• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Impact of Autumn SST in the Japan Sea on Winter Rainfall and Air Temperature in Northeast China

    2015-06-01 09:24:20SHIXiaomengSUNJilinWUDexingYILiandWEIDongni
    Journal of Ocean University of China 2015年4期

    SHI Xiaomeng, SUN Jilin, WU Dexing YI Li and WEI Dongni

    1)College of Physical and Environmental Oceanography,Ocean University of China,Qingdao266100,P. R. China

    2)Qingdao Meteorological Bureau,Qingdao266003,P. R. China

    3)Dalian Marine Environmental Monitoring Division,State Oceanic Administration,Dalian116015,P. R. China

    Impact of Autumn SST in the Japan Sea on Winter Rainfall and Air Temperature in Northeast China

    SHI Xiaomeng1),2), SUN Jilin1),*, WU Dexing1), YI Li1), and WEI Dongni3)

    1)College of Physical and Environmental Oceanography,Ocean University of China,Qingdao266100,P. R. China

    2)Qingdao Meteorological Bureau,Qingdao266003,P. R. China

    3)Dalian Marine Environmental Monitoring Division,State Oceanic Administration,Dalian116015,P. R. China

    We studied the impact of sea surface temperature anomaly (SSTA) in the Japan Sea and the sea area east of Japan on the winter rainfall and air temperature in Northeast (NE) China using the singular value decomposition (SVD) and empirical orthogonal function (EOF). The monthly-mean rainfall data observed at 160 stations in China, monthly-mean sea surface temperature (SST) of the Hadley Center for Climate Prediction and Research and monthly-mean air temperature from the NCEP reanalysis during 1960-2011 were used. Correlation analysis indicates that the SSTAs in the Japan Sea in September may last for three or four months and are an important index for forecasting the winter rainfall and air temperature in NE China. Positive SSTAs in the central Japan Sea and in the sea area east of Tokyo correspond to positive rainfall anomaly and negative air temperature anomaly in NE China. With the rise of SST in the Japan Sea, a weak cyclone appears over the Japan Sea. The northeasterly wind transports water vapor from the Okhotsk to NE China, resulting in more rainfall and lower air temperature. Negative SSTA years are accompanied by warmer air temperature and less snow in NE China. The 1000 hPa geopotential height anomaly and wind anomaly fields are simulated by IAP-9L model, which supports the analysis results.

    Japan Sea; SSTA; Northeast China; rainfall; air temperature

    1 Introduction

    Northeast (NE) China is located on the east coast of Eurasian continent and is a part of the East Asian monsoon system. The region has large climate variability and frequent natural hazards (Zhou, 1991). Snow, rainfall and severe cold weathers often adversely affect the region’s agriculture, industry, water conservation, and traffic, causing huge amount of economic losses. Snow disaster is often followed by a flood season. Studies on the climate change in NE China will help to improve climate forecast and reduce losses caused by weather-induced disasters.

    The climate change in NE China has been extensively studied (Wanget al., 2013; Zhenget al., 2013). Trend analyses on temperature and rainfall in the northern part of NE China revealed that summer air temperature was increased during 1951-1999 (Zouet al., 2000). The variability of summer air temperature is different in the northern and southern parts of NE China on the interannual and decadal time scales (Sun and Wang, 2006). Zhanget al. (1985) found that larger area of the polar vortex corresponds to colder summer temperature in NEChina. The relationship between NE Asian (including Korea, Japan, and NE China) summer rainfall and monsoon index shows that the abnormally warm sea surface temperature (SST) in the tropical eastern Pacific can force a strong western North Pacific anticyclone in winter before a strong summer monsoon year (Leeet al., 2005). Liet al. (2010) and Sun and An (2003) discovered that the summer precipitation in NE China has a very close relation with the Pacific SST anomaly (SSTA). Time-frequency characteristics analysis shows that the regional climate change over NE China is related to thermal contrast between the Asian continent and mid/high-latitude North Pacific (Liuet al., 2010).

    As one of the marginal seas in Asia, the Japan Sea (including waters around Hokkaido Island and farther southeast parts of the ocean (30°N-50°N, 125°E-150°E)) influences the climate of NE China in autumn and winter. Scholars have found that the Japan Sea SST plays an important role in changing the atmospheric circulation (Uedaet al., 2011; Iizukaet al., 2013). The increasing SST in the Japan Sea in autumn and winter help to develop the polar low over the Japan Sea (Fu, 2001), which would influence the climate variability in NE China. However, previous studies rarely focused on the relationship between winter climate variability in NE China and the Japan Sea SST.

    It is usually accepted that the SST in the mid and higher latitudes is forced by the atmospheric circulation. However, some studies have also found that regional SSTs can affect regional climate in the mid-higher latitudes (Xieet al., 2003; Shi and Sun, 2009; Sunet al., 2012). Shiet al. (2013) showed that higher zonal temperature gradient in the Arctic Ocean coincides with negative NE China precipitation anomalies. Given that regional SST can affect regional climate, it is important to find out how the SSTA in the Japan Sea influences the winter climate in NE China.

    In this paper, the data and methods are described in Section 2. The relationship between the SSTA in the Japan Sea (including the sea area east of Tokyo) and the winter weather in NE China is examined in Section 3. The impact and physical mechanism as well as model results on the regional ocean forcing are explored in Section 4. Discussion and conclusions are provided in Section 5.

    2 Data and Methods

    The SST field was derived from the monthly-mean data of the Hadley Centre for Climate Prediction and Research for the period of 1960-2011. Monthly-mean precipitation anomalies at 160 stations in China were provided by the National Meteorological Information Center. Monthly-mean air temperature, geopotential height fields and water vapor amount were obtained from the NCEP/ NCAR reanalysis data for the same period.

    Statistical methods, such as singular value decomposition (SVD) and empirical orthogonal function (EOF), were used. In order to highlight large-scale patterns of covariability, we used maximum covariance analysis based on SVD of the covariance matrix between rainfall and SSTAs. SVD is widely used in meteorological research and can help to build the best collaborative change coupling model.

