• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Non-isothermal Decomposition Kinetics,Specific Heat Capacity and Adiabatic Time-to-explosion of Cu(pn)2(FOX-7)2

    2015-05-10 05:43:16GONGXiangSUNQianXUKangzhenSONGJirongZHAOFengqi
    含能材料 2015年12期

    GONG Xiang, SUN Qian, XU Kang-zhen, SONG Ji-rong, ZHAO Feng-qi

    (1. School of Chemical Engineering, Northwest University, Xi′an 710069, China; 2. Xi′an Modern Chemistry Research Institute, Xi′an 710065, China)

    1 Introduction

    1,1-Diamino-2,2-dinitroethylene (FOX-7) is a high-energy material with high thermal stability and low sensitivity to impact and friction[1-2]. Since first reported in 1998, FOX-7 has been considered as a research emphasis of energetic materials and will be used in insensitive ammunition and solid propellant. FOX-7 is a representative “push-pull” nitro-enamine, which possesses a highly polarized carbon-carbon double bond with positive and negative charges being stabilized by the amino group and nitro group respectively, and presents certain acidic properties[3-9]. Many researches have been studied on the synthesis[5-6], mechanism[4], molecule structure[2], theoretical calculation[11], thermal behavior[12], explosive performance and application[28]of FOX-7. Existing in manifold tautomers and resonances, FOX-7 can react with some nucleophiles to prepare many new energetic derivatives[11]. Some energetic salts, such as potassium salt, rubidium salt, cesium salt and guanidine salt, have been reported[11-12]. Other salts and metal complexes of FOX-7 also can be synthesized through replacement reaction, such as Cu(NH3)2(FOX-7)2, Cu(CH3NH3)2(FOX-7)2, [Cu(en)2(FOX-7)2(H2O)]·H2O, [Cu(phen)2FOX-7]Cl·3H2O, Zn(NH3)2(FOX-7)2and Zn(en)2(FOX-7)2[14-17].

    Many energetic Cu(Ⅱ) complexes were often used as detonating explosive or combustion catalyst of solid propellant[18-21], so we hope that Cu-FOX-7 complexes can also be used as energetic catalyst. Cu(pn)2(FOX-7)2is a new typical FOX-7 complex, and its synthesis and crystal structure have been reported[16]. In this paper, we studied the decomposition kinetics of Cu(pn)2(FOX-7)2, determined specific heat capacity and calculated adiabatic time-to-explosion for further estimating its thermal stability.

    2 Experimental

    2.1 Synthesis

    All chemicals used in synthesis were analytical-grade commercial products. FOX-7 came from Xi'an Modern Chemistry Research Institute (purity>99%). K(FOX-7)·H2O was prepared according to the ref.[13].

    Cu(pn)2(FOX-7)2(pn=1,3-diaminopropane) was prepared according to ref.[16] as follows: K(FOX-7)·H2O (2 mmol) and Cu(NO3)2·3H2O (1 mmol in 3 mL water) were stirred in 1,3-diaminopropane solution (78 mmol) for 30 min to give a clear solution at room temperature. Gradually purple crystals slowly appeared and were identified as Cu(pn)2(FOX-7)2. (yield 46%, 0.233 g). IR (KBr,ν/cm-1): 3408, 3294, 3226, 2931, 2359, 2025, 1659, 1500, 1344, 1281, 1132, 1029, 926, 829, 741, 681, 501. Anal. Calcd.(%) for C10H26N12O8Cu: C 23.21, H 5.32, N 33.68; found: C 23.14, H 5.57, N 33.22.

    2.2 Physical Measurements

    The DSC experiments were performed using a DSC200 F3 apparatus (NETZSCH, Germany) under a nitrogen atmosphere at a flow rate of 80 mL·min-1. The heating rates were 5.0, 7.5, 10.0 ℃·min-1and 12.5 ℃·min-1from ambient temperature to 350 ℃, respectively. The TG/DTG experiment was performed using a SDT-Q600 apparatus (TA, USA) under a nitrogen atmosphere at a flow rate of 100 mL·min-1. The heating rate was 5.0 ℃·min-1from ambient temperature to 350 ℃. The specific heat capacity was determined using a Micro-DSCⅢ apparatus (SETARAM, France). The heating rate used was 0.15 ℃·min-1from 10 ℃ to 80 ℃. The sample mass was 115.7 mg.

