• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Atomization of Gelled Propellant Simulant with Carbon Particles

    2015-05-10 06:19:04QIANGHongfuLIUHuHANQilongWANGGuangHANYawei
    含能材料 2015年12期

    QIANG Hong-fu, LIU Hu, HAN Qi-long, WANG Guang, HAN Ya-wei

    (1. 601 Staffroom, Xi'an Hi-Tech Institution, Xi′an 710025, China; 2. 96263 Unit of the Second Artillery, Luoyang 471000, China)

    1 Introduction

    As a new kind of rocket propellant, gelled propellants have advantages for both liquid and solid propellants, including high density, combustion energy, security and long reservation period, etc. However, compared with the traditional liquid propellants, the non-Newtonian character makes the gelled propellants difficult to be atomized. Atomization has attracted widespread and lasting attentions since the beginning of the gel propulsion technology[1-2].

    The addition of energetic particles like carbon, aluminum or boron is essential to gelled propellants, and it may significantly increase the energy content per unit volume of the gelled propellant and improve the performance of gelled propulsion system[3-4]. As the addition of energetic particles would alter the rheological properties of gelled propellant[5], some researches have been made to investigate the atomization characteristics of gelled propellants with energetic particles. Jayaprakash et al[6]investigated the injection and atomization characteristics of gelled kerosene with 30%(mass fraction) Al particles, they found that Sauter mean diameter(SMD) of the gel spray was more sensitive to the impingement angle and was dependent on the injection pressure in a highly non-linear manner. Kampen et al[7-8]detail studied the influence of Al particles content of gelled Jet A-1 fuels on rheology, atomization and combustion. The gels prepared in their research appeared "solid" at unstressed ambient conditions and a distinct yield stress occurred. With different generalized Reynolds numbers, different atomization modes were observed. Baek et al[9]investigated the atomization behavior of C934 Carbopol gels with and without 15% SUS304 nanoparticles. They found the nanoparticles decreased the gel strength and made breakup length of gel with nanoparticles remarkably shorter than that of the pure Carbopol gel.

    Overall, the mechanics of atomization of gelled propellant with energetic particles are still far from being fully understood in these limited researches. In this work, a new simulant containing carbon particles was prepared and used in atomization experiments. The rheological properties were measured and a series of atomization experiments were made. The linear stability theory was adopted to study the breakup characteristics of the liquid sheet.

    2 Experiment

    2.1 Preparation of Gelled Propellant Simulants

    The gelled propellant simulant was prepared by dissolving 1%(mass fraction) high-molecular polymer, 5%(mass fraction) carbon particles with an average diameter of about 5 μm in de-ionized water and mixing with an electric mixer for 20 min at 2000 revolutions per minute. This carbon-loaded simulant is named as S1 in this paper. We also prepared another simulant S2 with 99%(mass fraction) de-ionized water and 1%(mass fraction) high-molecular polymer for comparison. The physical and rheological properties of simulants S1 and S2 are similar to gelled propellant: their densities (ρ) are 1010.1 kg·m-3and 1001.7 kg·m-3, and surface tension coefficients (σ) 0.067 N·m-1and 0.072 N·m-1, respectively. As the shear rate of the gelled propellant is high in atomization. The rheological properties of the simulants were measured by a rotational rheometer when shear rate and by pipe-flowing experiments whenγ≥103s-1.

    The relationship of apparent viscosity (η) and shear rate(γ) can be described by power-law equation, Herschel-Bulkley (HB) equation, Herschel-Bulkley Extended(HBE) equation, etc.[8]. The simulants prepared in this paper appear “syrupy” at unstressed ambient conditions. The experimental results show that the yield stresses (τ0) of the two simulants are very low and both below 10 Pa. Therefore, the yield stress was neglected and the most common power-law equation was adopted.

    (1)

    ηandγof simulants obtained from experiment and the fitted power-law constitutive curves are given in Fig.1, and their physical properties are listed in Table 1. From Fig.1, it can be seen that simulants S1 and S2 are pseudo plastic fluids and theirηdecrease with the increases ofγ. And compared with simulant S2 without carbon particles in Fig.1, simulant S1 shows higher apparent viscosity under the same shear rate than that of S2. The addition of carbon particles increases the consistency coefficient and decreases the flow index of the simulant, which indicates that the addition of carbon particles evidently changes the physical and rheological properties of the gel. As the de-ionized water is main component of the simulants, the densityρand surface tension coefficientσof the two simulants are similar to ones of water (ρ=1000.0 kg·m-3andσ=0.073 N·m-1), as shown in Table 1.