    First, we list two standardized field SSTS(x, t) and RainfallZ(y,t). LetPkandQkbe the orthonormal vectors ofSandZ. Takingaktandbktas coefficients of the time series, the anomalies can be decomposed into

    Homogeneous and heterogeneous correlation coefficients (r(St,bkt) andr(Zt,akt)) can be acquired by SVD (Wu and Wu, 2005). The homogeneous map shows that the temporal change of one mode of the field is self- affected, whose key area is the most important area of its own change (Fenget al., 2006). Brethertonet al. (1992) found that SVD is superior to the combined principal component analysis. SVD could clearly isolate the two most important extra-tropical modes of variability (Wallaceet al., 1992). SVD hss also been widely used in other studies (e.g., Juet al., 1999; Shabbar and Skinner, 2004; Danforth and Kalnay, 2008; Luet al., 2009).

    3 Relationship Between SSTA in the Japan Sea and Winter Weather in NE China

    3.1 SST Signal in the Japan Sea

    Fig.1 Correlation coefficient between Japan Sea SSTA in September and Japan Sea SSTA in (a) October, (b) November, (c) December, and (d) January in the following year. The shaded area indicates a significant correlation (at 95% significant level byt-test).

    The Japan Sea SSTA in September that persists for 3-4months is an essential prerequisite for the use of the SSTA to predict winter air temperature and rainfall in NE China. In this study, the Japan Sea SST includes SST around Hokkaido Island and farther southeast parts of the ocean, and, of course, the SST in the Japan Sea proper.

    Fig.1 shows the correlation coefficients (R) between Japan Sea SSTA in September and Japan Sea SSTA from October to January (in the following year). In the following discussion,R> 0.3 indicates that the correlation coefficient is above the 95% significant test (P< 0.05), whileR> 0.38 shows that the correlation coefficient is above the 99% significant test (P< 0.01). The shaded area indicates significant correlation (R> 0.3,P< 0.05). In Fig.1a, most areas exhibit typical positive correlation (R> 0.38,P<0.01), whileRreaches 0.8 in the sea east of Tokyo (34°N-39°N, 140°E-145°E). The Japan Sea SSTA in September will continue through October. The September/November correlation is positive (R> 0.3,P< 0.05) and the range is similar to that in Fig.1a, though the maximumRis reduced to 0.7 (Fig.1b). In addition, the positive correlation (R> 0.3,P< 0.05) was reduced in the seas south of the Japan Sea and to the east of Tokyo (Fig.1c). The September SSTA in the seas south of the Japan Sea and to the east of Tokyo can last three months. In Fig.1d, the key area (R> 0.3,P< 0.05) covers the southwest part of the Japan Sea and the sea area east of Tokyo. Fig.1 illustrates that the SST anomalies in the Japan Sea may last for three or four months.

    3.2 Relationship Between Japan Sea September SSTA and NE China Winter Rainfall

    Table 1 shows the first two SVD modes between the September SSTA in the Japan Sea and the sea area off East Japan (30.5°N-50.5°N, 125.5°E-150.5°E) and the winter rainfall anomaly in NE China. Both modes are above the 99% significance test and 95% significance test. The first mode, which is the significant mode (with higher CSCFK), will be analyzed next.

    Table 1 The hetero-correlation coefficients of the first two SVD modes between the September SSTA in the Japan Seaand the winter rainfall anomaly in NE China

    Fig.2 shows the results of the first SVD mode. Figs.2a, 2c, 2e show the homogeneous correlation coefficient of the SST field in September. Fig.2b, 2d, 2f show the heterogeneous correlation coefficient of the rainfall field in December, January, and February, respectively.R= 0.3 (0.38) indicates the 95% (99%) significance level. The key area in Fig.2a includes the central Japan Sea and the sea area east of Tokyo, while the key area in Fig.2b includes Heilongjiang Province, Jilin Province and eastern/central Inner Mongolia. When the SST in the central Japan Sea and the sea area east of Tokyo rises in September, the rainfall in Heilongjiang Province, Jilin Province and eastern/central Inner Mongolia will increase in December; and vice verse. The key areas in Figs.2c and 2e are similar to those in Fig.2a, while the key area in Fig.2d includes Heilongjiang Province. The key area in Fig.2f includes eastern Liaoning Province and North Korea. Positive SSTA in September in the central Japan Sea and the sea area east of Tokyo corresponds to heavy rainfall in Heilongjiang Province in January; and vice versa.

    3.3 Relationship Between the Japan Sea SSTA in September and the NE China Air Temperature in Winter

    From the perspective of actual climate prediction, the positive SSTA in Japan Sea and the sea area east of the Japan Sea are considered. Firstly, the September SSTA in the Japan Sea over the 51 years from 1960 to 2010 was analyzed using EOF. Based on the pattern of the first EOF mode (Fig.3a), the key area is similar to those in Figs.1 and 2. The variance contribution rate in the first mode is 55.37%. The decadal climate variability has occurred since the mid 1970s and the satellite SST data have become widely available since 1979. By designating the years with time series values greater than 100 as positive SST anomaly years, there are 13 positive years in the period 1979-2010 in Fig.3b. They are 1989, 1990, 1994, 1998, 1999, 2000, 2001, 2004, 2005, 2006, 2007, 2008, and 2010.

    The December-February air temperature anomalies in the 13 years of 1979-2010 are composed. The air temperature anomaly over NE China is negative when the September SSTA in the Japan Sea is positive (Figs.4a-b). As the September SST rises in the Japan Sea, the air temperature over NE China in December and January decrease; but in February, the areas with decreasing air temperature are not in NE China. In Figs.2 and 4, the weather in NE China in December and January is significantly affected by the SSTA in the Japan Sea in September. The weather in NE China in February is affected by other factors and needs further investigation.

    Fig.2 The homo/heterogeneous correlation coefficient fields of the first SVD mode between the Japan Sea SSTA in September (homogeneous fields, a, c, and e) and the NE China rainfall anomaly in December, January, and February (heterogeneous fields, b, d, and f). The shaded area indicates a significant correlation (of 95% significantt-test).