    The impact sensitivity was determined by using a ZBL-B impact sensitivity instrument (NACHEN,China). The mass of drop hammer is 2.5 kg. The sample mass for every test is 30 mg.

    3 Results and Discussion

    3.1 Thermal Decomposition Behavior

    DSC curves of Cu(pn)2(FOX-7)2at various heating rates are shown in Fig.1. TG-DTG curve of Cu(pn)2(FOX-7)2sample at a heating rate of 5.0 ℃·min-1is given in Fig.2.

    Fig.1 DSC curves of Cu(pn)2(FOX-7)2

    Fig.2 TG/DTG curve of Cu(pn)2(FOX-7)2at 5 ℃·min-1

    Fig.1 shows that the DSC curves of Cu(pn)2(FOX-7)2exhibit two exothermic peaks, which are in agreement with the results of TG/DTG, and the peak temperatures go up with the increase of heating rate. Fig. 2 illustrates that the thermal decomposition of Cu(pn)2(FOX-7)2can be divided into two decomposition processes. The first is an intense decomposition process, which occurs at 140-185 ℃ with a mass loss of 35.30%. The extrapolated onset temperature, peak temperature and heat of decomposition are 155.47 ℃, 156.49 ℃ and 816.5 J·g-1at the heating rate of 5.0 ℃·min-1. The second stage is a slow decomposition process at the temperature range of 185-270 ℃ with a mass loss of about 14.19%. The peak temperature is 215.8 ℃ at a heating rate of 5.0 ℃·min-1. The final residue at 350 ℃ is about 41.74%. Comparing with the thermal decomposition of Cu(NH3)2(FOX-7)2[14], they exhibits similar thermal decomposition processes, but the thermal stability of Cu(pn)2(FOX-7)2is slightly lower than that of Cu(NH3)2(FOX-7)2, which is due to the introduce of long carbon chain.

    3.2 Non-isothermal Decomposition Kinetics

    In order to obtain the kinetic parameters(the apparent activation energy (E) and pre-exponential factor (A)) of the first exothermic decomposition process, Kissinger method[21]and Ozawa method[22]were employed. The determined values of the beginning temperature (T0), extrapolated onset temperature (Te) and peak temperature (Tp) at the different heating rates are listed in Table 1. The values ofT00andTe0[22]corresponding toβ→0 obtained by Eq. (1) are also listed in Table 1.

    T0i or ei=T00 or e0+nβi+mβi,i=1-4

    (1)

    wherenandmare coefficients.

    The calculated kinetic parameters (EandA) in Table 1 show that theEobtained by Kissinger method is consistent with that by Ozawa method. The linear correlation coefficients (r) are all close to 1. So, the result is credible.

    Tversusα(the conversion degree) curves at different heating rates are shown in Fig.3. The values ofEOfor any given value ofαwere obtained and shown in Fig.4. The values ofEOsteadily distribute from 142 to 158 kJ·mol-1in theαrange of 0.175-0.875, and the average value ofEOis 151.9 kJ·mol-1, which is in approximate agreement with that obtained by Kissinger method and Ozawa method from only peak temperature values (163.5 and 162.3 kJ·mol-1, respectively). So, the values were used to check the validity ofEby other methods.

