• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optimized method of building underwater terrain navigation database based on triangular irregular network

    2015-05-23 03:53:12WANGLihuiGAOXianzhiLIANGBingbingYULeZHUXuefen
    中國慣性技術(shù)學報 2015年3期
    關(guān)鍵詞:三角網(wǎng)東南大學格網(wǎng)

    WANG Li-hui, GAO Xian-zhi, LIANG Bing-bing, YU Le, ZHU Xue-fen

    (1. Key Laboratory of micro-inertial instrument and advanced navigation technology, Ministry of education, School of

    Optimized method of building underwater terrain navigation database based on triangular irregular network

    WANG Li-hui1, GAO Xian-zhi2, LIANG Bing-bing3, YU Le1, ZHU Xue-fen1

    (1. Key Laboratory of micro-inertial instrument and advanced navigation technology, Ministry of education, School of

    instrument science and engineering, Southeast University, Nanjin 210096, China; 2. Army representative of some institute in Tianjin, Tianjin 300131, China; 3. Science and Technology on Space Physics Laboratory, Beijing 100076, China)

    In view that using a regular grid model to build a underwater terrain navigation database has the problems of low accuracy and low efficiency, an optimized method is proposed to build an underwater terrain navigation database based on a triangular irregular network. Convex hulls are calculated for each block of data points with latitude and longitude coordinates by using a divide and conquer algorithm. Then, according to the improved convex hull algorithm, the sub-triangular irregular networks are formed by adding nonconvex hull data points to the convex hulls. Adjacent convex shell blocks are combined by using an improved algorithm for triangulation, and the terrain navigation database is completed by merging and optimizing the sub-triangulations. Simulation results show that building a terrain navigation database using the construction methods associated with a triangular irregular network has such advantages as high efficiency, high accuracy, and the ability to adjust resolution.

    underwater terrain navigation database; triangular irregular network; convex hull algorithm; divide and conquer algorithm

    Most autonomous underwater vehicles (AUV) navigation systems are based on inertial navigation, inertial navigation systems drift off with time, even when velocity aiding is used. In order to allow extensive submerged operations, additional position fixes are needed. In order to increase the autonomy of the vehicleand avoid costly pre-deployment of underwater transponders, terrain-matching navigation is a favorable alternative[1]. The positioning accuracy of an inertia and terrain-matching navigation system depends on the resolution and accuracy of the terrain map database[2-4]. Two commonly used models for building a terrain navigation map database are the regular grid model and the triangular irregular network model. The regular grid model describes the terrain using a rectangular grid with equal spaces, interpolating position points among scattered data points. The interpolated position elevation points are obtained using a bilinear interpolation of four grid endpoints. Methods of building a terrain navigation database with a regular grid are simple[5-6], easy to store, and become mainstream models[3,7]. However, the methods are low in accuracy for describing complex terrain, and the number of data points cannot be adjusted because of topographic changes, which results in data redundancy issues.

    A triangular irregular network (TIN) model describes the terrain by connecting the scattered data points with an irregular triangular unit and solves the problems described above. Sub-triangular networks are formed by using data points directly, without interpolation, and elevation points are obtained by interpolating within the triangular unit. Sub-triangular networks are then combined to generate the whole triangular mesh based on a triangulation split merge algorithm. The triangular irregular network model can adjust the density of the data points according to the change in the intensity of the terrain and is suitable for describing any terrain, especially where there are severe changes in the terrain. Relative to the regular grid model, the triangular irregular network model has higher accuracy and greater efficiency.

    1 Triangular irregular network algorithm

    TIN does not build cross-triangulations. The TIN connects the scattered data points with irregular triangular units through the topology[8,9]. The triangular irregular network terrain model can represent linear characteristics and the superposition of an arbitrary shape for the border region. The TIN is easy to update and can be adapted to a variety of data densities. The four main methods for modeling the triangular irregular network include triangulation growth, divide and conquer algorithms, a point-by-point insertion method, and split merge algorithms. The triangulation growth method has low efficiency, is computationally complex, and is rarely used. The incremental insertion algorithm is simple but low in efficiency. A divide and conquer algorithm must be recursive and have a high spatial complexity. A split merge algorithm combines the advantages of the divide and conquer algorithm with those of the point insertion algorithm to simply describe the map database with high precision.

    Convex hull can be seen as a set of boundary points, which is defined as follows: Set S is n-dimensional space consisting of a collection of k points. Convex hull of S is defined as Conv(S), which is described by the following equation:

    Convex hull means minimum convex area including a planar point set, and connection of any two points within the convex area. The convex hull has received considerable attention in computational geometry. (T. M. Chan, 1996) has presented optimal convex hull algorithms in two and three dimensions, and (Zhang Xianquan, 2006) has presented a kind of convex hull algorithm with high efficiency[8,10]. The triangular irregular network is generated in two steps. First, the initial triangulation is generated by using the convex hull as the initial polygon. Second, the remaining points are inserted into the initial triangulation. TIN contains a convex hull algorithm solving process, a split and merge process and a space optimization algorithm optimization process. The procedure is as follows:

    Step 1.The source data are divided according to the latitude and longitude coordinates.

