• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Atomization of Gelled Propellant Simulant with Carbon Particles

    2015-05-10 06:19:04QIANGHongfuLIUHuHANQilongWANGGuangHANYawei
    含能材料 2015年12期

    QIANG Hong-fu, LIU Hu, HAN Qi-long, WANG Guang, HAN Ya-wei

    (1. 601 Staffroom, Xi'an Hi-Tech Institution, Xi′an 710025, China; 2. 96263 Unit of the Second Artillery, Luoyang 471000, China)

    1 Introduction

    As a new kind of rocket propellant, gelled propellants have advantages for both liquid and solid propellants, including high density, combustion energy, security and long reservation period, etc. However, compared with the traditional liquid propellants, the non-Newtonian character makes the gelled propellants difficult to be atomized. Atomization has attracted widespread and lasting attentions since the beginning of the gel propulsion technology[1-2].

    The addition of energetic particles like carbon, aluminum or boron is essential to gelled propellants, and it may significantly increase the energy content per unit volume of the gelled propellant and improve the performance of gelled propulsion system[3-4]. As the addition of energetic particles would alter the rheological properties of gelled propellant[5], some researches have been made to investigate the atomization characteristics of gelled propellants with energetic particles. Jayaprakash et al[6]investigated the injection and atomization characteristics of gelled kerosene with 30%(mass fraction) Al particles, they found that Sauter mean diameter(SMD) of the gel spray was more sensitive to the impingement angle and was dependent on the injection pressure in a highly non-linear manner. Kampen et al[7-8]detail studied the influence of Al particles content of gelled Jet A-1 fuels on rheology, atomization and combustion. The gels prepared in their research appeared "solid" at unstressed ambient conditions and a distinct yield stress occurred. With different generalized Reynolds numbers, different atomization modes were observed. Baek et al[9]investigated the atomization behavior of C934 Carbopol gels with and without 15% SUS304 nanoparticles. They found the nanoparticles decreased the gel strength and made breakup length of gel with nanoparticles remarkably shorter than that of the pure Carbopol gel.

    Overall, the mechanics of atomization of gelled propellant with energetic particles are still far from being fully understood in these limited researches. In this work, a new simulant containing carbon particles was prepared and used in atomization experiments. The rheological properties were measured and a series of atomization experiments were made. The linear stability theory was adopted to study the breakup characteristics of the liquid sheet.

    2 Experiment

    2.1 Preparation of Gelled Propellant Simulants

    The gelled propellant simulant was prepared by dissolving 1%(mass fraction) high-molecular polymer, 5%(mass fraction) carbon particles with an average diameter of about 5 μm in de-ionized water and mixing with an electric mixer for 20 min at 2000 revolutions per minute. This carbon-loaded simulant is named as S1 in this paper. We also prepared another simulant S2 with 99%(mass fraction) de-ionized water and 1%(mass fraction) high-molecular polymer for comparison. The physical and rheological properties of simulants S1 and S2 are similar to gelled propellant: their densities (ρ) are 1010.1 kg·m-3and 1001.7 kg·m-3, and surface tension coefficients (σ) 0.067 N·m-1and 0.072 N·m-1, respectively. As the shear rate of the gelled propellant is high in atomization. The rheological properties of the simulants were measured by a rotational rheometer when shear rate and by pipe-flowing experiments whenγ≥103s-1.

    The relationship of apparent viscosity (η) and shear rate(γ) can be described by power-law equation, Herschel-Bulkley (HB) equation, Herschel-Bulkley Extended(HBE) equation, etc.[8]. The simulants prepared in this paper appear “syrupy” at unstressed ambient conditions. The experimental results show that the yield stresses (τ0) of the two simulants are very low and both below 10 Pa. Therefore, the yield stress was neglected and the most common power-law equation was adopted.

    (1)

    ηandγof simulants obtained from experiment and the fitted power-law constitutive curves are given in Fig.1, and their physical properties are listed in Table 1. From Fig.1, it can be seen that simulants S1 and S2 are pseudo plastic fluids and theirηdecrease with the increases ofγ. And compared with simulant S2 without carbon particles in Fig.1, simulant S1 shows higher apparent viscosity under the same shear rate than that of S2. The addition of carbon particles increases the consistency coefficient and decreases the flow index of the simulant, which indicates that the addition of carbon particles evidently changes the physical and rheological properties of the gel. As the de-ionized water is main component of the simulants, the densityρand surface tension coefficientσof the two simulants are similar to ones of water (ρ=1000.0 kg·m-3andσ=0.073 N·m-1), as shown in Table 1.