    Fig.3 Pattern (a) and time series (b) of the first EOF mode of SSTA in the Japan Sea in September.

    Fig.4 Composite analysis of air temperature anomaly in NE China from December to February (a-c) in significantly positive September SSTA years after 1979. The shaded area indicates negative air temperature anomaly.

    4 Mechanism

    4.1 Data Analysis

    Figs.2-4 show that the positive SSTA in September, especially in the area between central Japan Sea and the sea area east of Tokyo, corresponds to the positive rainfall anomaly and negative air temperature anomaly in NE China in December and January. The composite analysis of wind anomaly and water vapor transport anomaly in December in the 13 years are shown in Fig.5. In Fig.5a, a weak cyclone (solid line/circle) appears over the Japan Sea and NE China. Meanwhile, abnormal northeasterly wind (Fig.5a, solid line/square frame) blows from the Okhotsk and transports water vapor to NE China (Fig.5b). In the negative anomaly years, no abnormal cyclonic circulation appears, and less moisture is transported to NE China (we omitted the map for lack of space), which easily results in warmer temperature and less snow in winter.

    Fig.5 Composite analysis of (a) 1000 hPa wind anomaly and (b) 1000 hPa water vapor transport anomaly in December during prominently positive September SSTA years after 1979. The circle and square in (a) indicate the abnormal cyclone and northeasterly wind, respectively.

    Snowstorm in NE China can easily cause huge agricultural and other losses. Given the need of seasonal weather forecast, the mechanism in positive SSTA years is worth exploring. This correlation can be explained by a large-scale air-sea interaction. In early winter, the land temperature declines quickly due to heat loss of earth. When the SST is abnormally high in the Japan Sea, the sea-land air temperature difference will be larger. The500hPa potential height over the region of warm sea water has positive anomaly while negative anomaly occurs over the NE China (cold land). Then the potential height contours bend to the high-latitude, forming the thermal forced trough. In the Petterssen cyclone/anticyclone development equation (Wu, 1999)

    ‘0’ indicates 1000 hPa while ‘5’ shows 500 hPa. The first right term is vorticity advection. Positive vorticity advection (in front of the trough) promotes the development of surface cyclone. With the collective effects of positive vorticity advection in front of the trough, surface water vapor and diabatic heating, water vapor can be easily transported from the Okhotsk to NE China, resulting in more rainfall and lower air temperature. In addition, the east part of the surface cyclone brings abnormal southerly, which can reduce the southward cold water transport from the Oyashio, thereby keeping the Japan Sea SSTA positive.

    The high-altitude circulation pattern is connected with the location of the anomalous thermal wave in the mid/ high-latitude ocean of the Northern Hemisphere. In prominently positive September SSTA years, the 500 hPa geopotential height anomaly in December has two patterns: one is higher in South China and lower in North China, and the other is the opposite.

    Table 2 The North Atlantic Oscillation (NAO) index and the location of cold center at 500hPa in prominently positive September SSTA years after 1979

    The North Atlantic Oscillation (NAO) index and the location of cold center at 500hPa in December of the 13 years are shown in Table 2. In general, Iceland Low is strengthened when the cold center is located in North America and the NAO is positive at the same time. The 500 hPa geopotential height increases over the Bering Sea and the Bering Strait, with a blocking high in the high altitude of the Pacific. A cold eddy appears west of the blocking high and causes a 500 hPa geopotential height anomaly in December, leading to the first pattern. The negative NAO phase corresponds to lower Iceland Low, and the cold center appears in Novaya Zemlya. The planetary-scale wave over NE China is a high ridge, leading to the second pattern. Therefore, the high-altitude circulation pattern needs to be explored in future.

    4.2 Model Results

    Fig.6 Maps of simulated 1000 hPa geopotential height anomaly (hPa, solid black line) and 1000 hPa wind anomaly (m s-1, gray arrow) in (a) December, (b) January, (c) February. The positive SSTA remains from September to December in the Japan Sea.

    The IAP-2L AGCM is the two-level atmospheric general circulation model of the Institute of Atmospheric Physics. The IAP-9L AGCM is a coupled atmosphereocean general circulation model with a horizontal resolution of 5°× 4° (Zenget al., 1987; Zhang, 1990). The model has nine unevenly spaced levels in the vertical direction with a top at 10 hPa. The moist adjustment process is as-sumed to occur in the free atmosphere. It is assumed that the PBL top has the same water vapor content as the model lowest layer. The module consists of a two-layer soil model, a surface energy balance model, and a primitive plant canopy model coupled with a PBL model. The land contours and terrain height data were provided by the Navy Fleet Numerical Oceanography Center at Monterey, US. The SST data were obtained from Alexander and Mobley (1976). Detailed description of the IAP-9L model can be found in Bi (1993). Through comparison between model results and observations, Bi (1993) showed that the model is able to simulate a realistic climate mean state. Xueet al. (2001) had succeeded in modeling the seasonal monsoon variation in the middle and lower troposphere. Wang (2002) used the IAP-9L in simulating the paleo-climate.

    The 1000 hPa geopotential height anomaly and wind anomaly fields from September to February were simulated by the IAP-9L. The positive SSTA in the Japan Sea (30°N-50°N, 125°E-150°E) is offset from September to December. Taking into account the low resolution of this model, the positive SSTA are given from +3.6℃-+4.5℃in this model. Ten simulations are taken in every other 0.1℃. Fig.6 lists the numerical results of geopotential height anomaly and wind anomaly in December, January and February. In Fig.6a, negative geopotential height anomaly appears over north of the Japan Sea and abnormal wind blows from the Okhotsk and transports water vapor to NE China. In Fig.6b, the abnormal cyclone is moving northward and diminishing its impact on NE China. The positive geopotential height anomaly replaces the negative anomaly in February (Fig.6c) and NE China’s weather is unaffected by the abnormal cyclone.

    Although the weak cyclone anomaly moves 3-4 degrees northeastward compared with the statistical results, the simulated anomalies in Figs.6a-c match the statistical results in Sections 3.2 and 3.3 fairly well, considering the low resolution of IAP-9L.

