• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Impact Sensitivity in Respect of the Crystal Lattice Free Volume and the Characteristics of Plasticity of Some Nitramine Explosives

    2015-05-10 06:19:20SvatoplukZemanMarcelaJUNGOVQiLongYAN
    含能材料 2015年12期

    Svatopluk Zeman, Marcela JUNGOV, Qi-Long YAN

    (Institute of Energetic Materials, Faculty of Chemical Technology, University of Pardubice, CZ-532 10 Pardubice, Czech Republic)

    1 Introduction

    Impact sensitivity may result from a combination of three fundamental sensitivities[1]: molecular, crystalline and environmental. The first two of these have been extensively studied for individual energetic materials (EMs) by means of the NMR chemical shifts of the key atoms in the reaction centers and by means of the heats of fusion for such compounds[2-4].

    Concerning the crystals of organic poly-nitro compounds, very important facts were obtained[5]and recently verified on the basis of an X-ray crystallographic study of some polynitroarenes[6-8]and ofcis-1,3,4,6-tetranitrooctahydroimidazo-[4,5-d]imidazole (BCHMX)[9]. Particularly in nitramine crystals, the oxygen atoms of nitro groups, by their dipole-dipole interactions, contact the oxygen and nitrogen atoms of nitro groups in neighboring nitramine molecules in the crystal[10-13], which is the decisive factor governing the crystal structure of such EMs. A very important finding from the referenced studies, which still needs further investigation, is that non-binding inter-atomic distances between oxygen atoms inside all of the nitro groups in these poly-nitro compounds are shorter than those corresponding to the intermolecular contact radii for oxygen in carbonyl or nitro groups; this distance is especially short inside the most reactive nitro groups. These facts led our colleague Vávra to conduct his research on free spaces in crystals of EMs and of their influence on the sensitivity of the energetic compounds described[14-15]; as a continuation of these two papers a new study was published[16]on the basis of which we explore the relationships in this paper between free spaces in crystals on the one hand, and the bulk and shear moduluses of some attractive nitramines, on the other.

    2 Data Sources

    2.1 Nitramine Explosives

    From the group of individual nitramines, the following compounds were taken into consideration: bis-(2,2,2-trinitroethyl)nitramine(HOX), 1,4-dinitro-1,4-diazabutane(EDNA), 1,3,3-trinitroazetidine(TNAZ), 1,4-dinitroimidazole(1,4-DNI), 1,3,5-trinitro-1,3,5-triazinane(RDX), 1,3,5,7-tetranitro-1,3,5,7-tetrazocane(HMX),cis-1,3,4,6-tetranitrooctahydroimidazo[4,5-d]-imidazole(BCHMX),trans-1,4,5,8-tetranitrodecahydro-pyrazino[2,3-b]-pyrazine(TNAD), -2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane(HNIW), 2,4,6,N-tetranitro-N-methylaniline(TETRYL). Besides these nitramines, plastic bonded explosives(PBXs), bonded by 9 % wt. Viton A and filled by RDX, HMX, BCHMX and HNIW[17-18], are also a topic of interest in this paper; these PBXs are designated in Table 1 and in the Figures as RDX-9V, HMX-9V, BCHMX-9V and HNIW-9V. The last of these was prepared from technical grade HNIW, with an impact sensitivity of 4.2 J[17-18].

    2.2 Impact Sensitivity

    The impact sensitivity of the nitramines and PBXs studied, shown in Table 1, have been taken from respectable literature[17-23]: they were obtained by means of a standard impact tester with an exchangeable anvil (Julius Peters), detection of the 50% probability of initiation being based on acoustic detection (Bruceton method)[17-23]. The sensitivity is expressed as drop energy,Edr.

    2.3 Bulk and Shear Moduluses

    The tendency of an object to deform in all directions when uniformly loaded in all directions, i.e. volumetric stress, is described as a bulk modulus,K, and it is the inverse of compressibility. Shear modulus,G, is connected with deformation ofthe shape at constant volume (it represents a resistance to plastic deformation). The ratio of bulk modulus to shear modulus, K·G-1, can be used as an indication of the extent of the plasticity range for a given material[24]; a high value for this ratio is associated with malleability and a low one with brittleness.

    Table 1 Bulk and shear modulus′s, their ratio, impact sensitivities expressed as drop energy,Edr, and crystal lattice free volume, ΔV, of all nitramine explosives studied

    nitraminecodedesignationformulamodulusK/GPaG/GParef.ratio/K·G-1impactsensitivityEdr/Jref.ΔV[16]/?3RDX6.903.3[25]2.095.6[20]46β-HMX7.704.2[26]1.836.4[20]49ε-HNIWpure10.307.4[27]1.3913.4[22]86ε-HNIWtechnical4.2 3.4[23,16,34]BCHMX7.152.68[28]2.673.0[9,19]321)TNAD10.807.75[29]1.398.6[31]611)HOX1.2[20]73EDNA8.3[20]29TNAZ6.9[19,32]371,4-DNI13.5[16,34]34TETRYL7.8[33]57RDX-9V F23114.902.4[25]2.0410.6[17-18]HMX-9V F23117.803.9[30]2.010.3[17-18]BCHMX-9V F23116.602.30[28]2.875.3[17-18]HNIWtechn.-9V F23119.805.0[27]1.966.9[17-18]

    Note: 1) The value calculated by means of line A in Fig.1.

    For the nitramines RDX, HMX, BCHMX, TNAD and HNIW, the literature contains different values for their modules which depend on the temperature and specification methods. Therefore, we used the results of the molecular dynamic simulations (MDS) by Xiao[25-30]et al. from Nanjing University in Sci. & Technology in order to have a uniform approach. The second problem, i. e. the missing values of both these moduluses for PBXs with the Viton A binder, we have solved similarly; in the first approximation we used again the MDS results for the analogous PBXs, bonded by the high poly-fluorinated polymer F2311and the corresponding values were taken along the crystalline surface (010)[25-30].

