• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Diagnosis and classification of ball bearing faults in gyro motors by stator current signature analysis

    2015-05-23 03:53:12DONGLeiZHOUHaoPANLongfeiCHENWeiJINChenLINanLIWeimin
    中國慣性技術學報 2015年3期
    關鍵詞:陀螺定子天津

    DONG Lei, ZHOU Hao, PAN Long-fei, CHEN Wei, JIN Chen, LI Nan, LI Wei-min

    (1. School of Mechanical Engineering, Hebei University of Technology, Tianjin 300130, China; 2. Tianjin Navigation Instruments Research Institute, Tianjin 300131, China)

    Diagnosis and classification of ball bearing faults in gyro motors by stator current signature analysis

    DONG Lei1,2, ZHOU Hao2, PAN Long-fei2, CHEN Wei2, JIN Chen2, LI Nan2, LI Wei-min1

    (1. School of Mechanical Engineering, Hebei University of Technology, Tianjin 300130, China; 2. Tianjin Navigation Instruments Research Institute, Tianjin 300131, China)

    Bearing faults are the most common failure mode in gyro motors. It is very difficult to distinguish the fault of each component in ball bearing, and it is a huge waste to replace a complete set of ball bearing without classifying replacement. To solve this problem, a new method, based on stator current signature analysis, is presented for classifying bearing faults in gyro motors. By collecting the stator current signal and using mathematical analysis tools, the features of the stator current are extracted, and the sequential backward selection (SBS) method is used to remove the superfluous and invalid features. And then, the best features are obtained and used to build the representation space. By using the hidden Markov model (HMM), the bearing typical faults, outer ring fault, inner ring fault, ball fault and cage fault can be classified accurately. The effectiveness of the proposed method is proved in a brushless DC gyro motor with different bearing faults, and the experimental results show that the accuracy of classification reaches 97.1%.

    bearing faults; failure classification; hidden Markov models; gyro motor

    The gyro-motor is a kind of important inertial sensors, used in mechanical gyroscopes widely. Bearings are critical mechanical components in gyro motors, and bearing failures account for a majority of failures, particularly in mechanical gyroscopes with rolling bearings. Many papers can be found to detect and classify bearing faults in induction machines[1-3], but it is a relatively new research area in gyro-motor. The faults classification of rolling bearings in gyro-motor will be an important investigated field for reliability and cost.

    Vibration signals were previously applied to detect the bearing faults. In many situations, the methods based on vibration signals have proved their effectiveness too[4]. But in some specific cases, the acquisition of mechanical signal is very difficult and even impossible, and the motor current signal analysis (MCSA) would be preferable, which is a non-invasive method.

    This paper presented a new method for bearing faults classification in gyromotor, which was based on stator current signature analysis. A set of features are extracted from the current in time domain. By the sequential backward selection (SBS) method, the best three features are selected to build the representation space, and then the HMMs are used to classify the failures of bearing. The experiment is tested in a brushless DC gyro motor with different bearing faults.

    1 Basic concepts of current signal for bearing faults

    Bearing faults are closely related with its structure, and radial ball bearings consist of a outer ring, a inner ring, balls and a cage, and the bearings structure and parameters is shown in Fig.1.

    A rough classification identifies four classes: outer ring fault, inner ring fault, ball fault and cage fault.

    When the faults of bearings occur in outer raceway, inner raceway, balls or cage, the unique frequency components in the vibration signals will be produced. In the paper [5], the bearing fault frequencies are given:

    Where:of- the outer raceway fault frequency;if- the inner raceway fault frequency;bf- the ball fault frequency; fc- the cage fault frequency; fr- the rotor mechanical frequency; NB- the number of rolling elements; D- the pitch diameter; d- the ball diameter; φ- the ball contact angle.

    The mechanical vibration would directly affect the magnetomotive force, and the special vibration frequency will generate special magnetomotive force. At the same time, the magnetomotive force would be related to the stator current. As a result, the mechanical faults, detected by measuring the current signal, can lead to the motor stator current distortion. Different kind of bearing faults can produce their own special characteristic frequencies, which relate to their operating conditions and configurations, so the special frequencies will reflect themselves in the current distortion. In short, a fault can build a kind of relation between special characteristic frequencies and current distortion, which presents itself.

    Fig.1 Ball bearing structure and parameters

    2 Architecture of proposed HMM approach

    The HMM approach includes the following steps (shown in Fig.2).

    The feature extraction step is that some features of bearing faults are extracted from the current signals, which apply some signal analysis techniques, such as the frequency domain, time domain, time-frequency domain analysis. Then the features can be processed to diagnose and track bearing degradation.

    The feature selection step is that the extraction features are filtered by the sequential backward selection (SBS) or genetic algorithm approach (GA). By this way, irrelevant and redundant features can be removed, and some appropriate features can be acquired.

