• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Atomization of Gelled Propellant Simulant with Carbon Particles

    2015-05-10 06:19:04QIANGHongfuLIUHuHANQilongWANGGuangHANYawei
    含能材料 2015年12期

    QIANG Hong-fu, LIU Hu, HAN Qi-long, WANG Guang, HAN Ya-wei

    (1. 601 Staffroom, Xi'an Hi-Tech Institution, Xi′an 710025, China; 2. 96263 Unit of the Second Artillery, Luoyang 471000, China)

    1 Introduction

    As a new kind of rocket propellant, gelled propellants have advantages for both liquid and solid propellants, including high density, combustion energy, security and long reservation period, etc. However, compared with the traditional liquid propellants, the non-Newtonian character makes the gelled propellants difficult to be atomized. Atomization has attracted widespread and lasting attentions since the beginning of the gel propulsion technology[1-2].

    The addition of energetic particles like carbon, aluminum or boron is essential to gelled propellants, and it may significantly increase the energy content per unit volume of the gelled propellant and improve the performance of gelled propulsion system[3-4]. As the addition of energetic particles would alter the rheological properties of gelled propellant[5], some researches have been made to investigate the atomization characteristics of gelled propellants with energetic particles. Jayaprakash et al[6]investigated the injection and atomization characteristics of gelled kerosene with 30%(mass fraction) Al particles, they found that Sauter mean diameter(SMD) of the gel spray was more sensitive to the impingement angle and was dependent on the injection pressure in a highly non-linear manner. Kampen et al[7-8]detail studied the influence of Al particles content of gelled Jet A-1 fuels on rheology, atomization and combustion. The gels prepared in their research appeared "solid" at unstressed ambient conditions and a distinct yield stress occurred. With different generalized Reynolds numbers, different atomization modes were observed. Baek et al[9]investigated the atomization behavior of C934 Carbopol gels with and without 15% SUS304 nanoparticles. They found the nanoparticles decreased the gel strength and made breakup length of gel with nanoparticles remarkably shorter than that of the pure Carbopol gel.

    Overall, the mechanics of atomization of gelled propellant with energetic particles are still far from being fully understood in these limited researches. In this work, a new simulant containing carbon particles was prepared and used in atomization experiments. The rheological properties were measured and a series of atomization experiments were made. The linear stability theory was adopted to study the breakup characteristics of the liquid sheet.

    2 Experiment

    2.1 Preparation of Gelled Propellant Simulants

    The gelled propellant simulant was prepared by dissolving 1%(mass fraction) high-molecular polymer, 5%(mass fraction) carbon particles with an average diameter of about 5 μm in de-ionized water and mixing with an electric mixer for 20 min at 2000 revolutions per minute. This carbon-loaded simulant is named as S1 in this paper. We also prepared another simulant S2 with 99%(mass fraction) de-ionized water and 1%(mass fraction) high-molecular polymer for comparison. The physical and rheological properties of simulants S1 and S2 are similar to gelled propellant: their densities (ρ) are 1010.1 kg·m-3and 1001.7 kg·m-3, and surface tension coefficients (σ) 0.067 N·m-1and 0.072 N·m-1, respectively. As the shear rate of the gelled propellant is high in atomization. The rheological properties of the simulants were measured by a rotational rheometer when shear rate and by pipe-flowing experiments whenγ≥103s-1.

    The relationship of apparent viscosity (η) and shear rate(γ) can be described by power-law equation, Herschel-Bulkley (HB) equation, Herschel-Bulkley Extended(HBE) equation, etc.[8]. The simulants prepared in this paper appear “syrupy” at unstressed ambient conditions. The experimental results show that the yield stresses (τ0) of the two simulants are very low and both below 10 Pa. Therefore, the yield stress was neglected and the most common power-law equation was adopted.

    (1)

    ηandγof simulants obtained from experiment and the fitted power-law constitutive curves are given in Fig.1, and their physical properties are listed in Table 1. From Fig.1, it can be seen that simulants S1 and S2 are pseudo plastic fluids and theirηdecrease with the increases ofγ. And compared with simulant S2 without carbon particles in Fig.1, simulant S1 shows higher apparent viscosity under the same shear rate than that of S2. The addition of carbon particles increases the consistency coefficient and decreases the flow index of the simulant, which indicates that the addition of carbon particles evidently changes the physical and rheological properties of the gel. As the de-ionized water is main component of the simulants, the densityρand surface tension coefficientσof the two simulants are similar to ones of water (ρ=1000.0 kg·m-3andσ=0.073 N·m-1), as shown in Table 1.

