• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Two new Energetic Ionic Salts with Environmental Protection: Preparation and Thermal Properties of IMI·TNR and 4-AT·TNR

    2015-05-10 05:43:17LIYingBIYangangZHAOWenyuanGUOWeimingZHANGTonglai
    含能材料 2015年12期

    LI Ying, BI Yan-gang, ZHAO Wen-yuan, GUO Wei-ming, ZHANG Tong-lai

    (State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China)

    1 Introduction

    The high energy density materials (HEDMs), especially those materials with excellent performance and environmental compatibility, have been concerned[1-8]. In which, five-azole heterocycles and their derivatives are desired due to their high nitrogen content, enthalpy of formation, density, easily achieved oxygen balance[9-16], among which salts and complexes based on IMI and 4-AT (IMI=imidazolium, 4-AT=4-amino-1,2,4-triazolium) are well researched.

    On the other hand, styphnate (2,4,6-trinitro resorcinol, TNR), is the main ingredient of a famous traditional primary explosives lead styphnate, which is utilized as primary explosive, and contribute to an environment in both military and civilian fields. Although energetic styphnate salts may exhibit comparative excellent performance in their designed complexes or salts with PA[17-21], the studies on them are rarely mentioned, and the reports are focused on energetic nitrate, perchlorate or azide salts.

    In this contribution, two energetic materials IMI·TNR and 4-AT·TNR based on styphnate (TNR=2,4,6-trinitro resorcinol) (Scheme 1) were obtained and characterized by X-ray diffraction analysis. Both materials were fully characterized by elemental analysis, FT-IR spectroscopy, and their thermal effects, sensitivities and performances were gained.

    2 Experimental

    2.1 Materials and Physical Techniques

    All the reagents and solvents were of analytical grade and used without further purification as commercially obtained.

    Elemental analyses were performed on a Flash EA 1112 full-automatic trace element analyzer. The FT-IR spectra were recorded on a Bruker Equinox 55 infrared spectrometer (KBr pellets) in the range of 4000-400 cm-1with a resolution of 4 cm-1. DSC and TG measurements were carried out by using a Pyris-1 differential scanning calorimeter and a Pyris-1 thermogravimetric analyzer (Perkin Elmer, USA) under dry nitrogen as atmosphere with flowing rate of 20 mL·min-1. The energy of combustion was measured by an oxygen bomb calorimeter (Parr 6200, USA).

    Scheme 1 Structural formulas of TNR, IMI, 4-AT

    Impact sensitivity was determinedwith a Fall Hammer Apparatus. Salt (30 mg) was placed between two steel poles and was hit by a 5.0 kg drop hammer.

    Friction sensitivity was determined on a MGY-1 pendularfriction sensitivity apparatus by a standard procedure using 20 mg of the sample. When salt was compressed between two steel poles with mirror surfaces at the pressure of 3.92 MPa, and then was hit horizontally with a 1.5 kg hammer fell from 90° angle.

    Flame sensitivity was determined by following a standard method, in which the sample was ignited by standard black powder pellet. Salt (20 mg) was compacted to a copper cap under the press of 58.8 MPa and was ignited by standard black powder pellet.

    2.2 Synthesis of the compounds

    As shown in Scheme 2, the IMI·TNR(1), 4-AT·TNR(2) were synthesized by the reactions between the appropriate free bases and styphnate acid in water with 1∶1 molar quantities.

    Scheme 2 Synthesis of the salts of IMI·TNR (1), 4-AT·TNR (2)

    IMI(0.14 g, 2 mmol) and TNR (0.49 g, 2 mmol) were dissolved in 30 mL H2O and stirred for 30 min at 70 ℃. The suspension was stirred for 1 h and filtrated immediately into a cup. The synthesis conditions of 4-AT·TNR are basically the same, but only change IMI to 4-AT in the same mole ratio, two kinds of yellow crystals would be obtained after 1d with yield of 75% and 70%, respectively. IR for IMI·TNR (KBr,ν/cm-1): 3421, 2601, 1632, 1533, 1473, 1415, 1266, 1184, 1102, 904, 840, 790, 705, 630. Anal. calcd for IMI·TNR: C 34.50, N 22.36, H 2.24; found: C 34.42, N 22.29, H 2.31. IR for 4-AT·TNR (KBr,ν/cm-1): 3363, 3139, 2684, 1633, 1574, 1529, 1455, 1380, 1340, 1288, 1187, 1086, 930, 833, 717, 617. Anal. calcd for 4-AT·TNR: C 29.18, N 29.79, H 2.13; found: C 29.11, N 29.69, H 2.19.

    2.3 X-ray Crystallography

    The crystal data of IMI·TNR(1), 4-AT·TNR(2) were collected with a Bruker Smart CCD diffractometer with graphite monochromatic Mo Kαradiation (λ=0.71073?) at 294(2) K usingφandωscan modes. Their structures were determined and refined by direct methods using SHELXS-97[22]and SHELXL-97[23]programs. All hydrogen atoms were located from difference Fourier electron-density maps and refined isotropically, while all non-hydrogen atoms were obtained from the difference Fourier map and refined anisotropically. The results concerning crystallographic data collection and structure refinements are given in Table 1.

    CCDC-951714 and CCDC-951715 contain the supplementary crystallographic data for the title compound (1) and (2), and these data can be acquired free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data- request/cif (or through the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; Fax: +44-1223-336033; E-Mail: deposit@ccdc.cam.ac.uk or http://www.ccdc.cam.ac.uk).

    3 Results and Discussion

    3.1 Molecular Structures

    Fig.1 shows themolecular structure and packing diagram of IMI·TNR and 4-AT·TNR, respectively. The selected bond lengths and angles are listed in Table 2, and the hydrogen bond lengths and bond angles of IMI·TNR and 4-AT·TNR in Tables 3 and 4, respectively.

    IMI·TNR crystallizes in a monoclinic cell,which belongs to space groupP21/cwith cell parameters ofa=6.006(1)?,b=13.170(3)? andc=14.816(4)?. For 4-AT·TNR, it is triclinic, space groupP-1 with a density of 1.772 g·cm-3and cell parameters ofa=8.157(2)?,b=8.2047(19) ? andc=10.159(3) ?.