    Fig.2 HMM-based fault classification approach

    The classification step is that a set of historical data will be divided into the M different classes (M-classes), which are collected from normal and abnormal bearings with the same operating conditions. The M-classes stand for the M degradation states, and the data are used to train HMMs. When new data are gained, the type of faults can be classified by the HMM.

    2.1Feature extraction

    To increase the effectiveness of the fault bearings classification, the extraction of health indicators is necessary. In the paper [6], the time domain features are used as health indicators for bearing faults, and these features are shown in Tab.1.

    Tab.1 The features of time domain

    The features can be easily extracted from the current signature, and it has been reported that the kurtosis can indicate early stages of bearing failures[7]. With the state of degradation reaching an advanced state, the effectiveness of kurtosis value will be decrease. As the two representative features of the energy, the average power and the standard deviation can been applied to localize defects with limited success. The crest factor can be a good indicator to early stages of bearing failures too, because it is the ratio of the peak to the standard deviation. The skewness and the mean value can also reflect the bearing defects with limited success, as they increase, the bearing appears to deteriorate.

    2.2Feature selection

    In order to obtain a good classification result, the main condition is to select a set of efficient parameters among the initial candidates. The parameters subset can make the criterion maximize, which have separately took account of the various operating modes or classes.

    The sequential backward selection method is a kind of efficient method in feature selection. This method is following the process:

    At step k, we can gain the relationship the subsets

    The subspacekV minimizes the selective function: Vk,iand the subspace Vk-1by the criterion.

    Fig.3 illustrates this method with d = 5 and d' = 2, and the paper [9] can supply more detailed reference.

    Fig.3 General diagram of sequential backward selection method

    The genetic approach, inspired by the concept of natural selection, is a nondetermistic optimization method and can be used effectively in feature selection. But the method applies to deal with random numbers, and more reference can been supplied in the paper [8].

    2.3Classification

    The hidden Markov model, introduced by Rabiner, can be applied to model and analyze complicated stochastic processes[9]. In the paper [10], HMMs are used for bearing fault diagnosis and prognostics. A set of features, extracted from vibration signal, are converted into observation sequences to estimate the HMM parameters. In order to obtain the parameters, the observation sequences are grouped into different classes and processed by HMMs, which represent the health status of the bearing. Then new data, grouped into observation sequences, are processed by each of the HMMs, and the health status of the bearing is classified in accordance with the maximum of the likelihoods acquired from each HMM.

    Each HMM is characterized by five elements:

    N:The number of states in the model S={S1,S2,…,SN}.

    M:The number of possible observation symbols at each state V={v1,v2,…,vM}.

    A:A state-transition matrixA={aij}, Where: aij=P[qt+1= Sj|qt=Si] 1≤i,j≤N. The aijis the probability of being in state Sjat time t+1, given that it is in state Siat time t, and the qtrepresents the current state.

    B:A state-dependent observation density matrix , B={bj(k)}, where: bj(k)=P[ot=vk|qt=Sj], 1≤j≤N, 1≤k≤M, The bj(k) denotes the probability of the observation otin the state Sjat time t.

    π:A initial probability value π={πi}, where: πi= P[q1=Si], 1≤i≤N.

    In order to gain a HMM, The probabilities A, B, and π are necessary. For convenience, the compact notation λ=(A,B ,π) is used to denote a HMM.

    The HMM can solve three basic problems: the evaluation, decoding and learning. Usually the evaluation and learning are used to solve the classification problem, which includes two steps: training and classifying.

    1) Training: In order to maximize the probability P(O|λ), we have to estimate the model parameters λ=(A,B ,π), with a finite observation sequence O=(o1,o2,…,oT) extracting a set of measurements from each class. Given a model parameters λ and a observation sequence O, the Baum–Welch algorithm can adjust the parameters of A, B, and π to maximize the likelihood of the observation sequence O. By using this algorithm, we can obtain the re-estimation formulas to renew the HMM parameters (A,B,π): where αt(i ) and βt(i) are called the forward and backward variables separately. αt(i) is defined as:

    Where: α1(i)=πibi(o1), 1≤i≤N .

    The βt(i) is defined as:

    Where: βT(i)=1, 1≤i≤N .

    2) Classifying: By training, we have obtained a HMM with complete parameters. Given an observation sequence O=(o1,o2,…,oT) extracted from a gyromotor measure, the probability P(O|λ) is given by: The HMM, for which the probability is maximum, denotes the fault condition of gyro-motor bearing. A gyro-motor bearing fault can be classified by the steps shown in Fig.4.

    Fig.4 Scheme of HMM-based fault classification

    3 Experimental results

    A brushless DC gyro motor (24 V, 6000 r/min, 1.5 W) is used to verify the proposed approach. Five identical bearings are prepared for the gyro motor, and the five bearings are created artificially different conditions: the outer ring fault, the inner ring fault, the ball fault, the cage fault and the health condition. Then the bearings are used in the gyro motor separately, and the bus current signals are extracted. The aim is to prove the classification method.