    Fig.1 Apparent viscosity and shear rate of gelled propellant simulants

    Table 1 Physical property of gelled propellant simulants with and without carbon particles

    simulantscarbonparticlesρ/kg·m-3σ/N·m-1power-lawconstitutiveparametersK/Pa·snnS1with1010.10.06716.590.29S2without1001.70.0727.080.37

    2.2 Experimental Apparatus

    Fig.2 is the schematic diagram of gelled propellant atomization experiment system. At the beginning of the experiment, high pressure gas would be filled into the tank to force the gelled propellant simulant to the jet injector across pipes and values. The impingement angle 2θand the jet velocityvjetwere tuned by adjusting the angle of the doublet injectors and changing the mass flow rate by the control value, respectively. The atomization processes were recorded by a Phantom V12.1 high speed camera with 784×800 image resolution and 5 μs shutter speed. The atomization images were passed to the data acquisition system for further analysis. Meanwhile, important data in the experiment, such as mass flow rate, pressure in the tank, pressure in the injectors, etc. were measured and recorded by the data acquisition system during the whole experiment.

    Fig.2 Schematic diagram of gelled propellant atomization experiment system

    2.3 Experimental Design

    In order to analyze the atomization characteristics of gelled propellant simulant with carbon particles, 10 atomization experiments were designed with different impingement angles 2θ, jet velocitiesvjet, injector orifice diametersdand injector orifice length to diameter ratioL/d0, etc., as shown in Table 2.

    The generalized Reynolds number(Regen) was used to describe the flow behavior of the power-law fluid, which is defined as ref.[10]:

    (2)

    whereρpis the density of the power-law fluid.

    Table 2 Conditions for the atomization experiment

    case2θ/(°)vjet/m·s-1d/mmL/d0Regen1601018160626015183211360221861824901018160659015183211690221861827601513.532118602213.56182960100.5813131060101.581806

    3 Results and Analysis

    3.1 Experiment Results and Analysis

    In this paper, the atomization quality is evaluated by the atomization angle (β) and atomization patterns. As we know, when two jets impinge with each other, a fan-shaped liquid sheet forms, and the angle between the left and right rims of the liquid sheet is called atomization angle (β, as shown in Fig.3). Generally, largerβmeans better atomization quality. According to former researches[8,11], with different gels, jet velocities, impingement angles, generalized Reynolds numbers, etc., there are different atomization patterns, including close-rim, open-rim, ligament and fully-developed patterns, etc.[8,11]The close-rim and open rim patterns indicate poor atomization qualities, while the other two indicate better atomization qualities.

    Fig.3 is atomization images with the impingement angle 2θ=60° and different velocities for cases 1-3. As shown in Fig.3a, with a low jet velocity (10.2 m·s-1) andRegen, a fan-shaped liquid sheet forms, and it has a distinct rim at the upstream and breakups into ligaments and large drops downstream. The atomization pattern in Fig. 3a is the so-called “open-rim pattern” with the atomization angleβof about 70°. Fig.3b also shows an open-rim pattern withβ=85° under a larger jet velocity (15.68 m·s-1) andRegen=3211. As shown in Fig.3c, withvjet=22.14 m·s-1andRegen=3211, the rim of the liquid sheet becomes indistinct, and clearer bow-shaped impact waves occurs and makes the liquid sheet more unstable and breakup into more ligaments and drops. The pattern in Fig.3c is called “l(fā)igament pattern”.βin Fig.3c is about 100°. As discussed in Ref.[8], in cases 1-3, the generalized Reynolds numberRegen, which is completely determined by jet velocity, could be adopted as the indication of the atomization quality. LargerRegen(jet velocity) means a larger kinetic energy in jet impingement and would lead to better atomization quality.

    Fig.4 shows atomization images with 2θ=90° and different velocities for cases 4-6. Compared with cases 1-3 in Fig.3, theβin Fig.4 are larger, which are about 80°, 110°, 140° in Fig.4a, Fig.4b, Fig.4c, respectively. Fig.4a shows an open-rim pattern, and Fig.4b and Fig.4c show ligament patterns. The atomization qualities at impingement angle 2θ=90° are better than ones with 2θ=60° and the similar jet velocities.

    Fig.5 shows that the atomization images with ratio of injector orifice length to diameter (L/d0=3.5)under different jet velocities for cases 7 and 8. Compared with case 2 and case 3 withL/d0=8 shown in Fig.3b and Fig.3c, there are no obvious differences in Fig.5. Atomization patterns in Fig.5a and Fig.5b are almost identical to patterns in Fig.3b and Fig.3c respectively, which indicates that there are no essential differences on the flow characteristics of the jets sprayed from injectors withL/d0=3.5 and 8. As a result, the ratio of injector orifice length to diameter has little influences on the atomization patterns.

    Fig.6 shows atomization images with impingement angle 2θ=60° and different injector orifice diameters for cases 9 and 10. As shown in Fig.3a (case 1) and Fig.6, the larger orifice diameters lead to larger mass flow rates and will produce larger liquid sheets. But there are also no essential differences on the atomization patterns of cases 1, 9 and 10, they are all open-rim patterns with almost the same atomization angle about 70°.