    Table 1 Crystal data and structure refinements for IMI·TNR and 4-AT·TNR

    compoundIMI·TNR4-AT·TNRCCDCNo.951714951715formulaC9H7N5O8C8H7N7O8formulamass/g·mol-1313.20329.21crystalsystemmonoclinictriclinicspacegroupP21/cP-1crystalsize/mm0.33×0.32×0.290.53×0.53×0.19Z42a/?6.006(1)8.157(2)b/?13.170(3)8.2047(19)c/?14.816(4)10.159(3)α/(°)-78.844(9)β/(°)93.818(4)89.602(11)γ/(°)-68.005(7)volume/?31169.4(5)616.9(3)ρc/g·cm-31.7791.772μ(MoKα)/mm-10.1590.160F(000)640.0336.0θ/(°)6.32-58.265.4-58.22reflectioncollected/unique10192/30917561/3230R1,wR2[I>2σ(I)]0.0412/0.10690.0451/0.1237R1,wR2(alldata)0.0522/0.11560.0564/0.1334GOFonF21.0010.999largestdiff.peakandhole/e·?-30.32/-0.230.76/-0.27

    In IMI anions, the C—N bond lengths range from 1.321(2) ?[N(1)—C(3)] to 1.375(2)?[N(1)—C(1)] with an average value of 1.351 ?, which is longer than the normal CN bond length (1.270?) and shorter than the normal C—N bond length (1.450 ?). In 4-AT anions, the C—N bond lengths range from 1.307(2) ?[N(1)—C(1)] to 1.362(2) ?[N(3)—C(1)] with an average value of 1.328?, which is longer than the normal CN bond length (1.270 ?) and shorter than the normal C—N bond length (1.450 ?)[24]. There are two N—N bond[N(1)—N(2), 1.369(2) ? and N(3)—C(4), 1.412(2)?], longer than the normal NN bond length of 1.252 ? and shorter than the normal N—N bond length of 1.470 ?.[24]

    In IMI·TNR molecule, there is only one ionic bond between every IMI anion and TNR cation. Plane of the imidazole ring and the phenyl ring are not in one plane but parallel substantially to each other (Angle between the two planes is 1.696(59)°). Conversely, in 4-AT·TNR the benzene and triazole ring lie in different planes, which are angulated by 75.212(56)° towards each other.

    As shown in Fig.1c, each TNR anion within the crystal structure is surrounded by five TNR anions linked by hydrogen bonds to oxygen atoms on the phenolic hydroxyl and nitro and some van der Waals forces. The hydrogen bonds′ length of the crystal structure are from 2.5684 ? to 3.4641 ?, only one strong hydrogen bonds connected O4, which results in a smaller crystal density,Dc=1.779 g·cm-3. In Fig.1d, each 4-AT anion connected with three TNR cations through four hydrogen bonds[N(2)—H(2)N…O(4), N(2)—H(2)N…O(5), N(4)—H(4)B…O(3), N(4)—H(4B)…O(7)]. The hydrogen bonds′ lengths of the crystal structure are from 2.5843 ? to 3.3896 ?.

    a. molecular structure of IMI·TNR

    b. molecular structure of 4-AT·TNR

    c. packing diagram of IMI·TNR

    d. packing diagram of 4-AT·TNR′s

    Fig.1 Molecular structure and packing diagram of IMI·TNR and 4-AT·TNR

    Table 2 Selected bond lengths and bond angles

    IMI·TNRbondlength/?4-AT·TNRbondlength/?O(4)—C(6)1.332(2)O(1)—C(3)1.339(1)O(4)—H(4)O0.84(2)O(1)—H(1)O0.94(3)O(6)—N(4)1.232(1)O(2)—N(5)1.218(2)O(1)—C(4)1.248(1)O(3)—N(5)1.224(2)O(5)—N(4)1.250(1)O(4)—C(5)1.256(2)N(3)—O(3)1.229(2)O(5)—N(6)1.232(2)N(3)—O(2)1.225(2)O(6)—N(6)1.235(2)N(3)—C(5)1.463(2)O(7)—N(7)1.232(2)O(7)—N(5)1.226(1)O(8)—N(7)1.254(2)N(5)—C(9)1.452(2)N(5)—C(4)1.462(2)N(5)—O(8)1.224(2)N(6)—C(6)1.453(1)IMI·TNRbondangle/(°)4-AT·TNRbondangle/(°)C(6)—O(4)—H(4)O106(2)C(3)—O(1)—H(1)O104(2)O(3)—N(3)—O(2)123.7(1)O(2)—N(5)—O(3)123.8(1)O(3)—N(3)—C(5)117.9(1)O(2)—N(5)—C(4)118.1(1)O(2)—N(3)—C(5)118.4(1)O(3)—N(5)—C(4)118.1(1)O(7)—N(5)—C(9)118.3(1)O(5)—N(6)—O(6)123.4(1)O(7)—N(5)—O(8)122.2(1)O(5)—N(6)—C(6)118.8(1)C(9)—N(5)—O(8)119.5(1)O(6)—N(6)—C(6)117.8(1)N(5)—C(9)—C(8)116.8(1)O(7)—N(7)—O(8)121.6(1)N(5)—C(9)—C(4)120.9(1)O(7)—N(7)—C(8)120.1(1)C(8)—C(9)—C(4)122.3(1)O(8)—N(7)—C(8)118.3(1)N(3)—C(5)—C(4)115.8(1)O(1)—C(3)—C(4)118.1(1)

    Table 3 Hydrogen bond lengths and bond angles for IMI·TNR

    D—H…Ad(D—H)/?d(H…A)/?d(D…A)/?∠D—H…A/(°)N(1)—H(1)N…O(1)(a)0.91001.77002.6666169.00N(2)—H(2)N…O(6)(b)0.80002.41003.1733161.00N(2)—H(2)N…O(2)(c)0.80002.56003.0966126.00O(4)—H(4)O…O(2)(d)0.85002.43002.8766114.00O(4)—H(4)O…O(5)0.85001.83002.5684145.00O(4)—H(4)O…N(4)0.85002.43002.9069116.00C(1)—H(1)…O(8)(a)0.95002.56003.0848115.00

    Note: Symmetry operators: (a) 1-x,1/2+y,1/2-z; (b) -1+x,y,z;(c) -x,1/2+y,1/2-z; (d) 1+x,y,z.