    2.4 Free Space per Molecule ina Crystal Lattice

    Calculation of this ΔVvalue is described in the literature, papers[14-16]. It represents a difference between the effective volume (ratio of molecular weight and density) and the intrinsic molecular volume; this last one is the product of molecular weight and packing coefficient divided by density-in paper[16]its authors describe in detail a method for obtaining this value in which they work on an isolated molecule. In this study, the ΔVvalues are taken from the literature[16], see in Table 1.

    3 Discussion

    On the basis of the same approach as that in paper[16], we have found relationships between impact sensitivity (drop energy,Edr) and the ΔVvalues of the nitramines studied in the sense of Fig.1. Only one relationship for these nitramines is presented in paper[16]. What are the reasons for the difference between Fig.1 and paper[16].

    Fig.1 Relation between impact sensitivity (expressed as drop energy,Edr) and free space per molecule in crystal lattice, ΔV; the ΔVvalues for TNAD and BCHMX were calculated by means of the relationship for line A

    The first problem is the impact sensitivity ofε-HNIW. Many publications have reported thatε-HNIW has a high sensitivity to impact, greater than that of both RDX and HMX[16, 34]. Although Ou Yuxiang et al.[22]have described pureε-HNIW with an impact sensitivity of 13.2 J and for the rest of its pure polymorphs found values forα-HNIW of 10.1 J,β-HNIW of 11.9 J andγ-HNIW of 12.2 J, all these values are still mostly ignored in the literature. The correctness of these values has also been verified by the molecular-structural relationships of the impact sensitivity of nitramines[3, 36-37]. In the last five years, however, the sensitivity of technical grade HNIW is the main focus of crystal engineering for this particular substance[23, 35]; the result of this isε-HNIW with reduced sensitivity (RS-ε-HNIW, RS-CL-20) and with impact sensitivity from 8 to 12 J[23, 35, 38-40]. By incorporation of the impact sensitivity of pureε-HNIW into theEdr-ΔVrelationship from paper[16], the new relationship, i.e. Fig.1, appears.

    Line A in Fig.1 represents a group of “genuine” nitramines, i. e. compounds with intermolecular interaction of the same kinds; these interactions are typified by Scheme 1.

    Scheme 1 Scheme of several possible interactions in the HMX molecular crystal-dipole-dipole interaction contacts between oxygen atoms and their interaction with nitrogen and hydrogen atoms in neighboring nitramine molecules (obtained by means of X-ray spectroscopy in the conditions described in Ref.[9])

    Despite the relatively low number of points, the correlation in the sense of group A is very good. Data for Tetryl and 1,4-DNI do not correlate with this line. Molecules of Tetryl are arranged in its crystal in such a way that nitro groups in the 4-position of the picryl group face each other and the oxygen atoms of the neighboring molecules make the short contact with each other[41]. It is clear that this interaction, together with the bulkier picryl group in the Tetryl molecule, represents another type of intermolecular interaction in comparison with those in Scheme 1. In the 1,4-DNI molecule one nitro group is bonded onto the aza nitrogen atom which is a part of a hetero-aromatic system; during heating of 1,4-DNI this nitro group is shifted onto the carbon atom in position 2 thus forming 2,4-DNI[42-43]. The crystallographic study of the planar molecule of 1,4-DNI shows that hydrogen atoms in the 2 and 3 positions form hydrogen bonds with neighboring molecules in its crystal[43]. This fact is also different from interactions in the sense of Fig.2. Data for both types ofε-HNIW do not correlate with line A due to the fact that their impact sensitivity logically does not correspond to their molecular structure (they have defected crystals). The ΔVvalues for TNAD and BCHMX were calculated using the relationship for line A.

    The nitramines collected along line B have different kinds of intermolecular interactions from those for the “genuine” cyclic nitramines assembled around the line A. The HOX molecule exists in two crystal modifications[44]; the relatively bulky 2,2,2-trinitroethyl groupings in its molecule are not mutually equivalent as far as the steric strain is concerned[44]. The bulkiness of these groupings must decrease the nitramino grouping′s interactions in the HOX crystal which contains just a single such group in each molecule (this supposition corresponds to a relatively low melting point, i.e. at 95-95.5 ℃). These groupings have also a strong electron withdrawing effect the result of which is a higher initiation reactivity for the HOX molecules. It is similar in the case of TNAZ molecules[45]; here electron withdrawing of geminal dinitro groupings should be lower in comparison with the geminal trinitro analogs but also here the nitramino groupings are disadvantaged as far as intermolecular interactions are concerned (its melting point is 103-104 ℃). The EDNA molecule has the nearly planar CN—HNO2group and is symmetrical[46]. The packing in an EDNA crystal appears to be based predominantly on dipole-dipole interaction[46]. RDX has features common to the other members of the “l(fā)ine B” group, and methylene-nitraminic groupings in its molecule, the N—N bond of which is one trigger in the initiation (reaction center) of the compounds studied[1-4,9,19,36]. The difference in the intermolecular interactions of nitramino and nitroparaffinic groupings also results from differences in the electron density movements (from the manner and degree of their polarization) in these groupings:

    Scheme 2 Electron density movement in nitramino and nitroparaffinic groupings-the first one gives a markedly higher polarized grouping with more intensive intermolecular interaction

    It has been shown that the configuration in the reaction center of the molecule plays a decisive role in the initiation reactivity of energetic materials[2-4].

    Concerning the intermolecular interactions and their relationship with impact[2-4,21]and friction[47-49]sensitivities it must be stated that all these relationships are not characterized by unequivocal equations; there are several characterizations possible, depending on the quality of the key groupings in the molecule and the conformation of the molecule[2-4, 47-49]. The same is valid for the N—N bond dissociation energies[50]. Relationships in Fig.1 correspond to these observations[2-4, 47-49]and are thus quite in line with expectations.