    Fig.1 Apparent viscosity and shear rate of gelled propellant simulants

    Table 1 Physical property of gelled propellant simulants with and without carbon particles

    simulantscarbonparticlesρ/kg·m-3σ/N·m-1power-lawconstitutiveparametersK/Pa·snnS1with1010.10.06716.590.29S2without1001.70.0727.080.37

    2.2 Experimental Apparatus

    Fig.2 is the schematic diagram of gelled propellant atomization experiment system. At the beginning of the experiment, high pressure gas would be filled into the tank to force the gelled propellant simulant to the jet injector across pipes and values. The impingement angle 2θand the jet velocityvjetwere tuned by adjusting the angle of the doublet injectors and changing the mass flow rate by the control value, respectively. The atomization processes were recorded by a Phantom V12.1 high speed camera with 784×800 image resolution and 5 μs shutter speed. The atomization images were passed to the data acquisition system for further analysis. Meanwhile, important data in the experiment, such as mass flow rate, pressure in the tank, pressure in the injectors, etc. were measured and recorded by the data acquisition system during the whole experiment.

    Fig.2 Schematic diagram of gelled propellant atomization experiment system

    2.3 Experimental Design

    In order to analyze the atomization characteristics of gelled propellant simulant with carbon particles, 10 atomization experiments were designed with different impingement angles 2θ, jet velocitiesvjet, injector orifice diametersdand injector orifice length to diameter ratioL/d0, etc., as shown in Table 2.

    The generalized Reynolds number(Regen) was used to describe the flow behavior of the power-law fluid, which is defined as ref.[10]:

    (2)

    whereρpis the density of the power-law fluid.

    Table 2 Conditions for the atomization experiment

    case2θ/(°)vjet/m·s-1d/mmL/d0Regen1601018160626015183211360221861824901018160659015183211690221861827601513.532118602213.56182960100.5813131060101.581806

    3 Results and Analysis

    3.1 Experiment Results and Analysis

    In this paper, the atomization quality is evaluated by the atomization angle (β) and atomization patterns. As we know, when two jets impinge with each other, a fan-shaped liquid sheet forms, and the angle between the left and right rims of the liquid sheet is called atomization angle (β, as shown in Fig.3). Generally, largerβmeans better atomization quality. According to former researches[8,11], with different gels, jet velocities, impingement angles, generalized Reynolds numbers, etc., there are different atomization patterns, including close-rim, open-rim, ligament and fully-developed patterns, etc.[8,11]The close-rim and open rim patterns indicate poor atomization qualities, while the other two indicate better atomization qualities.

    Fig.3 is atomization images with the impingement angle 2θ=60° and different velocities for cases 1-3. As shown in Fig.3a, with a low jet velocity (10.2 m·s-1) andRegen, a fan-shaped liquid sheet forms, and it has a distinct rim at the upstream and breakups into ligaments and large drops downstream. The atomization pattern in Fig. 3a is the so-called “open-rim pattern” with the atomization angleβof about 70°. Fig.3b also shows an open-rim pattern withβ=85° under a larger jet velocity (15.68 m·s-1) andRegen=3211. As shown in Fig.3c, withvjet=22.14 m·s-1andRegen=3211, the rim of the liquid sheet becomes indistinct, and clearer bow-shaped impact waves occurs and makes the liquid sheet more unstable and breakup into more ligaments and drops. The pattern in Fig.3c is called “l(fā)igament pattern”.βin Fig.3c is about 100°. As discussed in Ref.[8], in cases 1-3, the generalized Reynolds numberRegen, which is completely determined by jet velocity, could be adopted as the indication of the atomization quality. LargerRegen(jet velocity) means a larger kinetic energy in jet impingement and would lead to better atomization quality.

    Fig.4 shows atomization images with 2θ=90° and different velocities for cases 4-6. Compared with cases 1-3 in Fig.3, theβin Fig.4 are larger, which are about 80°, 110°, 140° in Fig.4a, Fig.4b, Fig.4c, respectively. Fig.4a shows an open-rim pattern, and Fig.4b and Fig.4c show ligament patterns. The atomization qualities at impingement angle 2θ=90° are better than ones with 2θ=60° and the similar jet velocities.

    Fig.5 shows that the atomization images with ratio of injector orifice length to diameter (L/d0=3.5)under different jet velocities for cases 7 and 8. Compared with case 2 and case 3 withL/d0=8 shown in Fig.3b and Fig.3c, there are no obvious differences in Fig.5. Atomization patterns in Fig.5a and Fig.5b are almost identical to patterns in Fig.3b and Fig.3c respectively, which indicates that there are no essential differences on the flow characteristics of the jets sprayed from injectors withL/d0=3.5 and 8. As a result, the ratio of injector orifice length to diameter has little influences on the atomization patterns.

    Fig.6 shows atomization images with impingement angle 2θ=60° and different injector orifice diameters for cases 9 and 10. As shown in Fig.3a (case 1) and Fig.6, the larger orifice diameters lead to larger mass flow rates and will produce larger liquid sheets. But there are also no essential differences on the atomization patterns of cases 1, 9 and 10, they are all open-rim patterns with almost the same atomization angle about 70°.