    Table 4 Hydrogen bond lengths and bond angles for 4-AT·TNR

    D—H…Ad(D—H)/?d(H…A)/?d(D…A)/?∠D—H…A/(°)O(1)—H(1)O…O(5)(a)0.94002.39002.9419117.00O(1)—H(1)O…O(8)0.94001.75002.5843147.00O(1)—H(1)O…N(7)0.94002.39002.9307116.00N(2)—H(2)N…O(4)(a)0.90001.79002.6255153.00N(2)—H(2)N…O(5)(a)0.90002.40003.0317127.00N(4)—H(4)A…O(6)(b)0.96002.19003.1443173.00N(4)—H(4)B…O(3)0.91002.53003.0263114.00

    Note: Symmetry operators: (a) -1+x,1+y,z; (b) -1+x,1+y,-1+z.

    3.2 Thermal decomposition

    The thermal behavior, DSC and TG-DTG curves of IMI·TNR and 4-AT·TNR at a linear heating rate of 10 ℃·min-1, recorded in a nitrogen atmosphere separately, are given in Fig.2 and Fig.3.

    Fig.2b shows that there are three exothermic peaks (the first and last small exothermic peaks are overshadowed in the middle of quickly sharp exothermic peak) with the main peak temperature of 223.4 ℃ of IMI·TNR, and there is the mass loss of 62.5% corresponding to this temperature range in Fig.2a. The mass of the final residue is 6.5% at 500 ℃.

    a. TG-DTG curve

    b. DSC curve

    Fig.2 TG-DTG and DSC curves of IMI·TNR in a nitrogen atmosphere at heating rate of 10 ℃·min-1

    Moreover, Fig.3b exhibits two sharp peaks. One is endothermic melting peak, and another is rapidly decomposed peak. The first endothermic process starts from 195.2 ℃ and gained a peak temperature at 205.7 ℃. Following is an exothermic process, which indicates that the product immediately decomposes after melting. The decompose temperature ranges from 230.8 ℃ to 297.3 ℃ with the peak temperaturevat 259.8 ℃. Fig.3a shows that the compound loses mass 70%inthisprocess,andremains7.5%finally.Aftertherapiddecomposition the products of the two compounds are H2O, CO2, N2and a small amount of residue.

    a. TG-DTG curve

    b. DSC curve

    Fig.3 TG-DTG and DSC curves of 4-AT·TNR in a nitrogen atmosphere at a heating rate of 10 ℃·min-1

    3.3 Energy of combustion and enthalpy of formation

    We used Kissinger′s method[25]and Ozawa′s method[26]to study the kinetic parameters of the rapidly exothermic process of title compounds, based on the DSC curves obtained under the condition of static air at heating rates of 5, 10, 15 ℃· min-1and 20 ℃· min-1. The peak temperatures (Tp) of the exothermic process at different heating rates, the apparent activation energy(Ea), the pre-exponential factor (A) and the linear correlation coefficient of two compounds were determined and listed in Table 5 and Table.6. The calculated results with two methods, are similar and all in the normal range (40-400 kJ·mol-1)[27].

    Table 5 Peak temperatures of the first main exothermic stage at different heating rates and kinetic parameters for IMI·TNR with different method

    β/℃·min-1Tp/℃Kissinger'smethodE/kJ·mol-1ln(A/s-1)rSOzawa'smethodE/kJ·mol-1ln(A/s-1)rS5219.610223.415225.720228.7310.6575.62-0.99040.0992303.27--0.99090.0431

    Note:βis the heating rate,ris the linear correlation coefficient.

    Table 6 Peak temperatures of the first main exothermic stage at different heating rates and kinetic parameters for 4-AT·TNR with two method

    β/℃·min-1Tp/℃Kissinger'smethodE/kJ·mol-1ln(A/s-1)rSOzawa'smethodE/kJ·mol-1ln(A/s-1)rS5249.710259.815265.620273.4132.9729.41-0.99120.0912134.89--0.99230.0395

    3.4 Calculation of the Thermal Explosion Properties

    According to the formula group[28]as follow, the corresponding critical temperatures of thermal explosion (Tb), entropies of activation (ΔS≠), enthalpies of activation (ΔH≠), and free energies of activation (ΔG≠) of the decomposition reaction are obtained, and listed in Table 7.

    Tpi=Tp0+aβ+bβ2+cβ2+dβ2

    ΔH≠=E-RT

    ΔG≠=ΔH≠-TΔS≠

    Among them,a,b,canddare constant coefficients, andTpiis the peak temperature of the exothermic process at different heating rates. ThekBis the Boltzmann constant, 1.381×10-23J·K-1andhis the Planck constant, 6.626×10-34J·s,T=Tp0andA=Ak(Kissinger′s method).

    Table 7 CalculatedTb, ΔS≠, ΔH≠, and ΔG≠

    substanceTp0/KTb/KΔS≠/J·K-1·mol-1ΔH≠/kJ·mol-1ΔG≠/kJ·mol-1IMI·TNR489.1495.5-213.06302.89407.104-AT·TNR513.2530.4-221.31129.66243.24

    3.5 Physicochemical properties

    The impact and friction sensitivities as well as the flame sensitivity were determined on the basic of the China National Military Standard (CNMS)[29-31]. The impact sensitivities for title compounds, RDX, HMX and TNT are shown in Table 8. The results show that the title compounds are insensitive to friction sensitivity (misfire under the condition of pressure 3.92 MPa, hammer angle 90°) and flame sensitivity (do not fire when the distance between agents and the black powder pellet<6 cm). Meanwhile, they misfire in the impact sensitivities measurement even the drop height was above 80 cm. It reveals that the two compounds have low impact sensitivity, friction sensitivity and flame sensitivity.

    Table 8 Physicochemical properties of IMI·TNR, 4-AT·TNR, RDX, HMX and TNT

    substanceTm/℃Td/℃ρ/g·cm-3ΔUc/kJ·kg-1ΔHc/kJ·kg-1ΔHf/kJ·mol-1OB/%N/%Si/%Sf/%SF/cmIMI·TNRDec.2231.78-14329-14366.6-42.18-68.9622.36///4-AT·TNR2052601.77-11313-11356.3-409.69-55.8929.78///RDX[28]Dec.2301.91-9600//-21.637.848076±8/HMX[28]Dec.2871.82-9880//-21.637.84100100/TNT[28,32]813001.65-15220//-74.018.504-84-6/

    Note:Tmis the melting point (peak).Tdis the peak temperature.ρis the calculated density. ΔUcis the energy of combustion. ΔHcis the enthalpy of combustion of cation. ΔHfis the molar enthalpy of formation.OBis the oxygen balance (O-2C-H/2-Z) ×1600/M;O, the number of oxygen atoms;C, the number of carbon atoms;H, the number of hydrogen atoms;Z, the number of metal atoms;M, the molecular mass of the compound.Nis the nitrogen content.Sidenotes the impact sensitivity, firing rate with 10.0 kg drop hammer.Sfdenotes the friction sensitivity, firing rate at the pressure of 3.92 MPa with a 1.5 kg hammer from 90° angle.SFdenotes the flame sensitivity, the maximum height of 100% ignition.

