• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Control methods for drive mode of MEMS vibratory gyroscope with spring hardening nonlinearity

    2015-05-23 03:53:12DINGXu-kai,LIHong-sheng,NIYun-fang
    關(guān)鍵詞:模態(tài)振動(dòng)

    Control methods for drive mode of MEMS vibratory gyroscope with spring hardening nonlinearity

    In driving mode of MEMS gyroscope, the spring hardening nonlinearity would become significant when with large vibration amplitude. To solve this problem, two control methods, i.e. phase-locked loop(PLL) and self-oscillation loop, are compared in the presence of such a nonlinearity. The comparison results show that the driving method of PLL would fail to track the resonant frequency of the nonlinear mode due to the phase-response hysteresis in frequency domain, while the self-oscillation loop can drive the nonlinear mode to stabilize at a resonance frequency thanks to the working principle of the self-oscillation loop. A modified digital PLL drive method is presented, which can significantly improve the stability at the cost of a large driving force. Experiment results show that they are in agreement with those of the simulations, verifying the feasibility of the proposed driving method.

    MEMS gyroscope; spring hardening nonlinearity; phase-locked loop; self-oscillation loop

    Increasing the vibration amplitude of the drive mode is one of effective means to improve the sensitivity of MEMS vibratory gyroscope. However, the spring nonlinearity in the drive mode becomes significant when the vibration amplitude gets large. This nonlinearity in MEMS comb-drive resonators has been well described and analyzed in plenty of literatures[1-2]. In paper [3], the nonlinear behaviors of the drive mode of microgyroscope are discussed in detail, including the external resonance and non-resonant hard excitation. The nonlinear dynamics of the gyroscope designed by our research group are presented in [4]. Although the source and the behavior of the nonlinear mode have been specifically studied, few of the literatures concentrate on close-loop control methods for the nonlinear mode.

    In this paper, the phase-locked loop (PLL)[5]and the self-oscillation loop[6], which are generally used in drive mode of MEMS gyroscope, are compared in the presenceof the nonlinearity. In Section 1, the effect of the spring hardening nonlinearity is briefly introduced, as well as the approximate analytical frequency response of the nonlinear drive mode. Section 2 gives the compare of the two control methods by using numerical simulations. A modified PLL drive method, together with its simulation,is presented in Section 3. Section 4 shows the results of the experiments carried out, and some conclusions are drawn in Section 5.

    1 Spring hardening nonlinearity in drive mode

    In the drive mode of MEMS vibratory gyroscope,the spring nonlinearity, generally referring to the cubic stiffness term, derives from the nonlinear deformation of the suspension beams. The folded beams operate out of the linear range under large deformation and introduce the cubic stiffness. The nonlinear drive mode of the gyroscope, consisting of the drive frame, proof mass,together with the actuating and sensing combs, can be modeled as

    Where x, ξx,ωnx,γ,F(xiàn),ωdand mxare displacement,damping ratio, natural frequency, cubic stiffness parameter,amplitude and frequency of drive force and effective mass of the drive mode, respectively. Equation (1) describes a classical Duffing oscillator which has no closed-form solution. However, by using the method of multiple scales with the assumptions of weak damping and weak nonlinearity, which are always satisfied in MEMS gyroscopes, an analytical approximation for the forced response can be obtained as

    where Mis the magnification factor, aand?are the amplitude and the phase of the solution respectively for Equation (1). The amplitude-response curve leans toward the higher frequencies for a positive value of γ, resulting in spring hardening nonlinearity. The phase-response curve is also distorted, as seen in Fig.1. The peak value of the magnification factor can be found from Equation (2) as

    at the frequency of

    Equation (4) indicates that the maximum value of the magnification factor is independent of the cubic stiffness parameter, while Equation (5) manifests that the resonant frequency depends on the strength of the nonlinearity as well as the vibration amplitude.

    A profound difference between the response of the linear system and that of the nonlinear system is that the response of the latter is multivalued. For a fixed value of the drive frequency, there can be three different amplitudes and phases in the hysteresis region, as exhibited in Fig.1. The parameter values used to plot the curves are ξx=10-5, ωnx=104×2π rad/s, F=0.5 μN(yùn), mx=3.33×10-7kg and the cubic spring force equals 5% of the linear spring force. The middle value of the three values appeared in the hysteresis region is unstable and will not be observed in an experiment. A jump down (up) phenomenon takes place at the upper (lower) boundary of the hysteresis region as the drive frequency gradually sweeps up (down). The influence of the hysteresis and the jump phenomenon on control methods for the gyroscope will be studied in the next section.