    Fig.1 Apparent viscosity and shear rate of gelled propellant simulants

    Table 1 Physical property of gelled propellant simulants with and without carbon particles

    simulantscarbonparticlesρ/kg·m-3σ/N·m-1power-lawconstitutiveparametersK/Pa·snnS1with1010.10.06716.590.29S2without1001.70.0727.080.37

    2.2 Experimental Apparatus

    Fig.2 is the schematic diagram of gelled propellant atomization experiment system. At the beginning of the experiment, high pressure gas would be filled into the tank to force the gelled propellant simulant to the jet injector across pipes and values. The impingement angle 2θand the jet velocityvjetwere tuned by adjusting the angle of the doublet injectors and changing the mass flow rate by the control value, respectively. The atomization processes were recorded by a Phantom V12.1 high speed camera with 784×800 image resolution and 5 μs shutter speed. The atomization images were passed to the data acquisition system for further analysis. Meanwhile, important data in the experiment, such as mass flow rate, pressure in the tank, pressure in the injectors, etc. were measured and recorded by the data acquisition system during the whole experiment.

    Fig.2 Schematic diagram of gelled propellant atomization experiment system

    2.3 Experimental Design

    In order to analyze the atomization characteristics of gelled propellant simulant with carbon particles, 10 atomization experiments were designed with different impingement angles 2θ, jet velocitiesvjet, injector orifice diametersdand injector orifice length to diameter ratioL/d0, etc., as shown in Table 2.

    The generalized Reynolds number(Regen) was used to describe the flow behavior of the power-law fluid, which is defined as ref.[10]:

    (2)

    whereρpis the density of the power-law fluid.

    Table 2 Conditions for the atomization experiment

    case2θ/(°)vjet/m·s-1d/mmL/d0Regen1601018160626015183211360221861824901018160659015183211690221861827601513.532118602213.56182960100.5813131060101.581806

    3 Results and Analysis

    3.1 Experiment Results and Analysis

    In this paper, the atomization quality is evaluated by the atomization angle (β) and atomization patterns. As we know, when two jets impinge with each other, a fan-shaped liquid sheet forms, and the angle between the left and right rims of the liquid sheet is called atomization angle (β, as shown in Fig.3). Generally, largerβmeans better atomization quality. According to former researches[8,11], with different gels, jet velocities, impingement angles, generalized Reynolds numbers, etc., there are different atomization patterns, including close-rim, open-rim, ligament and fully-developed patterns, etc.[8,11]The close-rim and open rim patterns indicate poor atomization qualities, while the other two indicate better atomization qualities.

    Fig.3 is atomization images with the impingement angle 2θ=60° and different velocities for cases 1-3. As shown in Fig.3a, with a low jet velocity (10.2 m·s-1) andRegen, a fan-shaped liquid sheet forms, and it has a distinct rim at the upstream and breakups into ligaments and large drops downstream. The atomization pattern in Fig. 3a is the so-called “open-rim pattern” with the atomization angleβof about 70°. Fig.3b also shows an open-rim pattern withβ=85° under a larger jet velocity (15.68 m·s-1) andRegen=3211. As shown in Fig.3c, withvjet=22.14 m·s-1andRegen=3211, the rim of the liquid sheet becomes indistinct, and clearer bow-shaped impact waves occurs and makes the liquid sheet more unstable and breakup into more ligaments and drops. The pattern in Fig.3c is called “l(fā)igament pattern”.βin Fig.3c is about 100°. As discussed in Ref.[8], in cases 1-3, the generalized Reynolds numberRegen, which is completely determined by jet velocity, could be adopted as the indication of the atomization quality. LargerRegen(jet velocity) means a larger kinetic energy in jet impingement and would lead to better atomization quality.

    Fig.4 shows atomization images with 2θ=90° and different velocities for cases 4-6. Compared with cases 1-3 in Fig.3, theβin Fig.4 are larger, which are about 80°, 110°, 140° in Fig.4a, Fig.4b, Fig.4c, respectively. Fig.4a shows an open-rim pattern, and Fig.4b and Fig.4c show ligament patterns. The atomization qualities at impingement angle 2θ=90° are better than ones with 2θ=60° and the similar jet velocities.

    Fig.5 shows that the atomization images with ratio of injector orifice length to diameter (L/d0=3.5)under different jet velocities for cases 7 and 8. Compared with case 2 and case 3 withL/d0=8 shown in Fig.3b and Fig.3c, there are no obvious differences in Fig.5. Atomization patterns in Fig.5a and Fig.5b are almost identical to patterns in Fig.3b and Fig.3c respectively, which indicates that there are no essential differences on the flow characteristics of the jets sprayed from injectors withL/d0=3.5 and 8. As a result, the ratio of injector orifice length to diameter has little influences on the atomization patterns.

    Fig.6 shows atomization images with impingement angle 2θ=60° and different injector orifice diameters for cases 9 and 10. As shown in Fig.3a (case 1) and Fig.6, the larger orifice diameters lead to larger mass flow rates and will produce larger liquid sheets. But there are also no essential differences on the atomization patterns of cases 1, 9 and 10, they are all open-rim patterns with almost the same atomization angle about 70°.