    Compared with RDX, HMX and TNT, some physicochemical properties of the twotitle compounds are shown in Table 8. Obviously, physicochemical properties of IMI·TNR and 4-AT·TNR (Td=223, 260 ℃, ΔUc=-14329, -11313 kJ·kg-1,ρ=1.77, 1.78 g·cm-3) are both not lower than RDX (Td=230 ℃, ΔUc=-9600 kJ·kg-1) and close to HMX (Td=287 ℃, ΔUc=-9880 kJ·kg-1), whose densities are even higher than that of TNT (ρ=1.65 g·cm-3).

    3.6 Calculation of Detonation Parameters

    In accordance with the Brinkley-Wilson rule[28], the detonation reaction equations of title compounds are given in Scheme 3.

    Using method of literature[33-34], the heat of detonation (QV), detonation temperature (TB), detonation pressure (pCJ), detonation velocity (D) of two materials were calculated, and results are shown in Table 9. Compared with conventional explosives, explosion heat and detonation temperature of IMI·TNR are close to RDX (QV=1266.08 kJ·mol-1,TB=3700 K), while explosion pressure and detonation velocity of 4-AT·TNR are comparable to that of TNT (pCJ=19.1 GPa,D=6.92 km·s-1)[28].

    Scheme 3 Detonation reaction equations of the title compounds

    Table 9 Detonation parameters of the title compounds

    substanceQV/kJ·mol-1TB/KpCJ/GPaD/km·s-1IMI·TNR1327.383279.1416.335.974-AT·TNR963.352321.1020.886.76

    4 Conclusions

    Two styphnate salts, with IMI and 4-AT cations were preparedwith a ratio 1∶1 in water solution. As characterized by X-ray diffraction, IMI·TNR is monoclinic, space groupP21/cwith a density of 1.779 g·cm-3and 4-AT·TNR is triclinic, space groupP-1 with a density of 1.772 g·cm-3. IMI·TNR and 4-AT·TNR are stabilized by a variety of hydrogen bonds in their crystals. In addition, the high decompose point are 224.4 ℃ and 259.8 ℃, and their activation energies are 306.96 kJ·mol-1and 133.93 kJ·mol-1. The sensitivity measuring shows that the two compounds are insensitive energetic materials confirming with their calculated results of detonation parameters. Compared with conventional explosives, heat of detonation and detonation temperature of IMI·TNR are close to RDX (QV=1266.08 kJ·mol-1,TB=3700 K), while the detonation pressure and detonation velocity of 4-AT·TNR are comparable to that of TNT (pCJ=19.1 GPa,D=6.92 km·s-1).

    [1] Steinhauser G, Klap?tke T M.“Green” pyrotechnics: a chemists′ challenge[J].AngewChemIntEd, 2008, 47: 3330-3347.

    [2] Klap?tke T M, Sabaté C M. Bistetrazoles: Nitrogen-rich, high-performing, insensitive energetic compounds[J].ChemMater, 2008, 20: 3629-3637.

    [3] WU Bi-dong, ZHANG Tong-lai, TANG Shi-min, et al. The environmentally friendly energetic salt (ATZ)(TNPG) based on 4-Amino-1,2,4-triazole (ATZ) and trinitrophloroglucinol (TNPG)[J].ZAnorgAllgChem, 2012, 638(14): 2347-2352.

    [4] ZHANG Jian-guo, WANG Kun, LI Zhi-min, et al.Synthesis, crystal structure and thermal decomposition of a novel environmentally friendly energetic cesium compound,[Cs-2(HTNR)(OH)(H2O)](n)[J].Maingroupchemistry. 2011, 10: 205-213.

    [5] Talawar M B, Sivabalan R, Mukundan T, et al.Environmentally compatible next generation green energetic materials (GEMs)[J].JournalofHazardousMaterials, 2009, 161: 589-607.

    [6] Huynh M H, Hiskey M A, Meyer T J, et al. Green primaries: environmentally friendly energetic complexes[J].PNAS, 2006, 103: 5409-5412.

    [7] Klap?tke T M, Sabaté C M, Welch J M. Alkaline earth metal salts of 5-nitro-2H-tetrazole: prospective candidates for environmentally friendly energetic applications[J].EurJInorgChem, 2009: 769-776.

    [8] Klap?tke T M, Magdalena R, Véronique S. Preparation of energetic poly (azolyl) borates as new environmentally benign green-light-emitting species for pyrotechnics[J].ZAnorgAllgChem, 2013, 639(14): 2433-2443.

    [9] Dippold A A, Klap?tke T M, Winter N. Insensitive nitrogen-rich energetic compounds based on the 5,5′-Dinitro-3,3′-bi-1,2,4-triazol-2-ide anion[J].EurJInorgChem, 2012: 3474-3484.

    [10] FENG Jin-ling, ZHANG Jian-guo, ZHANG Tong-lai, et al. Synthesis, crystal structure, thermal behavior and sensitivity of [Mn(AZT)2(H2O)4] (HTNR)2·4H2O[J].ActaPhysChimSin, 2010: 2410-2416.

    [11] CUI Yan, ZHANG Tong-lai, ZHANG Jian-guo, et al. Synthesis, structural investigation and thermal analyses of a novel coordination compound[Cd(DAT)6](HTNR)2·3.5H2O (DAT=1,5-diaminotetrazole, H2TNR=styphnic acid)[J].JournalofMolecularStructure, 2008, 889: 177-185.

    [12] Poturovic S, Lu Dong-Mei, Heeg M J, et al. Synthesis and structural characterization of heavier group 1 methyl tetrazolate complexes: new bridging coordination modes of the tetrazolate ligand[J].Polyhedron, 2008, 27: 3280-3286.