    In all the cases studied in this paper, the gelled propellant simulant could hardly to be atomized into fine drops, the main atomization products are ligaments and large drops. Within the investigation conditions, the atomization quality increases with the increase of jet velocity and impingement angle, while the changes of injector length to diameter ratio and the injector orifice diameters influence the atomization patterns little.

    a.vjet=10.2 m·s-1, b.vjet=15.68 m·s-1, c.vjet=22.14 m·s-1,

    β=70°β=85°β=100°

    Fig.3 Atomization images of cases 1-3

    a.vjet=9.77 m·s-1, b.vjet=15.28 m·s-1, c.vjet=21.71 m·s-1

    Fig.4 Atomization images of cases 4- 6

    a.vjet=15.35 m·s-1b.vjet=22.22 m·s-1

    Fig.5 Atomization images case 7 and case 8

    a.vjet=9.80 m·s-1b.vjet=10.49 m·s-1

    d0=0.5 mmd0=1.5 mm

    Fig.6 Atomization images of case 9 and case 10

    3.2 Linear Stability Analysis

    Linear stability theory is widely used to evaluate the instabilities of the liquid sheet[12-13]. In this theory, the liquid sheet instability is mainly due to the aerodynamics interactions between the liquid and its surrounding gas. There are two kinds of disturbances that will occur on the liquid sheet: symmetric and anti-symmetric. Squire[14]showed that the anti-symmetric disturbance played a dominant role on breaking the liquid sheet into fragments. Therefore, only the anti-symmetric disturbance is considered here. Schematic of a moving liquid sheet under anti-symmetric disturbance is shown in Fig.7, a two dimensional liquid sheet moves into a quiescent, inviscid, incompressible gas with velocityUs, the thickness of the liquid sheet is 2hs, the surface tension of liquid isσ, the densities of liquid and gas areρ1andρgrespectively, the density ratio of gas and liquid isRg1=ρg/ρ1. Generally, the wave amplitude on the liquid sheet can be expressed as:

    (3)

    Fig.7 Schematic of a moving liquid sheet under anti-symmetric disturbance

    Chojnaki[15]deduced the dispersion relation for a plan liquid sheet based on the power-law constitutive:

    (4)

    (5)

    (6)

    If the liquid sheet breakups when the wave amplitude reachesηb, the breakup timeτbcan be obtained as follows:

    τb=ln(ηb/η0)/ωi,max

    (7)

    whereωi,maxis the maximum grow rate, then the breakup length can be calculated as:

    Lb=Usln(ηb/η0)/ωi,max

    (8)

    Here ln(ηb/η0) is set to be 12 according to Ref. [13].

    In this paper, the breakup length of the liquid sheet is defined as the axial distance from the impingement point to the point where the liquid sheet along the axis begins to breakup, as shown in Fig.8. We assume the liquid sheet speedUs=0.92vjetaccording to ref. [16]. Solving equation (4) withρ1=1010.1 kg·m-3,ρg=1.225 kg·m-3,K=16.59 Pa·sn,n=0.29,σ=0.067 N·m-1and 2hs=2.0×10-4m under jet velocity of 10 m·s-1(cases 1, 4), 15 m·s-1(cases 2, 5) and 22 m·s-1(cases 3, 6), the effects of sheet velocity on the stability of the liquid sheet can be obtained, as shown in Fig.9. It can be seen that the maximum disturbance wave grow rate increases with the increase of the sheet velocity. It means that the liquid sheet will become more unstable at larger sheet velocities, which agrees well with the experiment results of cases 1-3 and cases 4-6 under the same velocities.

    With equations (4), (7) and (8), the breakup length of the liquid sheet can be predicted. Fig.10 is the comparison of breakup lengths of liquid sheets predicted by linear stability theory and measured from experiments. As shown in Fig.10, the variation trend of breakup lengths of liquid sheets calculated from linear stability theory is consistent with the ones measured from experiments. At a low Weber number, the linear stability analysis evidently overestimates the breakup length when compared with the experiment. The relative error between the predicted and measured breakup lengths is about 24% atWes=128. As the Weber number increases, the relative errors decrease to 14.9% atWes=618. The errors of the predicted values are considered as a results of neglect of instabilities caused by jet impingement in the linear stability theory.

    Fig.8 Definition of the breakup length of the liquid sheet

    Fig.9 Influence of sheet velocityUson the stability of the liquid sheet calculated by linear stability theory

    Fig.10 Comparison of breakup lengths of liquid sheets from linear stability analysis and experiments

    4 Conclusions

    (1) The carbon particles increase the consistency coefficient and decrease the flow index of the simulant S1, which makes simulant S1 show high apparent viscosity under the same shear rate.

    (2) The simulant S1 can only be atomized into ligaments and large drops. The atomization quality improves with the increases of jet velocity and impingement angles, while the changes in injector length to diameter ratio and the injector orifice diameters show little influences on the atomization patterns.

    (3) There are about 14.9%-24% relative errors between the predicted and measured breakup lengths, but the tendency of the breakup lengths predicted by the linear stability theory agrees well with the experiment ones.