    5 Summary and Discussion

    1) Correlation analysis shows that the September SSTA in the Japan Sea can last for at least three months and even continue through the following January in the key area.

    2) The September SSTA in the Japan Sea and the sea area east of Japan is an important index for forecasting the winter rainfall and air temperature in NE China. Positive SSTA corresponds to positive rainfall anomaly and negative air temperature anomaly in December and January in NE China. In the respect, the weather in NE China in February needs further investigation.

    3) The relevant mechanism is as follows. The positive SSTA enhances the land-sea thermal difference, which can influence the atmospheric circulation. With the combined effect of the thermal difference and diabatic heating, a weak cyclone appears over the Japan Sea. The east part of the surface cyclone brings in abnormal southerly, which weakened the southward cold water transport from the Oyashio, thereby keeping the Japan Sea SSTA positive. The northeasterly wind transports water vapor from the Okhotsk to NE China, resulting in more rainfall and lower air temperature. The high-altitude circulation pattern is affected by the anomalous circulation of the Northern Hemisphere and ocean thermal forcing. The positive NAO phase corresponds to higher geopotential height in South China and lower geopotential height in North China, while the negative NAO phase functions in the opposite way.

    Acknowledgements

    The authors thank Prof. Qinyu Liu for her suggestions about the persistence of the Japan Sea SSTA. This work was supported by Innovation and Research Foundation of Ocean University of China (No. 201261009), the National Natural Science Foundation of China (Nos. 40930844 and 10735030) and the National Basic Research Program of China (the 973 Program) under grant No. 2005CB422 301.

    Alexander, R. C., and Mobley, R. L., 1976. Monthly average sea-surface temperature and ice-pack limits on a 1° global grid.Monthly Weather Review, 104: 143-148.

    Bi, X. Q., 1993. IAP 9-level atmospheric general circulation model and climate simulation. PhD thesis. Institute of Atmospheric Physics, Chinese Academy of Sciendes, Beijing (in Chinese with English abstract).

    Bretherton, C. S., Smith, C., and Wallace, J. M., 1992. An intercomparison of methods for finding coupled patterns in climate data.Journal of Climate, 5: 541-560.

    Danforth, C. M., and Kalnay, E., 2008. Using singular value decomposition to parameterize state-dependent model errors.Journal of the Atmosphere Sciences, 65: 1467-1478, DOI:10.1175/2007JAS2419.1.

    Feng, X., Wang, X., and Wang, Y., 2006. Anomalies of the Northeast China floods season precipitation and SVD analysis with SSTA in world Oceans.Journal of Tropical Meteorology, 22 (4): 367-373 (in Chinese with English abstract).

    Fu, G., 2001.Polar Lows: Intense Cyclones in Winter. China Meteorological Press, Beijing, 164-172.

    Iizuka, S., Shiota, M., Kawamura, R., and Hatsushika, H., 2013. Influence of the monsoon variability and sea surface temperature front on the explosive cyclone activity in the vicinity of Japan during Northern Winter.SOLA, 9 (0): 1-4.

    Ju, J. H., Deng, S., Chen, X. F., and Yan, H. S., 1999. Field correlation analysis between the monthly-mean 500 hPa height anomaly from January to May and rainfall of china in summer.Journal of Tropical Meteorology, 15: 154-161 (in Chinese with English abstract).

    Lee, E. J., Jhun, J. G., and Park, C. K., 2005. Remote connection of the Northeast Asian summer rainfall variation revealed by a newly defined monsoon index.Journal of Climate, 18:4381-4393.

    Li, F., Li, J., and Guan, Z. Y., 2010. Inter-decadal variations of summer temperature in Northeast China and relationships with Pacific SSTA.Journal of Meteorology and Environment, 26 (3): 19-26 (in Chinese with English abstract).

    Liu, S., Yang, S., Lian, Y., Zhang, D. W., Wen, M., Tu, G., Shen,B. Z., Gao, Z. T., and Wang, D. H., 2010. Time-frequency characteristics of regional climate over Northeast China and their relationships with atmospheric circulation patterns.Journal of Climate, 23: 4956-4972.

    Lu, C. H., Guan, Z. Y., Wang, P. X., and Duan, M. K., 2009. Detecting the relationship between summer rainfall anomalies in Eastern China and the SSTA in the global domain with a new significance test method.Journal of Ocean University of China, 8: 15-22.

    Shabbar, A., and Skinner, W., 2004. Summer drought patterns in Canada and the relationship to global sea surface temperatures.Journal of Climate, 17: 2866-2880.

    Shi, D. D., and Sun, J. L., 2009. Study on seasonal variation of heat content in marginal seas in the east of China.Periodical of Ocean University of China, 39: 274-280 (in Chinese with English abstract).

    Shi, X. M., Sun, Y. W., and Sun, J. L., 2013. The impact of zonal temperature gradient in the Arctic Ocean on the summer precipitation over Northeast China.Periodical of Ocean University of China, 44 (2): 11-16 (in Chinese with English abstract).

    Sun, L., and An, G., 2003. The effect of north Pacific sea surface temperature anomaly on the summer precipitation in Northeast China.Acta Meteorological Sinica, 61 (3): 346-353 (in Chinese with English abstract).

    Sun, J. L., Cong, M., Wu, D. X., and Gao, S. H., 2012. The effect of meridional thermal difference in eastern marginal seas of China to climate change in Nanjing during summer.Periodical of Ocean University of China, 42 (5): 001-006 (in Chinese with English abstract).

    Sun, J. Q., and Wang, H. J., 2006. Regional difference of summer air temperature anomalies in Northeast China and its relationship to atmospheric general circulation and sea surface temperature.Chinese Journal of Geophysics,49 (3): 588-598.

    Ueda, A., Yamamoto, M., and Hirose, N., 2011. Meteorological influences of SST anomaly over the East Asian marginal sea on subpolar and polar regions: A case of an extratropical cyclone on 5-8 November 2006.Polar Science, 5 (1): 1-10.