    In all the cases studied in this paper, the gelled propellant simulant could hardly to be atomized into fine drops, the main atomization products are ligaments and large drops. Within the investigation conditions, the atomization quality increases with the increase of jet velocity and impingement angle, while the changes of injector length to diameter ratio and the injector orifice diameters influence the atomization patterns little.

    a.vjet=10.2 m·s-1, b.vjet=15.68 m·s-1, c.vjet=22.14 m·s-1,

    β=70°β=85°β=100°

    Fig.3 Atomization images of cases 1-3

    a.vjet=9.77 m·s-1, b.vjet=15.28 m·s-1, c.vjet=21.71 m·s-1

    Fig.4 Atomization images of cases 4- 6

    a.vjet=15.35 m·s-1b.vjet=22.22 m·s-1

    Fig.5 Atomization images case 7 and case 8

    a.vjet=9.80 m·s-1b.vjet=10.49 m·s-1

    d0=0.5 mmd0=1.5 mm

    Fig.6 Atomization images of case 9 and case 10

    3.2 Linear Stability Analysis

    Linear stability theory is widely used to evaluate the instabilities of the liquid sheet[12-13]. In this theory, the liquid sheet instability is mainly due to the aerodynamics interactions between the liquid and its surrounding gas. There are two kinds of disturbances that will occur on the liquid sheet: symmetric and anti-symmetric. Squire[14]showed that the anti-symmetric disturbance played a dominant role on breaking the liquid sheet into fragments. Therefore, only the anti-symmetric disturbance is considered here. Schematic of a moving liquid sheet under anti-symmetric disturbance is shown in Fig.7, a two dimensional liquid sheet moves into a quiescent, inviscid, incompressible gas with velocityUs, the thickness of the liquid sheet is 2hs, the surface tension of liquid isσ, the densities of liquid and gas areρ1andρgrespectively, the density ratio of gas and liquid isRg1=ρg/ρ1. Generally, the wave amplitude on the liquid sheet can be expressed as:

    (3)

    Fig.7 Schematic of a moving liquid sheet under anti-symmetric disturbance

    Chojnaki[15]deduced the dispersion relation for a plan liquid sheet based on the power-law constitutive:

    (4)

    (5)

    (6)

    If the liquid sheet breakups when the wave amplitude reachesηb, the breakup timeτbcan be obtained as follows:

    τb=ln(ηb/η0)/ωi,max

    (7)

    whereωi,maxis the maximum grow rate, then the breakup length can be calculated as:

    Lb=Usln(ηb/η0)/ωi,max

    (8)

    Here ln(ηb/η0) is set to be 12 according to Ref. [13].

    In this paper, the breakup length of the liquid sheet is defined as the axial distance from the impingement point to the point where the liquid sheet along the axis begins to breakup, as shown in Fig.8. We assume the liquid sheet speedUs=0.92vjetaccording to ref. [16]. Solving equation (4) withρ1=1010.1 kg·m-3,ρg=1.225 kg·m-3,K=16.59 Pa·sn,n=0.29,σ=0.067 N·m-1and 2hs=2.0×10-4m under jet velocity of 10 m·s-1(cases 1, 4), 15 m·s-1(cases 2, 5) and 22 m·s-1(cases 3, 6), the effects of sheet velocity on the stability of the liquid sheet can be obtained, as shown in Fig.9. It can be seen that the maximum disturbance wave grow rate increases with the increase of the sheet velocity. It means that the liquid sheet will become more unstable at larger sheet velocities, which agrees well with the experiment results of cases 1-3 and cases 4-6 under the same velocities.

    With equations (4), (7) and (8), the breakup length of the liquid sheet can be predicted. Fig.10 is the comparison of breakup lengths of liquid sheets predicted by linear stability theory and measured from experiments. As shown in Fig.10, the variation trend of breakup lengths of liquid sheets calculated from linear stability theory is consistent with the ones measured from experiments. At a low Weber number, the linear stability analysis evidently overestimates the breakup length when compared with the experiment. The relative error between the predicted and measured breakup lengths is about 24% atWes=128. As the Weber number increases, the relative errors decrease to 14.9% atWes=618. The errors of the predicted values are considered as a results of neglect of instabilities caused by jet impingement in the linear stability theory.

    Fig.8 Definition of the breakup length of the liquid sheet

    Fig.9 Influence of sheet velocityUson the stability of the liquid sheet calculated by linear stability theory

    Fig.10 Comparison of breakup lengths of liquid sheets from linear stability analysis and experiments

    4 Conclusions

    (1) The carbon particles increase the consistency coefficient and decrease the flow index of the simulant S1, which makes simulant S1 show high apparent viscosity under the same shear rate.

    (2) The simulant S1 can only be atomized into ligaments and large drops. The atomization quality improves with the increases of jet velocity and impingement angles, while the changes in injector length to diameter ratio and the injector orifice diameters show little influences on the atomization patterns.