    [1] Natan B, Rahimi S. The status of gel propellants in year 2000[J].InternationalJournalofEnergeticMaterialsandChemicalPropulsion, 2002,5(1-6): 172-192.

    [2] LIU Hu, QIANG Hong-fu, WANG Guang. Review on Jet Impingement Atomization on Gelled Propellant[J].ChineseJournalofEnergeticMaterials(HannengCailiao), 2015, 23(7): 697-708.

    [3] Hodge K, Crofoot T, Nelson S. Gelled propellants for tactical missile applications. AIAA 99-2976[R], 1999.

    [4] Haddad A, Natan B, Arieli R. The performance of a boron-loaded gel-fuel ramjet[J].ProgressinPropulsionPhysics, 2011,2: 499-518.

    [5] Wu Zhijian, Hu Lirong. Performance Research of Metallized Gelled Propellant[J].MissileandSpaceVehicle, 2006, 283(03): 52-55.

    [6] Jayaprakash N, Chakravarthy S R. Impingement Atomization of Gelled Fuels. AIAA 2003-316[R], 2003.

    [7] von Kampen J, Madlener K, Ciezki H K. Characteristic Flow and Spray Properties of Gelled Fuels with Regard to the Impinging Jet Injector Type. AIAA 2006-4573[R], 2006.

    [8] von Kampen J, Alberio F, Ciezki H K. Spray and combustion characteristics of aluminized gelled fuels with an impinging jet injector[J].AerospSciTechnol, 2007,11:77-83.

    [9] Baek G, Kim S, Han J, et al. Atomization characteristics of impinging jets of gel material containing nanoparticles[J].JNon-NewtonFluid, 2011,166(21): 1272-1285.

    [10] Metzner A B, Reed C J. Flow of non-Newtonian fluids-correlation of the laminar, transition, and turbulent-flow regions[J].AmericanInstituteofChemicalEngineeringJournal, 1955,4(1): 189-204.

    [11] Fu Q, Yang L, Zhuang F. Effects of Orifice Geometry on Spray Characteristics of Impinging Jet Injectors for Gelled Propellants[R].AIAA 2013-3704, 2013.

    [12] Ryan H M, Anderson W E, Pal S, et al. Atomization characteristics of impinging liquid jets[J].JPropulPower, 1995,11(1): 135-145.

    [13] Dombrowski N, Johns W R. The aerodynamic instability and disintegration of viscous liquid sheets[J].ChemEngSci, 1963,18(3): 203-214.

    [14] Squire H B. Investigation of the instability of a moving liquid film[J].BritishJournalofAppliedPhysics, 1953,4: 167-169.

    [15] Chojnacki K T. Atomization and mixing of impinging non-Newtonian jets[D]. Huntsville: University of Alabama-Huntsville, 1997.

    [16] Heislbetz B, Madlener K, Ciezki H K. Breakup Characteristics of a Newtonian Liquid Sheet formed by a Doublet Impinging Jet Injector.AIAA2007-5694[R], 2007.