    Wallace, J. M., Smith, C., and Bretherton, C. S., 1992. Singular value decomposition of wintertime sea surface temperature and 500-mb height anomalies.Journal of Climate, 5: 561-576.

    Wang, H., Liu, Q. Y., and Zheng, J., 2013. Formation mechanism for the anomalous anticyclonic circulation over Northeast Asia and the Japan Sea in boreal winter 1997/98 and the spring of 1998.Journal of Ocean University of China, 12 (2):312-317.

    Wang, H. J., 2002. The Mid-Holocene climate simulated by a grid-point AGCM coupled with a biome model.Advances in Atmospheric Sciences, 19 (2): 205-218.

    Wu, H. B., and Wu, L., 2005.Climate Variability Diagnosis and Prediction Methods. China Meteorological Press, Beijing, 103-163 (in Chinese).

    Wu, R. S., 1999.Principles of Modern Synoptic Meteorology. Higher Education Press, Beijing, 136-140 (in Chinese).

    Xie, S. P., Xie, Q., Wang, D., and Liu, W. T., 2003. Summer upwelling in South China Sea and its role in regional climate variations.Journal of Geophysical Research-Oceans, 108 (C8): 17.1-17.13, DOI: 10.1029/2003JC001867.

    Xue, F., Bi, X. Q., and Lin, Y. H., 2001. Modeling the global monsoon system by IAP 9L AGCM.Advances in Atmospheric Sciences, 18 (3): 404-412.

    Zeng, Q. C., Yuan, C. G., Zhang, X. Z., Liang, X. Z., and Bao, N., 1987. A global gridpoint general circulation model.Collection of Paper Presented at the WMO/IUGG NWP Symposium, Tokyo, 421-430.

    Zhang, S. Q., Yu, T. J., Li, F. Y., Wang, X. M., Wang, X. F., and Wu, W. M., 1985. The seasonal variations of area and intensity of polar vortex in northern hemisphere and relationship with temperature in northeast China.Scientic Atmospherica Sinica, 9 (2): 178-185 (in Chinese with English abstract).

    Zhang, X. H., 1990. Dynamial framework of IAP fine-level atmospheric general circulation model.Advances in Atmospheric Sciences, 7 (1): 67-77.

    Zheng, H. F., Mclaughlin, N. B., He, X. Y., Yu, X. Y., Ren, Z. B., and Zhang, D., 2013. Temporal and geographical variation in the onset of climatological spring in Northeast China.Theoretical and Applied Climatology, 114 (3-4): 605-613, DOI: 10.1007/s00704-013-0869-1.

    Zhou, L., 1991.Climate of Northeast China. China Meteorological Press, Beijing, 125pp (in Chinese).

    Zou, L. Y., Ma, J. X., and Zhou, J. L., 2000. Preliminary study on trends of temperature and precipitation in the north of the northeast China.Journal of Nanjing Institute of Meteorology, 23 (4): 560-567 (in Chinese with English abstract).

    (Edited by Xie Jun)

    (Received September 10, 2013; revised October 15, 2013; accepted May 30, 2015)

    ? Ocean University of China, Science Press and Spring-Verlag Berlin Heidelberg 2015