    In all the cases studied in this paper, the gelled propellant simulant could hardly to be atomized into fine drops, the main atomization products are ligaments and large drops. Within the investigation conditions, the atomization quality increases with the increase of jet velocity and impingement angle, while the changes of injector length to diameter ratio and the injector orifice diameters influence the atomization patterns little.

    a.vjet=10.2 m·s-1, b.vjet=15.68 m·s-1, c.vjet=22.14 m·s-1,

    β=70°β=85°β=100°

    Fig.3 Atomization images of cases 1-3

    a.vjet=9.77 m·s-1, b.vjet=15.28 m·s-1, c.vjet=21.71 m·s-1

    Fig.4 Atomization images of cases 4- 6

    a.vjet=15.35 m·s-1b.vjet=22.22 m·s-1

    Fig.5 Atomization images case 7 and case 8

    a.vjet=9.80 m·s-1b.vjet=10.49 m·s-1

    d0=0.5 mmd0=1.5 mm

    Fig.6 Atomization images of case 9 and case 10

    3.2 Linear Stability Analysis

    Linear stability theory is widely used to evaluate the instabilities of the liquid sheet[12-13]. In this theory, the liquid sheet instability is mainly due to the aerodynamics interactions between the liquid and its surrounding gas. There are two kinds of disturbances that will occur on the liquid sheet: symmetric and anti-symmetric. Squire[14]showed that the anti-symmetric disturbance played a dominant role on breaking the liquid sheet into fragments. Therefore, only the anti-symmetric disturbance is considered here. Schematic of a moving liquid sheet under anti-symmetric disturbance is shown in Fig.7, a two dimensional liquid sheet moves into a quiescent, inviscid, incompressible gas with velocityUs, the thickness of the liquid sheet is 2hs, the surface tension of liquid isσ, the densities of liquid and gas areρ1andρgrespectively, the density ratio of gas and liquid isRg1=ρg/ρ1. Generally, the wave amplitude on the liquid sheet can be expressed as:

    (3)

    Fig.7 Schematic of a moving liquid sheet under anti-symmetric disturbance

    Chojnaki[15]deduced the dispersion relation for a plan liquid sheet based on the power-law constitutive:

    (4)

    (5)

    (6)

    If the liquid sheet breakups when the wave amplitude reachesηb, the breakup timeτbcan be obtained as follows:

    τb=ln(ηb/η0)/ωi,max

    (7)

    whereωi,maxis the maximum grow rate, then the breakup length can be calculated as:

    Lb=Usln(ηb/η0)/ωi,max

    (8)

    Here ln(ηb/η0) is set to be 12 according to Ref. [13].

    In this paper, the breakup length of the liquid sheet is defined as the axial distance from the impingement point to the point where the liquid sheet along the axis begins to breakup, as shown in Fig.8. We assume the liquid sheet speedUs=0.92vjetaccording to ref. [16]. Solving equation (4) withρ1=1010.1 kg·m-3,ρg=1.225 kg·m-3,K=16.59 Pa·sn,n=0.29,σ=0.067 N·m-1and 2hs=2.0×10-4m under jet velocity of 10 m·s-1(cases 1, 4), 15 m·s-1(cases 2, 5) and 22 m·s-1(cases 3, 6), the effects of sheet velocity on the stability of the liquid sheet can be obtained, as shown in Fig.9. It can be seen that the maximum disturbance wave grow rate increases with the increase of the sheet velocity. It means that the liquid sheet will become more unstable at larger sheet velocities, which agrees well with the experiment results of cases 1-3 and cases 4-6 under the same velocities.

    With equations (4), (7) and (8), the breakup length of the liquid sheet can be predicted. Fig.10 is the comparison of breakup lengths of liquid sheets predicted by linear stability theory and measured from experiments. As shown in Fig.10, the variation trend of breakup lengths of liquid sheets calculated from linear stability theory is consistent with the ones measured from experiments. At a low Weber number, the linear stability analysis evidently overestimates the breakup length when compared with the experiment. The relative error between the predicted and measured breakup lengths is about 24% atWes=128. As the Weber number increases, the relative errors decrease to 14.9% atWes=618. The errors of the predicted values are considered as a results of neglect of instabilities caused by jet impingement in the linear stability theory.

    Fig.8 Definition of the breakup length of the liquid sheet

    Fig.9 Influence of sheet velocityUson the stability of the liquid sheet calculated by linear stability theory

    Fig.10 Comparison of breakup lengths of liquid sheets from linear stability analysis and experiments

    4 Conclusions

    (1) The carbon particles increase the consistency coefficient and decrease the flow index of the simulant S1, which makes simulant S1 show high apparent viscosity under the same shear rate.

    (2) The simulant S1 can only be atomized into ligaments and large drops. The atomization quality improves with the increases of jet velocity and impingement angles, while the changes in injector length to diameter ratio and the injector orifice diameters show little influences on the atomization patterns.