    [13] XU Cheng, BI Fu-qiang, FAN Xue-zhong, et al. One-pot synthesis of 2-nitro-4,5-dicyano-1H-imidazole[J].ChineseJournalofEnergeticMaterials(HannengCailiao), 2011, 19(6): 743-744.

    [14] HE Yun, FAN Gui-juan, ZHANG Guang-quan, et al. Review on synthesis and reactivity of 5-amino-3-nitro-1,2,4-trizole[J].ChineseJournalofEnergeticMaterials(HannengCailiao), 2012, 20(6): 715-720.

    [15] WU Jin-ting, ZHANG Jian-guo, YIN Xin, et al. Synthesis, characterization, and thermal analysis of two energetic ionic salts based on 3,4-diamino-1,2,4-triazole (DATr)[J].ZAnorgAllgChem, 2013, 639, (12-13): 2354-2358.

    [16] FENG Jin-ling, ZHANG Jian-guo, LI Zhi-min, et al. Synthesis, crystal structure and properties of a novel high-nitrogen energetic complex[Co(AZT)2(H2O)4](HTNR)2·4H2O[J].ActaChimicaSinica, 2010, 24: 2493-2499.

    [17] XIA Yun-xia, WANG Ping, SUN Jie, et al. Crystal structure of energetic compound 4-amino-1,2,4-triazolium picrate[J].ChineseJournalofEnergeticMaterials(HannengCailiao), 2010, 18(1): 4-6.

    [18] MA Gui-xia, ZHANG Tong-lai, SHAO Bing, et al. Crystal structure and thermal decomposition mechanism of[Mn(SCZ)3](PA)2H2O[J].ChineseJStructChem, 2004, 23: 445-451.

    [19] TANG Zhan, YANG Li, QIAO Xiao-jing, et al. Synthesis, crystal structure, thermal decomposition and sensitivity properties of (AIM)(HTNR) and (AIM)(PA).ChemResChineseUniversities, 2012, 28(1): 4-8.

    [20] CUI Yan, ZHANG Tong-lai, ZHANG Jian-guo, et al. Synthesis, crystal structure, thermal decomposition and sensitivity properties of [Zn(AZT)4(H2O)2](PA)2·4H2O and [Zn(AZT)2(H2O)4](HTNR)2·4H2O[J].ChineseJournalofChemistry, 2008, 26: 2021-2028.

    [21] Klap?tke T M, Sabaté C M. 1,2,4-triazolium and tetrazolium picrate salts: “On the Way” from nitroaromatic to azole-based energetic materials[J].EurJInorgChem, 2008: 5350-5366.

    [22] Sheldrick G M. SHELXS 97, program forcrystal structure solution[CP].UniversityofG?ttingen, Germany, 1997.

    [23] Sheldrick G M. SHELXL 97, program for crystal structure refinement from diffraction data[CP].UniversityofG?ttingen, Germany, 1997.

    [24] Frank H A, Kennard O, Watson D G.Tables of bond lengths determined by X-Ray and neutron diffraction. part I .bond lengths in organic compounds[J].JChemSocPerkinTransⅡ, 1987: s1-s19.

    [25] Kissinger H E. Reaction kinetics in differential thermal analysis[J].AnalChem, 1957, 29: 1702.

    [26] Ozawa T. A new method of analyzing thermogravimetric data[J].ChemSocJpn, 1965, 38: 1881-1886.

    [27] Han D G, Gao Z D, Gao P L. Physical chemistry (second edition)[M]. Beijing: Higher Education Press, 2009:355-387.

    [28] OU Yu-xiang. Explosives[M].Beijing: Beijing Institute of Technology Press, 2006: 145, 202, 218.

    [29] GJB 772A-1997. Method 601.2. Beijing: Commission of science technology and industry for national defense, 1997: 191-200.

    [30] GJB 772A-1997. Method 602.1. Beijing: Commission of science technology and industry for national defense, 1997: 207-213.

    [31] GJB 772A-1997. Method 604.1. Beijing: Commission of science technology and industry for national defense, 1997: 221.

    [32] Lui Z T, Lao Yun-liang. Initiating explosive experimental[M]. Beijing: Beijing Institute of Technology Press, 1995: 238-239.

    [33] WANG Jun, DONG Hai-shan, LI Jin-shan, et al. Empirical calculation of the explosion parameters of nitrodiazole explosives[J].ChineseJournalofEnergeticMaterials(HannengCailiao), 2012, 20(5): 541-544.

    [34] WANG Jun, JING Mei, ZHANG Xiao-yu, et al. Empirical calculation of the explosion parameters of nitrodiazole explosives (Ⅱ)[J].ChineseJournalofEnergeticMaterials(HannengCailiao), 2013, 21(5): 609-611.

