• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Experimental Study on Influence of Composition on Mechanical Properties of Fuel-rich Composite Propellants

    2015-05-10 02:34:30,-
    含能材料 2015年8期

    , -

    (School of Astronautics, Beijing University of Aeronautics and Astronautics, Beijing 100191, China)

    1 Introduction

    Fuel-rich propellants are typically used for ramjet-rocket motors[1]. Fuel-rich propellants are classified into metal-loaded compositions with high smoke levels, carbon compositions with moderate smoke levels and hydrocarbon-fueled compositions with low smoke level. The major components of hydrocarbon-fueled compositions are a binder, an oxidizer, and sometimes a hydrocarbon filler[2]. The propellant grain must withstand the stresses and strains imposed on it during handling, ignition, and firing of rocket[3]. The mechanical properties are so essential for the propellant to be measured to ensure its capability for storage, transportation, aging, and operating under the combustion loads[4].

    For the composite solid rocket propellants, tensile mechanical tests are often applied. With elastic materials, stresses and strains are essentially proportional to each other and independent of time[5]. Temperature variations during storage are found to be the main reason for the propellant strain and stress leading to decreasing quality[6].

    The variation of performance parameters with variation in formulation cannot yet be presented by mathematical models exactly. Many studies have been reported previously to correlate the individual performance properties with the formulation parameters. Marsh[7]studied the polymer parameters for formulation design and quality control, and a general correlation of mechanical properties. He concluded that there is a correlation of propellant elongation with polymer network parameter, while tensile capacity becomes a useful formulation characteristic. Hill[8]studied the effect of the plasticizer to improve the elastomeric properties of binders and hence the mechanical properties. Nian[9]studied the effect of the functionality group of hydroxyl-terminated polybutadiene pre-polymer (HTPB) on the binder network and its correlation with the mechanical properties. Keizers[10]made studies on ammonium perchlorate AP/HTPB propellants to predict some of the important parameters by developing computer model.

    According to binder base, composite propellants are characterized by their excellent tensile mechanical properties, strength at maximum in the range of 5-35 kg·cm-2and strain at maximum in the range of 25%-120% at normal temperature[11].

    The objective of the present experimental investigation in the paper was to determine the effect of solid fillers, such as oxidizer solid loading and oxidizer particle size distribution, on the mechanical properties of the fuel-rich composite propellant. The mechanical properties (tensile strength, strain, and Young′s modulus) were measured and analyzed for different formulations.

    2 Experimental Method

    2.1 Propellant formulations

    The formulations studied in this work were formulated on the basis of HTPB as a binder and AP as an oxidizer. Further investigation includes system in which fuel, aluminum (Al), and burning rate accelerator, copper chromite (CC), added at the expense of the binder.

    The compositions of all tested propellant formulations presented in Table 1. The propellant binder was composed of 85.7% HTPB as a main backbone, 12.3% hexa-methylene di-isocianate (HMDI) as a cross-linking agent and 2.0% methyl aziridinyl phosphine oxide (MAPO) as a bonding agent[12]. All propellant compositions contained 0.5%carbon black (CB) with 10 μm particle size as an opacifier which was found to be very important to apply the black body role[2]. The base line propellant formulation A3 consisted of 45% AP with 9.0 μm particles and the particle size variations were investigated through a bi-modal system with AP (64.0 μm)[13]. The AP average particle size in formulation B1 is 44.5 μm and in formulation B2 is 55.9 μm.

    Table1The fuel-rich formulations

    batchbinder/%AP(9μm)/%AP(64μm)/%Al/%CC/%CB/%A174.525.00.00.00.00.5A264.535.00.00.00.00.5A354.545.00.00.00.00.5B154.530.015.00.00.00.5B254.515.030.00.00.00.5C144.545.00.010.00.00.5C234.545.00.020.00.00.5D151.545.00.00.03.00.5D248.545.00.00.06.00.5E141.545.00.010.03.00.5E238.545.00.010.06.00.5

    Preparation of the propellants for the test program was made by using a heavy-duty mixer (9×10-3m3capacity) with weight of 10 kg per formulation to guarantee the slurry homogeneity. Propellant slurry casting was applied in special molds with standard dimensions l5 cm×15 cm×15 cm under vacuum and vibration. The molds are placed in a curing oven at 55 ℃, for a total curing time of 240 h. Curing temperature is selected to accelerate the cross linking reactions. After curing the molds are cut into sheets with uniform thickness of 1.2 cm.

    Test specimens were produced according to Joint Army-Navy-NASA-Air Force Propulsion Committee (JANNAF) standard[14].