    * Corresponding author. Tel: 0086-532-66782127 E-mail: rainbetimes@163.com

    久久久成人免费电影| 看十八女毛片水多多多| 中文天堂在线官网| 免费电影在线观看免费观看| 国产精品久久久久久av不卡| 欧美极品一区二区三区四区| 久久久欧美国产精品| 国产熟女欧美一区二区| 国产私拍福利视频在线观看| 18禁裸乳无遮挡免费网站照片| 成人亚洲精品av一区二区| 国产精品野战在线观看| 国产女主播在线喷水免费视频网站 | 国产淫语在线视频| 人体艺术视频欧美日本| 七月丁香在线播放| 国产精品久久久久久av不卡| av黄色大香蕉| 网址你懂的国产日韩在线| 日本色播在线视频| 狠狠狠狠99中文字幕| 欧美丝袜亚洲另类| 国产色婷婷99| 亚洲欧美精品自产自拍| 欧美精品国产亚洲| 人妻少妇偷人精品九色| 久久久久久久久中文| 国产女主播在线喷水免费视频网站 | 国产成年人精品一区二区| 亚洲婷婷狠狠爱综合网| 亚洲不卡免费看| 亚洲欧美日韩东京热| 欧美日本亚洲视频在线播放| av在线播放精品| 美女高潮的动态| 国产成人午夜福利电影在线观看| 国产爱豆传媒在线观看| 综合色av麻豆| 青春草国产在线视频| 精品久久久久久久人妻蜜臀av| 成人毛片60女人毛片免费| 免费不卡的大黄色大毛片视频在线观看 | 午夜免费激情av| 高清毛片免费看| 亚洲欧美日韩东京热| 久久99蜜桃精品久久| 国产精品爽爽va在线观看网站| 国产人妻一区二区三区在| 成人综合一区亚洲| 国内精品美女久久久久久| 亚州av有码| 久久国内精品自在自线图片| 真实男女啪啪啪动态图| 国产精品一区二区性色av| 亚洲精品色激情综合| 男插女下体视频免费在线播放| 在线播放国产精品三级| 日本黄色视频三级网站网址| 一边亲一边摸免费视频| 国内精品宾馆在线| 日本一本二区三区精品| 男的添女的下面高潮视频| 99在线人妻在线中文字幕| 国内精品宾馆在线| 人人妻人人看人人澡| 天天躁夜夜躁狠狠久久av| 九色成人免费人妻av| 久久久国产成人免费| 天堂网av新在线| 日本wwww免费看| 国产一区二区在线观看日韩| 国模一区二区三区四区视频| 日韩欧美国产在线观看| 永久网站在线| or卡值多少钱| 女人被狂操c到高潮| 国产精品99久久久久久久久| 麻豆乱淫一区二区| 91精品一卡2卡3卡4卡| 婷婷色麻豆天堂久久 | 大香蕉久久网| 亚洲av成人精品一二三区| 好男人视频免费观看在线| av线在线观看网站| 人妻夜夜爽99麻豆av| 国产亚洲91精品色在线| 麻豆乱淫一区二区| 久久久久久久久久久免费av| 五月玫瑰六月丁香| 精品人妻熟女av久视频| 黄色配什么色好看| 亚洲伊人久久精品综合 | 少妇熟女aⅴ在线视频| 亚洲精品成人久久久久久| av在线播放精品| 高清毛片免费看| 美女脱内裤让男人舔精品视频| 美女黄网站色视频| 国产老妇伦熟女老妇高清| 精品国内亚洲2022精品成人| 国产精品福利在线免费观看| 69av精品久久久久久| 尤物成人国产欧美一区二区三区| 中文亚洲av片在线观看爽| 免费不卡的大黄色大毛片视频在线观看 | 在线免费观看不下载黄p国产| 国产在线男女| 蜜臀久久99精品久久宅男| 超碰av人人做人人爽久久| 又爽又黄无遮挡网站| 亚洲国产精品合色在线| 日韩制服骚丝袜av| 春色校园在线视频观看| 大又大粗又爽又黄少妇毛片口| 91久久精品电影网| 青春草亚洲视频在线观看| 日本黄色片子视频| 国语自产精品视频在线第100页| 精品一区二区免费观看| 欧美色视频一区免费| 赤兔流量卡办理| 黄片无遮挡物在线观看| av卡一久久| 午夜久久久久精精品| 午夜福利在线观看免费完整高清在| 亚洲熟妇中文字幕五十中出| 久久精品夜色国产| 看免费成人av毛片| 精品久久久久久电影网 | 国产三级在线视频| 毛片一级片免费看久久久久| 99热精品在线国产| 久久精品国产自在天天线| 性色avwww在线观看| 亚洲人成网站高清观看| 久久精品人妻少妇| 成人午夜高清在线视频| 又爽又黄a免费视频| 国产午夜福利久久久久久| 变态另类丝袜制服| 老司机福利观看| 国产熟女欧美一区二区| 最近视频中文字幕2019在线8| 香蕉精品网在线| 波野结衣二区三区在线| 一边亲一边摸免费视频| 欧美亚洲日本最大视频资源| 99精国产麻豆久久婷婷| 在线观看国产h片| 久久久久久久国产电影| 满18在线观看网站| 在线观看美女被高潮喷水网站| 中文字幕免费在线视频6| 99精国产麻豆久久婷婷| 美女xxoo啪啪120秒动态图| 在线亚洲精品国产二区图片欧美| 人成视频在线观看免费观看| 久久韩国三级中文字幕| 国产av一区二区精品久久| 中文欧美无线码| 午夜福利视频精品| 欧美97在线视频| 丝袜人妻中文字幕| 国语对白做爰xxxⅹ性视频网站| 成年女人在线观看亚洲视频| 中文欧美无线码| 久久午夜福利片| 青春草视频在线免费观看| 亚洲精品,欧美精品| 亚洲婷婷狠狠爱综合网| h视频一区二区三区| 91国产中文字幕| 99九九在线精品视频| 亚洲三级黄色毛片| 少妇人妻 视频| 亚洲四区av| 亚洲欧美成人精品一区二区| 99久久中文字幕三级久久日本| 国产精品一区www在线观看| 99re6热这里在线精品视频| 色婷婷av一区二区三区视频| 久久99热6这里只有精品| 看十八女毛片水多多多| 欧美国产精品一级二级三级| 乱人伦中国视频| 天天操日日干夜夜撸| 国产精品女同一区二区软件| 久久精品国产a三级三级三级| 亚洲av欧美aⅴ国产| 久久久久久久精品精品| 国产精品麻豆人妻色哟哟久久| 亚洲精品乱码久久久久久按摩| 久久精品久久精品一区二区三区| 久久精品aⅴ一区二区三区四区 | 各种免费的搞黄视频| 欧美成人午夜精品| 国产福利在线免费观看视频| 午夜福利视频精品| 赤兔流量卡办理| 搡女人真爽免费视频火全软件| 国产片特级美女逼逼视频| 深夜精品福利| 久久人人爽人人爽人人片va| 