    Step 2.The convex hulls in each data block are calculated.

    Step 3.Sub-block triangulations are formed by adding nonconvex hull data.

    Step 4.The whole triangulation is formed by merging with sub-blocks of adjacent convex hulls.

    Fig.1 Process of constructing the triangulation

    Fig.1 shows the process of constructing the triangulation. Data points were divided into four blocks,and sub-triangulation grids were constructed. The whole triangulation was formed by merging with sub-blocks of adjacent convex hulls.

    The procedure of algorithm in three dimensions is as follows[10]:

    Algorithm Hull3D(P, m, H), where P in Euclidean space E3, 4<m<n, and H >1.

    1. partition P into subsets P1,....,P[n/m]each of size at most m

    2. F, Q←{f0}, where f0is some initial facet of conv(P)

    3. for k= 1, …, 2H-4, do

    4. if Q = 0, then return F

    5. pick some f in Q and set Q←Q -{f}

    6. let ejbe the edges of f (j = 1, 2, 3)

    7. for j = 1, 2, 3 do

    8. for i = 1 … [n/m] do

    9. compute the point qiin Pithat maximizes the angle between f and conv(ej∪ {qi}) by searching the hierarchy of conv(Pi)

    10. pj← the point q from {ql,…,q[n/m]} that maximizes

    the angle between f and conv(ej∪ {q})

    11. fj←conv(ej∪ {pj})

    12. if fjnot in F then

    13. F ← F ∪ {fj}, Q←Q ∪ { fj}

    14. return incomplete

    2 Fast hull algorithm and improvement

    The convex hull algorithm mainly includes the following steps: striking of convex hull points, forming convex hull sides[9,11]. The convex hull is a minimum convex polygon containing limited data points. The fast hull algorithm is now a mainstream convex hull algorithm[10,12]. The process is shown in Fig.2 and is described below. In Fig.2(a), the left and right extreme points (p1and p2) are obtained from a set of data points, and all of the points are divided into two parts by the vector linep1p2. In Fig.2(b), the point in the right section (pr_0) farthest from vector p1p2 is obtained, and all of the points within the triangular unit p1p2pr_0 are deleted, as these points cannot be a convex hull. The amount of computation to determine the points of the convex hull are thereby reduced. In Fig.2(c), the points in the right section (pr_1_1 and pr_1_2) farthest from the vectors of p1pr_0 and pr_0p2 are obtained. By iteration, all convex hull points to the right of the vector p1p2 are obtained. Similarly, all convex hull points to the left of the vector p1p2 are obtained in the right calculation process. Finally, all convex hull points are obtained.

    The fast hull algorithm has several shortcomings such as low computational efficiency, consumption of processor memory, and great spatial complexity. To improve the efficiency of the algorithm, the convex hull algorithm needs to be improved. The proposed improvements to the fast hull algorithm are summarized below. The process is expressed in Fig.3 and described as follows. In Fig.3(a), the left and right extreme points of P1 and P2 are obtained from a set of data points in the same manner as Fig.3. In Fig.3(b), the farthest point in the right section (Pr_0) from vector P1P2 is obtained. The points pr_1_1 and pr_1_2 form the maximum angle with vector P1P2. This process is equivalent to computing the two-step process simultaneously for the traditional fast hull algorithm. All points within the quadrilateral p1.pr_1_1.pr_0.p2 are deleted because these points cannot be a convex hull, and the amount of computation required to determine the point of the convex hull is reduced. The computing process is then repeated by replacing p1pr_1_1, pr_1_1pr_0, pr_0pr_1_2, pr_1_2p2 with p1p2. All convex hull points to the right of the vector p1p2 are obtained. Similarly to the calculation process on the right, all convex hull points to the left of the vector p1p2 are obtained. Finally, all convex hull points are obtained. Obviously, the efficiency of the improved fast hull algorithm is significantly higher than the efficiency of the conventional fast hull algorithm.

    Fig.2 Steps of the fast convex hull algorithm

    Fig.3 Improved fast convex hull algorithm

    3 Split merge algorithms and global space optimization of triangular irregular network

    In the split merge algorithm, data points according to the latitude and longitude coordinates are divided into subsets of data points, and the convex hulls of the subset are computed based on the improved fast hull algorithm. Sub-block triangulations are then constructed with the convex hulls, and finally, sub-block triangulations are combined to form a complete triangulation. The process of the split merge algorithm can be expressed in Fig.4 and includes the following steps. The procedure is as follows:

    Step 1. The maximum value of the latitude coordinate data points (named y_max) and the minimum value of the latitude coordinate data points (named y_min) are obtained in coordinate data points.

    Step 2. The width of the data interval along the latitude direction is set.

    Step 3. The index numbers for the data block are sorted. Step 4. Sub-block triangulations are constructed with the convex hulls in data blocks.

    Step 5. The top line and the bottom line of the convex hulls in adjacent sub-blocks are obtained, and all of the data blocks are merged recursively.