    久久国产精品人妻蜜桃| 国产成人欧美| 久久av网站| 天天操日日干夜夜撸| 欧美人与性动交α欧美精品济南到| 一级片'在线观看视频| 男男h啪啪无遮挡| 精品少妇一区二区三区视频日本电影| 丝袜喷水一区| 亚洲欧美精品自产自拍| 欧美另类亚洲清纯唯美| 国产精品99久久99久久久不卡| 亚洲精品国产av蜜桃| 中文字幕人妻丝袜一区二区| 久久久久国内视频| 国产男女内射视频| 色婷婷久久久亚洲欧美| 国产精品香港三级国产av潘金莲| av网站免费在线观看视频| 亚洲精品乱久久久久久| 亚洲国产精品成人久久小说| 美女午夜性视频免费| 成在线人永久免费视频| 国产麻豆69| 中文字幕av电影在线播放| 丰满饥渴人妻一区二区三| 美女中出高潮动态图| 免费女性裸体啪啪无遮挡网站| 欧美人与性动交α欧美精品济南到| 青春草亚洲视频在线观看| av不卡在线播放| 久久久国产欧美日韩av| 亚洲精品中文字幕一二三四区 | 美女福利国产在线| 丝瓜视频免费看黄片| 国产欧美亚洲国产| 久久这里只有精品19| 国产成人免费无遮挡视频| 999精品在线视频| 欧美激情 高清一区二区三区| 亚洲精华国产精华精| 中文精品一卡2卡3卡4更新| 国产亚洲精品一区二区www | 极品少妇高潮喷水抽搐| 久久中文字幕一级| 免费久久久久久久精品成人欧美视频| 欧美日韩精品网址| 国产91精品成人一区二区三区 | 国产精品一区二区在线不卡| 国产无遮挡羞羞视频在线观看| 免费在线观看完整版高清| 美女大奶头黄色视频| 自拍欧美九色日韩亚洲蝌蚪91| 一本久久精品| 成年动漫av网址| 永久免费av网站大全| 亚洲第一欧美日韩一区二区三区 | 亚洲中文字幕日韩| 国产一区二区三区综合在线观看| 日本一区二区免费在线视频| 人妻人人澡人人爽人人| 嫩草影视91久久| 视频区欧美日本亚洲| 视频区图区小说| 精品少妇久久久久久888优播| 欧美性长视频在线观看| 韩国高清视频一区二区三区| 国产野战对白在线观看| 午夜福利一区二区在线看| 国产精品av久久久久免费| 这个男人来自地球电影免费观看| 国产精品秋霞免费鲁丝片| 9色porny在线观看| 99热全是精品| 免费少妇av软件| 国产男女超爽视频在线观看| 操出白浆在线播放| 精品国内亚洲2022精品成人 | 91国产中文字幕| 老司机福利观看| 午夜日韩欧美国产| 在线十欧美十亚洲十日本专区| 999久久久国产精品视频| 在线永久观看黄色视频| 黄色视频,在线免费观看| 亚洲人成电影观看| 国产极品粉嫩免费观看在线| 亚洲av电影在线观看一区二区三区| 在线十欧美十亚洲十日本专区| 亚洲国产欧美日韩在线播放| 涩涩av久久男人的天堂| 亚洲精品国产av蜜桃| 国产真人三级小视频在线观看| 亚洲精品一区蜜桃| 97在线人人人人妻| 两个人免费观看高清视频| 久久国产精品男人的天堂亚洲| 国产91精品成人一区二区三区 | 涩涩av久久男人的天堂| 亚洲专区中文字幕在线| 免费在线观看日本一区| 成人影院久久| 日日摸夜夜添夜夜添小说| 中文字幕制服av| 大香蕉久久网| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品99久久99久久久不卡| 国产一卡二卡三卡精品| 极品人妻少妇av视频| 中文字幕精品免费在线观看视频| 久久天堂一区二区三区四区| 精品熟女少妇八av免费久了| 亚洲精品av麻豆狂野| 纯流量卡能插随身wifi吗| 19禁男女啪啪无遮挡网站| 午夜老司机福利片| 亚洲专区字幕在线| 久久天堂一区二区三区四区| 一区二区av电影网| 777久久人妻少妇嫩草av网站| 他把我摸到了高潮在线观看 | 精品一区二区三区av网在线观看 | 亚洲欧美色中文字幕在线| 日本a在线网址| 国产亚洲午夜精品一区二区久久| 国产无遮挡羞羞视频在线观看| 亚洲国产日韩一区二区| 中文字幕色久视频| 欧美成人午夜精品| 捣出白浆h1v1| av网站在线播放免费| 99热全是精品| 免费高清在线观看日韩| 亚洲精品国产一区二区精华液| 久久久久国产精品人妻一区二区| 国产伦理片在线播放av一区| 亚洲av男天堂| 色婷婷久久久亚洲欧美| 80岁老熟妇乱子伦牲交| 最黄视频免费看| 热re99久久国产66热| 少妇精品久久久久久久| 欧美亚洲 丝袜 人妻 在线| 免费在线观看日本一区| 搡老岳熟女国产| 最新的欧美精品一区二区| 久久久久久久精品精品| 免费少妇av软件| 免费高清在线观看视频在线观看| 99久久99久久久精品蜜桃| 国产真人三级小视频在线观看| 这个男人来自地球电影免费观看| 国产av国产精品国产| 99久久人妻综合| 少妇被粗大的猛进出69影院| 少妇人妻久久综合中文| 国产亚洲av高清不卡| 国产欧美日韩精品亚洲av| 日韩制服骚丝袜av| 老熟妇乱子伦视频在线观看 | √禁漫天堂资源中文www| 亚洲三区欧美一区| 黄色视频,在线免费观看| www.