    (3) There are about 14.9%-24% relative errors between the predicted and measured breakup lengths, but the tendency of the breakup lengths predicted by the linear stability theory agrees well with the experiment ones.

    [1] Natan B, Rahimi S. The status of gel propellants in year 2000[J].InternationalJournalofEnergeticMaterialsandChemicalPropulsion, 2002,5(1-6): 172-192.

    [2] LIU Hu, QIANG Hong-fu, WANG Guang. Review on Jet Impingement Atomization on Gelled Propellant[J].ChineseJournalofEnergeticMaterials(HannengCailiao), 2015, 23(7): 697-708.

    [3] Hodge K, Crofoot T, Nelson S. Gelled propellants for tactical missile applications. AIAA 99-2976[R], 1999.

    [4] Haddad A, Natan B, Arieli R. The performance of a boron-loaded gel-fuel ramjet[J].ProgressinPropulsionPhysics, 2011,2: 499-518.

    [5] Wu Zhijian, Hu Lirong. Performance Research of Metallized Gelled Propellant[J].MissileandSpaceVehicle, 2006, 283(03): 52-55.

    [6] Jayaprakash N, Chakravarthy S R. Impingement Atomization of Gelled Fuels. AIAA 2003-316[R], 2003.

    [7] von Kampen J, Madlener K, Ciezki H K. Characteristic Flow and Spray Properties of Gelled Fuels with Regard to the Impinging Jet Injector Type. AIAA 2006-4573[R], 2006.

    [8] von Kampen J, Alberio F, Ciezki H K. Spray and combustion characteristics of aluminized gelled fuels with an impinging jet injector[J].AerospSciTechnol, 2007,11:77-83.

    [9] Baek G, Kim S, Han J, et al. Atomization characteristics of impinging jets of gel material containing nanoparticles[J].JNon-NewtonFluid, 2011,166(21): 1272-1285.

    [10] Metzner A B, Reed C J. Flow of non-Newtonian fluids-correlation of the laminar, transition, and turbulent-flow regions[J].AmericanInstituteofChemicalEngineeringJournal, 1955,4(1): 189-204.

    [11] Fu Q, Yang L, Zhuang F. Effects of Orifice Geometry on Spray Characteristics of Impinging Jet Injectors for Gelled Propellants[R].AIAA 2013-3704, 2013.

    [12] Ryan H M, Anderson W E, Pal S, et al. Atomization characteristics of impinging liquid jets[J].JPropulPower, 1995,11(1): 135-145.

    [13] Dombrowski N, Johns W R. The aerodynamic instability and disintegration of viscous liquid sheets[J].ChemEngSci, 1963,18(3): 203-214.

    [14] Squire H B. Investigation of the instability of a moving liquid film[J].BritishJournalofAppliedPhysics, 1953,4: 167-169.

    [15] Chojnacki K T. Atomization and mixing of impinging non-Newtonian jets[D]. Huntsville: University of Alabama-Huntsville, 1997.

    [16] Heislbetz B, Madlener K, Ciezki H K. Breakup Characteristics of a Newtonian Liquid Sheet formed by a Doublet Impinging Jet Injector.AIAA2007-5694[R], 2007.