    The number of samples per signature is 10 000, with the same sampling rate of 20 Hz. Every condition is sampled 10 examples and 50 acquisitions have been obtained totally. In the 50 examples, the 15 acquisitions, with 3 examples from each class, are used to select the best features, and the remaining 35 are used to prove the proposed method efficiency. The Tab.2 shows composition of the training and testing samples.

    Tab.2 Composition of the training and testing samples

    The Fig.5 (a), (b), (c), (d), (e) and (f) show 6 extracted statistical features from the current signature, whichhave been shown in Tab.1. Each datumxican be defined by a set of relevant features xi=[θ1,θ2,θ3,θ4,θ5,θ6], and used to track the degradation of bearings. But not all features are effective, and invalid features will reduce the efficiency of the fault classification.

    Fig.5 Current features of bearings

    The Fig.5 shows none can respectively classify the 5 conditions, and the skewness is not good indicator in Fig.5(c) obviously. The remaining features can not be selected directly. By the sequential backward selection (SBS) method, the best 3 features are selected to build features space (Fo=[θ4,θ6,θ2]), which is shown in Fig.6. The features are:

    - The standard deviation of currentσ(2θ);

    - Kurtosis K(4θ);

    - The average power of current P(6θ).

    Fig.6 Feature space by the best feature

    We use 3 observation sequences (Oi={oi1,oi2,…,oiT}, for i=1,2,3,4,5 and T=4) to train each HMM, and the initial parameters are defined as:

    By training, the best HMMs parameters (Ai,πi), which maximize probability P(Oi|λi), are given as follow:

    Tab.3 The best HMMs parameters

    The 35 remaining classification results are shown in Tab.4. Except one, the rest 34 are all correct, and the right rate is equal to 97.1%. These results present that the new method can classify the typical bearing faults of gyro motors.

    Tab.4 Classification results

    4 Conclusion

    This paper has introduced a novel classification method for bearing faults in gyro motors using stator current signals in time domain. Five different bearing conditions have been considered: outer ring fault, inner ring fault, ball fault, cage fault and health condition. From the acquired current signals, the best features are extracted by the sequential backward selection (SBS) method, and used to build the representation space. Then the classification process is carried out by HMM. The fault classification system has been trained with 5 different operation conditions, with 3 examples from each class, and the remaining 35 are used to certify the method effectiveness. The experimental data, from a brushless DC gyro motor with different bearing fault conditions, prove that the method is effective.

    Reference:

    [1] Pons-Llinares J, Antonino-Daviu J A, Riera-Guasp M, et al. Induction motor diagnosis based on a transient current analytic wavelet transform via frequency b-splines[J]. IEEE Transactions on Industrial Electronics, 2011, 58(5): 1530-1544.

    [2] Prieto M D, Cirrincione G, Espinosa A G, et al. Bearing fault detection by a novel condition-monitoring scheme based on statistical-time features and neural networks[J]. IEEE Transactions on Industrial Electronics, 2013, 60(8): 3398-3407.

    [3] Pineda-Sanchez M, Riera-Guasp M, Roger-Folch J, et al. Diagnosis of induction motor faults in time-varying conditions using the polynomial-phase transform of the current[J]. IEEE Transactions on Industrial Electronics, 2011, 58(4): 1428-1439.

    [4] Bianchini C, Immovilli F, Cocconcelli M, et al. Fault detection of linear bearings in brushless AC linear motors by vibration analysis[J]. IEEE Transactions on Industrial Electronics, 2011, 58(5): 1684-1694.

    [5] Immovilli F, Bianchini C, Cocconcelli M, et al. Bearing fault model for induction motor with externally induced vibration[J]. IEEE Transactions on Industrial Electronics, 2013, 60(8): 3408-3418.

    [6] Medjaher K, Camci F, Zerhouni N. Feature extraction and evaluation for health assessment and failure prognostics[C]//First European Conference of the Prognostics and Health Management Society. 2012: 111-116.

    [7] Raj A S, Murali N. Early classification of bearing faults using morphological operators and fuzzy inference[J]. IEEE Transactions on Industrial Electronics, 2013, 60(2): 567-574.

    [8] Ondel O, Boutleux E, Clerc G. Feature selection by evolutionary computing: Application on diagnosis by pattern recognition approach[C]//Proceedings of the ISCA 18th International Conference on Computer Applications in Industry and Engineering. 2005: 219-225.

    [9] Rabiner L, Juang B H. An introduction to hidden Markov models[J]. IEEE ASSP Magazine, 1986, 3(1): 4-16.

    [10] Tobon-Mejia D A, Medjaher K, Zerhouni N, et al. A data-driven failure prognostics method based on mixture of Gaussians hidden Markov models[J]. IEEE Transactions on Reliability, 2012, 61(2): 491-503.