    The convex hull problem has received considerable attention in computational geometry. Given a set P of n points in the Euclidean plane E2or Euclidean space E3, we consider the problem of computing the convex hull of P, cony(P), which is defined as the smallest convex set containing P[10]. By using the convex hull algorithm and the split merge algorithm, the entire triangular irregular network has been constructed. The topography of the adjacent points of the terrain are similar. However, the triangulation structure is calculated by the algorithm, and the topographical features calculated may not be consistent with the actual situation.

    The idea of the optimization is to use the standard deviation of the interior space angle. In a tetrahedron consisting of two adjacent triangular irregular networks, the standard difference of the interior angle in the two triangular units should be lower than the standard difference of the interior angle in the two new triangular units after the exchange of the tetrahedral diagonal. The process of global space optimization of the triangular irregular network can be expressed in Fig.5.

    In Fig.5(a), the two triangular units are formed with ABC and BCD. We calculate the standard difference of the interior angle in the two triangular units, with a value of Σ(ABC_BCD). In Fig.5(b), we exchange the tetrahedral diagonal of BC to AD, and there are two new triangular units with ABD and ACD. We calculate the standard difference of the interior angle in the two triangular units with the value of Σ(ABD_ACD). We decide to choose the tetrahedral diagonal of BC or AD by comparing the values of Σ(ABC_BCD) and Σ(ABD_ACD).

    Fig.4 Process of the split merge algorithm

    Fig.5 Process of global space optimization of the TIN

    4 Simulation results

    We select a set of terrain elevation data containing longitude, latitude and elevation, and then form a set of random discrete terrain data after sampling. According to the set of random discrete terrain data, we build a three-dimensional terrain map based on the triangular irregular network methods, as shown in Fig. 6. Then we build a three-dimensional terrain map based on the optimized triangular irregular network methods, as shown in Fig.7. Simulation results show that the optimi-zation of the triangular irregular network can improve the accuracy of triangulation of the terrain and avoid terrain distortion.

    Fig.6 3D terrain map based on the TIN

    Fig.7 3D terrain map based on the optimized TIN

    5 Conclusions

    As triangular elements are capable of expressing any terrain, the triangular irregular network terrain model presented in this paper can represent linear characteristics and superposition of the arbitrary shape of the border region. Particularly when the terrain changes severely, the irregular triangular network construction methods can adjust the density of data points in the terrain navigation database according to changes in the intensity of the terrain. The fast hull algorithm enhances the suitability after the improvement. The merge algorithm avoids a cross-segment in the sub-block triangulation merger process by using selection methods to determine the cross. By optimizing triangulation through space optimization rules, the triangular space terrain database units are selected, and the accuracy of the topographic features is improved. Simulation results show that the optimized construction methods of the terrain navigation database based on the irregular triangulation will not only improve the accuracy of triangulation of the terrain but will also avoid terrain distortion and meet the needs of a complex terrain.

    [1] Anonsen K B, Hagen O K. An analysis of real-time terrain aided navigation results from a HUGIN AUV[C]//IEEE Oceans 2010 Conference. Seattle, WA, USA, 2010.

    [2] Anonsen H K, Mandt M. The HUGIN real-time terrain navigation system[C]//IEEE Oceans 2010 Conference. Seattle, WA, USA, 2010.

    [3] Deronde B, Houthuys R, Debruyn W. Use of airborne hyperspectral data and laserscan data to study beach morphodynamics along the Belgian coast[J]. Journal of Coastal Research, 2006, 22(5): 1108-1117.

    [4] Nguyen V T. Building TIN (triangular irregular network) problem in Topology model[C]//2010 International Conference on Machine Learning and Cybernetics. 2010.

    [5] Nam N M, Kiem H V, Nam N V. A fast algorithm for constructing constrained delaunay triangulation[C]//International Conference on Computing and Communication Technologies. 2009.

    [6] Nordlund P J, Gustafsson F. Marginalized particle filter for accurate and reliable terrain-aided navigation[J]. Aerospace and Electronic Systems, 2009, 45(4): 1385-1399.

    [7] Liu Yong-xue, Li Man-chun, Mao Liang, et al. Toward a method of constructing tidal flat digital elevation models with MODIS and medium-resolution satellite images[J]. Journal of Coastal Research, 2013, 29(2): 438-448.

    [8] Zhang Xian-quan, Liu Lina. A convex hull algorithm based on convex polygon[J]. Computer Science, 2006, 33(9): 218-221.

    張顯全, 劉麗娜, 唐振軍. 基于凸多邊形的凸殼算法[J]. 計算機科學, 2006, 33(9): 218-221.

    [9] Wu Xiao-bo, Wang Shi-xing, Xiao Chun-sheng. A new study of Delaunay triangulation creation[J]. Acta Geodaetica Acrtographica Sinica, 1999, 28(1): 28-35.

    武曉波, 王世新, 肖春生. Delaunay三角網(wǎng)的生成算法研究[J]. 測繪學報, 1999, 28(1): 30-37.

    [10] Chan T M. Optimal output-sensitive convex hull algorithms in two and three dimensions[J]. Geometry, 1996, 16(1): 361-368.

    [11] Shi Min. Research and application development of Delaunay triangulation algorithm[D]. Huazhong University of Science, 2011.

    施敏. Delaunay三角網(wǎng)算法研究和應用開發(fā)[D]. 華中科技大學碩士學位論文, 2011.