    久久久久久久久久久免费av| 男人舔女人的私密视频| 热re99久久国产66热| 国产一区二区 视频在线| 黑人欧美特级aaaaaa片| 大片免费播放器 马上看| 国产免费视频播放在线视频| 下体分泌物呈黄色| 老司机亚洲免费影院| 亚洲欧美日韩另类电影网站| 日韩 亚洲 欧美在线| 久久久久久人人人人人| 黑人巨大精品欧美一区二区蜜桃| 国产精品久久久久久久久免| 最近的中文字幕免费完整| 曰老女人黄片| 少妇人妻精品综合一区二区| 激情视频va一区二区三区| 晚上一个人看的免费电影| 日韩制服丝袜自拍偷拍| 新久久久久国产一级毛片| 美女午夜性视频免费| 国产伦理片在线播放av一区| 欧美日本中文国产一区发布| 你懂的网址亚洲精品在线观看| 男女边摸边吃奶| 亚洲国产欧美一区二区综合| 欧美日韩视频精品一区| 一级毛片 在线播放| 国产成人啪精品午夜网站| 亚洲av福利一区| 激情五月婷婷亚洲| 久久久久精品国产欧美久久久 | 欧美国产精品va在线观看不卡| 国产老妇伦熟女老妇高清| 亚洲欧美清纯卡通| 高清欧美精品videossex| 一区二区三区乱码不卡18| 曰老女人黄片| 国产精品久久久久久久久免| 亚洲四区av| 91精品伊人久久大香线蕉| 丰满少妇做爰视频| 又黄又粗又硬又大视频| 欧美人与性动交α欧美软件| 国产精品熟女久久久久浪| 国产在视频线精品| 一区二区三区乱码不卡18| 亚洲欧美精品综合一区二区三区| 在线免费观看不下载黄p国产| 国产老妇伦熟女老妇高清| 性色av一级| 美女视频免费永久观看网站| 亚洲欧美一区二区三区国产| 国产成人欧美| 国产野战对白在线观看| 丁香六月天网| 国产乱人偷精品视频| 波多野结衣av一区二区av| 亚洲国产精品国产精品| 伊人久久大香线蕉亚洲五| 高清在线视频一区二区三区| 一级爰片在线观看| 免费看不卡的av| 捣出白浆h1v1| 91精品三级在线观看| 免费在线观看完整版高清| 国产av一区二区精品久久| 久久精品aⅴ一区二区三区四区| 亚洲第一区二区三区不卡| 亚洲精品视频女| 最近最新中文字幕大全免费视频 | 成年美女黄网站色视频大全免费| 亚洲国产欧美一区二区综合| 91aial.com中文字幕在线观看| 日韩av不卡免费在线播放| 男的添女的下面高潮视频| 亚洲国产欧美一区二区综合| 黄片无遮挡物在线观看| 亚洲精品日韩在线中文字幕| 久久精品熟女亚洲av麻豆精品| 丝瓜视频免费看黄片| 国产精品久久久av美女十八| 亚洲国产精品999| 午夜福利免费观看在线| 1024视频免费在线观看| 又大又黄又爽视频免费| 亚洲美女搞黄在线观看| 女的被弄到高潮叫床怎么办| 国产欧美日韩一区二区三区在线| 亚洲精品一区蜜桃| 新久久久久国产一级毛片| 黄片小视频在线播放| 19禁男女啪啪无遮挡网站| 如日韩欧美国产精品一区二区三区| 国产精品女同一区二区软件| 天天躁夜夜躁狠狠躁躁| 精品免费久久久久久久清纯 | 多毛熟女@视频| 少妇 在线观看| 少妇被粗大的猛进出69影院| 欧美日韩视频精品一区| 最近手机中文字幕大全| 欧美变态另类bdsm刘玥| 国产熟女午夜一区二区三区| 咕卡用的链子| 考比视频在线观看| 日本一区二区免费在线视频| 欧美 亚洲 国产 日韩一| 免费少妇av软件| av网站免费在线观看视频| 欧美精品av麻豆av| 老熟女久久久| 国产av精品麻豆| 街头女战士在线观看网站| 十八禁人妻一区二区| 人妻一区二区av| 亚洲国产日韩一区二区| 亚洲av国产av综合av卡| 精品午夜福利在线看| www.熟女人妻精品国产| 高清不卡的av网站| 国产免费视频播放在线视频| av不卡在线播放| 最近的中文字幕免费完整| 日日啪夜夜爽| 国产午夜精品一二区理论片| 美女主播在线视频| 欧美 亚洲 国产 日韩一| 美女午夜性视频免费| 1024视频免费在线观看| 王馨瑶露胸无遮挡在线观看| 在线观看人妻少妇| 两性夫妻黄色片| 少妇猛男粗大的猛烈进出视频| 亚洲国产精品国产精品| 亚洲精品自拍成人| 亚洲国产欧美网| 欧美精品高潮呻吟av久久| 人成视频在线观看免费观看| 看免费av毛片| 亚洲少妇的诱惑av| 男女边摸边吃奶| av天堂久久9| 三上悠亚av全集在线观看| 国产精品一区二区在线观看99| 中文欧美无线码| 亚洲美女黄色视频免费看| kizo精华| 亚洲第一区二区三区不卡| 日韩精品有码人妻一区| 