    Fig.1 shows the produced specimens which checked for voids (e.g. air bubbles-cracks-porosities-foreign matter) by X-Ray. After that, the accepted specimens are stored at ambient temperature in dry place.

    Fig.1X-Ray film for JANNAF specimens

    2.2 Apparatuses

    The Zwick Z050 universal test machine was used in carrying out all the mechanical tests. The machine can do seven different mechanical tests (tensile, compression, bending, peeling, creep, relaxation, and low cycle fatigue tests). The machine is provided with 3 different load cells (2.5 kN, 10 kN, and 50 kN) to cover wide ranges of measurements and applications. The machine is supported with a temperature chamber which allow for performing tests under desired temperature.

    The Shore hardness(A) was measured using the hardness tester Zwick (model 3102) at 25 ℃.

    2.3 Measurement methods

    Tensile tests are used to determine a certain number of parameters, as shown in figure 2 that allow for better representation of propellant behavior. These parameters include: Young′s modulus (E),maximum strength (σm),maximum strain (εm) corresponding to maximum strength, break stress,break strain.

    Young′s modulus is determined from the linear part of the stress- strain curve. JANNAF specimens were tested at tensile rate of 50 mm/min and temperature 25 ℃. The tensile test was carried out for at least five samples for each prepared formulation and then the mean value of the obtained results was recorded.

    3 Results and Discussion

    3.1 Result

    In this work the regression line is calculated in the range from begin of Young′s Modulus determination to the end of Young′s Modulus determination (see Fig.2) that indicates the parameters which can be identified from the tensile test.

    Fig.2General tensile behavior of solid propellant

    The mechanical properties of the tested propellant formulations were independent on the curative ratio (NCO/OH ratio of HMDI and HTPB) in this program where NCO/OH ratio was 2.0 in all formulations (this high ratio was verified practically by preparation of different binder formulations with ratio from 0.5 to 3 then test them which lead to this value). The results of these mechanical properties with different compositions are given in Table 2.

    Table2Results of mechanical properties at 25 ℃

    batchbinder/%σm/kg·cm-2εm/%E/kg·cm-2AA174.522.5198.0846.6656.00A264.524.6390.9957.5057.50A354.527.9275.3263.1961.25B154.520.0578.3353.3353.50B254.515.6485.3044.2450.50C144.531.2270.0167.5264.00C234.535.0736.0773.5272.25D151.528.9973.2265.2263.00D248.530.0170.0966.0163.50E141.532.0148.5468.7766.75E238.533.8237.0071.0568.00

    3.3 Effect of binder content on the mechanical properties

    According to Fig.3, Fig.4 and Fig.5 increasing the binder percentage (from 34.5% to 74.5%) in group A, C, D, and E make decreasing of the maximum strength (from 35.07 kg·cm-2to 22.51 kg·cm2with a percentage of about 35.8%), Young′s modulus (from 73.52 kg·cm-2to 46.66 kg·cm-2with a percentage of about 36.5%) and hardness (A) (from 72 to 56 with a percentage of about 22.2%) respectively. That because of decreasing binder by increasing the fillers percentage leads to increase the filling coefficient in the binder matrix which strengthens it and increasing the maximum strength and hardness. Also increasing the solid loading leads to formation of additional crosslinks between the solid particles and the network chains of the binder matrix.

    Fig.3Effect of the binder content on the propellant maximum strength

    Fig.4Effect of the binder content on the propellant Young′s modulus

    Fig.5Effect of the binder content on the propellant Shore hardness(A)

    Fig. 6 shows the trend of increasing the maximum strain (from 37.07% to 98.08% with a percentage of about 164.8%) when increasing the binder percentage (from 34.5% to 74.5%) in group A, C, D, and E. It is observed that although the binder decreased 4% from E2 to C2 and from D2 to C1 but the effect in maximum strain is negligible. It is clear that incorporate 10% of Al instead of 6% of CC has no effect on the maximum strain.

    It is clear that the maximum strain of the composite propellant samples decreases with decreasing the binder content and increasing the solid loading. This effect may arise from the reduced volume fraction of the binder matrix due to the increasing volume fraction of solid particles. When the sample of composite propellant is subjected to uniaxial tensile stresses, the total deformation is accommodated only by the binder matrix because aluminum and ammonium perchlorate particles are hard and possess very high elastic modulus compared to the binder matrix.

    Fig.6Effect of the binder content on the propellant maximum strain

    Group B has the same binder content as A3 (55%) but with different AP average diameter and this factor has a great effect on the mechanical properties. This will be discussed in the next part separately.