    午夜老司机福利剧场| 插阴视频在线观看视频| 国产黄片美女视频| 中文字幕人妻熟人妻熟丝袜美| 免费看av在线观看网站| 熟女人妻精品中文字幕| 天天躁日日操中文字幕| 成人特级av手机在线观看| 一级毛片 在线播放| 五月玫瑰六月丁香| 成人国产麻豆网| 大话2 男鬼变身卡| 看十八女毛片水多多多| 亚洲国产日韩欧美精品在线观看| 中文字幕久久专区| 久久久久久久亚洲中文字幕| 精品99又大又爽又粗少妇毛片| 久久99热6这里只有精品| 午夜福利视频1000在线观看| 亚洲av一区综合| 少妇的逼好多水| 亚洲av男天堂| 精品久久久久久久久亚洲| 精品人妻偷拍中文字幕| 精品不卡国产一区二区三区| 国产激情偷乱视频一区二区| 亚洲国产精品国产精品| 欧美3d第一页| 精品一区二区三区视频在线| 欧美成人一区二区免费高清观看| 偷拍熟女少妇极品色| 国产成人福利小说| 99久久中文字幕三级久久日本| 日韩欧美三级三区| 亚洲欧美成人综合另类久久久| 国产极品天堂在线| 菩萨蛮人人尽说江南好唐韦庄| 国产不卡一卡二| 国产亚洲5aaaaa淫片| 婷婷色麻豆天堂久久| 国产免费一级a男人的天堂| 国产黄片美女视频| 日韩成人伦理影院| 亚洲在线自拍视频| 久久久久久久国产电影| 国产黄色视频一区二区在线观看| 69av精品久久久久久| 久久精品综合一区二区三区| 婷婷六月久久综合丁香| 少妇丰满av| 国产精品三级大全| 久久精品久久精品一区二区三区| 成人av在线播放网站| 如何舔出高潮| 久久精品夜色国产| 国产单亲对白刺激| 欧美 日韩 精品 国产| 女的被弄到高潮叫床怎么办| 女人被狂操c到高潮| 中文字幕制服av| 免费黄频网站在线观看国产| 国产91av在线免费观看| 男人爽女人下面视频在线观看| 美女cb高潮喷水在线观看| 午夜福利在线观看吧| 午夜免费激情av| av女优亚洲男人天堂| 人妻少妇偷人精品九色| 一边亲一边摸免费视频| 日韩一本色道免费dvd| 九九在线视频观看精品| 精品99又大又爽又粗少妇毛片| 成人无遮挡网站| 18禁裸乳无遮挡免费网站照片| 九九久久精品国产亚洲av麻豆| 国产成人免费观看mmmm| 一级毛片黄色毛片免费观看视频| 国产免费又黄又爽又色| 91狼人影院| 美女高潮的动态| 一二三四中文在线观看免费高清| 久久精品久久精品一区二区三区| 美女大奶头视频| 天天一区二区日本电影三级| 国产老妇女一区| 人妻制服诱惑在线中文字幕| 黄色一级大片看看| 蜜桃久久精品国产亚洲av| 午夜免费激情av| 69人妻影院| 日韩不卡一区二区三区视频在线| av天堂中文字幕网| 欧美日本视频| 国产乱人偷精品视频| 亚洲在线自拍视频| 国产成人精品一,二区| 一级爰片在线观看| 国产日韩欧美在线精品| 国产又色又爽无遮挡免| 久久精品熟女亚洲av麻豆精品 | 超碰97精品在线观看| 成人二区视频| 国产91av在线免费观看| 久久久久久久亚洲中文字幕| 精品99又大又爽又粗少妇毛片| 午夜视频国产福利| 在线天堂最新版资源| av免费观看日本| 97在线视频观看| 亚洲欧美日韩卡通动漫| 午夜激情福利司机影院| 精品久久久久久久久久久久久| 欧美高清成人免费视频www| 日韩,欧美,国产一区二区三区| 在线a可以看的网站| 男女啪啪激烈高潮av片| 精品一区二区免费观看| 综合色av麻豆| 性插视频无遮挡在线免费观看| 国产淫片久久久久久久久| a级毛色黄片| 婷婷色综合www| 能在线免费看毛片的网站| 久久午夜福利片| 欧美zozozo另类| 国产成人a∨麻豆精品| 卡戴珊不雅视频在线播放| 国产免费视频播放在线视频 | 直男gayav资源| 久久精品久久久久久久性| 五月天丁香电影| 男插女下体视频免费在线播放| 免费观看无遮挡的男女| 午夜免费激情av| 在线免费观看不下载黄p国产| 五月天丁香电影| 精品欧美国产一区二区三| 丰满少妇做爰视频| 久久99热这里只频精品6学生| 久久久久久久久久黄片| 亚洲综合色惰| 国产成年人精品一区二区| 99热网站在线观看| 国产伦精品一区二区三区视频9| 亚洲成人中文字幕在线播放| 婷婷色麻豆天堂久久| 国产乱人视频| 22中文网久久字幕| 永久网站在线| 你懂的网址亚洲精品在线观看| 网址你懂的国产日韩在线| 91狼人影院| 人人妻人人看人人澡| 青春草视频在线免费观看| 久久这里有精品视频免费| 99热这里只有是精品50| 久久久久久久亚洲中文字幕| 久久这里有精品视频免费| 亚洲国产日韩欧美精品在线观看| 亚洲精品一二三| 色5月婷婷丁香| 波野结衣二区三区在线| freevideosex欧美| 午夜福利在线在线| 91aial.com中文字幕在线观看| 激情 狠狠 欧美| 国产午夜精品久久久久久一区二区三区| 国产精品国产三级专区第一集| 免费高清在线观看视频在线观看| 哪个播放器可以免费观看大片| 国产精品久久久久久精品电影| 亚洲av男天堂| 热99在线观看视频| 亚洲国产精品专区欧美| 国产精品av视频在线免费观看| 精品久久久久久电影网| 色哟哟·www| 综合色丁香网| 亚洲va在线va天堂va国产| 国产成人aa在线观看| 蜜桃亚洲精品一区二区三区| 十八禁国产超污无遮挡网站| 亚洲精华国产精华液的使用体验| h日本视频在线播放| 国产午夜精品一二区理论片| 少妇的逼水好多| 国产午夜精品论理片| videos熟女内射| 亚洲人成网站在线播| av女优亚洲男人天堂| av卡一久久| 欧美另类一区| 美女黄网站色视频| 色综合站精品国产| av卡一久久| 成年人午夜在线观看视频 | 午夜免费观看性视频| 国产黄片美女视频| 欧美日韩在线观看h| 亚洲av福利一区| 色播亚洲综合网| 日本一二三区视频观看| 亚洲美女搞黄在线观看| 一个人看视频在线观看www免费| 欧美日韩一区二区视频在线观看视频在线 | 亚洲电影在线观看av| 午夜福利在线在线| 婷婷六月久久综合丁香| 最近最新中文字幕免费大全7| 