    Fig.1 Frequency response of nonlinear resonator

    2 Drive methods of PLL and self-oscillation

    The control system for the drive mode of MEMS vibratory gyroscope has two basic requirements. The system should: a) maintain constant amplitude of vibration velocity of the proof mass or, approximately, constant amplitude of vibration displacement; b) provide a demodulation reference signal in-phase with the velocity of the proof mass to eliminate the zero-rate output introduced by quadrature error. Generally to follow these requirements,MEMS vibratory gyroscopes can be driven by either a PLL or a self-oscillation loop. The typical block diagrams of the two control methods are shown in Fig.2, wherepreKis the gain of the pre-amplifier which transfers a displacement of the structure into a voltage within a reasonable range,andvfKis the gain of drive voltage to drive force.

    For a linear system, which means γ=0 in Equation (1), both the two control methods can stably drive the gyroscope at resonance, although through different approaches.In the drive method of PLL, the resonator is driven by the VCO whose frequency is controlled by a PID-type controller fed with the phase error. The drive frequency is stable around the frequency point where the phase lag of the drive mode is 90° with small ripples. In the self-oscillation loop, there is no such a component like VCO who outputs the drive signal continuously. However,when satisfying the oscillation conditions, widely known as Barkhausen criterion, the system maintains a stable vibration whose frequency is determined by the phase response of the resonator and that of the phase shifter.

    Fig.2 Typical control block diagrams for the drive mode

    In the nonlinear case, the governing equations of the control loop presented in (2a) are described as follows:

    where A is the amplitude of the VCO output,1T is the time constant of the low pass filter (LPF), k is the sensitivity of the VCO,0ωis the initial angular frequency of the VCO,1pKand1iKare the proportional parameter and integral parameter of the controller, respectively. Considering that Equations (6)-(9) cannot be solved analytically, and even an approximate solution will be rather complicated, the system is numerically simulated with the parameter values listed in Tab.1. The frequency of the VCO output fails to track the natural frequency of the drive mode of the gyroscope due to the hysteresis in the phase-response. The jump phenomenon occurring whenever the frequency sweeps up across the upper boundary or down across the lower boundary degrades the stability of the control system and makes the frequency widely fluctuate, as shown in Fig.3a.

    Tab.1 Parameter values used in the simulations

    Similarly, the governing equations of the control loop presented in Fig.2b are summarized as

    Equations (10)-(13) are numerically simulated with the parameter values listed in Tab.1. The simulations show that the self-oscillation loop stably drives the gyroscope. The responses of the self-oscillation loop for different cubic stiffness parameters are very close except with different vibrating frequencies. The effect that the resonant frequency is higher than the natural frequency is verified in the spectrum of the displacement signal plotted in Fig.3b.

    Fig.3 Simulations for drive methods of PLL and self-oscillation

    Different from the drive method of PLL, the drive method of self-oscillation evolves a quasi-constant drive frequency which satisfies the phase condition of Barkhausen criterion. The frequency variation caused by the change of the amplitude is very small. Therefore, the hysteresis in the phase-response does not affect the stability of the system significantly. The essence which makes the two control methods different in stability is that the phaseresponse curve is multivalued with respect to frequency,but single valued with respect to phase.

    3 The modified drive method of digital PLL

    Considering the failure of the PLL drive method and the difficulty in implementing a precise phase-shifter within a wide frequency range in digital circuits, a modified digital PLL solution is presented in Fig.4a. The digital controlled oscillator (DCO) offers two groups of orthogonal signals with the same frequency. As the same with the original PLL solution, the frequency control loop regulates the phase difference between the displacement and the drive force to a desired value which is set by the parameter d with the relationship of πdφ=??. This modified drive method differs from the original one in an extra close-loop, called delay control loop. One of the two groups of signals from the DCO is delayed from the other group for a particular phase which is determined by an independent parameter in the delay control loop. The delayed group of signals is used for synchronizing the displacement signal of the drive mode. Once the delay control loop locks the displacement signal, which is orthogonal to the Coriolis force, the delayed group of signals can be used as the demodulation references to extract Coriolis signal and quadrature signal.

    The special configuration of the modified drive method of PLL allows setting the desired value d other than 0.5. Thus, the nonlinear mode can be driven away from the exact resonant point to avoid severe hysteresis region. The stability of the system is significantly improved by the non-resonant vibration. However, the drive force is no longer in-phase with the Coriolis force and cannot be used as demodulation reference. Nevertheless, with the help of the delay control loop, the Coriolis signal and the quadrature signal can be easily distinguished. The validity of the modified PLL solution is verified through the simulation of the frequency tracking,illustrated in (4b) where the desired value d in the frequency control loop is set as 0.25.

    Fig.4 The modified drive method of PLL

    4 Experiments on the nonlinear drive mode

    The structure of the studied gyroscope is designed to be driven up to a displacement of 20 μm which makes the cubic nonlinearity remarkable. Fig.5a plots the measured amplitude-response and phase-response of the nonlinear drive mode. The jump phenomenon was clearly observed at the frequencies of 7617.8 Hz and 7615.4 Hz which constrain the boundaries of the hysteresis region.

