在线精品亚洲第一网站| 色尼玛亚洲综合影院| 法律面前人人平等表现在哪些方面| 十分钟在线观看高清视频www| 亚洲一卡2卡3卡4卡5卡精品中文| 国产av又大| 又大又爽又粗| 中国美女看黄片| 午夜福利在线观看吧| 狠狠狠狠99中文字幕| 国产精品九九99| 99re6热这里在线精品视频| 亚洲视频免费观看视频| 日韩 欧美 亚洲 中文字幕| 亚洲 国产 在线| 精品国产亚洲在线| 黄网站色视频无遮挡免费观看| 国产精品免费视频内射| av天堂久久9| 免费久久久久久久精品成人欧美视频| 可以免费在线观看a视频的电影网站| 国产麻豆69| 三级毛片av免费| 欧美成狂野欧美在线观看| 亚洲精品自拍成人| a在线观看视频网站| 男女边摸边吃奶| 亚洲精华国产精华精| 夜夜爽天天搞| 国产成人精品久久二区二区91| 天堂中文最新版在线下载| 欧美精品一区二区免费开放| 欧美精品人与动牲交sv欧美| 视频区图区小说| 成人精品一区二区免费| 午夜福利影视在线免费观看| 丁香欧美五月| 欧美日韩成人在线一区二区| 久9热在线精品视频| 欧美精品av麻豆av| 新久久久久国产一级毛片| 高清毛片免费观看视频网站 | 国产精品 国内视频| 成人精品一区二区免费| 人妻 亚洲 视频| 精品久久久久久电影网| 在线观看免费视频日本深夜| 国产有黄有色有爽视频| 日韩一卡2卡3卡4卡2021年| 久久天堂一区二区三区四区| 成人手机av| xxxhd国产人妻xxx| 别揉我奶头~嗯~啊~动态视频| 电影成人av| 亚洲中文av在线| 波多野结衣一区麻豆| 亚洲精品粉嫩美女一区| 日韩免费av在线播放| 一二三四在线观看免费中文在| 超碰成人久久| 一级片'在线观看视频| 欧美成人免费av一区二区三区 | 国产免费视频播放在线视频| 精品国产一区二区久久| 一边摸一边抽搐一进一小说 | 日韩欧美一区视频在线观看| 欧美久久黑人一区二区| 黑丝袜美女国产一区| 国产不卡一卡二| 精品国产亚洲在线| a级毛片在线看网站| 亚洲中文av在线| www.自偷自拍.com| av福利片在线| av欧美777| 精品欧美一区二区三区在线| 一进一出好大好爽视频| 欧美精品啪啪一区二区三区| 久久热在线av| 夜夜爽天天搞| 天天影视国产精品| 成年版毛片免费区| 欧美久久黑人一区二区| 在线观看免费午夜福利视频| 天天添夜夜摸| 日韩制服丝袜自拍偷拍| 国产99久久九九免费精品| 免费不卡黄色视频| 丝袜人妻中文字幕| 久久精品国产亚洲av香蕉五月 | 嫁个100分男人电影在线观看| 美女视频免费永久观看网站| 成人影院久久| 精品国产乱码久久久久久男人| 欧美亚洲日本最大视频资源| 国产精品久久电影中文字幕 | 国产精品熟女久久久久浪| 青青草视频在线视频观看| 日本撒尿小便嘘嘘汇集6| 亚洲一码二码三码区别大吗| 久久av网站| 不卡一级毛片| 日韩免费av在线播放| 精品一区二区三区视频在线观看免费 | 日韩大片免费观看网站| av有码第一页| 啦啦啦免费观看视频1| 一区二区三区激情视频| 精品卡一卡二卡四卡免费| 国产一区二区在线观看av| 中文字幕另类日韩欧美亚洲嫩草| 色在线成人网| 我要看黄色一级片免费的| 色婷婷av一区二区三区视频| 久久免费观看电影| 欧美激情极品国产一区二区三区| 十八禁高潮呻吟视频| 日韩一区二区三区影片| 啦啦啦中文免费视频观看日本| 