    [12] Miccadei E, Mascioli F, Piacentini T, Ricci F. Geomorphological features of coastal dunes along the central adriatic coast[J]. Journal of Coastal Research, 2011, 27(6): 1122-1136.

    [13] Anonsen K B, Hallingstad O. Terrain aided underwater navigation using point mass and particle filters[C]//IEEE Position, Location and Navigation Symposium. 2006: 1027-1035.

    [14] Whyte H D, Bailey T. Simultaneous localization and mapping (SLAM): Part I - The essential algorithms[J]. IEEE Robotics and Automation Magazine, 2006, 13(2): 99-110.

    [15] Bagnell J A, Bradley D, Silver D. Learning for autonomous navigation[J]. Robotics & Automation Magazine, 2010, 17(2): 74-84.

    基于不規(guī)則三角網(wǎng)的水下地形導航數(shù)據(jù)庫構(gòu)建方法的優(yōu)化

    王立輝1,高賢志2,梁冰冰3,余 樂1,祝雪芬1
    (1. 東南大學 儀器科學與工程學院 微慣性儀表與先進導航技術(shù)教育部重點實驗室,南京 210096;2. 天津某所軍事代表,天津 300131;3. 空間物理重點實驗室,北京 100076)

    采用規(guī)則格網(wǎng)模型構(gòu)建地形導航數(shù)據(jù)庫時,存在精度較低以及效率較低的問題。為了優(yōu)化地形導航數(shù)據(jù)庫構(gòu)建方法,提出了一種基于不規(guī)則三角網(wǎng)的地形導航數(shù)據(jù)庫構(gòu)建方法?;诜指詈喜⒎▽υ磾?shù)據(jù)點按經(jīng)緯度坐標進行分割,分別求出每個數(shù)據(jù)塊數(shù)據(jù)點的凸殼,然后依據(jù)改進的凸殼算法逐點加入非凸殼數(shù)據(jù)點形成子塊三角網(wǎng),用改進的三角網(wǎng)合并算法對相鄰的凸殼子塊進行合并,完成子三角網(wǎng)的優(yōu)化合并形成完整的地形導航數(shù)據(jù)庫。仿真結(jié)果表明基于不規(guī)則三角網(wǎng)的地形導航數(shù)據(jù)庫構(gòu)建方法具有效率高、精度高、分辨率可調(diào)整的優(yōu)點。

    水下地形導航數(shù)據(jù)庫;不規(guī)則三角格網(wǎng);凸殼算法;分割合并算法

    U666.1

    A

    1005-6734(2015)03-0345-05

    2015-02-25;

    2015-06-12

    國家自然科學基金資助項目(61203192,51477028,51405203);中央高?;究蒲袠I(yè)務費專項資金資助(東南大學優(yōu)秀青年教師項目-2242013R30016);船舶工業(yè)預研基金(13J3.8.4)