    The drive methods based on PLL, including the original method and the modified one, were implemented in a field-programmable gate array (FPGA) with necessary front-end devices, such as amplifies, AD convertors and DA convertors. As predicted by the simulations carriedout, the original PLL method failed to stably drive the gyroscope. The frequency of the drive signal, illustrated in Fig.5b, widely fluctuated by more than 3 Hz.

    Fig. 5 The nonlinear drive mode of the studied gyroscope

    Taking the advantage of the flexibility of FPGA, the control algorithm presented in Fig.4a was easily implemented without any modification of hardware. Fig.6a shows the power-on response of the error between the regulated phase delay and the desired phase delay in the frequency control loop. Fig.6b presents the controlled phase relationships among the drive signal, the displacement signal and the reference signal for demodulation. The displacement signal lagged behind the drive force signal for about 45°. The reference signal for demodulation was orthogonal to the displacement signal and the quadrature signal, which implied that the reference signal was in-phase with the Coriolis force and could be used to eliminate the zero-rate output introduced by the quadrature error.

    Fig.6 Experiment result of the modified drive method of PLL

    The drive method of self-oscillation based on analog circuits was also tested. The vibration amplitude of the studied gyroscope was increased step by step in the self-oscillation loop. Tab.2 lists the different operating points of the drive mode with various drive amplitudes. It can be revealed from Tab.2 that the resonant frequency was increased when the drive amplitude increased, as predicted by Equation (5). The adaptability of the selfoscillation loop was verified through several gyroscopes. The vibration parameters of three gyroscopes with the same self-oscillation drive circuit are listed in Tab.3. The vibration amplitudes were set as 12 μm. For different gyroscopes, the variations of their natural frequencies ofdrive modes vary between tens to hundreds of Hz due to manufacturing tolerance. The self-oscillation loop adapted to the various gyroscopes without any adjustment of circuit parameter.

    Tab.2 Operating points of the drive mode in self-oscillation drive circuit with various drive amplitudes

    Tab.3 Vibration parameters of three gyroscopes with the same self-oscillation drive circuit

    5 Conclusion

    The drive methods of PLL and self-oscillation loop for the nonlinear drive mode of the MEMS gyroscope are studied in this paper. The PLL drive method fails to stably drive the nonlinear mode due to the hysteresis effect in the frequency domain, while the self-oscillation drive method shows good stability and adaptability. Considering the failure of the PLL method, a modified digital PLL method is presented. This modified drive method can stably drive the nonlinear mode by avoiding the fierce hysteresis region in the frequency response. The experiments are carried out, which verify the analysis results of the two original control methods and demonstrate the feasibility of the modified drive scheme.

    [1] Braghin F, Resta F, Leo E, Spinola G. Nonlinear dynamics of vibrating MEMS[J]. Sensors and Actuators, A: Physical, 2007, 134: 98-108.

    [2] Elshurafa A M, Khirallah K, Tawfik H H, Emira A, Abdel Aziz A K S, Sedky S M. Nonlinear dynamics of spring softening and hardening in folded-MEMS comb drive resonators[J]. Journal of Microelectromechanical Systems,2011, 20: 943-958.

    [3] Tsai N C, Sue C Y. Stability and resonance of micromachined gyroscope under nonlinearity effects[J]. Nonlinear Dynamics 2009, 56: 369-379.

    [4] Xu L, Li H, Liu J, Ni Y, Huang L. Research on nonlinear dynamics of drive mode in z-axis silicon microgyroscope [J]. Journal of Sensors, 2014.

    [5] Sun X, Horowitz R, Komvopoulos K. Stability and resolution analysis of a phase-locked loop natural frequency tracking system for MEMS fatigue testing[J]. Journal of Dynamic Systems, Measurement and Control,Transactions of the ASME, 2002, 124: 599-605.

    [6] Cui J, Chi X Z, Ding H T, Lin L T, Yang Z C, Yan G Z. Transient response and stability of the AGC-PI closedloop controlled MEMS vibratory gyroscopes[J]. Journal of Micromechanics and Microengineering, 2009.

    DING Xu-kai, LI Hong-sheng, NI Yun-fang, SHAO An-cheng
    (Key Laboratory of Micro-Inertial Instrument and Advanced Navigation Technology of Ministry of Education, School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China)

    1005-6734(2015)03-0379-06

    具有硬彈簧非線性的MEMS振動(dòng)式陀螺儀驅(qū)動(dòng)模態(tài)控制方法

    丁徐鍇,李宏生,倪云舫,邵安成
    (東南大學(xué) 儀器科學(xué)與工程學(xué)院 微慣性儀表與先進(jìn)導(dǎo)航技術(shù)教育部重點(diǎn)實(shí)驗(yàn)室,南京 210096)