丰满迷人的少妇在线观看| 国产精品秋霞免费鲁丝片| 交换朋友夫妻互换小说| 成人亚洲精品一区在线观看| 99国产精品免费福利视频| 亚洲欧美色中文字幕在线| 日韩中文字幕欧美一区二区| 午夜福利视频精品| 50天的宝宝边吃奶边哭怎么回事| 人妻久久中文字幕网| 一区二区av电影网| 亚洲人成电影免费在线| 午夜福利在线观看吧| 久久人妻熟女aⅴ| 黄色视频不卡| 日韩欧美三级三区| 免费黄频网站在线观看国产| 女人被躁到高潮嗷嗷叫费观| 水蜜桃什么品种好| 热99国产精品久久久久久7| 免费av中文字幕在线| 久9热在线精品视频| 视频在线观看一区二区三区| 亚洲性夜色夜夜综合| 国产三级黄色录像| 男女床上黄色一级片免费看| 天天躁夜夜躁狠狠躁躁| 精品亚洲成a人片在线观看| 制服人妻中文乱码| 国产aⅴ精品一区二区三区波| 婷婷丁香在线五月| 多毛熟女@视频| 国产精品一区二区免费欧美| 国产精品免费大片| 黄色丝袜av网址大全| 欧美一级毛片孕妇| 免费观看a级毛片全部| 成人黄色视频免费在线看| 性少妇av在线| 欧美日韩亚洲国产一区二区在线观看 | 国产成人欧美在线观看 | 肉色欧美久久久久久久蜜桃| 18禁美女被吸乳视频| 黑丝袜美女国产一区| 五月开心婷婷网| 国产伦人伦偷精品视频| 啪啪无遮挡十八禁网站| 国产色视频综合| 99热国产这里只有精品6| 99热网站在线观看| av网站在线播放免费| 国产一区二区 视频在线| 久久国产精品人妻蜜桃| 黄色怎么调成土黄色| 成人精品一区二区免费| 高清欧美精品videossex| 午夜激情av网站| 日韩视频在线欧美| 久久精品aⅴ一区二区三区四区| 精品视频人人做人人爽| 久久久国产欧美日韩av| 国产又爽黄色视频| 午夜福利一区二区在线看| 亚洲精品美女久久久久99蜜臀| 视频区欧美日本亚洲| 久久人妻福利社区极品人妻图片| 久久人妻福利社区极品人妻图片| 中亚洲国语对白在线视频| 香蕉国产在线看| 色婷婷av一区二区三区视频| 法律面前人人平等表现在哪些方面| 午夜成年电影在线免费观看| 黄片播放在线免费| 热re99久久国产66热| 亚洲欧美精品综合一区二区三区| 亚洲精品一卡2卡三卡4卡5卡| 国产视频一区二区在线看| 婷婷成人精品国产| 天天躁狠狠躁夜夜躁狠狠躁| 免费少妇av软件| av在线播放免费不卡| 国产在线免费精品| 满18在线观看网站| av超薄肉色丝袜交足视频| 99香蕉大伊视频| 性少妇av在线| 久久久久国产一级毛片高清牌| 人人澡人人妻人| 午夜日韩欧美国产| 色播在线永久视频| 欧美精品亚洲一区二区| 亚洲成人免费电影在线观看| 动漫黄色视频在线观看| 国产成人系列免费观看| 国产精品国产av在线观看| 日韩三级视频一区二区三区| 69av精品久久久久久 | 免费久久久久久久精品成人欧美视频| 黄色丝袜av网址大全| 亚洲午夜理论影院| 亚洲专区国产一区二区| 婷婷成人精品国产| 日韩 欧美 亚洲 中文字幕| 国产亚洲欧美在线一区二区| 91国产中文字幕| www.