    王立輝(1979—),男,博士生導師,副教授,從事導航、光學傳感等方面的應用研究。E-mail:wlhseu@163.com

    10.13695/j.cnki.12-1222/o3.2015.03.012

    猜你喜歡
    三角網(wǎng)東南大學格網(wǎng)
    《東南大學學報(醫(yī)學版)》稿約
    《東南大學學報(醫(yī)學版)》稿約
    《東南大學學報(醫(yī)學版)》稿約
    《東南大學學報(醫(yī)學版)》稿約
    實時電離層格網(wǎng)數(shù)據(jù)精度評估
    針對路面建模的Delaunay三角網(wǎng)格分治算法
    基于空間信息格網(wǎng)與BP神經(jīng)網(wǎng)絡的災損快速評估系統(tǒng)
    清華山維在地形圖等高線自動生成中的應用
    平均Helmert空間重力異常格網(wǎng)構(gòu)制方法
    基于位置服務的地理格網(wǎng)編碼設計
    測繪通報(2013年2期)2013-12-11 07:27:50
    久久久久国产一级毛片高清牌| 日韩欧美国产一区二区入口| 一本综合久久免费| 亚洲在线自拍视频| 亚洲色图综合在线观看| 丁香六月欧美| 国产精品野战在线观看 | 丝袜人妻中文字幕| tocl精华| 欧美日韩亚洲国产一区二区在线观看| 国产免费男女视频| 国产一区在线观看成人免费| 日本免费a在线| 99在线视频只有这里精品首页| 成人18禁高潮啪啪吃奶动态图| 欧美人与性动交α欧美软件| av中文乱码字幕在线| 在线天堂中文资源库| 超色免费av| 国产精品 欧美亚洲| 欧美精品啪啪一区二区三区| 亚洲国产看品久久| 日韩人妻精品一区2区三区| 国产单亲对白刺激| 欧美乱色亚洲激情| 欧美在线黄色| 欧美激情高清一区二区三区| 精品久久蜜臀av无| 水蜜桃什么品种好| 国产91精品成人一区二区三区| 欧美在线一区亚洲| 亚洲精品国产色婷婷电影| 水蜜桃什么品种好| 免费在线观看完整版高清| 视频在线观看一区二区三区| 久久人妻av系列| 亚洲国产精品合色在线| 亚洲av成人不卡在线观看播放网| 在线视频色国产色| 一区二区日韩欧美中文字幕| 亚洲国产精品sss在线观看 | 欧美黑人欧美精品刺激| 黄色女人牲交| 亚洲av成人av| 亚洲欧美一区二区三区黑人| 老鸭窝网址在线观看| 香蕉国产在线看| 日韩一卡2卡3卡4卡2021年| 欧美另类亚洲清纯唯美| 亚洲欧美日韩高清在线视频| 黑人操中国人逼视频| 国产精品国产高清国产av| 丝袜在线中文字幕| 国产不卡一卡二| 成年人免费黄色播放视频| 天堂中文最新版在线下载| 精品免费久久久久久久清纯| 久久久久国内视频| 99精品久久久久人妻精品| 亚洲男人的天堂狠狠| 亚洲欧美日韩高清在线视频| 九色亚洲精品在线播放| 黑人巨大精品欧美一区二区蜜桃| 18禁国产床啪视频网站| 国产av精品麻豆| 午夜亚洲福利在线播放| 一个人观看的视频www高清免费观看 | 日韩 欧美 亚洲 中文字幕| 亚洲性夜色夜夜综合| 精品国产一区二区久久| 亚洲一区二区三区不卡视频| 色在线成人网| 亚洲七黄色美女视频| 欧美一级毛片孕妇| 色老头精品视频在线观看| 国产又爽黄色视频| 免费搜索国产男女视频| 9色porny在线观看| 日本五十路高清| 国产有黄有色有爽视频| 少妇的丰满在线观看| 亚洲自偷自拍图片 自拍| 亚洲国产毛片av蜜桃av| 最近最新免费中文字幕在线| 免费av中文字幕在线| 在线观看66精品国产| 一进一出好大好爽视频| 国产精品偷伦视频观看了| 久久久久久久久免费视频了| www.自偷自拍.com| 99国产极品粉嫩在线观看| 久久香蕉国产精品| 国产免费男女视频| 亚洲精品久久成人aⅴ小说| 国产精品久久久久久人妻精品电影| 欧美一级毛片孕妇| 亚洲成人免费电影在线观看| 欧美黄色片欧美黄色片| 日韩一卡2卡3卡4卡2021年| 成人永久免费在线观看视频| 国产蜜桃级精品一区二区三区| 日韩人妻精品一区2区三区| 欧美大码av| 精品国产超薄肉色丝袜足j| 18禁国产床啪视频网站| 一进一出抽搐动态| 无限看片的www在线观看| 丁香欧美五月| 久久亚洲真实| 校园春色视频在线观看| 亚洲一区二区三区色噜噜 | 午夜久久久在线观看| 一二三四在线观看免费中文在| 亚洲,欧美精品.