    The integral equations (The general integral equation, The universal integral equation, MacCallum-Tanner equation,atava-esták equation and Agrawal equation) were cited to obtain the values ofE,Aand the most probable kinetic model function [f(α)] from each DSC curve[24]. Forty-one types of kinetic model functions taken from Ref. [24] and experimental data form each DSC curve were put into the above five integral equations for calculating, respectively. The values were obtained and shown in Table 2. So, the most probable kinetic model function is classified asf(α)=3α2/3(No. 23 equation, Mampel power law,n=1/3), according to the unanimity rule of calculation results from each model equation[24]. The kinetic equation can be described as:

    Table 1 The values ofT0,Te,Tp,T00,Te0and kinetic parameters of the first exothermic decomposition process for Cu(pn)2(FOX-7)2determined from DSC curves at various heating rates (β)

    β/℃·min-1T0/℃Te/℃Tp/℃T00/℃Te0/℃EK/kJ·mol-1log(A/s-1)rKEO/kJ·mol-1rO5.0147.3155.5156.67.5150.4159.3160.110.0152.9161.7162.012.5155.1163.6165.2139.8145.6163.517.830.9908162.30.9915

    Note: Subscript K, data obtained by Kissinger method; subscript O, data obtained by Ozawa method.

    (2)

    Fig.3Tvsαcurves for the decomposition reaction of Cu(pn)2(FOX-7)2at different heating rates

    Fig.4EOvsαcurve for the decomposition reaction of Cu(pn)2(FOX-7)2by Ozawa method

    Table 2

    β/℃·min-1Eq.E/kJ·mol-1log/(A/s-1)r5.0thegeneralintegralequation189.921.00.9665theuniversalintegralequation187.319.40.9656MacCallum-Tannerequation189.820.90.9688?atava-?estákequation187.420.70.9688Agrawalequation189.921.00.96657.5thegeneralintegralequation180.519.80.9694theuniversalintegralequation178.018.20.9687MacCallum-Tannerequation180.419.80.9716?atava-?estákequation178.519.60.9716Agrawalequation180.519.80.969410.0thegeneralintegralequation154.716.70.9785theuniversalintegralequation152.215.10.9778MacCallum-Tannerequation154.416.60.9803?atava-?estákequation154.016.60.9803Agrawalequation154.716.60.978512.5thegeneralintegralequation133.714.10.9743theuniversalintegralequation131.312.60.9734MacCallum-Tannerequation133.314.00.9768?atava-?estákequation134.114.10.9768Agrawalequation133.714.10.9743mean163.917.5

    3.3 Self-accelerating Decomposition Temperature and Critical Explosion Temperature

    The self-accelerating decomposition temperature (TSADT) and critical temperature of thermal explosion (Tb) are two important parameters required to ensure safe storage and process operations for energetic materials and then to evaluate the thermal stability[24-25].TSADTandTbcan be obtained by Eq. (3) and Eq. (4), respectively.

    TSADT=Te0

    (3)

    (4)

    TSADTandTbfor Cu(pn)2(FOX-7)2are 145.6 ℃ and 146.7 ℃, respectively, which are similar with those of Cu(NH3)2(FOX-7)2as 145.5 ℃ and 156.2 ℃[26], but much lower than those of FOX-7 as 206.0 ℃ and 207.1 ℃[27]. Admittedly, the thermal stability of FOX-7 all declines when it becomes salts or complexes, and the decomposition process also becomes severe.

    3.4 Specific Heat Capacity

    Figure 5 shows the result of Cu(pn)2(FOX-7)2measured by a continuous specific heat capacity mode of Micro-DSCⅢ. In determined temperature range, specific heat capacity presents a good quadratic relationship with temperature. Specific heat capacity equation of Cu(pn)2(FOX-7)2is :

    cp=-2.6824+1.9441×10-2T-2.0494×10-5T2

    (285.0 K

    (5)

    wherecpis the specific heat capacity in J·g-1·K-1.

    The molar heat capacity of Cu(pn)2(FOX-7)2is 653.79 J·mol-1·K-1at 298.15 K.

    Fig.5 Determination results of the continuous specific heat capacity of Cu(pn)2(FOX-7)2

    3.5 Adiabatic Time-to-explosion

    The adiabatic time-to-explosion[24, 28]is also an important parameter for evaluating the thermal stability of energetic materials and can be calculated by Eqs. (6) and (7).