    Plastic properties also have a considerable significance in the impact sensitivity of energetic materials (they are also a result of intermolecular interactions). These properties are concerned mainly with uniaxial compression (bulk modulus,K) and shear slide with a fixed volume (shear modulus,G). The relationships between both these moduluses and the impact sensitivity of the explosives studied are shown in Fig.2 and Fig.3. Despite the low number of data points, it can be seen that data for PBXs based on HNIW and BCHMX might correlate with curves for pure nitramines; this is not new news since analogous correlations are commonplace in the case of relationships between impact sensitivity and performance[17, 51]. Substitution of the impact sensitivity in Fig.2 and Fig.3 by the ΔVvalues gives similar relationship for pure nitramines; also here, for shear modulus, the data for HNIW do not correlate. Action of forces in the crystal lattices with globular nitramine molecules should be in several details different from those in nitramines with roughly planar molecules.

    Fig.2 Approximate relationships between impact sensitivity and bulk modulus (inversed compressibility) of the energetic materials studied

    Fig.3 Approximate relationships between impact sensitivity and shear modulus (deformation of shape at constant volume) of the energetic materials studied

    In metallurgy, the dimensionless ratio, K·G-1, is used for characterization of the malleability of metals[24]; the ratio indicates the extent of the plasticity range and a low value is expected for brittle materials, in which plastic flow is relatively difficult[24-25, 27]. The K·G-1ratio has been used also for characterization of the plasticity of PBXs[25-28]. The relationship between this ratio and impact sensitivity of the explosives studied is shown in Fig.4. Here again, data for pureε-HNIW lies outside those for the pure nitramine groups. The data correlate well with those of the PBXs studied; as has already been mentioned, data correlation for pure nitramines with data for PBXs based on them are routine in “impact sensitivity-performance” relationships[17, 51].A similar relationship to the K·G-1ratio exists in the case of the ΔVvalues as is documented by Fig.5. Concerning the relationship of the data for pureε-HNIW with those of other pure nitramines in Fig.4 and Fig.5, what has been mentioned for Fig.3 is valid here.

    From the above-mentioned fact, the unusual behavior ofε-HNIW is evident. Its incorporation into polymeric matrices might be connected with a change in its sensitivity due to the physical instability of itsε-modification in polar matrices[52-54]. It might also be due to the relatively high ΔVvalue of HNIW. But this is a new subject which needs specific attention.

    Fig.4 Relationships between impact sensitivity and the K·G-1ratio of the energetic materials studied

    Fig.5 Relationships between the free space per molecule in crystal lattice and K·G-1ratio of the nitramines studied

    4 Conclusions

    The relationship between the free space per molecule in crystal lattice, ΔV, and impact sensitivity (here a drop energy,Edr) is, very broadly, inversely proportional[16]. Analysis of this relationship for nitramines has shown that it is not so uniquely characterized, i.e. it is not given only by their own ΔVvalues but fundamentally by the kind and intensity of intermolecular forces in the nitramine crystals (thereby the configuration of the reaction center in molecule can also be influenced). Relationships of impact sensitivity with the bulk (K) and shear (G) moduluses of these nitramines and their PBXs resemble somewhat the relationships between this sensitivity and performance, concerning the composition of corresponding groups of such explosives. The closest linear correlation exists between theEdror ΔVvalues and the dimensionless K·G-1ratio which indicates the plasticity range. Relationships of theEdrand/or ΔVvalues towards the shear modulus or to the K·G-1ratio pointed out an unusual behavior ofε-HNIW to which the published morphological instability of this particular HNIW version might also be related.

    [1] Delpuech A., Cherville J., Relation entre la Structure Electronique et la Sensibilité au Choc des Explosifs secondaries Nitrés. Critère Moleculaire de Sensibilité[J].IPropellantsExplos,1978, 3:169-175.

    [2] Zeman S.New aspect of initiation reactivity of energetic materials demonstrated on nitramines[J].JHazardMater, 2006, 132: 155-164.

    [3] Zeman S.Study of the Initiation Reactivity of Energetic Materials[M]. Chapter 8 in: Armstrong R W, Short J M, Kavetsky R A, Anand D K Energetics Science and Technology in Central Europe, CECDS, University of Maryland, College Park, Maryland, 2012:131-167.

    [4] Zeman S. Sensitivity of High Energy Compounds [M]. Klapoetke T. (Ed), High Energy Density Materials, Series: Structure & Bonding, 125, Springer, New York, 2007: 195-271.

    [5] Eckhardt C J, Gavezzotti A. Computer simulations and analysis of structural and energetic features of some crystalline energetic materials[J].JPhysChemB, 2007, 111: 430-3437.

    [7] Zeman S, Rohá? M, Friedl Z, et al. Crystallography and structure-property relationships of 2,2″,4,4′,4″,6,6′,6″-octanitro-1,1′:3′,1″-terphenyl (ONT)[J].Propellants,Explosives,Pyrotechnics, 2010, 35: 130-135.

    [8] Zeman S, Rohá? M, Friedl Z, et al.Crystallography and structure-property relationships in 2,2′,2″,2?,4,4′,4″,4?,6,6′,6″,6?-dodecanitro-1,1′,:3′,1″:3″,1?-quaterphenyl (DODECA)[J].Propellants,Explos,Pyrotech, 2010, 35:339-346.

    [10] Atovmyan LO, Golovina N I, Zolotoy AB, et al. Structure and packing of primary and secondary nitro amines[J].ZhOrgKhim, 1998, 24(9): 1848.

    [11] Krebs B, Mandt J, Cobbledick R E, et al. The structure ofN,N-Dimethylnitramine[J].ActaCryst, 1979, B35: 402-404.

    [12] Filhol A, Bravic G, Rey-Lafon M, et al.X-Ray and Neutron Studies of a Displacive Phase Transition inN,N-Dimethylnitramine (DMN)[J].ActaCryst, 1980: B36, 575.

    [13] Turley J W. A Refinement of the crystal structure of n,n-dinitroethylenediamine[J].ActaCryst, 1968, B24: 942-946.

    [14] Pospí?il M, Vávra P, Concha M C, et al. A possible crystal volume factor in the impact sensitivities of some energetic compounds[J].JMolModel, 2010, 16(5): 895-901.