    3.2 Effect of the oxidizer particle size on the mechanical properties

    Fig.7 and Fig.8 present the effect of the oxidizer particle size on the maximum strength and hardness (A) respectively. The larger particle size of AP (9 μm in A3, then 44.5 μm in B1, finally 55.9 μm in B2) without changing the propellant composition, the lower the maximum strength (27.92 kg·cm-2, 20.05 kg·cm-2, 15.64 kg·cm-2) and the lower the hardness (A) (61.25, 53.5, 50.5). This is because the small particle sizes of AP act as active fillers and enhance the mechanical strength of the propellant matrix.

    Fig.7Effect of the oxidizer particle size on the propellant maximum strength

    Fig.8Effect of the oxidizer particle size on the propellant Shore hardness(A)

    The polymer system filled with coarse particles starts dewetting at a smaller stress compared to a system containing fine particles. Thus the strength increases with the increasing content of fine particles in the polymer matrix system.

    According to Fig.9 the same trend is found. Young′s modulus is decreased (63.19 kg·cm-2, 53.33 kg·cm-2, 44.24 kg·cm-2) with increasing the particle size of AP.

    Fig.9Effect of the oxidizer particle size on the propellant Young′s modulus

    Fig. 10 shows the relation between the oxidizer particle size and the maximum strain. The results show that increasing AP particle size within the same binder percentage leads to increase the maximum strain (75.32%, 78.33%, 85.3%) because with increasing the particle size of the oxidizer the apparent volume will be decreased and the distances between the particles will be increased.

    Fig.10Effect of the oxidizer particle size on the propellant maximum strain

    Increasing volume fraction of fine fillers reduces the elongation capability of the composite propellant. This behavior caused by different dewetting nature of large and small particles. Vacuoles (vacuum-holes) occur between solid particle and binder phase when the propellant sample dewets. If the load on the sample is maintained, vacuoles enlarge and eventually combine with each other. The volume of the propellant increases during tensile testing due to the presence of vacuoles and due to its combine with each other[15]. This means that these vacuoles contribute to the total elongation after dewetting occurs. Formation of vacuoles in the propellants containing a larger quantity of fine AP is less than that in propellants containing coarse particles. Thus, increasing fine AP fraction decreases the maximum strain.

    4 Conclusion

    The mechanical properties are so essential for the propellant to be measured to ensure its capability for storage, transportation, aging, and operating under the combustion loads. In this work the effect of solid loading of the fillers in the fuel-rich composite propellants on the mechanical properties was studied. It is observed that as the solid loading increase and the binder percentage decrease from 74.5% to 34.5% the tensile strength increase from 22.51 kg·cm-2to 35.07 kg·cm-2and the strain decrease from 98.08% to 36.07% due to formation of additional crosslinks between the solid particles and the network chains of the binder matrix.

    The mechanical properties of composite propellants are also strongly affected by the particle size of the ammonium perchlorate. With increasing the oxidizer average particle size (9 μm, 44.5 μm and 55.9 μm) the maximum strength decreases (27.92 kg·cm-2, 20.05 kg·cm-2, 15.64 kg·cm-2) and the maximum strain increases (75.32%, 78.33%, 85.30%) because the apparent volume decreased and the distances between the particles increased.

    Much further work is required in this direction to study the effect of AP particle size variations through tri-model systems on the mechanical properties of the composite propellants.

    [1] Shalom Abraham, Gany Alon. Flammability Limits and Ballistic Properties of Fuel-Rich Propellants [J].Propellants,Explosives,Pyrotechnics, 1991, 16: 59-64.

    [2] Davenas Alain. Solid Rocket Propulsion Technology [M]. First English Edition, New Work: Pergamon Press, 1993, Chapter 12.

    [3] Structural assessment of solid propellant grain [R]. Advisory Group for Aerospace Research and Development, (AGARD). 7 Rue Ancelle, 92200 Neuilly-Sur-Seine, France, Report No. AGARD-AR-350, 1997.

    [4] Amtower Paul K. Propellant Formulation: US 7011722[P], 2006.

    [5] GEORGE P Sutton. Rocket Propulsion Elements [M]. Sixth Edition, New York: John Wiley & Sons, Inc., 1992, Chapter 12.

    [7] Harold E Marsh Jr. Formulation and Quality Control of Polyurethane Propellants [J].JournalofIndustrialandEngineeringChemistry, 1960, 52(9): 768-771.

    [8] Hill M E, Coon C L, Ross D L. Structure Property Relationships in Propellant Ingredients [C]∥AIAA Paper 78-119, 16th Aerospace Science Meeting, 1978.