精华液| 蜜桃国产av成人99| 视频区欧美日本亚洲| 成人三级做爰电影| 三上悠亚av全集在线观看| 狠狠婷婷综合久久久久久88av| 多毛熟女@视频| 妹子高潮喷水视频| 国产精品.久久久| 大码成人一级视频| 亚洲专区中文字幕在线| 视频在线观看一区二区三区| 亚洲国产欧美网| 在线观看免费视频网站a站| 亚洲色图 男人天堂 中文字幕| 99九九在线精品视频| 国产精品香港三级国产av潘金莲| 18禁黄网站禁片午夜丰满| 五月天丁香电影| 欧美激情 高清一区二区三区| 中文欧美无线码| 一级片'在线观看视频| 欧美精品啪啪一区二区三区 | 国产男女内射视频| 九色亚洲精品在线播放| 他把我摸到了高潮在线观看 | 最黄视频免费看| 中文字幕精品免费在线观看视频| 日本黄色日本黄色录像| 熟女少妇亚洲综合色aaa.| 超碰97精品在线观看| 黄色视频,在线免费观看| 欧美少妇被猛烈插入视频| 午夜视频精品福利| 亚洲精华国产精华精| 国产成人免费无遮挡视频| 美女午夜性视频免费| 香蕉国产在线看| 丰满少妇做爰视频| 91精品三级在线观看| 在线av久久热| 国产高清视频在线播放一区 | 亚洲三区欧美一区| 日本a在线网址| 黄色a级毛片大全视频| 久久久国产欧美日韩av| 中文字幕人妻熟女乱码| 亚洲五月色婷婷综合| 五月开心婷婷网| 亚洲综合色网址| 成人av一区二区三区在线看 | 国产亚洲一区二区精品| 人成视频在线观看免费观看| 亚洲精品av麻豆狂野| 国产淫语在线视频| 日本wwww免费看| 国产精品免费视频内射| 俄罗斯特黄特色一大片| 国产av国产精品国产| 成年动漫av网址| 18禁黄网站禁片午夜丰满| 下体分泌物呈黄色| 俄罗斯特黄特色一大片| av国产精品久久久久影院| 久久国产精品男人的天堂亚洲| 久9热在线精品视频| 五月天丁香电影| 国产三级黄色录像| 国产亚洲午夜精品一区二区久久| 乱人伦中国视频| 丝袜人妻中文字幕| 岛国在线观看网站| 亚洲人成77777在线视频| 国产高清国产精品国产三级| 精品视频人人做人人爽| 一本—道久久a久久精品蜜桃钙片| 丰满饥渴人妻一区二区三| 男女之事视频高清在线观看| 国产成人精品久久二区二区免费| 捣出白浆h1v1| 国产一区二区 视频在线| 精品人妻一区二区三区麻豆| 18禁黄网站禁片午夜丰满| 亚洲va日本ⅴa欧美va伊人久久 | 免费在线观看日本一区| 18禁国产床啪视频网站| 99久久精品国产亚洲精品| 欧美成人午夜精品| 亚洲七黄色美女视频| 久久 成人 亚洲| 考比视频在线观看| 欧美另类亚洲清纯唯美| 少妇精品久久久久久久| 亚洲伊人久久精品综合| 12—13女人毛片做爰片一| 69av精品久久久久久 | 国产欧美日韩一区二区三区在线| 国产黄频视频在线观看| 男人爽女人下面视频在线观看| av有码第一页| 国产99久久九九免费精品| 欧美黑人精品巨大| 人妻久久中文字幕网| 欧美日韩黄片免| 69av精品久久久久久 | videos熟女内射| 两性夫妻黄色片| 欧美性长视频在线观看| 亚洲精品美女久久久久99蜜臀| 亚洲五月婷婷丁香| 天天躁日日躁夜夜躁夜夜| 国产欧美日韩精品亚洲av| 一级毛片电影观看| 成年动漫av网址| av片东京热男人的天堂| 天天躁夜夜躁狠狠躁躁| 免费人妻精品一区二区三区视频| 亚洲精品第二区| 国产亚洲精品久久久久5区| 丁香六月欧美| 啦啦啦 在线观看视频| av天堂久久9| 美女中出高潮动态图| 色婷婷av一区二区三区视频| 亚洲全国av大片| 欧美亚洲 丝袜 人妻 在线| 久久久久网色| 亚洲国产精品一区二区三区在线| 国产免费一区二区三区四区乱码| 亚洲,欧美精品.