    [15] Pospí?il M, Vávra P, Concha M C, et al Sensitivity and the Available Free Space per Molecule in the Unit Cell[J].JMolModel, 2011, 17: 2569-2574.

    [16] Politzer P, Murray J S. Impact sensitivity and crystal lattice compressibility/free space[J].JMolModel, 2014, 20:2223; DOI 10.1007/s00894-014-2223-7.

    [17] Elbeih A, Zeman S, Jungova M,, et al. Attractive Nitramines and Related PBXs[J].Propellants,Explosives,Pyrotechnics, 2013, 38(3): 379-385.

    [18] Elbeih A, Jungová M, Zeman S, et al. Explosive strength and impact sensitivity of several pbxs based on attractive cyclic nitramines[J].Propellants,Explosives,Pyrotechnics, 2012, 37(3): 329-334.

    [19] Atalar T, Jungová M, Zeman S. A new view of relationships of the N—N bond dissociation energies of cyclic nitramines. part ii. relationships with impact sensitivity[J].JEnergMater, 2009, 27: 200-216.

    [20] Storm C B, Stine J R, Kramer J F. Sensitivity Relationships in Energetic Materials[M]. Bulusu S N (Ed), Chemistry and Physics of Energetic Materials, Kluwer Acad. Publs., Dordrecht, 1990, 605-639.

    [21] Zeman S, Krupka M. New aspects of impact reactivity of polynitro compounds. part iii. impact sensitivity as a function of the intermolecular interactions[J].Propellants,Explosives,Pyrotechnics, 2003, 28: 301-307.

    [22] Ou Y, Wang C, Pan Z, et al Sensitivity of hexanitrohexaazaisowurtzitane[J].ChineseJournalofEnergeticMaterials(HannengCailiao), 1999, 7: 100-108.

    [23] Elbeih A, Husárová A, Zeman S. Path to hniw with reduced impact sensitivity[J].CentralEurJEnergetMater, 2011, 8(3): 173-182.

    [24]Pugh S F. Relation between the elastic moduli and the plastic properties of polycrystalline pure metals[J].PhilosMag, 1954, 45: 823-843.

    [25] Zhu W, Xiao J, Zhu W, et al.Molecular dynamics simulation of RDX and RDX-based plastic-bonded explosives [J].JHazardMater, 2009, 164: 1082-1088.

    [26] Xiao J, Huang H, Li J, et al Computation of interface interactions and mechanical properties of HMX-based PBX with estane 5703 from atomic simulation[J].JMaterSci, 2008, 43: 5685-5691.

    [27] Xu X J, Xiao H M, Xiao J J, et al. Molecular dynamic simulation for pure CL-20 and CL-20-based PBXs[J].JPhysChemB, 2006, 110: 7203-7207.

    [28] Qiu L, Xiao H. Molecular Dynamic study of binding energies, mechanical properties, and detonation performances of bicyclo-HMX-based PBXs[J].JHazardMater, 2009, 164: 329-336.

    [29] Qiu L, Zhu W H, Xiao J J, et al. Molecular dynamic simulation of trans-1,4,5,8-tetranitro-1,4,5,8-tetraazadecaline-based polymer-bonded explosives[J]. JPhysChemB, 2007, 111: 1559-1566.

    [30] Ma X, Zhao F, Ji G, et al. Computational study of structure and performance of four constituents hmx-based composite material[J].JMolStruct,Theochem, 2008, 851: 22-29.

    [31] Willer R L. Synthesis and Characterization of High-Energy Compounds. I. Trans-1,4,5,8-tetranitro-1,4,5,8-tetraazadecalin (TNAD)[J].Propellants,Explosives,Pyrotechnics, 1983, 8: 65-69.

    [32] Simpson R I, Garza R G, Foltz M F, et al. Characterization of TNAZ[R]. Rep UCRL-ID-119572, Laewrence Livermore Lab, 1994.

    [33] Kamlet M J, Adolph H G. The relationship of impact sensitivity with structure of organic high explosives. part ii. polynitroaromatic explosives[J].Propellants,Explosives,Pyrotechnics, 1979, 4: 30-34.

    [34] Rice B M, Hare J J. a quantum mechanical investigation of the relation between impact sensitivity and the charge distribution in energetic molecules[J].JPhysChem, 2002, A106: 1770-1783.

    [35] Chen H, Li L, Jin S, et al. Effect of additives on hniw crystal morphology and impact sensitivity[J].Propellants,Explosives,Pyrotechnics, 2012, 37: 72-82.

    [36] Jungova M, Zeman S, Yan Q L. Recent advances in the study of the initiation of nitramines by impact using their15N NMR chemical shifts[J].CentEurJEnerget.Mater, 2014, 11(3): 285-294.

    [37] Zeman S, Yan Q L, Vlcek M. Recent advances in the study of the initiation of energetic materials using characteristics of their thermal decomposition part i. cyclic nitramines[J].CentEurJEnergetMater, 2014, 11(2): 173-189.

    [38] H Chen, S Chen, J Liu, et al. Preparation of the spheroized hniw crystals. Faming Zhuanli Shenqing Gongkai Shuomingshu 2010, CN 101624394, A 20100113[P].

    [39] Doo K B.Spherical high-density 2,4,6,8,10,12-hexanitrohexaazaisowurtzitane and preparation thereof [P]. Korean Patent KR 224043 B1, Dong Woon Specialty Chemical Co, Ltd, S Korea, 1999.

    [40] Elbeih A, Husarova A, Zeman S. Process for Preparing {epsilon}-2,4,6,8,10,12-Hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane with Reduced Impact Sensitivity. Czech Rep. Pat. 2013, CZ 303686 B6 20130306 [P]

    [41] Zhulkhistova N E, Prezdo W W, Bykova A S.Molecular and crystal structures of 2,4,6-trinitro-N-methyl-N-nitroaniline [J],Crystall.Reports, 2002, 47: 65-68.

    [42] Cao D, Wang J, Liu H. Synthesis and thermal decomposition of 1,4-DNI, and 2,4-DNI[C]∥Proceedings of the 37thInt. Annual Conf ICT, Karlsruhe, 2006: 175/1-175/5.