    當(dāng)振動(dòng)式MEMS陀螺儀的驅(qū)動(dòng)模態(tài)的振幅較大時(shí),驅(qū)動(dòng)模態(tài)中的硬彈簧非線性將變得顯著。在驅(qū)動(dòng)模態(tài)具有此非線性的情況下,比較了MEMS陀螺儀中常用的兩種控制方法,即鎖相環(huán)驅(qū)動(dòng)和自激驅(qū)動(dòng)。由于非線性模態(tài)在頻域內(nèi)的相位響應(yīng)有遲滯效應(yīng),鎖相環(huán)驅(qū)動(dòng)方式不能穩(wěn)定地鎖定非線性模態(tài)的諧振頻率。然而得益于自激驅(qū)動(dòng)方式的工作原理,自激方式可以將非線性模態(tài)驅(qū)動(dòng)在諧振點(diǎn)上。提出了一種改進(jìn)的數(shù)字鎖相環(huán)驅(qū)動(dòng)方式。該改進(jìn)的驅(qū)動(dòng)方式以較大的驅(qū)動(dòng)力為代價(jià),提高了控制回路的穩(wěn)定性。實(shí)驗(yàn)結(jié)果與仿真結(jié)果相一致,并且驗(yàn)證了所提出的驅(qū)動(dòng)方式的可行性。

    MEMS陀螺儀;硬彈簧非線性;鎖相環(huán);自激回路

    TH824+.3

    A

    2015-01-27;

    2015-04-20

    江蘇省科技支撐計(jì)劃資助項(xiàng)目(BE2014003-3)