精华液| 天堂8中文在线网| 9191精品国产免费久久| 97人妻天天添夜夜摸| videos熟女内射| 亚洲男人天堂网一区| 黄频高清免费视频| 久9热在线精品视频| 女人高潮潮喷娇喘18禁视频| 日韩免费av在线播放| 80岁老熟妇乱子伦牲交| 国产精品九九99| 人成视频在线观看免费观看| 18禁黄网站禁片午夜丰满| 成人三级做爰电影| 日日摸夜夜添夜夜添小说| 午夜激情av网站| 国产一区二区三区视频了| 国产在线观看jvid| 男女床上黄色一级片免费看| 国产成人精品无人区| 女警被强在线播放| 国产激情久久老熟女| 99国产精品99久久久久| 黑人巨大精品欧美一区二区mp4| 精品亚洲乱码少妇综合久久| 他把我摸到了高潮在线观看 | 欧美黄色淫秽网站| 高清在线国产一区| 精品久久久精品久久久| 久久久久久人人人人人| 久久毛片免费看一区二区三区| 亚洲国产精品一区二区三区在线| 一边摸一边抽搐一进一小说 | 青草久久国产| 日本一区二区免费在线视频| 精品国产一区二区三区久久久樱花| 91成人精品电影| 中文字幕人妻丝袜一区二区| 99国产综合亚洲精品| 午夜老司机福利片| 高清在线国产一区| www日本在线高清视频| 97在线人人人人妻| 亚洲第一青青草原| cao死你这个sao货| 一本—道久久a久久精品蜜桃钙片| 怎么达到女性高潮| 国产精品国产高清国产av | 久久国产精品影院| 少妇精品久久久久久久| 亚洲精品美女久久久久99蜜臀| 免费人妻精品一区二区三区视频| 国产成人免费观看mmmm| 国产成人免费无遮挡视频| 不卡一级毛片| 精品少妇黑人巨大在线播放| 女警被强在线播放| 久久国产精品人妻蜜桃| 一边摸一边抽搐一进一出视频| 极品少妇高潮喷水抽搐| 色94色欧美一区二区| 成年人黄色毛片网站| 两个人看的免费小视频| 日韩一区二区三区影片| 日韩欧美一区二区三区在线观看 | 妹子高潮喷水视频| 欧美变态另类bdsm刘玥| 最近最新中文字幕大全免费视频| 国产男女内射视频| 国产精品熟女久久久久浪| 色在线成人网| 俄罗斯特黄特色一大片| 久久九九热精品免费| 久久国产精品人妻蜜桃| 下体分泌物呈黄色| 日韩 欧美 亚洲 中文字幕| 久久久久久久精品吃奶| 可以免费在线观看a视频的电影网站| 99久久99久久久精品蜜桃| 精品亚洲乱码少妇综合久久| 午夜福利免费观看在线| 无人区码免费观看不卡 | 亚洲,欧美精品.| 又大又爽又粗| 最近最新中文字幕大全电影3 | 久久精品aⅴ一区二区三区四区| 久久中文字幕一级| 美女主播在线视频| 中文字幕av电影在线播放| 欧美 日韩 精品 国产| 国产在线视频一区二区| 午夜精品久久久久久毛片777| 国产精品电影一区二区三区 | 999久久久精品免费观看国产| 国产免费av片在线观看野外av| 亚洲av日韩在线播放| 成人三级做爰电影| 欧美日韩av久久| 久久精品熟女亚洲av麻豆精品| 国产成人精品无人区| 大片电影免费在线观看免费| 夜夜骑夜夜射夜夜干| 国产日韩欧美亚洲二区| 国内毛片毛片毛片毛片毛片| 首页视频小说图片口味搜索| 欧美性长视频在线观看| 国产淫语在线视频| 纵有疾风起免费观看全集完整版| 亚洲国产中文字幕在线视频| 一二三四在线观看免费中文在| 国产免费av片在线观看野外av| 18在线观看网站| 国产人伦9x9x在线观看| 岛国在线观看网站| 两个人免费观看高清视频| 在线看a的网站| 欧美精品av麻豆av| 国产精品久久久久成人av| 好男人电影高清在线观看| 天天添夜夜摸| 久久久久视频综合| 欧美精品啪啪一区二区三区| 国产野战对白在线观看| 99国产综合亚洲精品| 精品午夜福利视频在线观看一区 | 乱人伦中国视频| 热99国产精品久久久久久7| 久久久久久人人人人人| 黄色视频,在线免费观看| 狂野欧美激情性xxxx| 五月天丁香电影| 久久中文看片网| 三级毛片av免费| 老司机深夜福利视频在线观看| 国产xxxxx性猛交| 汤姆久久久久久久影院中文字幕| 久久人人爽av亚洲精品天堂| www.