    [11] Dong Lei, Li De-cai, Wei Jun-xin, et al. Failure detection and diagnosis of gyro motors using hidden Markov models [J]. Journal of Chinese Inertial Technology, 2014, 22(6): 829-833.

    由定子電流信號分析陀螺電機滾珠軸承故障診斷與分類

    董 磊1,2,周 灝2,潘龍飛2,陳 偉2,金 琛2,李 楠2,李為民1
    (1. 河北工業(yè)大學 機械工程學院,天津 300130;2. 天津航海儀器研究所 天津 300131)

    在陀螺電機中,軸承故障是最普遍的失效形式。針對陀螺電機球軸承中各組成部分出現(xiàn)故障難以區(qū)分,而更換整套軸承又造成巨大浪費的問題,提出了一種基于電流信號分析的陀螺電機軸承故障分類方法。該方法通過采集定子電流信號,并應用數(shù)學分析工具,提取出定子電流的特征信號。通過使用順序遞推法排除了冗余和無效特征,然后用最佳的特征信號建立特征空間。通過使用隱馬爾科夫模型,對軸承的典型故障(外環(huán)故障、內(nèi)環(huán)故障、球故障和保持架故障)進行了準確的分類。該方法的有效性在一臺具有不同軸承故障的直流無刷陀螺電機上得到驗證,實驗結(jié)果顯示分類的正確率達到97.1%。

    軸承故障;故障分類;隱Markov模型;陀螺電機

    U666.1

    A

    1005-6734(2015)03-0415-06

    2015-01-15;

    2015-05-08

    裝備預研支撐技術項目(62101050802);國防預先研究重點項目(513090501)