    (3) There are about 14.9%-24% relative errors between the predicted and measured breakup lengths, but the tendency of the breakup lengths predicted by the linear stability theory agrees well with the experiment ones.

    [1] Natan B, Rahimi S. The status of gel propellants in year 2000[J].InternationalJournalofEnergeticMaterialsandChemicalPropulsion, 2002,5(1-6): 172-192.

    [2] LIU Hu, QIANG Hong-fu, WANG Guang. Review on Jet Impingement Atomization on Gelled Propellant[J].ChineseJournalofEnergeticMaterials(HannengCailiao), 2015, 23(7): 697-708.

    [3] Hodge K, Crofoot T, Nelson S. Gelled propellants for tactical missile applications. AIAA 99-2976[R], 1999.

    [4] Haddad A, Natan B, Arieli R. The performance of a boron-loaded gel-fuel ramjet[J].ProgressinPropulsionPhysics, 2011,2: 499-518.

    [5] Wu Zhijian, Hu Lirong. Performance Research of Metallized Gelled Propellant[J].MissileandSpaceVehicle, 2006, 283(03): 52-55.

    [6] Jayaprakash N, Chakravarthy S R. Impingement Atomization of Gelled Fuels. AIAA 2003-316[R], 2003.

    [7] von Kampen J, Madlener K, Ciezki H K. Characteristic Flow and Spray Properties of Gelled Fuels with Regard to the Impinging Jet Injector Type. AIAA 2006-4573[R], 2006.

    [8] von Kampen J, Alberio F, Ciezki H K. Spray and combustion characteristics of aluminized gelled fuels with an impinging jet injector[J].AerospSciTechnol, 2007,11:77-83.

    [9] Baek G, Kim S, Han J, et al. Atomization characteristics of impinging jets of gel material containing nanoparticles[J].JNon-NewtonFluid, 2011,166(21): 1272-1285.

    [10] Metzner A B, Reed C J. Flow of non-Newtonian fluids-correlation of the laminar, transition, and turbulent-flow regions[J].AmericanInstituteofChemicalEngineeringJournal, 1955,4(1): 189-204.

    [11] Fu Q, Yang L, Zhuang F. Effects of Orifice Geometry on Spray Characteristics of Impinging Jet Injectors for Gelled Propellants[R].AIAA 2013-3704, 2013.

    [12] Ryan H M, Anderson W E, Pal S, et al. Atomization characteristics of impinging liquid jets[J].JPropulPower, 1995,11(1): 135-145.

    [13] Dombrowski N, Johns W R. The aerodynamic instability and disintegration of viscous liquid sheets[J].ChemEngSci, 1963,18(3): 203-214.

    [14] Squire H B. Investigation of the instability of a moving liquid film[J].BritishJournalofAppliedPhysics, 1953,4: 167-169.

    [15] Chojnacki K T. Atomization and mixing of impinging non-Newtonian jets[D]. Huntsville: University of Alabama-Huntsville, 1997.

    [16] Heislbetz B, Madlener K, Ciezki H K. Breakup Characteristics of a Newtonian Liquid Sheet formed by a Doublet Impinging Jet Injector.AIAA2007-5694[R], 2007.