    丁徐楷(1988—),男,博士研究生,從事MEMS慣性儀表研究。E-mail:dingxukai@126.com

    聯(lián) 系 人:李宏生(1964—),男,教授,博士生導(dǎo)師。E-mail:hsli@seu.edu.cn

    10.13695/j.cnki.12-1222/o3.2015.03.018

    猜你喜歡
    模態(tài)振動(dòng)
    振動(dòng)的思考
    噴水推進(jìn)高速艇尾部振動(dòng)響應(yīng)分析
    This “Singing Highway”plays music
    振動(dòng)攪拌 震動(dòng)創(chuàng)新
    中立型Emden-Fowler微分方程的振動(dòng)性
    車輛CAE分析中自由模態(tài)和約束模態(tài)的應(yīng)用與對(duì)比
    國(guó)內(nèi)多模態(tài)教學(xué)研究回顧與展望
    高速顫振模型設(shè)計(jì)中顫振主要模態(tài)的判斷
    基于HHT和Prony算法的電力系統(tǒng)低頻振蕩模態(tài)識(shí)別
    UF6振動(dòng)激發(fā)態(tài)分子的振動(dòng)-振動(dòng)馳豫
    一本综合久久免费| 国产成人欧美在线观看| 亚洲av第一区精品v没综合| 男女之事视频高清在线观看| 成人午夜高清在线视频| 精品免费久久久久久久清纯| 最近最新免费中文字幕在线| 天天躁日日操中文字幕| 99riav亚洲国产免费| 99在线视频只有这里精品首页| 欧美在线一区亚洲| 国产黄色小视频在线观看| 色播亚洲综合网| 精品久久久久久久末码| 国产成人影院久久av| 最近最新免费中文字幕在线| 好男人在线观看高清免费视频| 十八禁人妻一区二区| 国产精华一区二区三区| 欧美日韩福利视频一区二区| 久99久视频精品免费| 国产成人欧美在线观看| 国产高清三级在线| 国产精品麻豆人妻色哟哟久久 | av视频在线观看入口| 欧美zozozo另类| 免费观看a级毛片全部| 亚洲国产精品专区欧美| av免费在线看不卡| 成年女人永久免费观看视频| 少妇裸体淫交视频免费看高清| 日韩av在线大香蕉| 性色avwww在线观看| 午夜激情福利司机影院| 婷婷色av中文字幕| 尤物成人国产欧美一区二区三区| 国产色爽女视频免费观看| 美女被艹到高潮喷水动态| 熟妇人妻久久中文字幕3abv| 大香蕉久久网| 永久免费av网站大全| 亚洲国产精品sss在线观看| 少妇丰满av| 亚洲熟妇中文字幕五十中出| 九九热线精品视视频播放| 国产高清有码在线观看视频| 大香蕉97超碰在线| 人妻少妇偷人精品九色| 亚洲av电影不卡..在线观看| 亚洲国产精品国产精品| 国产午夜精品一二区理论片| 伦理电影大哥的女人| 全区人妻精品视频| 日韩精品青青久久久久久| 永久网站在线| 久久热精品热| 日本wwww免费看| 国产精品日韩av在线免费观看| 一级二级三级毛片免费看| 69人妻影院| 能在线免费看毛片的网站| 乱系列少妇在线播放| 嘟嘟电影网在线观看| 又黄又爽又刺激的免费视频.| 中文字幕久久专区| 国产精品不卡视频一区二区| 色综合色国产| 国内少妇人妻偷人精品xxx网站| 亚洲精品日韩在线中文字幕| 亚洲怡红院男人天堂| 色综合站精品国产| 深爱激情五月婷婷| 男插女下体视频免费在线播放| 午夜精品在线福利| 午夜激情福利司机影院| 亚洲欧美精品综合久久99| 亚洲国产精品久久男人天堂| 亚洲三级黄色毛片| 久久精品国产亚洲av涩爱| 日本黄大片高清| 日韩精品青青久久久久久| 国产真实伦视频高清在线观看| 97人妻精品一区二区三区麻豆| 久久亚洲精品不卡| 国产视频首页在线观看| 亚洲高清免费不卡视频| 亚洲人与动物交配视频| 欧美另类亚洲清纯唯美| 欧美潮喷喷水| 亚洲色图av天堂| 亚洲精品aⅴ在线观看| 在线观看一区二区三区| 国产成人免费观看mmmm| 淫秽高清视频在线观看| 91久久精品国产一区二区成人| 好男人视频免费观看在线| 麻豆乱淫一区二区| 久久久精品大字幕| 国产精品国产高清国产av| 麻豆久久精品国产亚洲av| 日本色播在线视频| 变态另类丝袜制服| 免费观看性生交大片5| 精品人妻熟女av久视频| av线在线观看网站| 中文资源天堂在线| 99视频精品全部免费 在线| 国产三级在线视频| 最近最新中文字幕免费大全7| 一边亲一边摸免费视频| 色哟哟·www| 免费搜索国产男女视频| 天天躁日日操中文字幕| 婷婷色av中文字幕| 欧美潮喷喷水| 日本黄色视频三级网站网址| 国产精品福利在线免费观看| АⅤ资源中文在线天堂| 欧美zozozo另类| 最近2019中文字幕mv第一页| 亚洲美女搞黄在线观看| 国产午夜精品一二区理论片| 久久精品91蜜桃| 