    董磊(1979—),男,博士研究生,高級工程師,主要從事慣性元件及可靠性的研究。E-mail:dongleihit@126.com

    聯(lián) 系 人:李為民(1964—),男,教授,博士生導師。E-mail:vmin@hebut.edu.cn

    10.13695/j.cnki.12-1222/o3.2015.03.025

    猜你喜歡
    陀螺定子天津
    如果天津有“畫”說
    藝術啟蒙(2022年9期)2022-10-08 01:33:06
    異步電動機定子沖片槽型優(yōu)化
    防爆電機(2021年1期)2021-03-29 03:02:46
    做個紙陀螺
    天津卷
    學生天地(2019年30期)2019-08-25 08:53:22
    玩陀螺
    學生天地(2019年6期)2019-03-07 01:10:46
    陀螺轉(zhuǎn)轉(zhuǎn)轉(zhuǎn)
    軍事文摘(2018年24期)2018-12-26 00:58:18
    基于新型趨近律的雙定子電機控制系統(tǒng)研究
    測控技術(2018年2期)2018-12-09 09:00:52
    《天津之眼》
    我最喜歡的陀螺
    快樂語文(2018年36期)2018-03-12 00:56:02
    天津
    汽車與安全(2016年5期)2016-12-01 05:21:56
    高清在线国产一区| 亚洲av五月六月丁香网| 国产精品一区二区三区四区免费观看 | 亚洲人与动物交配视频| 国产又黄又爽又无遮挡在线| 免费无遮挡裸体视频| 国产野战对白在线观看| 久久久久久大精品| 中文字幕精品亚洲无线码一区| 人妻丰满熟妇av一区二区三区| 一级黄色大片毛片| 国产精品,欧美在线| 老鸭窝网址在线观看| 在线看三级毛片| 国产伦精品一区二区三区四那| 亚洲 欧美 日韩 在线 免费| 国产高清视频在线观看网站| 国产亚洲精品久久久com| 亚洲第一电影网av| 精品国产亚洲在线| 天堂√8在线中文| 国产精品久久视频播放| 国产又黄又爽又无遮挡在线| 日本成人三级电影网站| 97超视频在线观看视频| av女优亚洲男人天堂| 国产又黄又爽又无遮挡在线| 亚洲中文字幕日韩| 中文字幕av成人在线电影| 亚洲乱码一区二区免费版| 2021天堂中文幕一二区在线观| 亚洲熟妇熟女久久| 午夜激情福利司机影院| 麻豆一二三区av精品| 国产高清视频在线播放一区| 久久精品综合一区二区三区| 97超级碰碰碰精品色视频在线观看| 99久久精品一区二区三区| 国产一区二区三区视频了| 亚洲av免费在线观看| 一本久久中文字幕| 欧美潮喷喷水| 人人妻,人人澡人人爽秒播| 欧美日韩中文字幕国产精品一区二区三区| xxxwww97欧美| 欧美日韩国产亚洲二区| 最好的美女福利视频网| 嫩草影院新地址| 国产精品亚洲av一区麻豆| 搡老熟女国产l中国老女人| av天堂在线播放| 噜噜噜噜噜久久久久久91| 国产美女午夜福利| 色综合婷婷激情| 91字幕亚洲| 国产一区二区激情短视频| 一级作爱视频免费观看| 亚洲午夜理论影院| 亚洲成人精品中文字幕电影| 啪啪无遮挡十八禁网站| 久久国产精品人妻蜜桃| 欧美一区二区精品小视频在线| 国产国拍精品亚洲av在线观看| 一本一本综合久久| 夜夜躁狠狠躁天天躁| 亚洲精品在线美女| 亚洲av日韩精品久久久久久密| 18禁黄网站禁片午夜丰满| 免费一级毛片在线播放高清视频| 99国产极品粉嫩在线观看| av在线天堂中文字幕| 成年免费大片在线观看| 成年版毛片免费区| 亚洲av美国av| 少妇人妻精品综合一区二区 | 97超视频在线观看视频| 免费在线观看亚洲国产| 日日夜夜操网爽| 国产高清视频在线播放一区| a级毛片a级免费在线| 三级毛片av免费| 中文字幕av在线有码专区| 久久热精品热| 在线观看美女被高潮喷水网站 | 91字幕亚洲| 噜噜噜噜噜久久久久久91| 日本黄色片子视频| 亚洲最大成人中文| 免费av毛片视频| 99riav亚洲国产免费| 国产精品一区二区免费欧美| 久久精品人妻少妇| 一区二区三区四区激情视频 | 国产欧美日韩精品亚洲av| 国产淫片久久久久久久久 | 美女黄网站色视频| 18禁黄网站禁片午夜丰满| 9191精品国产免费久久| 国内揄拍国产精品人妻在线| 免费观看的影片在线观看| 亚洲在线观看片| 成人毛片a级毛片在线播放| 国产一区二区激情短视频| 免费在线观看成人毛片| 亚洲一区二区三区不卡视频| 丰满的人妻完整版| 可以在线观看的亚洲视频| 午夜日韩欧美国产| 少妇被粗大猛烈的视频| 欧美乱妇无乱码| 国产激情偷乱视频一区二区| 美女免费视频网站| 午夜免费激情av| 