    (6)

    (7)

    whereTis the absolute temperature in K,tis the adiabatic time-to-explosion in s,Qis the exothermic values in J·mol-1,Ais the pre-exponential factor in s-1,Eis the apparent activation energy of the thermal decomposition reaction in J·mol-1,Ris the gas constant in J·mol-1·K-1,f(α) is the most probable kinetic model function andαis the conversion degree.

    The adiabatic time-to-explosion equation is:

    (8)

    where the limit of temperature integration is fromT00toTb.

    In fact, the value ofαof energetic materials from the beginning thermal decomposition to thermal explosion in the adiabatic conditions is very small, and it is very difficult to obtain the most probable kinetic model function [f(α)] at the process. So, Power-low model [Eq.(9)], Reaction-order model [Eq.(10)] and Avrami-Erofeev model [Eq.(11)] were separately used to estimate the adiabatic time-to-explosion[24, 29]. The calculation results are listed in Table 3.

    f(α)=nα(n-1)/n

    (9)

    f(α)=(1-α)n

    (10)

    f(α)=n(1-α)[-ln(1-α)](n-1)/n

    (11)

    Table 3 The calculation results of adiabatic time-to-explosion

    equationrateordermodeltime/sEq.9n=1f(α)=125.55n=2f(α)=2α1/266.86n=3f(α)=3α2/377.39n=4f(α)=4α3/476.48Eq.10n=0f(α)=125.55n=1f(α)=1-α26.51n=2f(α)=(1-α)227.52Eq.11n=1f(α)=1-α26.51n=2f(α)=2(1-α)[-ln1-α()]1/268.74n=3f(α)=3(1-α)[-ln1-α()]2/379.31n=4f(α)=4(1-α)[-ln1-α()]3/478.26

    From Table 3, we can see that the calculation results exhibit some deviation and the decomposition model has big influence on the estimating result of adiabatic time-to-explosion. Form the results, the adiabatic time-to-explosion of Cu(pn)2(FOX-7)2is calculated to about 77 s. The time can be proved credible according to the change of DSC curves in the exothermic decomposition process.

    3.6 Sensitivity

    The experimental results indicate that the characteristic drop height (H50) of Cu(pn)2(FOX-7)2is 71 cm (about >14 J). Explosion probability for friction sensitivity is 40 % (25 time experiments). So, Cu(pn)2(FOX-7)2is relatively less sensitive. Moreover, the impact sensitivity of Cu(pn)2(FOX-7)2is lower than that of RDX (>7.5 J), but higher than that of FOX-7 (>24.7 J)[30].

    4 Conclusions

    (1) The thermal decomposition of Cu(pn)2(FOX-7)2exhibits two exothermic processes. The non-isothermal decomposition kinetic equation of the first process is dα/dT=(1017.83/β)3α2/3exp(-1.635×105/RT). The self-accelerating decomposition temperature and critical temperature of thermal explosion are 145.6 and 146.7 ℃, respectively.

    (2) Specific heat capacity equation of Cu(pn)2(FOX-7)2iscp=-2.6824+1.9441×10-2T-2.0494×10-5T2(285.0 K14 J) (RDX>7.5 J).

    [1] Latypov N V, Bergman J, Langlet A, et al. Synthesis and reaction of 1,1-diamino-2,2-dinitroethylene[J].Tetrahedron, 1998, 54: 11525-11536.

    [2] Bemm U, ?stmark H.1,1-Diamino-2,2-dinitroethylene: a novel energetic material with infinite layers in two dimensions[J].ActaCrystallographicaSectionC, 1998, 54: 1997-1999.

    [3] Trzciński W A, Cudzilo S, Chylek Z, et al. Detonation properties and thermal behavior of FOX-7-based explosives[J].JournalofEnergeticMaterials, 2008, 31: 72-85.

    [4] Ek S, Ottis J, Dudek K, et al. Scalable synthesis of 1,1-diamino-2,2-dinitroethene without hazardous intermediates or by-products[J].JournalofEnergeticMaterials, 2013, 31: 87-99.

    [5] Anniyappan M, Talawar M B, Gore G M, et al. Synthesis, characterization and thermolysis of 1,1-diamino-2,2-dinitroethylene(FOX-7) and its salts[J].JournalofHazardousMaterials, 2006, 137: 812-819.