    秋霞在线观看毛片| 欧美亚洲 丝袜 人妻 在线| 亚洲综合色惰| 毛片一级片免费看久久久久| 丝袜在线中文字幕| av视频免费观看在线观看| 日本免费在线观看一区| 亚洲av成人精品一二三区| 亚洲欧洲精品一区二区精品久久久 | 少妇猛男粗大的猛烈进出视频| 97精品久久久久久久久久精品| 国产高清三级在线| 国产成人精品久久久久久| 3wmmmm亚洲av在线观看| 在线观看国产h片| 日韩亚洲欧美综合| 欧美精品高潮呻吟av久久| 亚洲成色77777| 最黄视频免费看| 国产精品女同一区二区软件| 天堂俺去俺来也www色官网| 人妻 亚洲 视频| 久久精品国产亚洲av天美| 国产色爽女视频免费观看| 国产白丝娇喘喷水9色精品| 中文欧美无线码| 91久久精品国产一区二区三区| 99久国产av精品国产电影| 精品亚洲成a人片在线观看| 女人久久www免费人成看片| 成人黄色视频免费在线看| 制服人妻中文乱码| a级毛色黄片| 国产又色又爽无遮挡免| 在线观看免费日韩欧美大片 | 在线播放无遮挡| 91午夜精品亚洲一区二区三区| 久久久国产一区二区| av不卡在线播放| 国产在线一区二区三区精| 国产欧美亚洲国产| 99热网站在线观看| 老司机亚洲免费影院| 免费黄频网站在线观看国产| 亚洲欧美一区二区三区黑人 | 久久精品国产自在天天线| 天堂8中文在线网| 久久99热6这里只有精品| 热99久久久久精品小说推荐| 2022亚洲国产成人精品| 黑人欧美特级aaaaaa片| 香蕉精品网在线| 欧美激情国产日韩精品一区| 哪个播放器可以免费观看大片| 丰满迷人的少妇在线观看| 99热全是精品| kizo精华| 最新中文字幕久久久久| 嫩草影院入口| 丝袜喷水一区| 美女大奶头黄色视频| 又粗又硬又长又爽又黄的视频| 中文字幕精品免费在线观看视频 | 全区人妻精品视频| 日韩三级伦理在线观看| 久久久久网色| 精品视频人人做人人爽| 这个男人来自地球电影免费观看 | 国产欧美亚洲国产| 99热国产这里只有精品6| 天堂8中文在线网| 亚洲av综合色区一区| 久久久久久久久久成人| 最黄视频免费看| 国精品久久久久久国模美| 99热全是精品| 成人免费观看视频高清| 国产欧美另类精品又又久久亚洲欧美| 国产精品一区www在线观看| 精品视频人人做人人爽| 纵有疾风起免费观看全集完整版| 丰满乱子伦码专区| 999精品在线视频| 欧美激情国产日韩精品一区| 又大又黄又爽视频免费| 一本久久精品| 国产av一区二区精品久久| 亚洲精品乱码久久久久久按摩| 久久久精品94久久精品| 国产精品久久久久久精品古装| 国产在线视频一区二区| 国产国语露脸激情在线看| 91久久精品国产一区二区成人| 午夜精品国产一区二区电影| 精品国产一区二区三区久久久樱花| 成人国产av品久久久| 免费观看av网站的网址| 国产精品三级大全| 免费看av在线观看网站| 久久国产精品大桥未久av| 精品一区二区免费观看| av女优亚洲男人天堂| 亚洲丝袜综合中文字幕| 视频在线观看一区二区三区| 91在线精品国自产拍蜜月| 三上悠亚av全集在线观看| 国产精品.久久久| 色婷婷av一区二区三区视频| 夜夜骑夜夜射夜夜干| 天天影视国产精品| 在线观看免费日韩欧美大片 | 国产有黄有色有爽视频| 97在线视频观看| 韩国高清视频一区二区三区| 国产免费现黄频在线看| 日韩av免费高清视频| a 毛片基地| 日韩成人伦理影院| 99热网站在线观看| 人妻系列 视频| 黄色配什么色好看| 亚洲av.av天堂| 在线 av 中文字幕| 免费看光身美女| 日韩制服骚丝袜av| 国产黄色视频一区二区在线观看| 看免费成人av毛片| 国产精品国产三级国产av玫瑰| 曰老女人黄片| 女人久久www免费人成看片| 亚洲av.av天堂| av女优亚洲男人天堂| 亚洲欧美成人精品一区二区| 少妇人妻 视频| 春色校园在线视频观看| a级片在线免费高清观看视频| 日本色播在线视频| 最近手机中文字幕大全| 免费看不卡的av| 日本午夜av视频| av国产久精品久网站免费入址| 午夜影院在线不卡| 免费观看a级毛片全部| 亚洲成人手机| 一级毛片aaaaaa免费看小| 一区二区三区精品91| 91在线精品国自产拍蜜月| 高清在线视频一区二区三区| 91午夜精品亚洲一区二区三区| 色视频在线一区二区三区| 国产深夜福利视频在线观看| 母亲3免费完整高清在线观看 | 丝袜喷水一区| 