| 麻豆国产av国片精品| 真人做人爱边吃奶动态| 国产三级在线视频| 18美女黄网站色大片免费观看| 91大片在线观看| 国产一区二区三区视频了| 成人免费观看视频高清| 亚洲成国产人片在线观看| 老熟妇乱子伦视频在线观看| 日本精品一区二区三区蜜桃| 狂野欧美激情性xxxx| 国产亚洲欧美在线一区二区| 高清黄色对白视频在线免费看| 国产极品粉嫩免费观看在线| 不卡av一区二区三区| av在线播放免费不卡| 亚洲一区二区三区欧美精品| 国产1区2区3区精品| 国产av在哪里看| 精品免费久久久久久久清纯| 亚洲欧美日韩高清在线视频| 99国产极品粉嫩在线观看| 狠狠狠狠99中文字幕| 欧洲精品卡2卡3卡4卡5卡区| 欧美日韩亚洲高清精品| 免费女性裸体啪啪无遮挡网站| 午夜久久久在线观看| 精品国产超薄肉色丝袜足j| 久久久久久久午夜电影 | 亚洲视频免费观看视频| 国产国语露脸激情在线看| av电影中文网址| 日韩 欧美 亚洲 中文字幕| 嫁个100分男人电影在线观看| 欧美最黄视频在线播放免费 | 久99久视频精品免费| 欧美乱码精品一区二区三区| 亚洲精品久久成人aⅴ小说| 亚洲国产精品一区二区三区在线| 又大又爽又粗| 成人三级做爰电影| 黑人操中国人逼视频| 国产精品综合久久久久久久免费 | 在线观看午夜福利视频| 91在线观看av| 80岁老熟妇乱子伦牲交| 日本wwww免费看| 老司机深夜福利视频在线观看| 在线观看免费视频网站a站| 18禁裸乳无遮挡免费网站照片 | 日韩一卡2卡3卡4卡2021年| 欧美激情久久久久久爽电影 | 国产熟女午夜一区二区三区| 亚洲 欧美 日韩 在线 免费| 免费高清在线观看日韩| a级毛片黄视频| 亚洲人成伊人成综合网2020| 亚洲精品一卡2卡三卡4卡5卡| 91精品三级在线观看| e午夜精品久久久久久久| 美女国产高潮福利片在线看| 久久香蕉国产精品| 在线播放国产精品三级| 国产男靠女视频免费网站| 中文字幕另类日韩欧美亚洲嫩草| 极品人妻少妇av视频| 日日爽夜夜爽网站| 欧美午夜高清在线| 国产亚洲欧美98| 在线观看66精品国产| 美女高潮到喷水免费观看| 久久久久久亚洲精品国产蜜桃av| 激情视频va一区二区三区| 俄罗斯特黄特色一大片| 免费av中文字幕在线| 日本免费一区二区三区高清不卡 | 一二三四社区在线视频社区8| 老鸭窝网址在线观看| 欧美成狂野欧美在线观看| 久久伊人香网站| 在线十欧美十亚洲十日本专区| 日韩精品青青久久久久久| 国产精品一区二区三区四区久久 | 男女高潮啪啪啪动态图| 国产精品野战在线观看 | 啪啪无遮挡十八禁网站| 狂野欧美激情性xxxx| 韩国av一区二区三区四区| 国产精品影院久久| 国产成人精品在线电影| 别揉我奶头~嗯~啊~动态视频| 国产精品一区二区在线不卡| 又黄又爽又免费观看的视频| 国产在线观看jvid| 国产精品九九99| 男人操女人黄网站| 制服人妻中文乱码| 国产亚洲精品一区二区www| 在线观看66精品国产| 少妇被粗大的猛进出69影院| 免费看十八禁软件| 人人妻人人添人人爽欧美一区卜| 午夜a级毛片| 69精品国产乱码久久久| 亚洲一区中文字幕在线| 啦啦啦 在线观看视频| 成熟少妇高潮喷水视频| 999精品在线视频| 久久99一区二区三区| xxxhd国产人妻xxx| 丰满的人妻完整版| 成年女人毛片免费观看观看9| 亚洲精品中文字幕在线视频| 日韩人妻精品一区2区三区| 男男h啪啪无遮挡| 久久精品国产亚洲av香蕉五月| 波多野结衣一区麻豆| 两性午夜刺激爽爽歪歪视频在线观看 | 麻豆国产av国片精品| 欧美激情久久久久久爽电影 | 久久久精品国产亚洲av高清涩受| 天堂俺去俺来也www色官网| 久久人妻福利社区极品人妻图片| 亚洲色图综合在线观看| 久久精品国产亚洲av香蕉五月| 久久这里只有精品19| 欧美成人午夜精品| 久久99一区二区三区| 免费一级毛片在线播放高清视频 | 亚洲一区二区三区欧美精品| 国产精品一区二区免费欧美| 丰满饥渴人妻一区二区三| 精品乱码久久久久久99久播| 日本撒尿小便嘘嘘汇集6| 在线观看免费视频日本深夜| 免费人成视频x8x8入口观看| 香蕉久久夜色| 亚洲精品国产精品久久久不卡| 国产精品 欧美亚洲| 亚洲成人国产一区在线观看| 99久久精品国产亚洲精品| 久久久久久免费高清国产稀缺| 日日干狠狠操夜夜爽| 怎么达到女性高潮| 免费在线观看完整版高清| 精品欧美一区二区三区在线| av中文乱码字幕在线| 久久午夜亚洲精品久久| 在线观看66精品国产| 中文字幕另类日韩欧美亚洲嫩草| 9191精品国产免费久久| av有码第一页| 久久人人爽av亚洲精品天堂| 91麻豆精品激情在线观看国产 | 精品乱码久久久久久99久播| 成人亚洲精品av一区二区 | 亚洲国产精品一区二区三区在线| 校园春色视频在线观看| 亚洲人成网站在线播放欧美日韩| 久久久水蜜桃国产精品网| 中文欧美无线码| 脱女人内裤的视频| 大型黄色视频在线免费观看| 免费高清在线观看日韩| www国产在线视频色| 午夜福利影视在线免费观看| 日韩成人在线观看一区二区三区| 狠狠狠狠99中文字幕| 久久久久精品国产欧美久久久| av免费在线观看网站| 国产精品免费一区二区三区在线| 