| 亚洲avbb在线观看| 国产精品影院久久| 久久久国产成人免费| 国产亚洲av高清不卡| 满18在线观看网站| 超碰成人久久| 国产精品自产拍在线观看55亚洲 | 久久午夜综合久久蜜桃| 久久精品熟女亚洲av麻豆精品| 精品一区二区三区四区五区乱码| 亚洲国产成人一精品久久久| 欧美日韩视频精品一区| 国产一级毛片在线| 欧美成狂野欧美在线观看| 少妇 在线观看| 国产成人精品无人区| 黑人操中国人逼视频| 国产一区二区三区综合在线观看| 亚洲精品久久午夜乱码| 91精品三级在线观看| av一本久久久久| 欧美在线黄色| 成年女人毛片免费观看观看9 | 国产精品久久久久成人av| 久久久国产精品麻豆| 高潮久久久久久久久久久不卡| 80岁老熟妇乱子伦牲交| 男女高潮啪啪啪动态图| 欧美黑人精品巨大| 欧美另类亚洲清纯唯美| avwww免费| 亚洲成国产人片在线观看| 丝瓜视频免费看黄片| 99香蕉大伊视频| 亚洲熟女毛片儿| 大型av网站在线播放| 午夜福利影视在线免费观看| 黄频高清免费视频| 国产av国产精品国产| www.999成人在线观看| 国产人伦9x9x在线观看| 久久亚洲国产成人精品v| 精品欧美一区二区三区在线| 国产亚洲av高清不卡| 视频区欧美日本亚洲| 菩萨蛮人人尽说江南好唐韦庄| 亚洲中文日韩欧美视频| 久久精品国产亚洲av香蕉五月 | 国产一区二区在线观看av| 老熟妇仑乱视频hdxx| 汤姆久久久久久久影院中文字幕| 亚洲欧美激情在线| 成年人黄色毛片网站| 一区二区三区激情视频| 久久九九热精品免费| 亚洲五月色婷婷综合| 久久天躁狠狠躁夜夜2o2o| 老熟妇乱子伦视频在线观看 | 丰满少妇做爰视频| 香蕉丝袜av| 咕卡用的链子| 日本a在线网址| 久久精品亚洲熟妇少妇任你| 国产免费福利视频在线观看| 成年人午夜在线观看视频| 成年美女黄网站色视频大全免费| www日本在线高清视频| 性色av乱码一区二区三区2| 欧美乱码精品一区二区三区| 国产精品av久久久久免费| 丝袜美足系列| 美女高潮到喷水免费观看| 黄片播放在线免费| 19禁男女啪啪无遮挡网站| 一区二区三区四区激情视频| 国产精品九九99| 国产免费视频播放在线视频| 老司机影院毛片| 在线观看舔阴道视频| 亚洲人成77777在线视频| 王馨瑶露胸无遮挡在线观看| 欧美日韩亚洲综合一区二区三区_| 搡老熟女国产l中国老女人| 大陆偷拍与自拍| 色播在线永久视频| 国产av精品麻豆| 国产免费一区二区三区四区乱码| 中文字幕人妻丝袜制服| 一边摸一边抽搐一进一出视频| cao死你这个sao货| 久久人人爽人人片av| a在线观看视频网站| 99热全是精品| 免费观看a级毛片全部| 12—13女人毛片做爰片一| 亚洲人成电影免费在线| 国产精品影院久久| 老司机午夜福利在线观看视频 | 亚洲精品美女久久久久99蜜臀| 日本av手机在线免费观看| 啦啦啦 在线观看视频| 99国产精品99久久久久| 香蕉丝袜av| 在线十欧美十亚洲十日本专区| cao死你这个sao货| 亚洲成人免费电影在线观看| 99精品久久久久人妻精品| 亚洲专区中文字幕在线| 久久久久久亚洲精品国产蜜桃av| 国产又爽黄色视频| 亚洲精品国产色婷婷电影| 免费在线观看完整版高清| 亚洲欧美日韩高清在线视频 | 一区在线观看完整版| 老熟妇仑乱视频hdxx| 午夜老司机福利片| 国产在线观看jvid| 亚洲欧洲日产国产| 久久亚洲国产成人精品v| 我的亚洲天堂| 国产一区二区三区在线臀色熟女 | 亚洲精品久久久久久婷婷小说| 丰满饥渴人妻一区二区三| 亚洲熟女精品中文字幕| 999久久久国产精品视频| 性少妇av在线| 久久精品熟女亚洲av麻豆精品| 男女国产视频网站| 啦啦啦 在线观看视频| 一级毛片精品| 国内毛片毛片毛片毛片毛片| 美女国产高潮福利片在线看| 黄片大片在线免费观看| 老汉色∧v一级毛片| 国产国语露脸激情在线看| 99国产极品粉嫩在线观看| 18禁裸乳无遮挡动漫免费视频| 日韩 欧美 亚洲 中文字幕| 国产精品 欧美亚洲| 国产不卡av网站在线观看| 黄色a级毛片大全视频| 女人久久www免费人成看片| 99久久99久久久精品蜜桃| 国产伦人伦偷精品视频| 九色亚洲精品在线播放| 国产欧美日韩一区二区精品| 99久久人妻综合| 久久久久国产一级毛片高清牌| 亚洲精品久久成人aⅴ小说| 中文字幕最新亚洲高清| 美女高潮到喷水免费观看| 一本久久精品| av网站免费在线观看视频| 建设人人有责人人尽责人人享有的| 69精品国产乱码久久久| 免费黄频网站在线观看国产| 免费久久久久久久精品成人欧美视频| 欧美黑人欧美精品刺激| 黑人操中国人逼视频| 高清黄色对白视频在线免费看| 91av网站免费观看| 亚洲欧美清纯卡通| 久久天躁狠狠躁夜夜2o2o| 国产精品久久久久久精品古装| 99热国产这里只有精品6| 极品少妇高潮喷水抽搐| 国产精品欧美亚洲77777| a级片在线免费高清观看视频| 