    [43] Zhang J, Lan T, Li M,et al. Preparation and crystal structure of 1,4-dinitroimidazole[J].YingyongHuagong, 2012, 41(9): 1664-1666.

    [44] Atovmyan L O, Gafurov R G, Golovina N I, et al. Crystal and molecular structure of two modifications of bis-(2,2,2-trinitroethyl)nitramine[J].Zhur.Strukt.Khim. 1980, 21(6): 35-141.

    [45] Archibald T G, Gilardi R G, Baum K,et al. Synthesis and x-rays crystal structure of 1,3,3-trinitroazetidine[J].JOrgChem, 1990, 55: 2920-2924.

    [46] Turley J W. A refinement of the crystal structure ofN,N′-dinitroethylenediamine[J].ActaCrystall,Sect.B:StructuralCrystallographyandCrystalChemistry, 1968, 24(Pt. 7): 942-6.

    [47] Jungová M, Zeman S, Husarová A. Friction Sensitivity of Nitramines. Part I: Comparison with Impact Sensitivity and Heat of Fusion[J].ChinJEnerget.Mater(HanNengCaiLiao),2011, 19(6): 603-606.

    [48] Friedl Z, Jungová M, Zeman S, et al. Friction sensitivity of nitramines. part IV: links to surface-electrostatic potentials[J].Chin.J.Energet.Mater. (HannengCailiao),2011, 19(6): 613-615.

    [49] Jungová M, Zeman S, Husarová A. New aspect of friction sensitivity of nitramines (in Persian)[J].JEnergticMater(Tehran), 2012, 1(14): 13-18.

    [50] Atalar T, Zeman S. A new view of relationships of the N—N bond dissociation energies of cyclic nitramines. part I. relationships with heats of Fusion[J].JEnergMater, 2009, 2(3): 186-199.

    [51] Elbeih A, Zeman S, Jungova M, et al. Effect of different polymeric matrices on some properties of plastic bonded explosives[J].Propellants,Explos,Pyrotech, 2012, 37(6): 676-684

    [52] Torry S, Cunliffe A. Polymorphism and solubility of CL-20 in plasticizers and polymers[C]∥Proc 31stInt Annual Conf ICT, Karlsruhe, 2000, 107/1-107/12.

    [53] Pelikán V, Zeman S, Yan Q L, et al. Concerning the shock sensitivity of cyclic nitramines incorporated into a polyisobutylene matrix[J].CentEurJEnergMater, 2014, 11(2): 219-235.

    [54] Pu Z, Xu J J, Guo X, Jiao Q, et al. Effect of addictives on polymorphic transition of CL-20 in castable systems[J].JThermalAnalCalorim, 2014, 117(2): 1001-1008.