国产一区二区三区av在线| 久久韩国三级中文字幕| 欧美精品高潮呻吟av久久| 亚洲精品亚洲一区二区| 亚洲婷婷狠狠爱综合网| 少妇的逼水好多| 3wmmmm亚洲av在线观看| 精品人妻熟女av久视频| 色94色欧美一区二区| 亚洲av福利一区| 麻豆乱淫一区二区| 99国产综合亚洲精品| 精品久久国产蜜桃| 久久久久久久大尺度免费视频| 国产成人精品在线电影| 2018国产大陆天天弄谢| 性色av一级| 欧美最新免费一区二区三区| a级毛片免费高清观看在线播放| 亚洲精品456在线播放app| 成人亚洲欧美一区二区av| 又粗又硬又长又爽又黄的视频| 久久99热6这里只有精品| 久久精品人人爽人人爽视色| 91久久精品国产一区二区三区| 亚洲国产成人一精品久久久| 国产精品久久久久久久电影| 亚洲情色 制服丝袜| 亚洲精品乱码久久久v下载方式| 亚洲av日韩在线播放| 一级二级三级毛片免费看| 黑人巨大精品欧美一区二区蜜桃 | 高清av免费在线| 国产69精品久久久久777片| 欧美最新免费一区二区三区| 成人漫画全彩无遮挡| 九九爱精品视频在线观看| 高清黄色对白视频在线免费看| 成人18禁高潮啪啪吃奶动态图 | 在线观看免费日韩欧美大片 | 日韩人妻高清精品专区| 国模一区二区三区四区视频| 国产成人一区二区在线| 国产欧美另类精品又又久久亚洲欧美| 免费观看的影片在线观看| 国产亚洲精品第一综合不卡 | 男女无遮挡免费网站观看| 亚洲精品一二三| 国产精品久久久久久久电影| 久久99蜜桃精品久久| 一本色道久久久久久精品综合| 精品少妇久久久久久888优播| 狂野欧美白嫩少妇大欣赏| 亚洲欧美色中文字幕在线| 插逼视频在线观看| 日本色播在线视频| 99九九线精品视频在线观看视频| 久久国内精品自在自线图片| 18禁动态无遮挡网站| 国产成人精品一,二区| 99精国产麻豆久久婷婷| 美女国产视频在线观看| 国产在视频线精品| 又黄又爽又刺激的免费视频.| 国产熟女欧美一区二区| 久久久久久伊人网av| 最近手机中文字幕大全| 午夜福利,免费看| 草草在线视频免费看| 91精品国产国语对白视频| 精品久久久噜噜| 亚洲天堂av无毛| 国产片特级美女逼逼视频| 国产欧美亚洲国产| 黑人猛操日本美女一级片| 午夜精品国产一区二区电影| 蜜臀久久99精品久久宅男| av电影中文网址| 国产成人一区二区在线| 久久久精品94久久精品| 国产成人精品一,二区| 一级,二级,三级黄色视频| 热re99久久国产66热| 国产av一区二区精品久久| 九九久久精品国产亚洲av麻豆| 秋霞在线观看毛片| 男的添女的下面高潮视频| 精品少妇内射三级| 国产探花极品一区二区| 国产精品欧美亚洲77777| 内地一区二区视频在线| 亚洲天堂av无毛| 简卡轻食公司| 天堂中文最新版在线下载| 天美传媒精品一区二区| 欧美变态另类bdsm刘玥| 国产男人的电影天堂91| 国产乱人偷精品视频| 只有这里有精品99| 水蜜桃什么品种好| 国产av精品麻豆| 日本av手机在线免费观看| 大又大粗又爽又黄少妇毛片口| 久久久久精品久久久久真实原创| 另类精品久久| 免费高清在线观看视频在线观看| 水蜜桃什么品种好| 成人毛片60女人毛片免费| 日日摸夜夜添夜夜爱| 久久久欧美国产精品| 成人国产av品久久久| 五月伊人婷婷丁香| 超碰97精品在线观看| 满18在线观看网站| 久久国内精品自在自线图片| 欧美最新免费一区二区三区| 人人妻人人添人人爽欧美一区卜| 久久精品熟女亚洲av麻豆精品| 亚洲国产av影院在线观看| 性色av一级| av网站免费在线观看视频| 亚洲婷婷狠狠爱综合网| 大香蕉久久网| xxxhd国产人妻xxx| 伦精品一区二区三区| 有码 亚洲区| 国产亚洲精品第一综合不卡 | 久久97久久精品| 国产精品人妻久久久久久| 国产精品人妻久久久影院| 18禁动态无遮挡网站| freevideosex欧美| 亚洲欧美一区二区三区国产| 人妻制服诱惑在线中文字幕| 男女高潮啪啪啪动态图| 青春草视频在线免费观看| 亚洲国产av新网站| 午夜精品国产一区二区电影| 91aial.com中文字幕在线观看| 国产精品一区www在线观看| 在线天堂最新版资源| av在线播放精品| 日韩成人伦理影院| 成人漫画全彩无遮挡| 在线观看免费视频网站a站| 亚洲综合色惰| 乱人伦中国视频| 欧美日韩视频精品一区| 99热这里只有是精品在线观看| 永久免费av网站大全| 