    [6] Cai H Q, Shu Y J, Yu W F, et al. Research development of 1,1-diamino-2,2-dinitroethylene[J].ChineseJournalofEnergeticMaterials(HannengCailiao), 2004, 12: 124-128.

    [7] Buszewski B, Michel M, Cudzilo S, et al. High performance liquid chromatography of 1,1-diamino-2,2-dinitroethene and some intermediate products of its synthesis[J].JournalofHazardousMaterials, 2009, 164: 1051-1058.

    [8] Herve G, Guy J, Latypov N. The reactivity of 1,1-diamino-2,2-dinitroethene (FOX-7)[J].Tetrahedron, 2005, 61: 6743-6748.

    [9] Sun Q, Li Y F, Xu K Z, et al. Crystal structure and enthalpy of combustion of AEFOX-7[J].ChineseJournalofEnergeticMaterials(HannengCailiao), 2015, 23(12) accept.

    [10] Xu K Z, Song J R, Yang X, et al. Molecular, crystal structure and theoretical calculation and thermal behavior of 2-(1,1-dinitromethylene)-1,3-diazepentane[J].JournalofMolecularStructure, 2008, 891: 340-345.

    [11] Xu K Z, Chang C R, Song J R, et al. Preparation, crystal structure and theoretical calculation of G(FOX-7)[J].ChineseJournalofChemistry, 2008, 26:495-499.

    [12] Luo J A, Xu K Z, Wang M, et al. Syntheses and thermal behaviors of Rb(FOX-7)·H2O and Cs(FOX-7)·H2O [J].BulletinoftheKoreanChemistrySociety, 2010, 31(10): 2867-2872.

    [13] Xu K Z, Zuo X G, Song J R, et al. Preparation, crystal structure and thermal behavior of K(FOX-7)·H2O[J].ChemicalJournalofChineseUniversities, 2010, 31: 638-643.

    [14] Chen Y S, Xu K Z, Wang M, et al. A review on reactivity of 1,1-diamino-2,2-dinitromethene(FOX-7)[J].ChineseJournalofEnergeticMaterials(HannengCailiao), 2012, 120: 120-125.

    [15] Garg S, Gao H X , Parrish D A, et al. FOX-7 (1,1-diamino-2,2-dinitroethene): trapped by copper and amines[J].InorganicChemistry, 2011, 50: 390-395.

    [16] Vo T T, Parrish D A, Shreeve J M. 1,1-Diamino-2,2-dintroethene (FOX-7) in copper and nickel diamine complexes and copper FOX-7[J].InorganicChemistry, 2012, 51: 1963-1968.

    [17] He F, Xu K. Z, Zhang H, et al. Two new copper-FOX-7 complexes: synthesis, crystal structure, and thermal behavior[J].JournalofCoordinationChemistry, 2013, 66(5): 845-855.

    [18] Yang Q, Chen S P, Xie G, Synthesis and characterization of an energetic compound Cu(Mtta)2(NO3)2and effect on thermal decomposition of ammonium perchlorate[J].JournalofHazardousMaterials, 2011, 197: 199-203.

    [19] Stierstorfer J, Tarantik K R, Klap?tke T M, et al. New energetic materials: functionalized 1-ethyl-5-aminotetrazoles and 1-ethyl-5-nitriminotetrazoles[J].Chemistry-AEuropeanJournal, 2009, 15: 5775-5792.

    [20] Klap?tke T M, Stieratorfer J, Weber B. New energetic materials: synthesis and characterization of copper 5-nitriminotetrazolates[J].InorganicaChimicaActa, 2009, 362:2311-2320.

    [21] Gao Z, Huang J, Xu K Z, et al, Synthesis, structural characterization and thermal properties of a new energetic zinc-FOX-7 complex[J].JournalofCoordintionChemistry, 2013, 66 (20): 3572-3580.

    [22] Kissinger H E. Reaction kinetics in differential thermal analysis[J].AnalyticalChemistry, 1957, 29: 1702-1706.