搡老乐熟女国产| 国产日韩欧美视频二区| 免费在线观看完整版高清| 两性夫妻黄色片| 中文字幕人妻丝袜一区二区 | 日韩大码丰满熟妇| 成年女人毛片免费观看观看9 | 亚洲精华国产精华液的使用体验| 欧美人与善性xxx| 国产免费福利视频在线观看| 久久天躁狠狠躁夜夜2o2o | 国产一区二区三区综合在线观看| 欧美最新免费一区二区三区| 男人添女人高潮全过程视频| 久久久久久久久免费视频了| 久久天躁狠狠躁夜夜2o2o | 午夜福利乱码中文字幕| 两个人免费观看高清视频| 日日啪夜夜爽| 国产黄色视频一区二区在线观看| 咕卡用的链子| 黄色怎么调成土黄色| 日本猛色少妇xxxxx猛交久久| 久久久久国产一级毛片高清牌| 一区二区av电影网| 欧美精品一区二区免费开放| 欧美亚洲 丝袜 人妻 在线| 亚洲国产欧美一区二区综合| 夫妻性生交免费视频一级片| 看十八女毛片水多多多| 熟女av电影| 男女午夜视频在线观看| 亚洲伊人色综图| 亚洲av在线观看美女高潮| 精品一区二区三卡| 亚洲成人国产一区在线观看 | 啦啦啦 在线观看视频| 欧美日本中文国产一区发布| 国产成人精品无人区| 亚洲av成人精品一二三区| 激情五月婷婷亚洲| 亚洲精品av麻豆狂野| 色视频在线一区二区三区| 亚洲婷婷狠狠爱综合网| 曰老女人黄片| 熟妇人妻不卡中文字幕| 久久婷婷青草| 国产成人精品在线电影| 欧美最新免费一区二区三区| 老司机影院毛片| 中文字幕人妻丝袜制服| 一级,二级,三级黄色视频| 黄片无遮挡物在线观看| 亚洲成国产人片在线观看| 狂野欧美激情性xxxx| 成年女人毛片免费观看观看9 | 久久影院123| 亚洲欧美清纯卡通| 久久精品国产综合久久久| 美女福利国产在线| 中文乱码字字幕精品一区二区三区| 亚洲成人一二三区av| 国产一级毛片在线| 久久久久久人人人人人| 美女午夜性视频免费| 欧美黑人欧美精品刺激| 99re6热这里在线精品视频| 狠狠婷婷综合久久久久久88av| 亚洲精品,欧美精品| 国产精品成人在线| 少妇人妻久久综合中文| 黑人欧美特级aaaaaa片| 最近的中文字幕免费完整| 少妇 在线观看| 黑人巨大精品欧美一区二区蜜桃| 18禁国产床啪视频网站| 男女免费视频国产| 久久久亚洲精品成人影院| 国产熟女欧美一区二区| 国产国语露脸激情在线看| 精品一区在线观看国产| 九色亚洲精品在线播放| 丝瓜视频免费看黄片| 国产一级毛片在线| 人人妻,人人澡人人爽秒播 | 一区二区三区四区激情视频| 亚洲欧美一区二区三区国产| 亚洲欧美色中文字幕在线| 久久精品人人爽人人爽视色| 欧美精品一区二区免费开放| 各种免费的搞黄视频| 人人妻人人添人人爽欧美一区卜| 亚洲三区欧美一区| 欧美在线黄色| 你懂的网址亚洲精品在线观看| 亚洲欧美成人综合另类久久久| 久久99热这里只频精品6学生| 欧美日韩av久久| 新久久久久国产一级毛片| 一级爰片在线观看| 国产淫语在线视频| 欧美97在线视频| 亚洲成av片中文字幕在线观看| 天堂中文最新版在线下载| 少妇被粗大猛烈的视频| 少妇精品久久久久久久| 国产日韩欧美在线精品| 欧美黄色片欧美黄色片| 亚洲欧美一区二区三区黑人| 一本—道久久a久久精品蜜桃钙片| 一边亲一边摸免费视频| 9色porny在线观看| 亚洲综合精品二区| 久久久久国产精品人妻一区二区| 中文字幕制服av| 午夜影院在线不卡| 欧美人与善性xxx| 久久精品国产亚洲av高清一级| 十八禁人妻一区二区| 亚洲一级一片aⅴ在线观看| 色视频在线一区二区三区| 韩国av在线不卡| 人妻 亚洲 视频| 大话2 男鬼变身卡| 日韩大片免费观看网站| 亚洲婷婷狠狠爱综合网| 三上悠亚av全集在线观看| 国产一区二区激情短视频 | 熟女少妇亚洲综合色aaa.