    午夜老司机福利剧场| 韩国av一区二区三区四区| 18禁在线播放成人免费| 色噜噜av男人的天堂激情| 国产午夜精品论理片| 日本在线视频免费播放| 欧美极品一区二区三区四区| 午夜激情欧美在线| 日本精品一区二区三区蜜桃| 搡老岳熟女国产| 亚洲国产精品sss在线观看| 国产免费av片在线观看野外av| 美女免费视频网站| 亚洲精品在线美女| 99久久精品一区二区三区| 少妇的丰满在线观看| 欧美成人性av电影在线观看| 久久久久久久久大av| 不卡一级毛片| 9191精品国产免费久久| 国产成人啪精品午夜网站| 一级黄片播放器| 免费看十八禁软件| 舔av片在线| avwww免费| 国产精品久久久久久亚洲av鲁大| 国产精品乱码一区二三区的特点| 国产色爽女视频免费观看| 中文字幕高清在线视频| 国产免费一级a男人的天堂| 欧美乱色亚洲激情| 国产探花在线观看一区二区| 法律面前人人平等表现在哪些方面| 国产成人av教育| 男女视频在线观看网站免费| 亚洲国产欧洲综合997久久,| 91av网一区二区| 国产三级中文精品| 日本黄色视频三级网站网址| 搡老熟女国产l中国老女人| 啦啦啦韩国在线观看视频| 最近最新中文字幕大全电影3| aaaaa片日本免费| 在线观看免费午夜福利视频| 黄片大片在线免费观看| 在线观看美女被高潮喷水网站 | 婷婷丁香在线五月| 一级黄片播放器| 精品久久久久久久末码| 欧美性猛交╳xxx乱大交人| 一二三四社区在线视频社区8| 午夜福利欧美成人| 欧美一区二区精品小视频在线| 黄色日韩在线| 在线播放无遮挡| 两个人看的免费小视频| 国产色爽女视频免费观看| 丰满人妻熟妇乱又伦精品不卡| 国产成人欧美在线观看| 国产成人av教育| 毛片女人毛片| 欧美成人一区二区免费高清观看| 欧美性猛交╳xxx乱大交人| 麻豆国产97在线/欧美| 91麻豆精品激情在线观看国产| 最新中文字幕久久久久| 波多野结衣高清无吗| 色老头精品视频在线观看| 窝窝影院91人妻| 一卡2卡三卡四卡精品乱码亚洲| 18禁黄网站禁片午夜丰满| 一个人观看的视频www高清免费观看| 波多野结衣高清作品| 国产一区二区在线观看日韩 | 伊人久久大香线蕉亚洲五| 亚洲专区中文字幕在线| 又粗又爽又猛毛片免费看| 美女免费视频网站| 五月玫瑰六月丁香| 18禁在线播放成人免费| 精品久久久久久久末码| 亚洲成人久久爱视频| 亚洲精品456在线播放app | 国产三级黄色录像| 俄罗斯特黄特色一大片| 九九热线精品视视频播放| 欧美一区二区亚洲| 国产黄a三级三级三级人| 国内揄拍国产精品人妻在线| 亚洲精品成人久久久久久| 女人高潮潮喷娇喘18禁视频| av中文乱码字幕在线| 久久精品人妻少妇| 又粗又爽又猛毛片免费看| 久久久久亚洲av毛片大全| 国产爱豆传媒在线观看| ponron亚洲| 色哟哟哟哟哟哟| 欧美一区二区精品小视频在线| 人妻夜夜爽99麻豆av| 小说图片视频综合网站| 在线观看66精品国产| 精品不卡国产一区二区三区| 欧美绝顶高潮抽搐喷水| 99久久精品一区二区三区| 怎么达到女性高潮| 可以在线观看毛片的网站| 午夜福利成人在线免费观看| 欧美一区二区国产精品久久精品| 长腿黑丝高跟| 久久久久久久久大av| 88av欧美| 男女做爰动态图高潮gif福利片| www日本黄色视频网| 人人妻,人人澡人人爽秒播| 久久久久久人人人人人| 亚洲成人久久性| 全区人妻精品视频| 国产毛片a区久久久久| 成人高潮视频无遮挡免费网站| 九九在线视频观看精品| 又黄又爽又免费观看的视频| 搞女人的毛片| 韩国av一区二区三区四区| 3wmmmm亚洲av在线观看| 久久久成人免费电影| 黄片小视频在线播放| 草草在线视频免费看| 日韩欧美一区二区三区在线观看| 亚洲,欧美精品.| 久久这里只有精品中国| 日韩精品青青久久久久久| 日韩欧美 国产精品| 国产av在哪里看| 最好的美女福利视频网| 亚洲成人精品中文字幕电影| 最好的美女福利视频网| 一进一出好大好爽视频| 神马国产精品三级电影在线观看| 欧美日韩精品网址| 欧美最黄视频在线播放免费| 日韩大尺度精品在线看网址| 精品一区二区三区av网在线观看| 午夜精品一区二区三区免费看| 国产激情欧美一区二区| 国语自产精品视频在线第100页| 亚洲乱码一区二区免费版| 国产av不卡久久| 欧美成人一区二区免费高清观看| 亚洲欧美一区二区三区黑人| 我要搜黄色片| 亚洲狠狠婷婷综合久久图片| АⅤ资源中文在线天堂| 中文字幕人妻丝袜一区二区| 久久精品国产清高在天天线| 久久婷婷人人爽人人干人人爱| 有码 亚洲区| 久久天躁狠狠躁夜夜2o2o| 一进一出抽搐动态| 老司机午夜十八禁免费视频| 亚洲国产精品久久男人天堂| 国产在线精品亚洲第一网站| 窝窝影院91人妻| 中文资源天堂在线| 人妻夜夜爽99麻豆av| 久久久久久九九精品二区国产| 最好的美女福利视频网| 黄色女人牲交| 黄片小视频在线播放| 99在线人妻在线中文字幕| 99在线人妻在线中文字幕| 亚洲无线在线观看| 午夜亚洲福利在线播放| 一个人观看的视频www高清免费观看| 亚洲最大成人手机在线| 成人av在线播放网站| av片东京热男人的天堂| 亚洲av不卡在线观看| 在线播放国产精品三级| 一本精品99久久精品77| 精品国内亚洲2022精品成人| 窝窝影院91人妻| av专区在线播放| 看片在线看免费视频| 免费av观看视频| 少妇熟女aⅴ在线视频| 亚洲av二区三区四区| 精品福利观看| 国产爱豆传媒在线观看| 色综合亚洲欧美另类图片| 亚洲性夜色夜夜综合| 毛片女人毛片| 亚洲第一电影网av| 午夜免费男女啪啪视频观看 | 精品99又大又爽又粗少妇毛片 | 天堂√8在线中文| 亚洲欧美日韩卡通动漫| 黄色片一级片一级黄色片| 国产成人啪精品午夜网站| 日日摸夜夜添夜夜添小说| 亚洲最大成人中文| 成人精品一区二区免费| 亚洲精品在线美女| 国产午夜精品久久久久久一区二区三区 | 国产成人福利小说| 