自偷自拍.com| 亚洲精品中文字幕一二三四区 | 日本五十路高清| 亚洲欧美一区二区三区黑人| 亚洲精品国产色婷婷电影| 精品一区二区三区视频在线观看免费 | 午夜福利视频在线观看免费| 亚洲av日韩在线播放| 黑人猛操日本美女一级片| 欧美成人午夜精品| 国产在线视频一区二区| 菩萨蛮人人尽说江南好唐韦庄| 亚洲午夜精品一区,二区,三区| 免费在线观看完整版高清| 国产成人av教育| 超碰成人久久| 国产欧美日韩一区二区三| 久久九九热精品免费| 日日摸夜夜添夜夜添小说| 新久久久久国产一级毛片| 久久久久久久精品吃奶| 精品久久蜜臀av无| 五月天丁香电影| 久久av网站| 欧美黄色淫秽网站| 国产精品免费视频内射| 亚洲精品国产精品久久久不卡| 亚洲色图 男人天堂 中文字幕| 亚洲精品av麻豆狂野| 天天影视国产精品| 男女边摸边吃奶| 脱女人内裤的视频| 久久精品国产亚洲av香蕉五月 | 叶爱在线成人免费视频播放| 最黄视频免费看| 又黄又粗又硬又大视频| 91麻豆精品激情在线观看国产 | 日韩人妻精品一区2区三区| 精品欧美一区二区三区在线| 黄色成人免费大全| 精品人妻熟女毛片av久久网站| 久久这里只有精品19| 9色porny在线观看| 久久人人97超碰香蕉20202| 亚洲人成77777在线视频| 亚洲成a人片在线一区二区| 色老头精品视频在线观看| 亚洲,欧美精品.| 三级毛片av免费| 757午夜福利合集在线观看| 蜜桃在线观看..| 精品国产乱码久久久久久小说| 国产在视频线精品| 亚洲国产毛片av蜜桃av| 十八禁人妻一区二区| 久久久精品94久久精品| 亚洲欧美精品综合一区二区三区| 国产一区二区三区综合在线观看| 国产区一区二久久| 97人妻天天添夜夜摸| 成人av一区二区三区在线看| 狠狠婷婷综合久久久久久88av| 欧美中文综合在线视频| 18禁观看日本| 交换朋友夫妻互换小说| 啦啦啦中文免费视频观看日本| 国产淫语在线视频| av福利片在线| 97人妻天天添夜夜摸| 久久精品人人爽人人爽视色| 欧美中文综合在线视频| 纯流量卡能插随身wifi吗| 叶爱在线成人免费视频播放| 久久影院123| 亚洲伊人色综图| 一边摸一边抽搐一进一小说 | 色婷婷av一区二区三区视频| 亚洲三区欧美一区| 天堂中文最新版在线下载| 91老司机精品| 日韩精品免费视频一区二区三区| 两性夫妻黄色片| 91av网站免费观看| 王馨瑶露胸无遮挡在线观看| 在线天堂中文资源库| www.熟女人妻精品国产| 亚洲五月色婷婷综合| 人人妻人人澡人人爽人人夜夜| 制服人妻中文乱码| 亚洲国产毛片av蜜桃av| 1024视频免费在线观看| www.