中亚洲国语对白在线视频| 自拍欧美九色日韩亚洲蝌蚪91| 在线十欧美十亚洲十日本专区| 一区福利在线观看| 99riav亚洲国产免费| 午夜免费鲁丝| 99久久人妻综合| 人成视频在线观看免费观看| 欧美最黄视频在线播放免费 | 亚洲第一欧美日韩一区二区三区| 免费看a级黄色片| 一级作爱视频免费观看| 激情视频va一区二区三区| 日韩人妻精品一区2区三区| 亚洲自偷自拍图片 自拍| 91成年电影在线观看| 最新美女视频免费是黄的| 久久亚洲精品不卡| 欧美日韩亚洲国产一区二区在线观看| 午夜免费成人在线视频| 三级毛片av免费| 妹子高潮喷水视频| 久久精品成人免费网站| 777久久人妻少妇嫩草av网站| 精品国产乱码久久久久久男人| 日韩大尺度精品在线看网址 | 日韩高清综合在线| 变态另类成人亚洲欧美熟女 | 法律面前人人平等表现在哪些方面| 波多野结衣av一区二区av| 亚洲人成电影免费在线| 女人被躁到高潮嗷嗷叫费观| av福利片在线| 中文字幕精品免费在线观看视频| 一a级毛片在线观看| 亚洲五月天丁香| 日韩欧美在线二视频| 丰满饥渴人妻一区二区三| 他把我摸到了高潮在线观看| 老鸭窝网址在线观看| 久久伊人香网站| 中文亚洲av片在线观看爽| 十八禁网站免费在线| 午夜精品在线福利| 免费在线观看日本一区| www.自偷自拍.com| 久久精品国产亚洲av高清一级| 高清在线国产一区| 每晚都被弄得嗷嗷叫到高潮| 成在线人永久免费视频| 桃色一区二区三区在线观看| 欧美日韩av久久| 国产精品免费一区二区三区在线| 别揉我奶头~嗯~啊~动态视频| 欧美乱色亚洲激情| 国产一卡二卡三卡精品| 亚洲人成伊人成综合网2020| 欧美精品亚洲一区二区| 日韩av在线大香蕉| 国产精品1区2区在线观看.| 亚洲一码二码三码区别大吗| 美女国产高潮福利片在线看| 亚洲国产欧美一区二区综合| 九色亚洲精品在线播放| 国产成人精品久久二区二区91| 超碰成人久久| а√天堂www在线а√下载| 欧美人与性动交α欧美软件| 51午夜福利影视在线观看| 国产亚洲精品一区二区www| 久久久精品欧美日韩精品| 一区二区三区国产精品乱码| 91成年电影在线观看| 看黄色毛片网站| 91成年电影在线观看| 精品高清国产在线一区| 亚洲av电影在线进入| 色综合婷婷激情| 色综合站精品国产| 国产熟女xx| 国产精品av久久久久免费| 国产熟女xx| 国产有黄有色有爽视频| 欧美精品啪啪一区二区三区| 一级片免费观看大全| 一边摸一边抽搐一进一出视频| 精品免费久久久久久久清纯| 成年版毛片免费区| 99riav亚洲国产免费| 午夜两性在线视频| 国产色视频综合| 亚洲国产欧美网| 19禁男女啪啪无遮挡网站| 一级毛片女人18水好多| 久久久国产精品麻豆| 国产精品野战在线观看 | 日日摸夜夜添夜夜添小说| 成年人免费黄色播放视频| 国产激情欧美一区二区| 国产成人精品在线电影| 高清欧美精品videossex| 欧美激情高清一区二区三区| 美女国产高潮福利片在线看| 国产黄色免费在线视频| 身体一侧抽搐| 免费在线观看黄色视频的| 大型黄色视频在线免费观看| 桃色一区二区三区在线观看| 亚洲国产看品久久| 国产高清国产精品国产三级| 国产精品二区激情视频| 日日摸夜夜添夜夜添小说| 欧美黑人欧美精品刺激| 中文字幕色久视频| 热re99久久精品国产66热6| 亚洲七黄色美女视频| 国产日韩一区二区三区精品不卡| 亚洲全国av大片| a级毛片在线看网站| 欧美日韩国产mv在线观看视频| 天堂动漫精品| 夫妻午夜视频| 国产野战对白在线观看| 99riav亚洲国产免费| 欧美日韩av久久| 国产有黄有色有爽视频| 免费在线观看日本一区| 国产免费av片在线观看野外av| 欧美日韩福利视频一区二区| 欧美乱色亚洲激情| 99在线人妻在线中文字幕| 可以免费在线观看a视频的电影网站| 欧美色视频一区免费| 两性午夜刺激爽爽歪歪视频在线观看 | 久久国产乱子伦精品免费另类| 国产av又大| 国产精品国产高清国产av| 黄片小视频在线播放| 欧美中文日本在线观看视频| www.