| 一级毛片我不卡| 亚洲少妇的诱惑av| 欧美日韩综合久久久久久| 如日韩欧美国产精品一区二区三区| 精品午夜福利在线看| 久久影院123| 不卡av一区二区三区| 亚洲成人免费av在线播放| 亚洲成色77777| e午夜精品久久久久久久| 成人漫画全彩无遮挡| 亚洲精品国产av成人精品| 侵犯人妻中文字幕一二三四区| 久久精品国产a三级三级三级| 中文字幕人妻丝袜一区二区 | av卡一久久| 国产成人欧美| 国产日韩欧美在线精品| 亚洲中文av在线| 亚洲精品,欧美精品| 一边亲一边摸免费视频| 午夜福利视频精品| 久久久久精品性色| 美女午夜性视频免费| 国产精品久久久久久人妻精品电影 | 亚洲精品久久久久久婷婷小说| 可以免费在线观看a视频的电影网站 | 人妻人人澡人人爽人人| 国产成人欧美| 成年动漫av网址| 亚洲一区二区三区欧美精品| 亚洲国产精品一区三区| 丰满饥渴人妻一区二区三| 亚洲在久久综合| 日本色播在线视频| 丰满少妇做爰视频| 男人舔女人的私密视频| 高清视频免费观看一区二区| 久久久国产精品麻豆| av免费观看日本| 久久影院123| 18禁观看日本| 欧美日韩综合久久久久久| 女人精品久久久久毛片| av女优亚洲男人天堂| avwww免费| 国产成人精品福利久久| 亚洲精品自拍成人| 成人国语在线视频| 9191精品国产免费久久| 老司机靠b影院| 啦啦啦 在线观看视频| 久久这里只有精品19| 亚洲综合精品二区| 免费看不卡的av| 久久精品亚洲av国产电影网| 精品少妇内射三级| 嫩草影视91久久| 99久久综合免费| 免费黄色在线免费观看| 另类亚洲欧美激情| 日韩大码丰满熟妇| 久久久久久久精品精品| www.自偷自拍.com| 狠狠婷婷综合久久久久久88av| 精品一区二区免费观看| 王馨瑶露胸无遮挡在线观看| 18禁观看日本| 看十八女毛片水多多多| 日日撸夜夜添| 国产片特级美女逼逼视频| 久久天堂一区二区三区四区| 波多野结衣一区麻豆| 9191精品国产免费久久| 91成人精品电影| 色94色欧美一区二区| 亚洲欧美成人综合另类久久久| 日本爱情动作片www.在线观看| 建设人人有责人人尽责人人享有的| 欧美老熟妇乱子伦牲交| 亚洲一卡2卡3卡4卡5卡精品中文| 男女边吃奶边做爰视频| 一本久久精品| 丁香六月天网| 国产男女超爽视频在线观看| av福利片在线| 亚洲精品av麻豆狂野| 一级黄片播放器| 青春草视频在线免费观看| 亚洲欧美精品自产自拍| 精品久久蜜臀av无| 日韩免费高清中文字幕av| 在线观看人妻少妇| 亚洲成人av在线免费| 亚洲国产av影院在线观看| 天美传媒精品一区二区| 欧美亚洲日本最大视频资源| 久久亚洲国产成人精品v| 麻豆av在线久日| 中文字幕最新亚洲高清| 亚洲色图综合在线观看| 建设人人有责人人尽责人人享有的| 综合色丁香网| 精品国产超薄肉色丝袜足j| 国产成人午夜福利电影在线观看| 欧美精品人与动牲交sv欧美| 一边亲一边摸免费视频| 午夜福利影视在线免费观看| 天天躁狠狠躁夜夜躁狠狠躁| 国产男女超爽视频在线观看| 少妇人妻久久综合中文| av电影中文网址| 午夜福利视频在线观看免费| 国产高清不卡午夜福利| 菩萨蛮人人尽说江南好唐韦庄| 亚洲国产精品成人久久小说| 久久久精品免费免费高清| 久久精品亚洲av国产电影网| 亚洲精品久久午夜乱码| 91成人精品电影| 大香蕉久久成人网| 亚洲四区av| 国产探花极品一区二区| 国产97色在线日韩免费| 啦啦啦啦在线视频资源| 国产有黄有色有爽视频| 99久久精品国产亚洲精品| 9热在线视频观看99| 日韩,欧美,国产一区二区三区| av又黄又爽大尺度在线免费看| 曰老女人黄片| 国产午夜精品一二区理论片| 国产精品国产三级专区第一集| 国精品久久久久久国模美| 日本欧美视频一区| 香蕉国产在线看| 午夜日韩欧美国产| 成人午夜精彩视频在线观看| 视频在线观看一区二区三区| 亚洲 欧美一区二区三区| 18禁观看日本| 叶爱在线成人免费视频播放| 免费久久久久久久精品成人欧美视频| 激情视频va一区二区三区| 欧美日韩一区二区视频在线观看视频在线| 久久ye,这里只有精品| 亚洲国产精品国产精品| 在线天堂最新版资源| 中文字幕色久视频| 一本久久精品| 亚洲视频免费观看视频| 亚洲色图 男人天堂 中文字幕| 一本大道久久a久久精品| 亚洲欧美成人精品一区二区| 日韩大片免费观看网站| 国产精品久久久久久精品古装| 最近中文字幕2019免费版| 国产一区亚洲一区在线观看| 成年人午夜在线观看视频| 深夜精品福利| 日韩av免费高清视频| 久久久久久久国产电影| 一级毛片黄色毛片免费观看视频| 大话2 男鬼变身卡| 亚洲成国产人片在线观看| 亚洲欧美激情在线| 亚洲国产日韩一区二区| e午夜精品久久久久久久| 侵犯人妻中文字幕一二三四区| 亚洲中文av在线| 黑人猛操日本美女一级片| 久久久久久久国产电影| 国产黄色免费在线视频| 亚洲婷婷狠狠爱综合网| 亚洲第一av免费看| av在线观看视频网站免费| 国产1区2区3区精品| 