    [9] Ninan K N, BalagandadharanV P, Katherine K B. Studies on the functionality distribution of htpb and correlation with mechanical properties[J].JournalofPolymer, 1991, 32(4): 628-635.

    [10] Keizers H L J , Hordijik AC, Van Vilet LD, et al. Modeling of Composite Propellant Properties[C]∥36th AIAA/ASME/SAE /ASEE Joint Propulsion conference and Exhibit, Huntsville, Alabama, 2000.

    [11] Timnat Y M. Advanced Chemical Rocket Propulsion [M]. London: Academic Press, 1987.

    [12] Alain Davenas. Solid Rocket Propulsion Technology [M]. First English Edition, New Work: Pergamon Press, 1993.

    [13] Makoto Kohga. Burning rate characteristic of AP-based composite propellant using bimodal AP [J].JournalofPropulsionandPower, 2008, 24(3): 499-506.

    [14] Neviere R. An Extension of the Time-Temperature Superposition Principal to non-linear Viscoelastic Solids [J].IntJournalofSolidsandStructures, 2006, 43:5295-5306.

    [15] Yilmazer U Farris R J. Mechanical behavior and dilatation of particulate-filled thermosets in the rubbery state [J].JournalofAppliedPolymerScience, 1983, 28(11): 3369-3386.