国产精品三级大全| 听说在线观看完整版免费高清| 性色av乱码一区二区三区2| 18美女黄网站色大片免费观看| 欧美成狂野欧美在线观看| 国产97色在线日韩免费| 国产高清videossex| 精品国内亚洲2022精品成人| 老司机在亚洲福利影院| 日韩精品青青久久久久久| 91麻豆精品激情在线观看国产| a级毛片a级免费在线| 欧美成狂野欧美在线观看| 很黄的视频免费| 观看免费一级毛片| 9191精品国产免费久久| 午夜福利在线观看免费完整高清在 | 国产老妇女一区| 三级国产精品欧美在线观看| 国产野战对白在线观看| 亚洲av日韩精品久久久久久密| 日韩高清综合在线| 黄片大片在线免费观看| 国产视频内射| 中文字幕av在线有码专区| 午夜两性在线视频| 亚洲欧美日韩无卡精品| 国产国拍精品亚洲av在线观看 | 成人av在线播放网站| 欧美一级毛片孕妇| 国产精品一区二区免费欧美| 国产亚洲精品一区二区www| 黄色成人免费大全| 此物有八面人人有两片| 国内揄拍国产精品人妻在线| 丰满乱子伦码专区| 一区二区三区免费毛片| 在线免费观看不下载黄p国产 | 91字幕亚洲| 搡女人真爽免费视频火全软件 | 久久国产乱子伦精品免费另类| 天堂√8在线中文| 亚洲五月婷婷丁香| 婷婷丁香在线五月| 中文资源天堂在线| 国产极品精品免费视频能看的| 精品国产三级普通话版| 淫秽高清视频在线观看| 18禁裸乳无遮挡免费网站照片| 99久国产av精品| 手机成人av网站| 两个人的视频大全免费| 九九久久精品国产亚洲av麻豆| 国产精品女同一区二区软件 | 亚洲专区国产一区二区| 亚洲 国产 在线| 丰满人妻一区二区三区视频av | www.www免费av| 麻豆国产av国片精品| 免费在线观看日本一区| 欧美一区二区精品小视频在线| 亚洲内射少妇av| 欧美成人性av电影在线观看| 国产真实乱freesex| 日本一本二区三区精品| 成年版毛片免费区| 精品人妻1区二区| 国产精品一区二区三区四区久久| 成年人黄色毛片网站| 午夜久久久久精精品| 日韩国内少妇激情av| 国产高潮美女av| 国产高清激情床上av| 叶爱在线成人免费视频播放| 欧美乱妇无乱码| 蜜桃久久精品国产亚洲av| 亚洲国产日韩欧美精品在线观看 | 亚洲欧美一区二区三区黑人| 99在线视频只有这里精品首页| 成人亚洲精品av一区二区| 亚洲色图av天堂| 欧美日本亚洲视频在线播放| 久久久久久久午夜电影| 男人的好看免费观看在线视频| 精品久久久久久久久久免费视频| 国产黄片美女视频| 久久精品人妻少妇| 长腿黑丝高跟| 美女cb高潮喷水在线观看| 性欧美人与动物交配| 中文字幕高清在线视频| 少妇高潮的动态图| 精品国产超薄肉色丝袜足j| 日韩欧美一区二区三区在线观看| 国产精品嫩草影院av在线观看 | 日本与韩国留学比较| 两个人视频免费观看高清| 亚洲一区高清亚洲精品| 国产精品99久久久久久久久| 色噜噜av男人的天堂激情| 国产三级黄色录像| 高清毛片免费观看视频网站| 亚洲国产色片| 特大巨黑吊av在线直播| 搞女人的毛片| 女人高潮潮喷娇喘18禁视频| 久久久久久国产a免费观看| 最近在线观看免费完整版| 国产又黄又爽又无遮挡在线| 免费无遮挡裸体视频| 国产不卡一卡二| 日韩av在线大香蕉| 国内久久婷婷六月综合欲色啪| 亚洲色图av天堂| 九九久久精品国产亚洲av麻豆| 一个人观看的视频www高清免费观看| 国产v大片淫在线免费观看| 在线播放无遮挡| 又粗又爽又猛毛片免费看| 长腿黑丝高跟| 一本一本综合久久| 亚洲在线自拍视频| 亚洲精品在线美女| 欧美精品啪啪一区二区三区| 国产精品一区二区三区四区免费观看 | 亚洲精品456在线播放app | 久久久久久大精品| 在线观看日韩欧美| 欧美乱码精品一区二区三区| 神马国产精品三级电影在线观看| 19禁男女啪啪无遮挡网站| 男人和女人高潮做爰伦理| 国产aⅴ精品一区二区三区波| 婷婷亚洲欧美| 精华霜和精华液先用哪个| 嫩草影院精品99| 老司机午夜十八禁免费视频| 亚洲中文日韩欧美视频| 我的老师免费观看完整版| 美女黄网站色视频| 午夜激情福利司机影院| 久久久久免费精品人妻一区二区| 好男人电影高清在线观看| 久久久久久久午夜电影| 国产中年淑女户外野战色| 欧美高清成人免费视频www| 午夜福利18| 亚洲aⅴ乱码一区二区在线播放| 国产精品 欧美亚洲| 欧美三级亚洲精品| 免费电影在线观看免费观看| 国产精华一区二区三区| 国产探花在线观看一区二区| 男人舔奶头视频| 美女黄网站色视频| bbb黄色大片| 国产av麻豆久久久久久久| 无遮挡黄片免费观看| 69人妻影院| 内地一区二区视频在线| 久久国产精品影院| 十八禁网站免费在线| 国模一区二区三区四区视频| 亚洲久久久久久中文字幕| 麻豆成人av在线观看| 亚洲国产欧洲综合997久久,| 美女 人体艺术 gogo| 国产精品乱码一区二三区的特点| 国产精品,欧美在线| 欧美日韩福利视频一区二区| 欧美日韩国产亚洲二区| 欧美av亚洲av综合av国产av| 国产精品久久久久久人妻精品电影| 99久久综合精品五月天人人| 成人永久免费在线观看视频| 嫩草影视91久久| 午夜福利免费观看在线| 欧美成人免费av一区二区三区| 国产激情欧美一区二区| 日韩免费av在线播放| 中文字幕熟女人妻在线| 无人区码免费观看不卡| 天堂av国产一区二区熟女人妻| 黄色成人免费大全| av欧美777| 国产黄a三级三级三级人| av女优亚洲男人天堂| 91在线观看av| 一级a爱片免费观看的视频| 一区二区三区免费毛片| 国产高清三级在线| 老汉色∧v一级毛片| 国产一区二区三区在线臀色熟女| 狂野欧美激情性xxxx| 国产99白浆流出| 久久久精品欧美日韩精品| 国产精品久久电影中文字幕| 亚洲人成网站在线播放欧美日韩| 岛国视频午夜一区免费看| 在线观看免费午夜福利视频| 免费观看精品视频网站| 中文字幕av成人在线电影| 