乱人视频在线观看| 亚洲欧美清纯卡通| 伊人久久国产一区二区| 亚洲国产日韩欧美精品在线观看| 大香蕉97超碰在线| 女人十人毛片免费观看3o分钟| 久久99热6这里只有精品| 国产欧美日韩精品一区二区| 国产永久视频网站| 久久这里只有精品中国| 久久6这里有精品| 日韩强制内射视频| 亚洲精品亚洲一区二区| 日韩精品有码人妻一区| 淫秽高清视频在线观看| 春色校园在线视频观看| 中文字幕免费在线视频6| 久久久精品免费免费高清| 亚洲欧美日韩东京热| 亚洲精品自拍成人| 国产一区亚洲一区在线观看| 欧美zozozo另类| 国产亚洲一区二区精品| 亚洲丝袜综合中文字幕| 你懂的网址亚洲精品在线观看| 久久精品久久久久久噜噜老黄| 国产视频首页在线观看| 一区二区三区乱码不卡18| 成人亚洲精品av一区二区| 免费av观看视频| 精品不卡国产一区二区三区| av播播在线观看一区| 色哟哟·www| 一区二区三区乱码不卡18| 又爽又黄无遮挡网站| 看黄色毛片网站| 我的老师免费观看完整版| 亚洲一级一片aⅴ在线观看| 丝袜美腿在线中文| 国产美女午夜福利| 国产成人a区在线观看| 亚洲av二区三区四区| 免费看a级黄色片| 中文精品一卡2卡3卡4更新| 久久韩国三级中文字幕| 人妻系列 视频| 中文字幕久久专区| 美女脱内裤让男人舔精品视频| 91av网一区二区| 久久精品综合一区二区三区| 日韩亚洲欧美综合| 伊人久久国产一区二区| 夫妻性生交免费视频一级片| 美女主播在线视频| 啦啦啦中文免费视频观看日本| 在线 av 中文字幕| 国产日韩欧美在线精品| 黄色日韩在线| 亚洲国产精品sss在线观看| 一边亲一边摸免费视频| 久久午夜福利片| 蜜桃亚洲精品一区二区三区| 成人午夜精彩视频在线观看| 搞女人的毛片| 午夜福利高清视频| 在线观看av片永久免费下载| 菩萨蛮人人尽说江南好唐韦庄| 国国产精品蜜臀av免费| 最近手机中文字幕大全| 18禁动态无遮挡网站| 亚洲国产日韩欧美精品在线观看| 91午夜精品亚洲一区二区三区| 一级毛片 在线播放| 色播亚洲综合网| 麻豆乱淫一区二区| 在线观看人妻少妇| 成年版毛片免费区| 蜜臀久久99精品久久宅男| 久久精品综合一区二区三区| 亚洲综合精品二区| 又爽又黄a免费视频| 伦精品一区二区三区| 国产精品综合久久久久久久免费| 美女国产视频在线观看| 国产免费视频播放在线视频 | 一个人看视频在线观看www免费| 男的添女的下面高潮视频| 高清日韩中文字幕在线| 亚洲国产精品成人综合色| 干丝袜人妻中文字幕| 免费av观看视频| 久久精品人妻少妇| 美女黄网站色视频| 亚洲婷婷狠狠爱综合网| 超碰97精品在线观看| 欧美日本视频| 国内少妇人妻偷人精品xxx网站| 国产一区亚洲一区在线观看| 国产精品久久视频播放| 成年av动漫网址| 久久鲁丝午夜福利片| 亚洲乱码一区二区免费版| 日韩强制内射视频| 国产黄色视频一区二区在线观看| 丝袜喷水一区| 精品国产露脸久久av麻豆 | 亚洲av一区综合| 麻豆精品久久久久久蜜桃| 国产欧美日韩精品一区二区| 日本-黄色视频高清免费观看| 精品一区二区免费观看| 日本av手机在线免费观看| 国产在视频线精品| 久久人人爽人人片av| 天堂av国产一区二区熟女人妻| 午夜福利网站1000一区二区三区| av又黄又爽大尺度在线免费看| 亚洲精品国产av成人精品| 亚洲av在线观看美女高潮| 免费无遮挡裸体视频| 欧美bdsm另类| 免费观看无遮挡的男女| 晚上一个人看的免费电影| 不卡视频在线观看欧美| 91aial.com中文字幕在线观看| 淫秽高清视频在线观看| 免费黄色在线免费观看| 少妇的逼水好多| 日本黄大片高清| 亚洲av免费在线观看| 亚洲四区av| 欧美一级a爱片免费观看看| 最近中文字幕2019免费版| 亚洲美女视频黄频| 亚洲aⅴ乱码一区二区在线播放| 18禁动态无遮挡网站| 国产精品一区二区三区四区免费观看| av国产免费在线观看| 久久97久久精品| 99久久人妻综合| 成人亚洲欧美一区二区av| 亚洲国产精品专区欧美| 一本久久精品| 国产高清三级在线| 日本黄大片高清| 国产成人福利小说| 久久精品夜色国产| 人妻一区二区av| 亚洲乱码一区二区免费版| 搡老妇女老女人老熟妇| 久久久久久久大尺度免费视频| 少妇高潮的动态图| 成人国产麻豆网| 午夜福利在线观看吧| 又黄又爽又刺激的免费视频.| 欧美日韩一区二区视频在线观看视频在线 | 非洲黑人性xxxx精品又粗又长| 小蜜桃在线观看免费完整版高清| 久久热精品热| 久久久精品欧美日韩精品| 久久精品久久久久久久性| 日韩国内少妇激情av| 国产一区二区在线观看日韩| 亚洲国产精品成人综合色| 99久久人妻综合| 美女脱内裤让男人舔精品视频| 亚洲精品乱久久久久久| 成年人午夜在线观看视频 | 国产免费一级a男人的天堂| 一级a做视频免费观看| 成人av在线播放网站| 97超碰精品成人国产| 亚洲欧美日韩无卡精品| 69av精品久久久久久| av黄色大香蕉| 一区二区三区高清视频在线| 我要看日韩黄色一级片| 久热久热在线精品观看| 最近中文字幕2019免费版| 日韩欧美三级三区| 春色校园在线视频观看| 美女被艹到高潮喷水动态| 久久久午夜欧美精品| 免费大片18禁| 99热这里只有精品一区| 国产高清不卡午夜福利| 日韩三级伦理在线观看| 久久久久精品性色| 久久亚洲国产成人精品v| 日韩伦理黄色片| 国产一区二区在线观看日韩| 精品久久久久久久末码| 男女那种视频在线观看| 纵有疾风起免费观看全集完整版 | 一本久久精品| 亚洲丝袜综合中文字幕| 国产亚洲5aaaaa淫片| 免费观看无遮挡的男女| 国产亚洲av片在线观看秒播厂 | 丰满人妻一区二区三区视频av| 熟女人妻精品中文字幕| 色5月婷婷丁香| 免费播放大片免费观看视频在线观看| 97热精品久久久久久| 国产色爽女视频免费观看| 中文天堂在线官网| 