亚洲在线观看片| 亚洲专区中文字幕在线| 午夜亚洲福利在线播放| 亚洲久久久久久中文字幕| 午夜两性在线视频| 90打野战视频偷拍视频| 内地一区二区视频在线| 麻豆久久精品国产亚洲av| 国产成人福利小说| 国产精品伦人一区二区| 亚洲电影在线观看av| 国产精品三级大全| 成人亚洲精品av一区二区| 国产老妇女一区| 亚洲av成人av| 国产成人欧美在线观看| 亚洲中文字幕日韩| 国产亚洲欧美在线一区二区| 国产视频内射| 日本成人三级电影网站| 亚洲内射少妇av| 美女 人体艺术 gogo| 免费看光身美女| 色综合亚洲欧美另类图片| 麻豆成人午夜福利视频| 婷婷亚洲欧美| 亚洲熟妇熟女久久| 欧美极品一区二区三区四区| 成人av一区二区三区在线看| 久久久久久久精品吃奶| 中文字幕久久专区| 一级a爱片免费观看的视频| 中亚洲国语对白在线视频| 国产又黄又爽又无遮挡在线| 村上凉子中文字幕在线| 亚洲欧美清纯卡通| 中文资源天堂在线| 宅男免费午夜| 两人在一起打扑克的视频| 日韩精品中文字幕看吧| 精品久久久久久久久av| 欧美另类亚洲清纯唯美| 好男人电影高清在线观看| 69人妻影院| 国产在视频线在精品| 亚洲一区二区三区色噜噜| 噜噜噜噜噜久久久久久91| 亚洲久久久久久中文字幕| 国产极品精品免费视频能看的| 欧美日韩中文字幕国产精品一区二区三区| 在线播放国产精品三级| 久久久久久九九精品二区国产| 我要搜黄色片| 国产精品一区二区免费欧美| 亚洲成人精品中文字幕电影| 99在线视频只有这里精品首页| 国产精品亚洲美女久久久| 九九久久精品国产亚洲av麻豆| 最近在线观看免费完整版| 一本综合久久免费| 日本精品一区二区三区蜜桃| 亚洲成a人片在线一区二区| 亚洲av二区三区四区| 美女大奶头视频| 国产精品精品国产色婷婷| 亚洲av电影不卡..在线观看| 91字幕亚洲| 69人妻影院| 精品一区二区三区av网在线观看| 一级a爱片免费观看的视频| 禁无遮挡网站| 亚洲欧美日韩东京热| 美女高潮喷水抽搐中文字幕| 亚洲av电影不卡..在线观看| 亚洲精品在线观看二区| 成年人黄色毛片网站| 久久久久免费精品人妻一区二区| 波多野结衣高清作品| 成人鲁丝片一二三区免费| 中文亚洲av片在线观看爽| 成人特级av手机在线观看| 国产精品久久电影中文字幕| 此物有八面人人有两片| 一本久久中文字幕| 成人国产综合亚洲| 欧美性猛交╳xxx乱大交人| 久久久久精品国产欧美久久久| 又粗又爽又猛毛片免费看| 欧美激情在线99| 又爽又黄a免费视频| 女同久久另类99精品国产91| 久久精品国产清高在天天线| 丝袜美腿在线中文| 亚洲精品456在线播放app | 国产伦精品一区二区三区视频9| 麻豆国产av国片精品| 免费看光身美女| 亚洲av成人av| 人妻久久中文字幕网| 国产成+人综合+亚洲专区| 村上凉子中文字幕在线| 1024手机看黄色片| 午夜日韩欧美国产| 黄色女人牲交| 精品日产1卡2卡| 精品一区二区三区人妻视频| 一夜夜www| 又黄又爽又刺激的免费视频.| 精品人妻1区二区| 亚洲欧美日韩东京热| 久久久久久久久大av| 美女 人体艺术 gogo| 老熟妇乱子伦视频在线观看| 亚洲精品日韩av片在线观看| 欧美zozozo另类| 免费在线观看日本一区| 他把我摸到了高潮在线观看| 欧美黄色淫秽网站| 不卡一级毛片| 国产精品久久视频播放| 欧美日韩瑟瑟在线播放| 亚洲最大成人av| 尤物成人国产欧美一区二区三区| 村上凉子中文字幕在线| 真人一进一出gif抽搐免费| 国产免费男女视频| 噜噜噜噜噜久久久久久91| 亚洲天堂国产精品一区在线| 日韩中字成人| 99热这里只有是精品在线观看 | 国产视频内射| 久久热精品热| 亚洲欧美日韩高清专用| 三级男女做爰猛烈吃奶摸视频| 淫秽高清视频在线观看| 99热精品在线国产| 美女黄网站色视频| 高清在线国产一区| 精品久久久久久久久亚洲 | 啦啦啦韩国在线观看视频| 在线观看一区二区三区| 首页视频小说图片口味搜索| 日本黄大片高清| 日韩av在线大香蕉| 亚洲,欧美,日韩| 99在线人妻在线中文字幕| 中文字幕免费在线视频6| 中文字幕av成人在线电影| 性色avwww在线观看| 免费看光身美女| 琪琪午夜伦伦电影理论片6080| 日韩欧美国产在线观看| 草草在线视频免费看| 亚洲人成伊人成综合网2020| 日韩人妻高清精品专区| www.www免费av| 特级一级黄色大片| 亚洲av电影在线进入| 色尼玛亚洲综合影院| 免费看a级黄色片| 99在线视频只有这里精品首页| 亚洲av二区三区四区| 超碰av人人做人人爽久久| 窝窝影院91人妻| 婷婷六月久久综合丁香| 亚洲男人的天堂狠狠| 欧美+亚洲+日韩+国产| 日本一二三区视频观看| 亚洲专区国产一区二区| 久久亚洲真实| 