一个人免费在线观看的高清视频| www国产在线视频色| 欧美日韩精品网址| av欧美777| 国产精品 国内视频| 亚洲第一电影网av| 亚洲美女黄片视频| 亚洲精华国产精华精| 久久久精品大字幕| 人人妻,人人澡人人爽秒播| 亚洲黑人精品在线| 日韩大尺度精品在线看网址| 丁香欧美五月| 久久九九热精品免费| 亚洲中文日韩欧美视频| av欧美777| 一进一出抽搐动态| 激情在线观看视频在线高清| 国产精品免费一区二区三区在线| 久9热在线精品视频| 欧美不卡视频在线免费观看| 国产欧美日韩一区二区三| 欧美乱妇无乱码| 观看免费一级毛片| 久久久久久九九精品二区国产| 狠狠狠狠99中文字幕| 国产又黄又爽又无遮挡在线| 色在线成人网| 欧美乱妇无乱码| 久久精品亚洲精品国产色婷小说| 国产国拍精品亚洲av在线观看 | 两人在一起打扑克的视频| 色哟哟哟哟哟哟| 国产成人影院久久av| 99国产精品一区二区三区| 亚洲av成人av| 尤物成人国产欧美一区二区三区| 一a级毛片在线观看| 日本黄色片子视频| 亚洲电影在线观看av| 免费人成视频x8x8入口观看| 久久久久精品国产欧美久久久| 国产亚洲精品一区二区www| 欧美午夜高清在线| 色av中文字幕| 我的老师免费观看完整版| 中亚洲国语对白在线视频| 757午夜福利合集在线观看| 中文字幕熟女人妻在线| 窝窝影院91人妻| 日本精品一区二区三区蜜桃| 欧洲精品卡2卡3卡4卡5卡区| 国产真实伦视频高清在线观看 | 美女免费视频网站| 国内精品久久久久久久电影| 亚洲精品在线美女| 啪啪无遮挡十八禁网站| 又黄又粗又硬又大视频| 欧美性猛交黑人性爽| 观看免费一级毛片| 亚洲片人在线观看| 国产单亲对白刺激| 国产精品久久久久久亚洲av鲁大| 好男人在线观看高清免费视频| 欧美日韩综合久久久久久 | 看黄色毛片网站| 一二三四社区在线视频社区8| 亚洲欧美日韩高清在线视频| 97人妻精品一区二区三区麻豆| 国产97色在线日韩免费| 精品电影一区二区在线| 日韩有码中文字幕| 亚洲精品亚洲一区二区| 51国产日韩欧美| 亚洲中文字幕一区二区三区有码在线看| 青草久久国产| 婷婷亚洲欧美| 欧美成人a在线观看| 久久国产精品影院| 国产精品久久视频播放| 亚洲av二区三区四区| 精品久久久久久久末码| av天堂中文字幕网| 国产高清有码在线观看视频| 又黄又爽又免费观看的视频| 两个人视频免费观看高清| 人妻丰满熟妇av一区二区三区| 高清日韩中文字幕在线| 校园春色视频在线观看| 亚洲中文字幕一区二区三区有码在线看| 最近最新免费中文字幕在线| 免费一级毛片在线播放高清视频| 19禁男女啪啪无遮挡网站| 国产探花在线观看一区二区| АⅤ资源中文在线天堂| 怎么达到女性高潮| 天堂√8在线中文| 欧美最黄视频在线播放免费| 九色成人免费人妻av| 男女那种视频在线观看| 天堂动漫精品| 日韩国内少妇激情av| 国产精华一区二区三区| 久久国产乱子伦精品免费另类| 午夜久久久久精精品| 亚洲av电影在线进入| 黄色日韩在线| 热99re8久久精品国产| 一区福利在线观看| 真人做人爱边吃奶动态| 亚洲精品影视一区二区三区av| 精品人妻偷拍中文字幕| 法律面前人人平等表现在哪些方面| 九色成人免费人妻av| www日本在线高清视频| 好男人在线观看高清免费视频| 亚洲欧美日韩无卡精品| 国产在线精品亚洲第一网站| 国产伦人伦偷精品视频| 不卡一级毛片| 精品日产1卡2卡| АⅤ资源中文在线天堂| 少妇高潮的动态图| 一进一出抽搐动态| 国产伦精品一区二区三区视频9 | 国产91精品成人一区二区三区| 免费av观看视频| 一边摸一边抽搐一进一小说| ponron亚洲| 国产精品久久电影中文字幕| 欧美日韩中文字幕国产精品一区二区三区| 国产黄片美女视频| 少妇人妻精品综合一区二区 | 国产精品一及| 免费av观看视频| 久久久久国内视频| 人人妻,人人澡人人爽秒播| 亚洲国产中文字幕在线视频| 久久久国产精品麻豆| 三级男女做爰猛烈吃奶摸视频| 国产中年淑女户外野战色| 他把我摸到了高潮在线观看| 国产在线精品亚洲第一网站| 亚洲内射少妇av| 美女被艹到高潮喷水动态| 网址你懂的国产日韩在线| 午夜福利在线观看吧| 麻豆久久精品国产亚洲av| 国产欧美日韩一区二区精品| 一进一出抽搐gif免费好疼| 18美女黄网站色大片免费观看| 亚洲人成网站在线播放欧美日韩| 一边摸一边抽搐一进一小说| 精品福利观看| 午夜老司机福利剧场| 白带黄色成豆腐渣| 免费搜索国产男女视频| 久久久久国产精品人妻aⅴ院| 色精品久久人妻99蜜桃| 国产午夜福利久久久久久| 黄色片一级片一级黄色片| 精品国产美女av久久久久小说| 国产午夜精品论理片| 亚洲av免费高清在线观看| www日本黄色视频网| 蜜桃亚洲精品一区二区三区| 国内揄拍国产精品人妻在线| 美女高潮的动态| 亚洲国产欧美网| 观看美女的网站| 搞女人的毛片| 久久精品91无色码中文字幕| 成年女人看的毛片在线观看| 无人区码免费观看不卡| 一个人看的www免费观看视频| 中文字幕人妻丝袜一区二区| 免费观看精品视频网站| 国产av不卡久久| 真人做人爱边吃奶动态| 五月玫瑰六月丁香| av专区在线播放| 一个人免费在线观看的高清视频| 好看av亚洲va欧美ⅴa在| 欧美成狂野欧美在线观看| 最新中文字幕久久久久| 亚洲午夜理论影院| 久久久色成人| 婷婷六月久久综合丁香| 久久精品亚洲精品国产色婷小说| 国产真实乱freesex| 他把我摸到了高潮在线观看| 内射极品少妇av片p| 亚洲成人久久爱视频| 久久中文看片网| 国产毛片a区久久久久| 久久久久性生活片| 在线免费观看的www视频| 成人国产综合亚洲| 日本撒尿小便嘘嘘汇集6| 亚洲av成人av| 欧美最新免费一区二区三区 | 黄色片一级片一级黄色片| 精品乱码久久久久久99久播| 成人国产综合亚洲| av片东京热男人的天堂| 九色成人免费人妻av| 熟女电影av网| 亚洲人成网站在线播|