    妹子高潮喷水视频| 久久韩国三级中文字幕| 成人毛片a级毛片在线播放| 男女边摸边吃奶| 中文欧美无线码| 七月丁香在线播放| 欧美日韩视频高清一区二区三区二| 国产精品嫩草影院av在线观看| 国产无遮挡羞羞视频在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 精品视频人人做人人爽| 在线天堂中文资源库| 日韩av不卡免费在线播放| 可以免费在线观看a视频的电影网站 | 精品亚洲乱码少妇综合久久| av有码第一页| 免费在线观看黄色视频的| 美女xxoo啪啪120秒动态图| 国产黄色视频一区二区在线观看| 极品少妇高潮喷水抽搐| 欧美最新免费一区二区三区| 久久久久久伊人网av| 免费观看无遮挡的男女| 另类精品久久| 欧美日本中文国产一区发布| 美女脱内裤让男人舔精品视频| 亚洲国产日韩一区二区| 久久精品国产a三级三级三级| 国产精品一二三区在线看| 久久久久久人人人人人| 午夜91福利影院| 午夜免费男女啪啪视频观看| 搡老乐熟女国产| 在线观看美女被高潮喷水网站| 成人国语在线视频| 亚洲综合色网址| 好男人视频免费观看在线| 女的被弄到高潮叫床怎么办| 美女高潮到喷水免费观看| 如日韩欧美国产精品一区二区三区| 伦理电影免费视频| 激情视频va一区二区三区| 一区二区日韩欧美中文字幕| 这个男人来自地球电影免费观看 | 一区二区三区乱码不卡18| 成年av动漫网址| 久久鲁丝午夜福利片| 久久99蜜桃精品久久| 久久ye,这里只有精品| a 毛片基地| 男人添女人高潮全过程视频| 日韩av不卡免费在线播放| www.精华液| 老司机影院成人| 久久久久久久亚洲中文字幕| 成人毛片a级毛片在线播放| 又粗又硬又长又爽又黄的视频| 又黄又粗又硬又大视频| 麻豆精品久久久久久蜜桃| 黄色视频在线播放观看不卡| 王馨瑶露胸无遮挡在线观看| 一级毛片电影观看| 综合色丁香网| 大片免费播放器 马上看| 黄色视频在线播放观看不卡| 日韩在线高清观看一区二区三区| 国产 一区精品| 人人澡人人妻人| 精品国产超薄肉色丝袜足j| 亚洲精华国产精华液的使用体验| 国产 一区精品| 久久精品久久精品一区二区三区| 99久久人妻综合| 成人亚洲精品一区在线观看| 爱豆传媒免费全集在线观看| 狂野欧美激情性bbbbbb| 亚洲,欧美,日韩| 亚洲美女黄色视频免费看| 久久综合国产亚洲精品| 狠狠精品人妻久久久久久综合| 国产探花极品一区二区| 亚洲综合色惰| 97人妻天天添夜夜摸| 成年动漫av网址| 男的添女的下面高潮视频| 欧美国产精品一级二级三级| 亚洲av综合色区一区| 不卡视频在线观看欧美| 精品一区二区免费观看| 国产精品嫩草影院av在线观看| 欧美97在线视频| 交换朋友夫妻互换小说| 亚洲国产精品一区三区| 天天躁夜夜躁狠狠躁躁| 男女免费视频国产| 丰满迷人的少妇在线观看| 麻豆精品久久久久久蜜桃| 高清视频免费观看一区二区| 精品一区二区三区四区五区乱码 | 亚洲国产av影院在线观看| 亚洲婷婷狠狠爱综合网| 成年女人在线观看亚洲视频| 日本av免费视频播放| 国产视频首页在线观看| 国产男人的电影天堂91| 精品一区在线观看国产| 久久97久久精品| 9热在线视频观看99| av在线app专区| 肉色欧美久久久久久久蜜桃| 亚洲欧洲精品一区二区精品久久久 | av卡一久久| 成年av动漫网址| 精品国产一区二区三区久久久樱花| 亚洲精品乱久久久久久| 少妇 在线观看| 亚洲精品一二三| freevideosex欧美| 午夜福利视频精品| 男人添女人高潮全过程视频| 午夜av观看不卡| 少妇熟女欧美另类| videosex国产| 一区二区av电影网| 久久青草综合色| 少妇 在线观看| 亚洲国产毛片av蜜桃av| 欧美精品高潮呻吟av久久| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲色图 男人天堂 中文字幕| av网站在线播放免费| 最近2019中文字幕mv第一页| 久久久久久久久久久免费av| 一本色道久久久久久精品综合| 久久久久精品性色| 亚洲精华国产精华液的使用体验| 亚洲伊人久久精品综合| 欧美日韩av久久| 亚洲欧美成人精品一区二区| 亚洲综合色惰| 国产乱来视频区| 国产在线免费精品| xxx大片免费视频| 一二三四在线观看免费中文在| 免费在线观看完整版高清| 两性夫妻黄色片| 热re99久久国产66热| 在线观看人妻少妇| 超色免费av| 免费观看无遮挡的男女| 