日韩欧美精品免费久久| 免费av不卡在线播放| 国产成人av激情在线播放 | 亚洲av福利一区| av黄色大香蕉| 精品久久久久久电影网| 久久精品国产a三级三级三级| 亚洲熟女精品中文字幕| 国产视频内射| 国产黄频视频在线观看| 国产日韩欧美视频二区| 久久免费观看电影| 97精品久久久久久久久久精品| 国产精品一区二区在线观看99| 青青草视频在线视频观看| 两个人免费观看高清视频| 97超视频在线观看视频| 国产高清三级在线| 国产欧美另类精品又又久久亚洲欧美| 国产精品麻豆人妻色哟哟久久| 亚洲国产av新网站| 国产乱人偷精品视频| 99热国产这里只有精品6| 国产无遮挡羞羞视频在线观看| 男女边摸边吃奶| 国产老妇伦熟女老妇高清| 一级毛片黄色毛片免费观看视频| 国产免费视频播放在线视频| 欧美日本中文国产一区发布| 免费大片18禁| 91精品三级在线观看| 欧美性感艳星| 久久久久久久久久成人| 国产综合精华液| 欧美激情 高清一区二区三区| 97在线视频观看| 久久精品熟女亚洲av麻豆精品| 国产一区亚洲一区在线观看| 日本91视频免费播放| 亚洲欧美成人综合另类久久久| 亚洲av综合色区一区| 2022亚洲国产成人精品| 国产精品一二三区在线看| 亚洲精品自拍成人| a级毛色黄片| 蜜臀久久99精品久久宅男| 最近的中文字幕免费完整| 久久99一区二区三区| 日韩免费高清中文字幕av| 人人妻人人澡人人爽人人夜夜| 一区二区三区四区激情视频| 欧美+日韩+精品| 久久影院123| 久久久欧美国产精品| 丰满乱子伦码专区| 日韩成人伦理影院| 欧美性感艳星| 亚洲国产日韩一区二区| 久久韩国三级中文字幕| 色网站视频免费| 丰满少妇做爰视频| 国产成人精品久久久久久| av不卡在线播放| 亚洲欧美精品自产自拍| 老司机影院成人| 三级国产精品欧美在线观看| 国产老妇伦熟女老妇高清| 在线看a的网站| 久久久久网色| 亚洲精品视频女| 99热6这里只有精品| 22中文网久久字幕| 97精品久久久久久久久久精品| 91午夜精品亚洲一区二区三区| 九色亚洲精品在线播放| 蜜臀久久99精品久久宅男| 日韩一区二区三区影片| 久久99蜜桃精品久久| 热re99久久精品国产66热6| av播播在线观看一区| 超碰97精品在线观看| 亚洲色图 男人天堂 中文字幕 | 极品少妇高潮喷水抽搐| 亚洲精品色激情综合| 久久久久久久亚洲中文字幕| 国产男人的电影天堂91| 久久精品熟女亚洲av麻豆精品| 久久久国产一区二区| 男人添女人高潮全过程视频| 大片电影免费在线观看免费| 久久这里有精品视频免费| 欧美国产精品一级二级三级| 97超碰精品成人国产| 青春草亚洲视频在线观看| 午夜福利,免费看| 亚洲av电影在线观看一区二区三区| tube8黄色片| 欧美bdsm另类| 久久99精品国语久久久| 成人影院久久| 国产乱人偷精品视频| 大陆偷拍与自拍| 国产精品女同一区二区软件| 中文字幕久久专区| 97超视频在线观看视频| 熟女av电影| 国产成人freesex在线| 亚洲精品亚洲一区二区| 水蜜桃什么品种好| 午夜福利在线观看免费完整高清在| 91在线精品国自产拍蜜月| 欧美激情 高清一区二区三区| 免费av中文字幕在线| 成年女人在线观看亚洲视频| 又粗又硬又长又爽又黄的视频| 午夜影院在线不卡| 爱豆传媒免费全集在线观看| tube8黄色片| 最新中文字幕久久久久| 99久久人妻综合| 女人精品久久久久毛片| 黄色欧美视频在线观看| 欧美另类一区| 在线精品无人区一区二区三| 久久久国产一区二区| 日韩精品免费视频一区二区三区 | 亚洲色图 男人天堂 中文字幕 | 伊人久久国产一区二区| 亚州av有码| 久久狼人影院| 黑人猛操日本美女一级片| 熟女av电影| 人人澡人人妻人| 中文乱码字字幕精品一区二区三区| 久久人妻熟女aⅴ| 国产老妇伦熟女老妇高清| av网站免费在线观看视频| 狂野欧美白嫩少妇大欣赏| 日本黄大片高清| 亚洲精品美女久久av网站| 天美传媒精品一区二区| 久久精品人人爽人人爽视色| 婷婷色综合www| 亚洲国产精品一区二区三区在线| 久久久久国产精品人妻一区二区| 久久久久久伊人网av| 免费黄网站久久成人精品| 亚洲国产精品专区欧美| 亚洲av成人精品一区久久| 国产亚洲欧美精品永久| 国产又色又爽无遮挡免| 校园人妻丝袜中文字幕| 欧美最新免费一区二区三区| 国产在视频线精品| 