村上凉子中文字幕在线| 亚洲国产精品专区欧美| 一夜夜www| 国产成人aa在线观看| av黄色大香蕉| 91狼人影院| 午夜福利网站1000一区二区三区| 亚洲精品日韩av片在线观看| 久久久久久国产a免费观看| 亚洲aⅴ乱码一区二区在线播放| 亚洲最大成人手机在线| 欧美极品一区二区三区四区| 秋霞伦理黄片| 天堂中文最新版在线下载 | 午夜精品一区二区三区免费看| 欧美高清性xxxxhd video| 久久久久久久亚洲中文字幕| 欧美日本视频| 国产白丝娇喘喷水9色精品| 亚洲精品久久久久久婷婷小说 | 欧美性猛交╳xxx乱大交人| 一二三四中文在线观看免费高清| 亚洲高清免费不卡视频| 久久久久性生活片| 国产激情偷乱视频一区二区| 黄色日韩在线| 亚洲国产精品sss在线观看| 国产一区二区在线av高清观看| 欧美成人一区二区免费高清观看| 能在线免费看毛片的网站| 干丝袜人妻中文字幕| 欧美极品一区二区三区四区| 男女那种视频在线观看| a级一级毛片免费在线观看| 精品不卡国产一区二区三区| 国产亚洲5aaaaa淫片| 国产亚洲午夜精品一区二区久久 | 好男人视频免费观看在线| 青春草视频在线免费观看| 永久免费av网站大全| 国产一区亚洲一区在线观看| 91久久精品国产一区二区三区| 欧美zozozo另类| 中文字幕精品亚洲无线码一区| 国产单亲对白刺激| 青春草视频在线免费观看| 三级男女做爰猛烈吃奶摸视频| 美女大奶头视频| 听说在线观看完整版免费高清| 欧美3d第一页| 欧美三级亚洲精品| 激情 狠狠 欧美| 亚洲人成网站在线播| 高清午夜精品一区二区三区| 99九九线精品视频在线观看视频| 高清毛片免费看| 国内精品美女久久久久久| 久久久精品欧美日韩精品| 91精品国产九色| 九九在线视频观看精品| 观看美女的网站| 午夜久久久久精精品| av在线蜜桃| 校园人妻丝袜中文字幕| 久久久久久久久久久丰满| 欧美三级亚洲精品| 少妇裸体淫交视频免费看高清| 国产精品久久电影中文字幕| 亚洲中文字幕一区二区三区有码在线看| 欧美一区二区国产精品久久精品| 国产91av在线免费观看| 婷婷色麻豆天堂久久 | 亚洲色图av天堂| 少妇的逼好多水| 99久国产av精品| 国产av码专区亚洲av| 欧美性猛交黑人性爽| 又爽又黄无遮挡网站| 欧美日韩一区二区视频在线观看视频在线 | 日本黄色片子视频| 我的老师免费观看完整版| 免费看美女性在线毛片视频| 国产久久久一区二区三区| 欧美三级亚洲精品| 我要看日韩黄色一级片| 男女那种视频在线观看| 91av网一区二区| 午夜免费激情av| 欧美潮喷喷水| 菩萨蛮人人尽说江南好唐韦庄 | 波野结衣二区三区在线| 亚洲欧洲日产国产| 国产色爽女视频免费观看| 日本与韩国留学比较| 最后的刺客免费高清国语| 欧美日本视频| 草草在线视频免费看| 美女内射精品一级片tv| 精品少妇黑人巨大在线播放 | 国产精品野战在线观看| 婷婷色综合大香蕉| 成人av在线播放网站| 日韩,欧美,国产一区二区三区 | 久久久久免费精品人妻一区二区| 哪个播放器可以免费观看大片| 国产男人的电影天堂91| 欧美一区二区亚洲| 久久精品国产亚洲网站| 看片在线看免费视频| 一个人看视频在线观看www免费| 日韩av不卡免费在线播放| 听说在线观看完整版免费高清| 欧美激情在线99| 欧美成人免费av一区二区三区| 亚洲欧美成人精品一区二区| 久久欧美精品欧美久久欧美| 国产精品日韩av在线免费观看| 国产精品嫩草影院av在线观看| 老师上课跳d突然被开到最大视频| 国语自产精品视频在线第100页| 亚洲欧美日韩无卡精品| av在线天堂中文字幕| 国产人妻一区二区三区在| 国产成人午夜福利电影在线观看| 天天躁夜夜躁狠狠久久av| 国产一区二区亚洲精品在线观看| 男人和女人高潮做爰伦理| 国产免费又黄又爽又色| 永久免费av网站大全| 国产一区二区三区av在线| 国产伦精品一区二区三区视频9| 一个人免费在线观看电影| 亚洲av电影不卡..在线观看| 黄色一级大片看看| 99久久精品热视频| 一级毛片我不卡| 亚洲人成网站高清观看| 免费av不卡在线播放| 国产三级在线视频| 国产av不卡久久| 亚洲人成网站高清观看| 日本黄色视频三级网站网址| 黑人高潮一二区| 欧美xxxx性猛交bbbb| 日韩在线高清观看一区二区三区| 午夜福利网站1000一区二区三区| 国产一区二区在线av高清观看| 熟女人妻精品中文字幕| 18+在线观看网站| 国产精品无大码| 最近中文字幕高清免费大全6| 三级国产精品片| 97超碰精品成人国产| 日本-黄色视频高清免费观看| 国产一区二区三区av在线| 日日干狠狠操夜夜爽| 又爽又黄无遮挡网站| 三级经典国产精品| 久久久成人免费电影| 国产精品久久久久久av不卡| 久久久a久久爽久久v久久| 亚洲精品aⅴ在线观看| 黑人高潮一二区| 