国产毛片a区久久久久| 中文字幕熟女人妻在线| 亚洲人成网站高清观看| 免费av毛片视频| 91麻豆av在线| 亚洲成人精品中文字幕电影| 久久99热6这里只有精品| 悠悠久久av| 欧美xxxx黑人xx丫x性爽| 欧美激情国产日韩精品一区| 乱人视频在线观看| 亚洲成av人片在线播放无| 亚洲18禁久久av| 欧美国产日韩亚洲一区| 亚洲精品一卡2卡三卡4卡5卡| 亚洲av成人av| 国产在线精品亚洲第一网站| 男人舔女人下体高潮全视频| 午夜福利成人在线免费观看| 亚洲国产精品sss在线观看| 亚洲人成伊人成综合网2020| 国产精品影院久久| 亚洲人与动物交配视频| 日韩人妻高清精品专区| 麻豆成人午夜福利视频| 一区二区三区高清视频在线| 在现免费观看毛片| 日韩国内少妇激情av| 久久久久久久久大av| 国产中年淑女户外野战色| 欧美日韩黄片免| 欧美xxxx黑人xx丫x性爽| 国产精品国产高清国产av| 免费观看人在逋| 欧美高清成人免费视频www| 九色成人免费人妻av| 国产大屁股一区二区在线视频| 精品国产三级普通话版| 久久久国产成人精品二区| 人人妻,人人澡人人爽秒播| 精品熟女少妇八av免费久了| 久久久久久九九精品二区国产| 欧美乱妇无乱码| 熟女电影av网| 久久久久九九精品影院| 在线天堂最新版资源| 亚洲国产精品成人综合色| 国产精品99久久久久久久久| 精品免费久久久久久久清纯| 少妇熟女aⅴ在线视频| 国产一区二区三区在线臀色熟女| 欧美日本视频| 极品教师在线免费播放| 欧美+日韩+精品| a级毛片a级免费在线| 国产精品野战在线观看| 色哟哟·www| 日韩大尺度精品在线看网址| 一二三四社区在线视频社区8| av在线老鸭窝| 亚洲熟妇中文字幕五十中出| 天堂网av新在线| 亚洲,欧美精品.| 午夜久久久久精精品| 国产精品久久久久久精品电影| 亚洲人成网站在线播| 午夜福利欧美成人| 99热这里只有精品一区| 久久亚洲精品不卡| 级片在线观看| 宅男免费午夜| 天堂网av新在线| 亚洲18禁久久av| 久久久久久久亚洲中文字幕 | 少妇的逼水好多| 精品久久久久久久久av| 看黄色毛片网站| 久久久久久国产a免费观看| 成人欧美大片| 久久久久久久午夜电影| 欧美日本视频| а√天堂www在线а√下载| 熟妇人妻久久中文字幕3abv| 欧美日韩乱码在线| 欧美日韩国产亚洲二区| 日日干狠狠操夜夜爽| 在线十欧美十亚洲十日本专区| 日本a在线网址| 国产探花极品一区二区| 欧美成人性av电影在线观看| 国产乱人伦免费视频| 亚洲精品影视一区二区三区av| 婷婷精品国产亚洲av| 欧美黑人巨大hd| 免费无遮挡裸体视频| 老鸭窝网址在线观看| 亚洲专区国产一区二区| 午夜福利视频1000在线观看| 色哟哟哟哟哟哟| 亚洲国产色片| 久久精品人妻少妇| 美女高潮的动态| 色在线成人网| 婷婷丁香在线五月| 日韩欧美一区二区三区在线观看| 黄色丝袜av网址大全| 国产精品一及| 成人一区二区视频在线观看| 国产一区二区三区在线臀色熟女| 欧美激情国产日韩精品一区| 啪啪无遮挡十八禁网站| 全区人妻精品视频| 国产人妻一区二区三区在| 久久精品人妻少妇| 性欧美人与动物交配| 亚洲精品日韩av片在线观看| 日本三级黄在线观看| 欧美午夜高清在线| 精品久久久久久久久久免费视频| 亚洲熟妇熟女久久| 亚洲国产日韩欧美精品在线观看| 欧美日韩乱码在线| 国产黄片美女视频| 毛片女人毛片| 久久久久久九九精品二区国产| 中文字幕精品亚洲无线码一区| 一区二区三区高清视频在线| 99热6这里只有精品| 午夜福利在线在线| 国产精品久久久久久久久免 | 免费在线观看成人毛片| 18禁黄网站禁片免费观看直播| 亚洲人成网站在线播| 久久99热这里只有精品18| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 久久草成人影院| 婷婷色综合大香蕉| 国内久久婷婷六月综合欲色啪| 国产精品一及| 国产精品野战在线观看| 日本免费a在线| 99久久九九国产精品国产免费| 久久午夜福利片| 亚洲国产高清在线一区二区三| 日韩亚洲欧美综合| 亚洲精品亚洲一区二区| 亚洲第一欧美日韩一区二区三区| 国产高清激情床上av| 精品久久久久久久久久久久久| 日韩欧美三级三区| 中文字幕av在线有码专区| 我要搜黄色片| 久久国产精品影院| 简卡轻食公司| 欧美日本亚洲视频在线播放| 中文字幕免费在线视频6| 高清日韩中文字幕在线| 天堂av国产一区二区熟女人妻| 美女xxoo啪啪120秒动态图 | 最近在线观看免费完整版| 97碰自拍视频| 国产v大片淫在线免费观看| 久久99热这里只有精品18| 成人美女网站在线观看视频| 我要看日韩黄色一级片| 精品福利观看| 好男人在线观看高清免费视频| 