自偷自拍.com| 99精品久久久久人妻精品| 久久国产精品影院| 成人亚洲精品一区在线观看| 日韩欧美在线二视频| 亚洲国产毛片av蜜桃av| av电影中文网址| 老汉色∧v一级毛片| 一夜夜www| 美国免费a级毛片| 国产精品国产av在线观看| 两人在一起打扑克的视频| 亚洲 欧美 日韩 在线 免费| 欧美精品一区二区免费开放| 久久欧美精品欧美久久欧美| 人妻久久中文字幕网| 人人妻,人人澡人人爽秒播| 亚洲精品在线观看二区| 免费搜索国产男女视频| 亚洲情色 制服丝袜| 在线观看一区二区三区| 丝袜在线中文字幕| 欧美成人性av电影在线观看| 亚洲一区二区三区不卡视频| 狠狠狠狠99中文字幕| 麻豆成人av在线观看| 国产精华一区二区三区| 波多野结衣高清无吗| 少妇的丰满在线观看| 美女午夜性视频免费| 精品午夜福利视频在线观看一区| 99国产极品粉嫩在线观看| 亚洲五月婷婷丁香| 在线观看66精品国产| 日韩人妻精品一区2区三区| 国产熟女xx| 国产精品日韩av在线免费观看 | 在线播放国产精品三级| 一a级毛片在线观看| 精品久久蜜臀av无| 一级a爱片免费观看的视频| 日韩欧美在线二视频| 黄片小视频在线播放| 国产1区2区3区精品| 日本免费a在线| av免费在线观看网站| 99在线视频只有这里精品首页| 新久久久久国产一级毛片| 国产激情久久老熟女| 亚洲成av片中文字幕在线观看| 男男h啪啪无遮挡| 国产伦人伦偷精品视频| 麻豆成人av在线观看| 久久香蕉激情| 精品久久久久久,| 成人18禁在线播放| 琪琪午夜伦伦电影理论片6080| 中文字幕精品免费在线观看视频| 亚洲人成电影观看| 伊人久久大香线蕉亚洲五| 精品久久蜜臀av无| 99精品欧美一区二区三区四区| 午夜91福利影院| 国产成人精品无人区| 日本黄色视频三级网站网址| 操美女的视频在线观看| 一a级毛片在线观看| 人人妻人人添人人爽欧美一区卜| 黄色视频,在线免费观看| 欧美不卡视频在线免费观看 | 女人高潮潮喷娇喘18禁视频| 欧洲精品卡2卡3卡4卡5卡区| 亚洲av美国av| 国产aⅴ精品一区二区三区波| 国产一卡二卡三卡精品| 国产av一区在线观看免费| 80岁老熟妇乱子伦牲交| 夫妻午夜视频| 少妇被粗大的猛进出69影院| 欧美中文综合在线视频| 美女午夜性视频免费| 成年女人毛片免费观看观看9| 自线自在国产av| 久久九九热精品免费| 久久久久国产精品人妻aⅴ院| 欧美日韩亚洲综合一区二区三区_| 午夜日韩欧美国产| 十八禁网站免费在线| 午夜福利影视在线免费观看| 男人的好看免费观看在线视频 | 精品久久久久久电影网| 免费av毛片视频| 高清在线国产一区| 久久天堂一区二区三区四区| 国产高清videossex| 亚洲视频免费观看视频| 久久久久精品国产欧美久久久| 啦啦啦免费观看视频1| 欧美丝袜亚洲另类 | 一级片免费观看大全| 一边摸一边抽搐一进一出视频| 一级片免费观看大全| 黑人巨大精品欧美一区二区mp4| 亚洲五月天丁香| 久热爱精品视频在线9| 午夜福利在线观看吧| 黑人巨大精品欧美一区二区mp4| 亚洲人成电影观看| 欧美日韩黄片免| 亚洲一卡2卡3卡4卡5卡精品中文| 老司机靠b影院| 久久精品成人免费网站| 午夜91福利影院| 黄色视频不卡| 久久久久久久久中文| 日韩欧美三级三区| 精品午夜福利视频在线观看一区| 一级a爱片免费观看的视频| 午夜久久久在线观看| 国产欧美日韩一区二区三| 黄片播放在线免费| 天堂√8在线中文| 精品国内亚洲2022精品成人| 国产一区二区在线av高清观看| 热re99久久国产66热| 黑丝袜美女国产一区| 精品卡一卡二卡四卡免费| 国产亚洲欧美在线一区二区| 黄色怎么调成土黄色| 国产黄a三级三级三级人| 免费一级毛片在线播放高清视频 | 亚洲精品国产精品久久久不卡| 啦啦啦在线免费观看视频4| 国产黄a三级三级三级人| 久久国产亚洲av麻豆专区| 久久精品国产综合久久久| ponron亚洲| 美女 人体艺术 gogo| 99久久人妻综合| 首页视频小说图片口味搜索| 亚洲片人在线观看| 国产精品一区二区在线不卡| 99热只有精品国产| 免费在线观看日本一区| 视频区欧美日本亚洲| 亚洲一区二区三区不卡视频| 亚洲国产精品一区二区三区在线| 老熟妇乱子伦视频在线观看| 大香蕉久久成人网| 欧美日韩亚洲高清精品| 免费在线观看亚洲国产| 搡老岳熟女国产| 国产激情久久老熟女| 久久精品国产清高在天天线| 亚洲欧美日韩高清在线视频| 视频区欧美日本亚洲| 欧美乱色亚洲激情| 交换朋友夫妻互换小说| 又紧又爽又黄一区二区| 男人的好看免费观看在线视频 | 久久狼人影院| 正在播放国产对白刺激| 老汉色av国产亚洲站长工具| 可以在线观看毛片的网站| 午夜福利在线免费观看网站| 岛国在线观看网站| 日韩人妻精品一区2区三区| 精品国产亚洲在线| 欧美日韩福利视频一区二区| 波多野结衣高清无吗| e午夜精品久久久久久久| 亚洲国产看品久久| 黄色丝袜av网址大全| 亚洲av美国av| 国产精品电影一区二区三区| 国内毛片毛片毛片毛片毛片| 女性被躁到高潮视频| 免费看十八禁软件| 一进一出抽搐gif免费好疼 | 成人国产一区最新在线观看| 成人国语在线视频| 一进一出好大好爽视频| 青草久久国产| 99国产极品粉嫩在线观看| 一级片'在线观看视频| 亚洲成人国产一区在线观看| 成人精品一区二区免费| 久久久久久久精品吃奶| 色哟哟哟哟哟哟| 欧美丝袜亚洲另类 | 身体一侧抽搐|