两个人的视频大全免费| 99热6这里只有精品| 久久久亚洲精品成人影院| 青春草国产在线视频| 免费观看a级毛片全部| 高清毛片免费看| 各种免费的搞黄视频| 在线观看免费视频网站a站| 伦理电影免费视频| 欧美激情极品国产一区二区三区 | 亚洲图色成人| 亚洲综合色网址| 午夜免费男女啪啪视频观看| 观看美女的网站| 人人妻人人澡人人爽人人夜夜| 在线观看美女被高潮喷水网站| 在线观看一区二区三区激情| 国产精品久久久久久久电影| 久久亚洲国产成人精品v| 国产精品秋霞免费鲁丝片| 国产精品嫩草影院av在线观看| 欧美老熟妇乱子伦牲交| 视频区图区小说| 久久国内精品自在自线图片| 蜜桃在线观看..| 爱豆传媒免费全集在线观看| 蜜桃国产av成人99| 永久免费av网站大全| 毛片一级片免费看久久久久| 赤兔流量卡办理| 爱豆传媒免费全集在线观看| 欧美成人精品欧美一级黄| 中文天堂在线官网| 欧美日韩国产mv在线观看视频| 国产精品99久久久久久久久| 亚洲精品色激情综合| 亚洲人成网站在线播| 亚洲精品,欧美精品| 久久久久精品性色| 午夜福利在线观看免费完整高清在| 午夜福利视频精品| 日韩成人伦理影院| 色视频在线一区二区三区| 色网站视频免费| 曰老女人黄片| 观看av在线不卡| 十八禁高潮呻吟视频| 免费久久久久久久精品成人欧美视频 | 搡女人真爽免费视频火全软件| a级毛色黄片| 纵有疾风起免费观看全集完整版| 在线观看免费高清a一片| 午夜免费男女啪啪视频观看| 母亲3免费完整高清在线观看 | 国产精品嫩草影院av在线观看| 亚洲国产日韩一区二区| 在线观看美女被高潮喷水网站| 欧美+日韩+精品| 青青草视频在线视频观看| 考比视频在线观看| 男女边吃奶边做爰视频| 精品久久久噜噜| 国产欧美另类精品又又久久亚洲欧美| 国产亚洲精品第一综合不卡 | 伦理电影免费视频| 91精品一卡2卡3卡4卡| 国产精品免费大片| 人妻 亚洲 视频| 国产精品三级大全| 考比视频在线观看| 啦啦啦在线观看免费高清www| 一个人免费看片子| 精品一区二区免费观看| 欧美日韩亚洲高清精品| 国产精品 国内视频| 亚洲综合精品二区| 九九在线视频观看精品| 亚洲精品国产av成人精品| 99国产综合亚洲精品| 亚洲综合精品二区| 国产免费福利视频在线观看| 久久热精品热| 久久国内精品自在自线图片| 夜夜看夜夜爽夜夜摸| 成人漫画全彩无遮挡| 极品少妇高潮喷水抽搐| 亚洲精品视频女| 男女国产视频网站| 人妻少妇偷人精品九色| 久久久a久久爽久久v久久| 在线天堂最新版资源| av免费在线看不卡| 夜夜骑夜夜射夜夜干| 精品久久久噜噜| 国产黄色免费在线视频| av在线播放精品| 高清在线视频一区二区三区| 国产成人精品在线电影| 久久久国产一区二区| 少妇 在线观看| 十八禁网站网址无遮挡| 国产综合精华液| 看免费成人av毛片| 精品少妇内射三级| 国产男女超爽视频在线观看| 高清不卡的av网站| www.av在线官网国产| 午夜免费鲁丝| 国产欧美亚洲国产| 各种免费的搞黄视频| 精品亚洲乱码少妇综合久久| 亚洲美女黄色视频免费看| 国产精品久久久久久精品电影小说| 久久女婷五月综合色啪小说| 国产日韩一区二区三区精品不卡 | 五月开心婷婷网| 欧美性感艳星| 日韩精品免费视频一区二区三区 | 国产色婷婷99| 又大又黄又爽视频免费| 亚洲av综合色区一区| 看非洲黑人一级黄片| 国产一级毛片在线| 免费观看a级毛片全部| 特大巨黑吊av在线直播| 美女主播在线视频| 性色av一级| 日本午夜av视频| 久久99热6这里只有精品| 国产午夜精品久久久久久一区二区三区| 在线观看www视频免费| 亚洲精品久久久久久婷婷小说| 亚洲欧美一区二区三区国产| 波野结衣二区三区在线| 美女福利国产在线| 全区人妻精品视频| 精品人妻熟女av久视频| 男女啪啪激烈高潮av片| 麻豆乱淫一区二区| 观看av在线不卡| 国产亚洲av片在线观看秒播厂| 五月玫瑰六月丁香| 两个人免费观看高清视频| 18禁在线播放成人免费| 国产成人精品福利久久| 午夜福利影视在线免费观看| 欧美xxⅹ黑人| 中文乱码字字幕精品一区二区三区| 男女啪啪激烈高潮av片| 少妇人妻精品综合一区二区| 久久久亚洲精品成人影院| 少妇熟女欧美另类| 日本与韩国留学比较| 成人二区视频| 一本—道久久a久久精品蜜桃钙片| 在线精品无人区一区二区三| 亚洲国产色片| 桃花免费在线播放|