久久青草综合色| 黄色视频,在线免费观看| 美女国产高潮福利片在线看| 如日韩欧美国产精品一区二区三区| 好男人电影高清在线观看| 亚洲成国产人片在线观看| 80岁老熟妇乱子伦牲交| 日日爽夜夜爽网站| 亚洲av日韩在线播放| 又紧又爽又黄一区二区| 18禁黄网站禁片午夜丰满| 国产在线观看jvid| 欧美久久黑人一区二区| 精品久久久久久久毛片微露脸 | 最近中文字幕2019免费版| www日本在线高清视频| 欧美亚洲 丝袜 人妻 在线| 天天躁夜夜躁狠狠躁躁| 人妻久久中文字幕网| 欧美黄色片欧美黄色片| 亚洲国产欧美网| 精品福利永久在线观看| 欧美 日韩 精品 国产| 18禁裸乳无遮挡动漫免费视频| 另类亚洲欧美激情| 亚洲中文日韩欧美视频| 美女大奶头黄色视频| 亚洲精品成人av观看孕妇| 亚洲精华国产精华精| 亚洲精品一卡2卡三卡4卡5卡 | 亚洲精品一卡2卡三卡4卡5卡 | 中文精品一卡2卡3卡4更新| 午夜免费成人在线视频| 国产国语露脸激情在线看| 黑人巨大精品欧美一区二区蜜桃| 人人妻人人澡人人看| 新久久久久国产一级毛片| 精品久久久久久电影网| 老熟妇仑乱视频hdxx| 成人黄色视频免费在线看| 韩国高清视频一区二区三区| 亚洲黑人精品在线| 亚洲欧美日韩另类电影网站| 后天国语完整版免费观看| 久久久久久久国产电影| 国产麻豆69| 97在线人人人人妻| 亚洲综合色网址| 91成人精品电影| 久久久国产一区二区| 久久亚洲精品不卡| 伦理电影免费视频| 久久久欧美国产精品| 久久99热这里只频精品6学生| 日韩,欧美,国产一区二区三区| 中文字幕高清在线视频| 肉色欧美久久久久久久蜜桃| 老司机在亚洲福利影院| 麻豆av在线久日| 激情视频va一区二区三区| 亚洲一卡2卡3卡4卡5卡精品中文| 伊人久久大香线蕉亚洲五| 国产成人免费观看mmmm| 天天躁夜夜躁狠狠躁躁| 99久久国产精品久久久| 黑人巨大精品欧美一区二区蜜桃| 亚洲伊人久久精品综合| 国产日韩欧美亚洲二区| 高清av免费在线| 黄片小视频在线播放| 脱女人内裤的视频| 国产免费现黄频在线看| 女人爽到高潮嗷嗷叫在线视频| 69av精品久久久久久 | 亚洲成人手机| 国产一区二区三区在线臀色熟女 | 黄色片一级片一级黄色片| 在线观看免费视频网站a站| 丁香六月欧美| 亚洲精华国产精华精| 韩国精品一区二区三区| 国产片内射在线| videosex国产| 黑人巨大精品欧美一区二区mp4| 老司机午夜十八禁免费视频| 宅男免费午夜| 搡老熟女国产l中国老女人| 嫁个100分男人电影在线观看| 亚洲少妇的诱惑av| 亚洲国产精品一区三区| 性色av乱码一区二区三区2| 999精品在线视频| 成人三级做爰电影| 美女高潮到喷水免费观看| 日韩 亚洲 欧美在线| 精品久久久久久电影网| 欧美激情 高清一区二区三区| 亚洲欧美清纯卡通| 免费观看a级毛片全部| avwww免费| 国产成人精品久久二区二区免费| 最新的欧美精品一区二区| 国产亚洲av片在线观看秒播厂| 9色porny在线观看| 久久精品国产亚洲av高清一级| 欧美 日韩 精品 国产| 亚洲欧洲日产国产| 成在线人永久免费视频| 在线观看www视频免费| 777米奇影视久久| 亚洲中文av在线| 亚洲欧美日韩另类电影网站| 日韩大片免费观看网站| 国产一区二区三区综合在线观看| 午夜激情av网站| 色婷婷av一区二区三区视频| 欧美黑人欧美精品刺激| 亚洲午夜精品一区,二区,三区| 亚洲欧美成人综合另类久久久| 91麻豆精品激情在线观看国产 | 成人手机av| 欧美在线黄色| 男男h啪啪无遮挡| 欧美日韩成人在线一区二区| 日本欧美视频一区| 精品高清国产在线一区| 黄片大片在线免费观看| 美女午夜性视频免费| 午夜福利视频精品| 一区二区三区精品91| 国产日韩欧美在线精品| 美女福利国产在线| 免费人妻精品一区二区三区视频| 国产又爽黄色视频| 亚洲成人手机| 日本av免费视频播放| 日韩 欧美 亚洲 中文字幕| 中文字幕高清在线视频| 一区二区三区精品91| 男女无遮挡免费网站观看| 亚洲av成人一区二区三| 国产色视频综合| 国产主播在线观看一区二区| 搡老熟女国产l中国老女人| 欧美人与性动交α欧美精品济南到| 久久久精品免费免费高清| 国产成+人综合+亚洲专区| 久久久国产成人免费| 另类亚洲欧美激情| 欧美性长视频在线观看| 精品国产一区二区久久| 久久中文看片网| 美女国产高潮福利片在线看| 色婷婷av一区二区三区视频|