午夜福利乱码中文字幕| 五月伊人婷婷丁香| 亚洲一区中文字幕在线| 亚洲中文av在线| 一本—道久久a久久精品蜜桃钙片| 美女国产高潮福利片在线看| 老汉色av国产亚洲站长工具| 亚洲精品国产av蜜桃| 一区二区三区激情视频| 在线观看人妻少妇| 日本黄色日本黄色录像| av网站免费在线观看视频| 免费播放大片免费观看视频在线观看| 黑人欧美特级aaaaaa片| 一二三四在线观看免费中文在| 国产精品不卡视频一区二区| av免费观看日本| 欧美日韩国产mv在线观看视频| 在线观看一区二区三区激情| 久久99蜜桃精品久久| 黄色怎么调成土黄色| 精品亚洲乱码少妇综合久久| 只有这里有精品99| 久久国内精品自在自线图片| 亚洲成av片中文字幕在线观看 | 99热全是精品| 免费高清在线观看日韩| 亚洲情色 制服丝袜| 欧美成人午夜免费资源| 这个男人来自地球电影免费观看 | 久热久热在线精品观看| 满18在线观看网站| 亚洲 欧美一区二区三区| 久久精品国产亚洲av天美| 狠狠婷婷综合久久久久久88av| 中文精品一卡2卡3卡4更新| 2021少妇久久久久久久久久久| 亚洲精品中文字幕在线视频| 美女中出高潮动态图| 中文字幕另类日韩欧美亚洲嫩草| 最近最新中文字幕免费大全7| 亚洲精品久久午夜乱码| 亚洲欧美日韩另类电影网站| 欧美在线黄色| 永久网站在线| 中文字幕色久视频| 久久精品久久久久久久性| 亚洲成人av在线免费| 欧美国产精品一级二级三级| 新久久久久国产一级毛片| 日韩av在线免费看完整版不卡| 日日摸夜夜添夜夜爱| 青春草视频在线免费观看| 午夜av观看不卡| av不卡在线播放| 亚洲成av片中文字幕在线观看 | 中文字幕制服av| 午夜福利网站1000一区二区三区| 午夜91福利影院| 国产又色又爽无遮挡免| 国产一区亚洲一区在线观看| 熟妇人妻不卡中文字幕| 国产黄频视频在线观看| av女优亚洲男人天堂| 黄色一级大片看看| 成人18禁高潮啪啪吃奶动态图| 极品少妇高潮喷水抽搐| 欧美日韩精品成人综合77777| www日本在线高清视频| 精品人妻熟女毛片av久久网站| xxx大片免费视频| 香蕉精品网在线| 纵有疾风起免费观看全集完整版| 午夜老司机福利剧场| 黄片小视频在线播放| 各种免费的搞黄视频| 啦啦啦啦在线视频资源| 久久免费观看电影| 午夜日韩欧美国产| 久久久久精品人妻al黑| 国产视频首页在线观看| 日韩电影二区| 爱豆传媒免费全集在线观看| 午夜精品国产一区二区电影| 一区二区三区精品91| 99久久精品国产国产毛片| 在线精品无人区一区二区三| 亚洲欧洲日产国产| 在线观看一区二区三区激情| 99热国产这里只有精品6| 国产黄色视频一区二区在线观看| 制服丝袜香蕉在线| 天天躁日日躁夜夜躁夜夜| 少妇被粗大的猛进出69影院| 国产一区亚洲一区在线观看| 天天躁夜夜躁狠狠躁躁| 成人黄色视频免费在线看| a级毛片黄视频| 性高湖久久久久久久久免费观看| 天美传媒精品一区二区| 亚洲精华国产精华液的使用体验| 有码 亚洲区| av线在线观看网站| 亚洲精品,欧美精品| 亚洲精品av麻豆狂野| 男女午夜视频在线观看| 亚洲一区二区三区欧美精品| 国产av国产精品国产| 自线自在国产av| 美女脱内裤让男人舔精品视频| 免费不卡的大黄色大毛片视频在线观看| 日本欧美国产在线视频| 午夜福利乱码中文字幕| 亚洲美女黄色视频免费看| 中文乱码字字幕精品一区二区三区| 五月开心婷婷网| 国产高清国产精品国产三级| 国产免费又黄又爽又色| 日韩大片免费观看网站| 国产在线一区二区三区精| 国产精品成人在线| 少妇人妻精品综合一区二区| 天天操日日干夜夜撸| 毛片一级片免费看久久久久| 老汉色av国产亚洲站长工具| 青青草视频在线视频观看| 男女无遮挡免费网站观看| 国产精品秋霞免费鲁丝片| 麻豆乱淫一区二区| 国产精品 国内视频| 日韩免费高清中文字幕av| 岛国毛片在线播放| 国产日韩一区二区三区精品不卡| 老熟女久久久| 亚洲av中文av极速乱| 黑人欧美特级aaaaaa片| 乱人伦中国视频| 在线观看免费日韩欧美大片| 欧美成人午夜精品| 亚洲av国产av综合av卡| 狂野欧美激情性bbbbbb| 精品人妻偷拍中文字幕| 美女国产高潮福利片在线看| 国产成人精品无人区| 天天躁日日躁夜夜躁夜夜| 黄色一级大片看看| 日日摸夜夜添夜夜爱| 人妻一区二区av| 日本猛色少妇xxxxx猛交久久| 丝袜喷水一区| 一区二区av电影网| 日韩制服丝袜自拍偷拍| 视频区图区小说| 