99久久人妻综合| a级毛片在线看网站| 中文字幕av电影在线播放| av黄色大香蕉| 中文字幕人妻熟女乱码| 日本欧美国产在线视频| 看十八女毛片水多多多| 黑人欧美特级aaaaaa片| 男人操女人黄网站| 国产精品熟女久久久久浪| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲精品乱久久久久久| 国产精品久久久久久精品古装| 免费观看av网站的网址| 国精品久久久久久国模美| 成年女人在线观看亚洲视频| 七月丁香在线播放| 三上悠亚av全集在线观看| 人成视频在线观看免费观看| 国产欧美日韩综合在线一区二区| 成人无遮挡网站| 国产午夜精品一二区理论片| 爱豆传媒免费全集在线观看| 美女视频免费永久观看网站| 丝袜人妻中文字幕| 美女国产高潮福利片在线看| 老司机影院毛片| 黑人猛操日本美女一级片| 韩国精品一区二区三区 | 精品99又大又爽又粗少妇毛片| 母亲3免费完整高清在线观看 | 国产老妇伦熟女老妇高清| 久久久久国产网址| 久久久精品94久久精品| 在线观看一区二区三区激情| 视频区图区小说| 九色亚洲精品在线播放| 免费观看av网站的网址| 9191精品国产免费久久| 国产在线视频一区二区| 成人漫画全彩无遮挡| 一个人免费看片子| 哪个播放器可以免费观看大片| 国产亚洲精品久久久com| 亚洲久久久国产精品| 在线观看三级黄色| 在线观看人妻少妇| 日本色播在线视频| 免费黄色在线免费观看| 99精国产麻豆久久婷婷| 久久韩国三级中文字幕| kizo精华| 国产男女内射视频| 精品亚洲成a人片在线观看| 如日韩欧美国产精品一区二区三区| 国产精品久久久久成人av| 亚洲精品美女久久久久99蜜臀 | 免费大片黄手机在线观看| 国产精品欧美亚洲77777| 高清毛片免费看| 大香蕉久久成人网| 黄色视频在线播放观看不卡| 亚洲欧美精品自产自拍| 美国免费a级毛片| 亚洲精品美女久久久久99蜜臀 | 久久鲁丝午夜福利片| 欧美另类一区| 亚洲丝袜综合中文字幕| 亚洲精品乱久久久久久| 精品亚洲乱码少妇综合久久| 制服诱惑二区| 麻豆乱淫一区二区| 亚洲精品日韩在线中文字幕| 美国免费a级毛片| 久久久久国产网址| xxxhd国产人妻xxx| 尾随美女入室| 欧美精品av麻豆av| 日韩一区二区视频免费看| 菩萨蛮人人尽说江南好唐韦庄| 妹子高潮喷水视频| 亚洲av国产av综合av卡| 欧美国产精品va在线观看不卡| 久久精品人人爽人人爽视色| 久久 成人 亚洲| 国产精品人妻久久久久久| 久久久久视频综合| 在线观看人妻少妇| 桃花免费在线播放| 三上悠亚av全集在线观看| 这个男人来自地球电影免费观看 | 王馨瑶露胸无遮挡在线观看| 黄色一级大片看看| 精品少妇久久久久久888优播| 国产午夜精品一二区理论片| 欧美另类一区| 午夜视频国产福利| 大码成人一级视频| 丝袜喷水一区| 最近最新中文字幕免费大全7| 亚洲国产欧美日韩在线播放| 成人黄色视频免费在线看| 51国产日韩欧美| 精品熟女少妇av免费看| 毛片一级片免费看久久久久| 国产探花极品一区二区| 成人18禁高潮啪啪吃奶动态图| 亚洲精品久久成人aⅴ小说| 美女国产视频在线观看| 国产深夜福利视频在线观看| 亚洲av成人精品一二三区| 国产69精品久久久久777片| 欧美精品一区二区大全| 老司机影院成人| 夫妻性生交免费视频一级片| 毛片一级片免费看久久久久| 久久久国产精品麻豆| 91在线精品国自产拍蜜月| 亚洲欧美成人精品一区二区| 亚洲av电影在线观看一区二区三区| 欧美97在线视频| 一本色道久久久久久精品综合| 内地一区二区视频在线| 国产极品粉嫩免费观看在线| 中文字幕免费在线视频6| 成人黄色视频免费在线看| 麻豆精品久久久久久蜜桃| 男的添女的下面高潮视频| 2021少妇久久久久久久久久久| 成人亚洲精品一区在线观看| 美女内射精品一级片tv| videosex国产| 大片免费播放器 马上看| 18禁国产床啪视频网站| 亚洲精品aⅴ在线观看| 成人亚洲精品一区在线观看| 亚洲av男天堂| 亚洲精品日本国产第一区| 久久亚洲国产成人精品v| 22中文网久久字幕| 亚洲天堂av无毛| a级毛片黄视频| 国产欧美亚洲国产| 成人国产av品久久久| 美国免费a级毛片| 午夜福利视频在线观看免费| 亚洲一区二区三区欧美精品| 一级毛片电影观看| 午夜精品国产一区二区电影| 成年美女黄网站色视频大全免费| 黑人猛操日本美女一级片| 纯流量卡能插随身wifi吗| 九九在线视频观看精品| 免费久久久久久久精品成人欧美视频 | 久久99热这里只频精品6学生| 免费人成在线观看视频色| 国产黄频视频在线观看| 在线亚洲精品国产二区图片欧美| 少妇的逼水好多| 日韩一本色道免费dvd| 一级片'在线观看视频| www日本在线高清视频| 青春草视频在线免费观看| 你懂的网址亚洲精品在线观看| 少妇的逼好多水| 中文乱码字字幕精品一区二区三区| 国产高清三级在线| 满18在线观看网站| 免费大片18禁| 亚洲精品久久久久久婷婷小说| 九色亚洲精品在线播放| 男女边摸边吃奶| 国产成人aa在线观看| 天天操日日干夜夜撸| 欧美日韩av久久| 一级片免费观看大全| 五月天丁香电影| 午夜福利在线观看免费完整高清在| 国产熟女午夜一区二区三区| 熟女人妻精品中文字幕| 国产永久视频网站| 侵犯人妻中文字幕一二三四区| 纵有疾风起免费观看全集完整版| 久久久久网色| 国产免费福利视频在线观看| 亚洲国产最新在线播放| 国产av精品麻豆| 午夜老司机福利剧场| 国产免费现黄频在线看| 成人无遮挡网站| 全区人妻精品视频| 国产精品嫩草影院av在线观看| 天堂中文最新版在线下载| 我要看黄色一级片免费的| 国产熟女欧美一区二区| 免费日韩欧美在线观看| 男女边摸边吃奶| 最近的中文字幕免费完整| 日韩一本色道免费dvd| 久久精品夜色国产| 香蕉国产在线看| 蜜桃国产av成人99| 久久精品久久久久久噜噜老黄| 国产深夜福利视频在线观看| 