欧美日韩视频高清一区二区三区二| 国产91av在线免费观看| 在线天堂最新版资源| 国产亚洲午夜精品一区二区久久 | 麻豆乱淫一区二区| 十八禁网站网址无遮挡 | 国产成人福利小说| 久久精品久久精品一区二区三区| 日本黄色片子视频| 亚洲欧美精品自产自拍| 超碰av人人做人人爽久久| 男女那种视频在线观看| 日韩欧美精品v在线| 午夜精品在线福利| 欧美激情国产日韩精品一区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 美女国产视频在线观看| 亚洲精品第二区| 欧美最新免费一区二区三区| 丰满乱子伦码专区| 尤物成人国产欧美一区二区三区| 男人舔奶头视频| 一级毛片我不卡| 中国美白少妇内射xxxbb| 久久久成人免费电影| 国产中年淑女户外野战色| 国产高清不卡午夜福利| 激情 狠狠 欧美| 亚洲国产精品国产精品| 神马国产精品三级电影在线观看| 久久国内精品自在自线图片| av在线亚洲专区| 亚洲国产欧美在线一区| 免费看日本二区| 永久免费av网站大全| 一个人观看的视频www高清免费观看| 赤兔流量卡办理| 亚洲av成人精品一二三区| 亚洲欧美一区二区三区国产| 大陆偷拍与自拍| 一级二级三级毛片免费看| 亚洲av成人精品一区久久| 亚洲精品成人久久久久久| 免费黄频网站在线观看国产| 成年女人看的毛片在线观看| 国产精品国产三级国产专区5o| 国产免费又黄又爽又色| 菩萨蛮人人尽说江南好唐韦庄| 国产精品国产三级国产专区5o| 日本免费在线观看一区| av在线播放精品| 国产淫语在线视频| 国产伦精品一区二区三区视频9| 一级黄片播放器| 纵有疾风起免费观看全集完整版 | 美女高潮的动态| 1000部很黄的大片| 男女视频在线观看网站免费| 欧美变态另类bdsm刘玥| 中文精品一卡2卡3卡4更新| 国产 一区 欧美 日韩| 九九久久精品国产亚洲av麻豆| 天堂俺去俺来也www色官网 | 99久久精品热视频| 美女高潮的动态| 国内少妇人妻偷人精品xxx网站| av卡一久久| 久久久欧美国产精品| 国产精品人妻久久久影院| 中文字幕制服av| 免费高清在线观看视频在线观看| 亚洲精品国产av成人精品| 亚洲欧美日韩东京热| 夫妻午夜视频| 国产大屁股一区二区在线视频| 国产精品福利在线免费观看| 成年人午夜在线观看视频 | 国产 一区精品| 亚洲人与动物交配视频| 男的添女的下面高潮视频| 禁无遮挡网站| 欧美不卡视频在线免费观看| 亚洲精品国产成人久久av| 在线观看人妻少妇| 国产一区二区在线观看日韩| 午夜激情福利司机影院| av.在线天堂| 丝袜美腿在线中文| 在线播放无遮挡| 国产国拍精品亚洲av在线观看| 别揉我奶头 嗯啊视频| 国产黄色免费在线视频| 最近手机中文字幕大全| 黄色配什么色好看| 精品一区在线观看国产| 中文字幕久久专区| 国产成人91sexporn| 免费看日本二区| 国内少妇人妻偷人精品xxx网站| 欧美xxxx黑人xx丫x性爽| 日韩国内少妇激情av| 久久久久久国产a免费观看| 国产精品麻豆人妻色哟哟久久 | 久热久热在线精品观看| 日产精品乱码卡一卡2卡三| 亚洲av免费高清在线观看| 白带黄色成豆腐渣| 国产黄色小视频在线观看| 亚洲国产日韩欧美精品在线观看| 久久久久久国产a免费观看| 国产色婷婷99| 爱豆传媒免费全集在线观看| 日本三级黄在线观看| 亚洲欧美日韩无卡精品| 99热这里只有是精品在线观看| 国内少妇人妻偷人精品xxx网站| 亚洲最大成人手机在线| 精品不卡国产一区二区三区| 日韩av在线大香蕉| 欧美激情国产日韩精品一区| 搡老乐熟女国产| 成人欧美大片| 国产成人福利小说| 青春草视频在线免费观看| 久久99热这里只有精品18| 极品教师在线视频| 欧美bdsm另类| 中文字幕免费在线视频6| 91av网一区二区| 欧美 日韩 精品 国产| 美女主播在线视频| 蜜桃亚洲精品一区二区三区| 中文欧美无线码| 成人二区视频| 亚洲熟女精品中文字幕| 亚洲成人一二三区av| 91aial.com中文字幕在线观看| 99热全是精品| 只有这里有精品99| 国产亚洲一区二区精品| 免费高清在线观看视频在线观看| 国产中年淑女户外野战色| 亚洲激情五月婷婷啪啪| 午夜激情欧美在线| 亚洲激情五月婷婷啪啪| 亚洲人与动物交配视频| 男女啪啪激烈高潮av片| 国产黄色视频一区二区在线观看| 国产永久视频网站| 日韩 亚洲 欧美在线| 天天躁夜夜躁狠狠久久av| 国产黄色视频一区二区在线观看| 午夜福利高清视频| 99久国产av精品国产电影| 国产午夜福利久久久久久| 国产亚洲精品久久久com| 天堂中文最新版在线下载 | 亚洲乱码一区二区免费版| 91精品国产九色| 我的女老师完整版在线观看| 成人一区二区视频在线观看| 99九九线精品视频在线观看视频| 99re6热这里在线精品视频| 一个人观看的视频www高清免费观看| 九九在线视频观看精品| 成人av在线播放网站| 国产午夜精品久久久久久一区二区三区| 国产单亲对白刺激| 国产成人免费观看mmmm| 免费观看精品视频网站| 成人漫画全彩无遮挡| 日韩,欧美,国产一区二区三区| 婷婷色综合www| 男女啪啪激烈高潮av片| 男人狂女人下面高潮的视频| 久久久久精品久久久久真实原创| 99久久人妻综合| 亚洲av福利一区| 成人欧美大片| 搡老乐熟女国产| 久久久久国产网址| videossex国产| 永久网站在线| 建设人人有责人人尽责人人享有的 | 欧美日韩精品成人综合77777| 18禁动态无遮挡网站| 日韩伦理黄色片| 伊人久久国产一区二区| 五月玫瑰六月丁香| 免费少妇av软件| 国产国拍精品亚洲av在线观看| 美女被艹到高潮喷水动态| 色综合站精品国产| 亚洲欧美日韩东京热| 亚洲va在线va天堂va国产| 我的老师免费观看完整版| 亚洲人与动物交配视频| 2022亚洲国产成人精品| 建设人人有责人人尽责人人享有的 | 丝袜美腿在线中文|