国产精品久久久久久精品古装| a级毛片在线看网站| 在现免费观看毛片| 黄频高清免费视频| 99久国产av精品国产电影| 欧美日韩综合久久久久久| 中文字幕av电影在线播放| 18禁国产床啪视频网站| 中文字幕最新亚洲高清| 免费黄频网站在线观看国产| 国产精品一国产av| 女性被躁到高潮视频| 一级毛片我不卡| 少妇被粗大的猛进出69影院| 搡女人真爽免费视频火全软件| 美女福利国产在线| 国产精品久久久av美女十八| 亚洲精品自拍成人| 卡戴珊不雅视频在线播放| 一级爰片在线观看| 亚洲精品久久久久久婷婷小说| 99久久综合免费| 秋霞伦理黄片| 亚洲内射少妇av| 国产一区有黄有色的免费视频| 性少妇av在线| 亚洲国产精品国产精品| 色婷婷av一区二区三区视频| 国产野战对白在线观看| 成人国产av品久久久| 欧美97在线视频| 七月丁香在线播放| 少妇精品久久久久久久| 69精品国产乱码久久久| 男人爽女人下面视频在线观看| 最近2019中文字幕mv第一页| 国产成人aa在线观看| 黄片小视频在线播放| 亚洲av男天堂| 性色av一级| 久久女婷五月综合色啪小说| 午夜激情久久久久久久| 国产亚洲一区二区精品| 欧美老熟妇乱子伦牲交| 亚洲精品视频女| 久久99热这里只频精品6学生| 久久久久久久国产电影| 老鸭窝网址在线观看| 国产免费一区二区三区四区乱码| av视频免费观看在线观看| 街头女战士在线观看网站| 性色avwww在线观看| 亚洲精华国产精华液的使用体验| 搡女人真爽免费视频火全软件| 亚洲国产色片| 国产精品.久久久| 国产亚洲午夜精品一区二区久久| 久久久久久人妻| 电影成人av| 丝袜美足系列| 国产亚洲av片在线观看秒播厂| 一区二区三区四区激情视频| 丝袜喷水一区| 精品一区二区三区四区五区乱码 | 欧美精品一区二区大全| 午夜福利视频精品| 国产不卡av网站在线观看| av免费观看日本| 人妻系列 视频| 久久久久久久久久人人人人人人| 中文精品一卡2卡3卡4更新| 国产日韩欧美亚洲二区| 精品国产乱码久久久久久小说| 韩国av在线不卡| 男女啪啪激烈高潮av片| 老司机亚洲免费影院| 日韩视频在线欧美| 精品久久久久久电影网| 侵犯人妻中文字幕一二三四区| 狠狠婷婷综合久久久久久88av| 9191精品国产免费久久| 五月开心婷婷网| 天堂8中文在线网| 赤兔流量卡办理| 精品午夜福利在线看| 国产日韩欧美亚洲二区| 精品国产一区二区久久| 国产日韩欧美视频二区| 男的添女的下面高潮视频| 欧美国产精品va在线观看不卡| 国产av码专区亚洲av| 卡戴珊不雅视频在线播放| 亚洲精品美女久久av网站| 美女xxoo啪啪120秒动态图| 久久这里有精品视频免费| 熟女少妇亚洲综合色aaa.| 午夜福利视频在线观看免费| 亚洲美女视频黄频| 亚洲国产欧美日韩在线播放| 永久网站在线| 少妇猛男粗大的猛烈进出视频| 成年女人在线观看亚洲视频| av片东京热男人的天堂| 三上悠亚av全集在线观看| 欧美日韩成人在线一区二区| 下体分泌物呈黄色| 免费观看av网站的网址| 一级毛片我不卡| 欧美+日韩+精品| 亚洲欧洲精品一区二区精品久久久 | 久久热在线av| 成年动漫av网址| 日韩中文字幕视频在线看片| 国产亚洲av片在线观看秒播厂| 日韩伦理黄色片| 青春草国产在线视频| 永久免费av网站大全| 2021少妇久久久久久久久久久| 99精国产麻豆久久婷婷| 国产成人免费无遮挡视频| 18+在线观看网站| 欧美国产精品一级二级三级| 亚洲美女搞黄在线观看| 最黄视频免费看| 久久久久久人人人人人| 午夜av观看不卡| 亚洲av综合色区一区| 欧美日韩成人在线一区二区| 国产精品嫩草影院av在线观看| 亚洲国产日韩一区二区| 久久久久人妻精品一区果冻| 男人添女人高潮全过程视频| 少妇人妻久久综合中文| 国产在线一区二区三区精| 搡女人真爽免费视频火全软件| 亚洲精品国产av蜜桃| 五月伊人婷婷丁香| 精品国产超薄肉色丝袜足j| 1024视频免费在线观看| 老司机亚洲免费影院| 欧美xxⅹ黑人| 亚洲精品日本国产第一区| 香蕉丝袜av| 免费在线观看视频国产中文字幕亚洲 | 精品国产露脸久久av麻豆| 亚洲精品av麻豆狂野| 国产在线视频一区二区| 极品人妻少妇av视频| www日本在线高清视频| av.