国产麻豆成人av免费视频| 亚洲av中文字字幕乱码综合| 2021天堂中文幕一二区在线观| 美女xxoo啪啪120秒动态图| 亚洲美女搞黄在线观看| 日本黄大片高清| 国产视频首页在线观看| 99久国产av精品| 在线a可以看的网站| 国产一区亚洲一区在线观看| 中文字幕精品亚洲无线码一区| 国产淫语在线视频| 国产女主播在线喷水免费视频网站 | 国产乱人偷精品视频| 伊人久久精品亚洲午夜| 久久精品国产自在天天线| 午夜免费激情av| 啦啦啦观看免费观看视频高清| 麻豆久久精品国产亚洲av| 亚洲欧洲日产国产| 免费看日本二区| 看十八女毛片水多多多| 国产欧美另类精品又又久久亚洲欧美| 1024手机看黄色片| 欧美97在线视频| 日韩av在线免费看完整版不卡| 中国国产av一级| 精品久久久久久成人av| 久久久久久久久久久免费av| 久久久久久久久大av| av女优亚洲男人天堂| 国产亚洲精品av在线| 免费观看a级毛片全部| 国语对白做爰xxxⅹ性视频网站| 欧美一级a爱片免费观看看| 亚洲精品久久久久久婷婷小说 | 特大巨黑吊av在线直播| 在线天堂最新版资源| 欧美一区二区国产精品久久精品| 一级av片app| 伦理电影大哥的女人| 中文精品一卡2卡3卡4更新| 免费看av在线观看网站| 成人亚洲欧美一区二区av| 综合色av麻豆| av线在线观看网站| 日韩av在线免费看完整版不卡| 校园人妻丝袜中文字幕| 一级爰片在线观看| 国产三级在线视频| 天天躁日日操中文字幕| a级一级毛片免费在线观看| 在线观看一区二区三区| 免费观看的影片在线观看| 中文资源天堂在线| 男人舔女人下体高潮全视频| 国产精华一区二区三区| 精品久久久久久久人妻蜜臀av| 国产午夜精品久久久久久一区二区三区| 久久6这里有精品| 久久久精品大字幕| 国产 一区精品| 国产亚洲精品久久久com| 日日摸夜夜添夜夜添av毛片| 99久久精品热视频| 精品人妻熟女av久视频| 国产精品国产高清国产av| 丰满人妻一区二区三区视频av| 国产精品久久久久久精品电影小说 | 精品人妻熟女av久视频| 天天一区二区日本电影三级| 国产不卡一卡二| 99久国产av精品国产电影| 中文字幕av在线有码专区| 在线观看av片永久免费下载| 中文字幕熟女人妻在线| 亚洲图色成人| 婷婷色麻豆天堂久久 | 美女被艹到高潮喷水动态| 久久精品夜夜夜夜夜久久蜜豆| 国产在视频线精品| 欧美日韩国产亚洲二区| 七月丁香在线播放| a级毛色黄片| 亚洲电影在线观看av| 国产高清国产精品国产三级 | 大又大粗又爽又黄少妇毛片口| 又粗又爽又猛毛片免费看| 亚洲国产精品专区欧美| 建设人人有责人人尽责人人享有的 | 桃色一区二区三区在线观看| 成年版毛片免费区| 国产精品日韩av在线免费观看| 国产精品久久久久久久久免| 成年女人看的毛片在线观看| 一个人免费在线观看电影| 日韩视频在线欧美| 欧美日韩在线观看h| 国产精华一区二区三区| 午夜免费男女啪啪视频观看| 精品久久久久久电影网 | 永久免费av网站大全| 狠狠狠狠99中文字幕| 欧美潮喷喷水| 菩萨蛮人人尽说江南好唐韦庄 | 中文资源天堂在线| 久久这里只有精品中国| 99热全是精品| 国产成人精品久久久久久| 欧美潮喷喷水| 婷婷六月久久综合丁香| 国产亚洲5aaaaa淫片| 欧美成人一区二区免费高清观看| 欧美97在线视频| 国产一区二区三区av在线| 麻豆成人午夜福利视频| 亚洲成av人片在线播放无| 国产私拍福利视频在线观看| 国产精品国产三级国产专区5o | 国产亚洲午夜精品一区二区久久 | 国产高清国产精品国产三级 | 夫妻性生交免费视频一级片| 偷拍熟女少妇极品色| 国产探花在线观看一区二区| 亚洲欧洲国产日韩| 久久人人爽人人片av| 中文亚洲av片在线观看爽| 99九九线精品视频在线观看视频| av黄色大香蕉| 哪个播放器可以免费观看大片| 午夜精品在线福利| 少妇熟女aⅴ在线视频| 国产精品一区二区三区四区久久| 建设人人有责人人尽责人人享有的 | av线在线观看网站| 日本与韩国留学比较| 99在线视频只有这里精品首页| 联通29元200g的流量卡| 久久久久精品久久久久真实原创| 大香蕉97超碰在线| h日本视频在线播放| 中国国产av一级| 久久精品熟女亚洲av麻豆精品 | 亚洲第一区二区三区不卡| 一级毛片久久久久久久久女| 精品国内亚洲2022精品成人| 免费观看a级毛片全部| 中文字幕精品亚洲无线码一区| 老司机影院毛片| 国产高清有码在线观看视频| 日日摸夜夜添夜夜添av毛片| 亚洲国产欧美在线一区| 久久精品国产鲁丝片午夜精品| 欧美xxxx黑人xx丫x性爽| 黄色欧美视频在线观看| 亚洲av成人精品一二三区| 久久精品久久久久久久性| 国产精品一区二区在线观看99 | 欧美不卡视频在线免费观看| 中文字幕熟女人妻在线| 可以在线观看毛片的网站| 亚洲精品成人久久久久久| 51国产日韩欧美| av在线蜜桃| 国产亚洲精品久久久com| .