熟女人妻精品国产| 日韩制服丝袜自拍偷拍| 日本a在线网址| 久久久久国产一级毛片高清牌| 飞空精品影院首页| 久久99一区二区三区| 日日摸夜夜添夜夜添小说| 啦啦啦免费观看视频1| 无人区码免费观看不卡 | 天堂中文最新版在线下载| 国产99久久九九免费精品| 80岁老熟妇乱子伦牲交| 十分钟在线观看高清视频www| 黑人巨大精品欧美一区二区mp4| 免费女性裸体啪啪无遮挡网站| 国产成人av激情在线播放| 99re在线观看精品视频| 别揉我奶头~嗯~啊~动态视频| 一级黄色大片毛片| 男女之事视频高清在线观看| 天堂8中文在线网| 久久精品aⅴ一区二区三区四区| 亚洲伊人久久精品综合| 999精品在线视频| 午夜福利在线观看吧| 不卡av一区二区三区| 女人久久www免费人成看片| 欧美大码av| 久久亚洲精品不卡| 成年女人毛片免费观看观看9 | 丁香六月欧美| 欧美黑人欧美精品刺激| 欧美国产精品一级二级三级| 欧美av亚洲av综合av国产av| 两性夫妻黄色片| 变态另类成人亚洲欧美熟女 | 电影成人av| 老司机亚洲免费影院| 欧美日韩中文字幕国产精品一区二区三区 | 欧美av亚洲av综合av国产av| 国产国语露脸激情在线看| 国产无遮挡羞羞视频在线观看| 1024视频免费在线观看| av不卡在线播放| 久久久国产精品麻豆| 我的亚洲天堂| 国产淫语在线视频| 久久久久久亚洲精品国产蜜桃av| 亚洲欧美日韩另类电影网站| 大型av网站在线播放| 一本综合久久免费| 国产欧美亚洲国产| 男女高潮啪啪啪动态图| 在线观看一区二区三区激情| 热99re8久久精品国产| 免费在线观看影片大全网站| 丝袜人妻中文字幕| 午夜激情av网站| 狠狠婷婷综合久久久久久88av| 黄色毛片三级朝国网站| 国产淫语在线视频| www.熟女人妻精品国产| 久久中文看片网| 国产精品电影一区二区三区 | 亚洲国产看品久久| 后天国语完整版免费观看| 777久久人妻少妇嫩草av网站| 亚洲av日韩精品久久久久久密| 久久人人爽av亚洲精品天堂| 久久亚洲精品不卡| 18禁裸乳无遮挡动漫免费视频| 久久人人97超碰香蕉20202| 69精品国产乱码久久久| 热re99久久精品国产66热6| 久久久久国内视频| 国产老妇伦熟女老妇高清| 国产亚洲精品久久久久5区| 亚洲中文日韩欧美视频| 国产一卡二卡三卡精品| 夜夜夜夜夜久久久久| av天堂在线播放| 亚洲人成伊人成综合网2020| 成人三级做爰电影| 国产精品麻豆人妻色哟哟久久| 亚洲免费av在线视频| 精品亚洲成a人片在线观看| 久9热在线精品视频| 亚洲精品国产区一区二| 国产色视频综合| 成人特级黄色片久久久久久久 | 一级片'在线观看视频| 一个人免费看片子| 操美女的视频在线观看| 在线亚洲精品国产二区图片欧美| 国产免费福利视频在线观看| 在线播放国产精品三级| 国产深夜福利视频在线观看| 最近最新中文字幕大全免费视频| 我的亚洲天堂| 天天影视国产精品| 国产熟女午夜一区二区三区| 无限看片的www在线观看| 成年人免费黄色播放视频| 成人18禁高潮啪啪吃奶动态图| 久久精品国产亚洲av香蕉五月 | 一级片'在线观看视频| avwww免费| av天堂久久9| 天堂动漫精品| 国产成人免费无遮挡视频| 亚洲av电影在线进入| 搡老熟女国产l中国老女人| 黑丝袜美女国产一区| 午夜91福利影院| 国产精品av久久久久免费| 美女福利国产在线| 丝袜美腿诱惑在线| 亚洲自偷自拍图片 自拍| 69av精品久久久久久 | 国产一区二区三区在线臀色熟女 | 大陆偷拍与自拍| 夜夜骑夜夜射夜夜干| 天天操日日干夜夜撸| 在线观看66精品国产| 高清毛片免费观看视频网站 | 国产免费现黄频在线看| 咕卡用的链子| 亚洲一码二码三码区别大吗| 一级a爱视频在线免费观看| 欧美日韩成人在线一区二区|