日韩三级伦理在线观看| 成年动漫av网址| 中文精品一卡2卡3卡4更新| 欧美97在线视频| 夫妻午夜视频| 97超碰精品成人国产| 青青草视频在线视频观看| 欧美+日韩+精品| 午夜免费鲁丝| 国产精品一区二区在线观看99| 久久午夜福利片| 免费观看av网站的网址| 男人爽女人下面视频在线观看| 精品人妻偷拍中文字幕| 建设人人有责人人尽责人人享有的| 亚洲精品日韩在线中文字幕| 在线观看www视频免费| 如日韩欧美国产精品一区二区三区| 久久久久久人人人人人| 久久精品久久久久久噜噜老黄| 久久精品国产鲁丝片午夜精品| 少妇的丰满在线观看| 久久狼人影院| 在线观看国产h片| 人妻一区二区av| 中文字幕av电影在线播放| 久久久久久久久久人人人人人人| av不卡在线播放| 成人毛片60女人毛片免费| 黑人高潮一二区| 男男h啪啪无遮挡| 丁香六月天网| 免费人妻精品一区二区三区视频| 中文字幕精品免费在线观看视频 | av福利片在线| 国产 精品1| 欧美人与善性xxx| 99久久中文字幕三级久久日本| 黄网站色视频无遮挡免费观看| 成人免费观看视频高清| 2018国产大陆天天弄谢| 久热久热在线精品观看| 最近最新中文字幕大全免费视频 | 一区二区三区乱码不卡18| 亚洲,欧美精品.| 99热网站在线观看| 啦啦啦啦在线视频资源| 精品熟女少妇av免费看| 成年人午夜在线观看视频| 交换朋友夫妻互换小说| 99热全是精品| 久久精品国产自在天天线| 久久精品国产鲁丝片午夜精品| 各种免费的搞黄视频| 精品一品国产午夜福利视频| 狂野欧美激情性xxxx在线观看| 色5月婷婷丁香| 日日爽夜夜爽网站| 黑丝袜美女国产一区| 99久国产av精品国产电影| 欧美精品一区二区大全| 人妻系列 视频| 亚洲色图 男人天堂 中文字幕 | 黄片无遮挡物在线观看| 欧美亚洲日本最大视频资源| 日韩不卡一区二区三区视频在线| 午夜影院在线不卡| 亚洲综合色惰| 日韩欧美一区视频在线观看| 两个人看的免费小视频| 国产毛片在线视频| 大片免费播放器 马上看| 亚洲第一区二区三区不卡| 人妻少妇偷人精品九色| 国产精品一国产av| av黄色大香蕉| 国产精品三级大全| 高清视频免费观看一区二区| 少妇猛男粗大的猛烈进出视频| 波野结衣二区三区在线| 亚洲国产色片| 一区二区三区精品91| 中文字幕免费在线视频6| 日本vs欧美在线观看视频| 男女无遮挡免费网站观看| 亚洲av电影在线观看一区二区三区| 国产探花极品一区二区| 久久国产亚洲av麻豆专区| 中文字幕另类日韩欧美亚洲嫩草| 欧美成人午夜精品| 精品一区二区免费观看| 考比视频在线观看| 久久韩国三级中文字幕| av网站免费在线观看视频| 香蕉精品网在线| 久久久久视频综合| 亚洲欧美成人精品一区二区| av国产久精品久网站免费入址| 制服丝袜香蕉在线| 在线观看www视频免费| 精品国产一区二区久久| 精品亚洲成a人片在线观看| 日本猛色少妇xxxxx猛交久久| 亚洲久久久国产精品| videossex国产| av网站免费在线观看视频| 如何舔出高潮| 一级片'在线观看视频| 亚洲精品美女久久久久99蜜臀 | 2022亚洲国产成人精品| 国产爽快片一区二区三区| 国产男人的电影天堂91| 久久久久精品人妻al黑| 亚洲四区av| 制服诱惑二区| 国产一区有黄有色的免费视频| 精品第一国产精品| 国产精品久久久久久久电影| 激情视频va一区二区三区| av免费在线看不卡| 色5月婷婷丁香| 一本久久精品| 两性夫妻黄色片 | 又大又黄又爽视频免费| 亚洲国产看品久久| 中文字幕av电影在线播放| 男女下面插进去视频免费观看 | 一级毛片 在线播放| 久久精品aⅴ一区二区三区四区 | 美女国产高潮福利片在线看| 亚洲天堂av无毛| 又黄又爽又刺激的免费视频.| 成人18禁高潮啪啪吃奶动态图| 在线精品无人区一区二区三| 99久国产av精品国产电影| 91国产中文字幕| 亚洲av在线观看美女高潮| 日本猛色少妇xxxxx猛交久久| 国产一区二区三区综合在线观看 | 欧美日韩成人在线一区二区| 日本vs欧美在线观看视频| 久久精品国产亚洲av天美| 国产亚洲欧美精品永久| 在线天堂中文资源库| 国产精品嫩草影院av在线观看| 两性夫妻黄色片 | 99香蕉大伊视频| 婷婷色av中文字幕| 两性夫妻黄色片 | 国产在线视频一区二区| 日本爱情动作片www.在线观看| 久久av网站| 日韩成人av中文字幕在线观看| 欧美老熟妇乱子伦牲交| 黑人欧美特级aaaaaa片| 亚洲成av片中文字幕在线观看 | 一级毛片 在线播放| 日本欧美视频一区| 欧美国产精品一级二级三级| 久久av网站| 久久青草综合色| 亚洲经典国产精华液单| 美国免费a级毛片| 天天操日日干夜夜撸| 麻豆精品久久久久久蜜桃| 五月伊人婷婷丁香| 国产乱人偷精品视频| 国产一区亚洲一区在线观看| 久久狼人影院| 久久人人爽av亚洲精品天堂| 男女免费视频国产| 内地一区二区视频在线| 制服人妻中文乱码| 亚洲欧美一区二区三区黑人 | 精品亚洲成国产av| 日本爱情动作片www.在线观看| 成人毛片a级毛片在线播放| 另类精品久久| 亚洲内射少妇av| 亚洲国产精品999| 我要看黄色一级片免费的| 99香蕉大伊视频| 欧美变态另类bdsm刘玥| 亚洲综合精品二区| 黄片无遮挡物在线观看| 国产淫语在线视频| videossex国产| 国产一区二区三区av在线| 夜夜爽夜夜爽视频| 黄色毛片三级朝国网站| 2022亚洲国产成人精品| 国产日韩欧美在线精品| 日日爽夜夜爽网站| 这个男人来自地球电影免费观看 | 三上悠亚av全集在线观看| 亚洲精品国产色婷婷电影| 国产精品久久久久久久电影| 久久久久久人人人人人| 亚洲欧洲精品一区二区精品久久久 | 亚洲四区av| 亚洲欧美成人综合另类久久久| 尾随美女入室| 久久久久精品性色| 亚洲国产av影院在线观看| 久久av网站| 人妻少妇偷人精品九色| 最近最新中文字幕免费大全7| 欧美激情极品国产一区二区三区 |