国产精品久久| 少妇猛男粗大的猛烈进出视频 | 少妇裸体淫交视频免费看高清| 精品久久久噜噜| 日韩一本色道免费dvd| 毛片女人毛片| 最近中文字幕2019免费版| 91在线精品国自产拍蜜月| 91精品一卡2卡3卡4卡| 亚洲内射少妇av| 亚洲在线自拍视频| 午夜a级毛片| 桃色一区二区三区在线观看| 午夜福利网站1000一区二区三区| 国产黄片视频在线免费观看| 国产精品不卡视频一区二区| 国产一区二区亚洲精品在线观看| 中文在线观看免费www的网站| 黄片无遮挡物在线观看| 国产人妻一区二区三区在| 天堂中文最新版在线下载 | 亚洲成av人片在线播放无| 国产一区二区亚洲精品在线观看| 国产伦精品一区二区三区四那| av在线观看视频网站免费| 能在线免费观看的黄片| 国产免费一级a男人的天堂| 国产亚洲av嫩草精品影院| 国产午夜精品论理片| 有码 亚洲区| 大又大粗又爽又黄少妇毛片口| 亚洲伊人久久精品综合 | 中国美白少妇内射xxxbb| 久久久久久国产a免费观看| 亚洲在线观看片| 免费电影在线观看免费观看| 成人二区视频| 亚洲自拍偷在线| 国语对白做爰xxxⅹ性视频网站| 尾随美女入室| 深爱激情五月婷婷| 国产精品人妻久久久久久| 国产精品日韩av在线免费观看| 国产精品永久免费网站| 亚洲成人中文字幕在线播放| 日本黄色片子视频| 国产精品福利在线免费观看| 韩国av在线不卡| 汤姆久久久久久久影院中文字幕 | 超碰av人人做人人爽久久| 国产成人午夜福利电影在线观看| 国产国拍精品亚洲av在线观看| 中文字幕人妻熟人妻熟丝袜美| 精品久久久久久久久亚洲| 国产亚洲一区二区精品| 免费看a级黄色片| 一级黄片播放器| 人妻夜夜爽99麻豆av| av女优亚洲男人天堂| ponron亚洲| 色播亚洲综合网| 天天一区二区日本电影三级| 听说在线观看完整版免费高清| 亚洲三级黄色毛片| 国产av不卡久久| 黄色欧美视频在线观看| 午夜福利成人在线免费观看| 国产三级中文精品| 在现免费观看毛片| 精品国产一区二区三区久久久樱花 | 国产精品无大码| 蜜桃亚洲精品一区二区三区| 亚洲精品成人久久久久久| 一卡2卡三卡四卡精品乱码亚洲| 自拍偷自拍亚洲精品老妇| 亚洲图色成人| 狂野欧美激情性xxxx在线观看| 看片在线看免费视频| 麻豆国产97在线/欧美| 国产淫语在线视频| 中文精品一卡2卡3卡4更新| 老师上课跳d突然被开到最大视频| 五月伊人婷婷丁香| 嘟嘟电影网在线观看| 五月伊人婷婷丁香| 成年av动漫网址| 精品一区二区免费观看| 久久人妻av系列| 2022亚洲国产成人精品| 久久精品久久久久久久性| 中文欧美无线码| 别揉我奶头 嗯啊视频| 国产亚洲午夜精品一区二区久久 | 免费一级毛片在线播放高清视频| 一区二区三区四区激情视频| 三级国产精品欧美在线观看| 老司机福利观看| 中文精品一卡2卡3卡4更新| 成人高潮视频无遮挡免费网站| 国产亚洲av嫩草精品影院| 国产av在哪里看| 亚洲精品一区蜜桃| 亚洲av电影在线观看一区二区三区 | 一级av片app| 国产亚洲91精品色在线| 伦理电影大哥的女人| 三级毛片av免费| 国产精品久久久久久精品电影| 成人午夜精彩视频在线观看| 毛片一级片免费看久久久久| 亚洲精品日韩在线中文字幕| videos熟女内射| 视频中文字幕在线观看| 午夜福利网站1000一区二区三区| 蜜桃亚洲精品一区二区三区| 亚洲内射少妇av| 国语自产精品视频在线第100页| 简卡轻食公司| 最新中文字幕久久久久| 午夜免费男女啪啪视频观看| 最近手机中文字幕大全| 免费观看a级毛片全部| 国产欧美日韩精品一区二区| 色播亚洲综合网| 中文天堂在线官网| 久久久久久久久久久丰满| 青春草亚洲视频在线观看| 国产精品.久久久| 午夜精品在线福利| 国产精品综合久久久久久久免费| 午夜老司机福利剧场| av.在线天堂| 简卡轻食公司| 国产一区二区三区av在线| 亚洲国产精品国产精品| 又粗又硬又长又爽又黄的视频| 国产日韩欧美在线精品| a级毛片免费高清观看在线播放| 成人欧美大片| 一级二级三级毛片免费看| 成年版毛片免费区| 大香蕉97超碰在线| 男女啪啪激烈高潮av片| 韩国高清视频一区二区三区| 日韩精品有码人妻一区| 国产大屁股一区二区在线视频| 国产欧美另类精品又又久久亚洲欧美| 国产色婷婷99| 18禁在线播放成人免费| 看免费成人av毛片| 亚洲va在线va天堂va国产| 22中文网久久字幕| 91精品国产九色| 免费电影在线观看免费观看| 99热精品在线国产| 欧美性猛交╳xxx乱大交人| 国产伦一二天堂av在线观看| 午夜亚洲福利在线播放| 成年版毛片免费区| 在现免费观看毛片| 免费看a级黄色片| 久久精品国产亚洲av天美| 亚洲国产欧美在线一区| 在线播放无遮挡|