在线天堂| 一区二区三区乱码不卡18| 你懂的网址亚洲精品在线观看| 国产精品女同一区二区软件| 国产精品久久久av美女十八| 性少妇av在线| 欧美日韩亚洲高清精品| 亚洲色图 男人天堂 中文字幕| 久久人人爽人人片av| 美女大奶头黄色视频| 曰老女人黄片| 亚洲一码二码三码区别大吗| a级毛片黄视频| 亚洲一码二码三码区别大吗| 一本久久精品| 亚洲成色77777| 老女人水多毛片| 男人爽女人下面视频在线观看| 久久久久久久大尺度免费视频| 2022亚洲国产成人精品| 777久久人妻少妇嫩草av网站| 久久人妻熟女aⅴ| 亚洲综合精品二区| 免费看不卡的av| 国产男女内射视频| 人妻 亚洲 视频| 多毛熟女@视频| 久久精品国产a三级三级三级| 波多野结衣一区麻豆| 国产片特级美女逼逼视频| 寂寞人妻少妇视频99o| 亚洲婷婷狠狠爱综合网| 99精国产麻豆久久婷婷| 精品久久久精品久久久| 伦理电影大哥的女人| 成人漫画全彩无遮挡| 欧美激情 高清一区二区三区| 丰满迷人的少妇在线观看| 亚洲三级黄色毛片| 精品国产一区二区久久| 18禁动态无遮挡网站| 日韩不卡一区二区三区视频在线| 黄色 视频免费看| 天天躁夜夜躁狠狠久久av| 咕卡用的链子| 国产精品一区二区在线观看99| 99久久综合免费| 国产免费现黄频在线看| 国产视频首页在线观看| 久久毛片免费看一区二区三区| 日韩av免费高清视频| 女人被躁到高潮嗷嗷叫费观| 婷婷色麻豆天堂久久| 最近的中文字幕免费完整| 黄频高清免费视频| 性色av一级| 国产黄频视频在线观看| 国产成人aa在线观看| 日韩人妻精品一区2区三区| 少妇熟女欧美另类| 午夜av观看不卡| www.自偷自拍.com| 亚洲国产av影院在线观看| 99久久人妻综合| 性少妇av在线| 欧美成人午夜免费资源| 又大又黄又爽视频免费| 人妻系列 视频| 麻豆av在线久日| av女优亚洲男人天堂| 寂寞人妻少妇视频99o| 一级毛片我不卡| 90打野战视频偷拍视频| 丝袜美足系列| 欧美日韩一区二区视频在线观看视频在线| 国产精品嫩草影院av在线观看| 成人亚洲精品一区在线观看| 少妇猛男粗大的猛烈进出视频| 宅男免费午夜| 中国国产av一级| 日韩精品免费视频一区二区三区| 各种免费的搞黄视频| 女人高潮潮喷娇喘18禁视频| av福利片在线| 老汉色∧v一级毛片| 男人操女人黄网站| 韩国高清视频一区二区三区| 天天躁夜夜躁狠狠久久av| 国产黄色视频一区二区在线观看| 久久精品国产亚洲av高清一级| 超碰成人久久| 久久国产精品大桥未久av| 嫩草影院入口| 欧美日本中文国产一区发布| 久久午夜综合久久蜜桃| 国产精品不卡视频一区二区| 熟女少妇亚洲综合色aaa.| 精品亚洲成a人片在线观看| 久久久久久伊人网av| 国产爽快片一区二区三区| 成人国产麻豆网| 18禁动态无遮挡网站| 免费观看a级毛片全部| 久久久精品区二区三区| freevideosex欧美| 久久人人爽人人片av| 久久免费观看电影| 人妻少妇偷人精品九色| 午夜福利网站1000一区二区三区| 2021少妇久久久久久久久久久| 制服丝袜香蕉在线| 亚洲av免费高清在线观看| 欧美日韩一区二区视频在线观看视频在线| 欧美日韩国产mv在线观看视频| 午夜福利在线免费观看网站| 91精品国产国语对白视频| 岛国毛片在线播放| 国产av国产精品国产| 亚洲成色77777| 精品卡一卡二卡四卡免费| 一级毛片黄色毛片免费观看视频| 嫩草影院入口| 黑丝袜美女国产一区| 亚洲欧美清纯卡通| 天堂中文最新版在线下载| av不卡在线播放| 人成视频在线观看免费观看| 性色avwww在线观看| 欧美日本中文国产一区发布| 亚洲,一卡二卡三卡| 老司机影院毛片| 国产精品熟女久久久久浪| 美女大奶头黄色视频| 水蜜桃什么品种好| 黄片无遮挡物在线观看| 久久人人97超碰香蕉20202| 久久久久视频综合| 欧美精品高潮呻吟av久久| 亚洲欧洲精品一区二区精品久久久 | 91午夜精品亚洲一区二区三区| 侵犯人妻中文字幕一二三四区| 久久99精品国语久久久| 激情视频va一区二区三区| 91aial.com中文字幕在线观看| 美女视频免费永久观看网站| 国产熟女午夜一区二区三区| 在线亚洲精品国产二区图片欧美| 国产极品粉嫩免费观看在线| 亚洲精品一区蜜桃| 可以免费在线观看a视频的电影网站 | 一区二区三区四区激情视频| 午夜福利在线免费观看网站| 精品久久久精品久久久| 精品福利永久在线观看| 国产日韩欧美视频二区| 两性夫妻黄色片| 在线亚洲精品国产二区图片欧美| 精品一区二区三区四区五区乱码 | 91国产中文字幕| 亚洲成人一二三区av| 亚洲欧美成人综合另类久久久| av在线app专区| 熟女少妇亚洲综合色aaa.|