亚洲欧美色中文字幕在线| 男人操女人黄网站| 婷婷色麻豆天堂久久| 日本av手机在线免费观看| 国产成人系列免费观看| 国产欧美日韩综合在线一区二区| 99热全是精品| 在线天堂最新版资源| 国产日韩一区二区三区精品不卡| 女人被躁到高潮嗷嗷叫费观| 日韩av在线免费看完整版不卡| 亚洲欧美一区二区三区久久| 久久亚洲国产成人精品v| 国产精品亚洲av一区麻豆 | 精品酒店卫生间| 欧美日韩亚洲国产一区二区在线观看 | 成年人午夜在线观看视频| 国产成人精品福利久久| 中文字幕最新亚洲高清| 一级爰片在线观看| 成人国语在线视频| 久久精品国产a三级三级三级| 天天躁夜夜躁狠狠久久av| av国产久精品久网站免费入址| 久久毛片免费看一区二区三区| 亚洲美女视频黄频| av女优亚洲男人天堂| 久久久久久人人人人人| 青草久久国产| 亚洲欧美激情在线| 男女免费视频国产| 一边摸一边抽搐一进一出视频| 黄频高清免费视频| 咕卡用的链子| 精品酒店卫生间| 精品少妇久久久久久888优播| 18禁国产床啪视频网站| 久久久精品94久久精品| 另类亚洲欧美激情| 欧美精品av麻豆av| 搡老岳熟女国产| 国产一区亚洲一区在线观看| 美女午夜性视频免费| 国产精品人妻久久久影院| 悠悠久久av| 国产精品一国产av| 亚洲精品国产区一区二| 久久精品亚洲av国产电影网| 欧美成人午夜精品| 国产福利在线免费观看视频| 一本久久精品| 亚洲av电影在线进入| 精品少妇久久久久久888优播| 亚洲精品久久成人aⅴ小说| 极品人妻少妇av视频| 国产乱来视频区| 亚洲七黄色美女视频| 嫩草影院入口| 国产成人一区二区在线| 国产激情久久老熟女| 午夜福利乱码中文字幕| 国产男女内射视频| avwww免费| 日韩av免费高清视频| 日韩 欧美 亚洲 中文字幕| 国产男女内射视频| h视频一区二区三区| 欧美精品av麻豆av| 午夜福利,免费看| 青春草亚洲视频在线观看| 男女床上黄色一级片免费看| 青春草亚洲视频在线观看| 两个人免费观看高清视频| 午夜久久久在线观看| 欧美黑人精品巨大| 国产精品人妻久久久影院| 狠狠精品人妻久久久久久综合| 中文欧美无线码| 性色av一级| 中文天堂在线官网| 丰满少妇做爰视频| 黄色视频不卡| 久久热在线av| 亚洲精品久久成人aⅴ小说| 亚洲精品乱久久久久久| 韩国精品一区二区三区| 亚洲色图 男人天堂 中文字幕| 亚洲欧美精品综合一区二区三区| 肉色欧美久久久久久久蜜桃| 国产成人a∨麻豆精品| 亚洲在久久综合| 国产高清国产精品国产三级| 巨乳人妻的诱惑在线观看| 免费不卡黄色视频| 国产精品久久久久久久久免| 免费高清在线观看视频在线观看| 9热在线视频观看99| 亚洲第一区二区三区不卡| 美女福利国产在线| 看免费成人av毛片| 精品一区二区三区av网在线观看 | 又大又爽又粗| 丝袜脚勾引网站| 国产福利在线免费观看视频| 久久综合国产亚洲精品| 韩国精品一区二区三区| 一区在线观看完整版| 欧美 亚洲 国产 日韩一| 少妇被粗大的猛进出69影院| 可以免费在线观看a视频的电影网站 | 国产免费又黄又爽又色| 啦啦啦在线观看免费高清www| 秋霞伦理黄片| 伦理电影免费视频| 亚洲在久久综合| 亚洲成人手机| www.av在线官网国产| 1024视频免费在线观看| 日韩 亚洲 欧美在线| 久久久亚洲精品成人影院| 色婷婷久久久亚洲欧美| 大香蕉久久成人网| 亚洲专区中文字幕在线 | 丰满少妇做爰视频| 黄频高清免费视频| 日韩中文字幕欧美一区二区 | 精品一区二区三区四区五区乱码 | 久久久久久久久免费视频了| 午夜激情av网站| 人成视频在线观看免费观看| 欧美成人午夜精品| 国产一区二区三区av在线| 嫩草影视91久久| 成人国语在线视频| 国产又爽黄色视频| 国产精品人妻久久久影院| h视频一区二区三区| 久久ye,这里只有精品| 免费在线观看完整版高清| 久久综合国产亚洲精品| 大香蕉久久网| 王馨瑶露胸无遮挡在线观看| 亚洲欧美一区二区三区黑人| 亚洲精品第二区| 一区在线观看完整版| 日韩制服丝袜自拍偷拍| 日韩大片免费观看网站| 国产色婷婷99| 亚洲欧洲日产国产| 欧美老熟妇乱子伦牲交| 综合色丁香网| 女性生殖器流出的白浆| av国产久精品久网站免费入址| 国产av码专区亚洲av| 丝袜脚勾引网站| 中文欧美无线码| 亚洲精品一区蜜桃| 一边亲一边摸免费视频|