日韩欧美国产一区二区入口| 国产v大片淫在线免费观看| 日韩欧美一区二区三区在线观看| 欧美最黄视频在线播放免费| 99国产综合亚洲精品| 亚洲最大成人中文| 禁无遮挡网站| 国产av在哪里看| 99热这里只有精品一区| 一二三四社区在线视频社区8| 免费av观看视频| 51午夜福利影视在线观看| av天堂中文字幕网| 精品人妻熟女av久视频| 五月伊人婷婷丁香| 老女人水多毛片| 床上黄色一级片| 国产成+人综合+亚洲专区| 嫩草影院入口| 日本黄大片高清| 欧美色欧美亚洲另类二区| 最新中文字幕久久久久| 免费观看精品视频网站| 亚洲中文字幕一区二区三区有码在线看| 一本一本综合久久| 午夜影院日韩av| 日本在线视频免费播放| 色哟哟·www| 日韩国内少妇激情av| 99riav亚洲国产免费| 日韩人妻高清精品专区| 中文字幕免费在线视频6| 深夜精品福利| 免费av观看视频| 免费人成视频x8x8入口观看| 不卡一级毛片| 国产单亲对白刺激| 亚州av有码| 99久久99久久久精品蜜桃| 亚洲aⅴ乱码一区二区在线播放| 亚洲第一区二区三区不卡| 美女 人体艺术 gogo| 男女下面进入的视频免费午夜| 亚洲人成网站高清观看| 超碰av人人做人人爽久久| 精品不卡国产一区二区三区| 中文字幕精品亚洲无线码一区| 最新中文字幕久久久久| 窝窝影院91人妻| 日日干狠狠操夜夜爽| 永久网站在线| 男人狂女人下面高潮的视频| 国产精品免费一区二区三区在线| 少妇的逼水好多| 亚洲黑人精品在线| 两个人的视频大全免费| 老司机福利观看| 十八禁网站免费在线| 搡老熟女国产l中国老女人| 中国美女看黄片| 久久久久久九九精品二区国产| 亚洲欧美精品综合久久99| 亚洲18禁久久av| 欧美+日韩+精品| 亚洲五月婷婷丁香| av天堂在线播放| 久久久久精品国产欧美久久久| 亚洲无线在线观看| 亚洲av二区三区四区| 国产成人aa在线观看| 男女下面进入的视频免费午夜| 精品国内亚洲2022精品成人| 久久6这里有精品| 999久久久精品免费观看国产| 欧美3d第一页| 美女黄网站色视频| 国产精品99久久久久久久久| 亚洲最大成人手机在线| 亚洲自拍偷在线| 欧美国产日韩亚洲一区| 国产一区二区三区在线臀色熟女| 女同久久另类99精品国产91| 两人在一起打扑克的视频| 国产91精品成人一区二区三区| 在线国产一区二区在线| 久久天躁狠狠躁夜夜2o2o| 亚洲 国产 在线| 日本在线视频免费播放| 国产一区二区三区在线臀色熟女| 国产精品亚洲一级av第二区| 日本撒尿小便嘘嘘汇集6| 国产免费av片在线观看野外av| av在线老鸭窝| 国产黄a三级三级三级人| 看片在线看免费视频| 舔av片在线| 亚洲va日本ⅴa欧美va伊人久久| 日本 欧美在线| 久久香蕉精品热| 久久久久国内视频| 精品一区二区三区人妻视频| 免费在线观看亚洲国产| 男女下面进入的视频免费午夜| 久久国产精品人妻蜜桃| 午夜福利免费观看在线| 少妇熟女aⅴ在线视频| 桃红色精品国产亚洲av| 久久久久久九九精品二区国产| 99热这里只有是精品在线观看 | 亚洲精品乱码久久久v下载方式| 国产私拍福利视频在线观看| 天堂av国产一区二区熟女人妻| 在线观看美女被高潮喷水网站 | 国产欧美日韩一区二区三| 脱女人内裤的视频| 欧美日韩中文字幕国产精品一区二区三区| 看免费av毛片| a级毛片免费高清观看在线播放| 99久久99久久久精品蜜桃| 超碰av人人做人人爽久久| av福利片在线观看| 好男人在线观看高清免费视频| 99国产极品粉嫩在线观看| 一卡2卡三卡四卡精品乱码亚洲| 国产精品久久久久久精品电影| 老女人水多毛片| 99在线人妻在线中文字幕| 小蜜桃在线观看免费完整版高清| 性插视频无遮挡在线免费观看| 嫩草影视91久久| 午夜久久久久精精品| 午夜亚洲福利在线播放| 成人毛片a级毛片在线播放| 色尼玛亚洲综合影院| 18禁在线播放成人免费| 亚洲第一区二区三区不卡| 色av中文字幕| a级毛片免费高清观看在线播放| 亚洲人成网站在线播放欧美日韩| 免费看日本二区| 亚洲内射少妇av| 久久国产精品影院| 国产精品伦人一区二区| 国产一区二区亚洲精品在线观看| 亚洲专区国产一区二区| 又爽又黄无遮挡网站| 国产一区二区在线av高清观看| 三级男女做爰猛烈吃奶摸视频| 女人被狂操c到高潮| 哪里可以看免费的av片| 变态另类成人亚洲欧美熟女| 欧美3d第一页| 国产一区二区激情短视频| 久久香蕉精品热| 老司机福利观看| 亚洲狠狠婷婷综合久久图片| 欧美日韩黄片免| 久久精品国产亚洲av天美| 免费大片18禁| 欧美日韩黄片免| 亚洲一区高清亚洲精品| 久久精品国产亚洲av香蕉五月| 人妻丰满熟妇av一区二区三区| 超碰av人人做人人爽久久| 国产高潮美女av|