    [23] Ozawa T. A method of analying thermogravimetric data[J].BulletinofChemicalSocietyJpn, 1965, 38: 1881-1886.

    [24] Hu R Z, Gao S L, Zhao F Q, et al. Thermal Analysis Kinetics (2th)[M]. Beijing: Science Press, 2008: 151-155.

    [25] Zhang T L, Hu R Z, Xie Y, et al. The estimation of critical temperatures of thermal explosion for energetic materials using non-isothermal DSC[J].ThermochimicaActa,1994, 244: 171-176.

    [26] Qiu Q Q, Gao Z, Chen Y S, et al. Non-thermal decomposition kinetics of Cu(NH3)2(FOX-7)2[J].ChineseJournalofEnergeticMaterials(HannengCailiao), 2014, 22(2): 206-209.

    [27] Gao H X, Zhao F Q, Hu R Z, et al. Thermochemical properties, thermal behavior and decomposition mechanism of 1,1-diamino-2,2dinitroethylene (DADE)[J].ChineseJournalofChemistry, 2006, 24: 177-181.

    [28] Xu K Z, Song J R, Zhao F Q, et al. Thermal behavior, specific heat capacity and adiabatic time-to-explosion of G(FOX-7)[J].JournalofHazardousMaterials, 2008, 158: 333-339.

    [29] Vyzovkin S, Burnham A K, Criado J M, et al. ICTKA kinetics committee recommendations for performing kinetic computations on thermal analysis data[J].ThermochimicaActa, 2011, 520: 1-19.

    [30] Tian Y D, Zhao F Q, Liu J H. Handbook of Energetic Materials and the Related Compounds[M]. Beijing: National Defense Industry Press, 2011, 135.

    亚洲 国产 在线| 国产精品一及| 亚洲精品亚洲一区二区| 国产私拍福利视频在线观看| 一区二区三区免费毛片| 免费黄网站久久成人精品 | 高清日韩中文字幕在线| 久久午夜福利片| 亚洲av不卡在线观看| 久久国产精品人妻蜜桃| 9191精品国产免费久久| 久久精品国产亚洲av涩爱 | 不卡一级毛片| 国产免费一级a男人的天堂| 黄色日韩在线| 欧美日韩瑟瑟在线播放| 婷婷精品国产亚洲av| 999久久久精品免费观看国产| 精品人妻视频免费看| 国产精品免费一区二区三区在线| 国产91精品成人一区二区三区| av视频在线观看入口| 非洲黑人性xxxx精品又粗又长| 成人鲁丝片一二三区免费| 如何舔出高潮| 国产在线男女| 国产精品乱码一区二三区的特点| 精华霜和精华液先用哪个| 乱人视频在线观看| 亚洲一区高清亚洲精品| 99国产精品一区二区三区| 2021天堂中文幕一二区在线观| 欧美一区二区国产精品久久精品| 亚洲成人久久爱视频| 看免费av毛片| 国产三级中文精品| 国产成人福利小说| 国产亚洲欧美在线一区二区| 亚洲av一区综合| 超碰av人人做人人爽久久| 国产欧美日韩一区二区精品| 精品欧美国产一区二区三| 美女cb高潮喷水在线观看| 精品熟女少妇八av免费久了| 首页视频小说图片口味搜索| 中文字幕高清在线视频| 午夜免费成人在线视频| 国产高清有码在线观看视频| 亚洲第一电影网av| 小说图片视频综合网站| 亚洲av免费在线观看| 午夜免费激情av| 中文字幕人妻熟人妻熟丝袜美| 国产精品1区2区在线观看.| 日本 av在线| 亚洲国产精品成人综合色| 极品教师在线视频| 欧美激情久久久久久爽电影| 国产欧美日韩精品亚洲av| 毛片女人毛片| 97超级碰碰碰精品色视频在线观看| 色播亚洲综合网| 久久国产精品影院| 婷婷精品国产亚洲av| 久久精品91蜜桃| 精品一区二区三区人妻视频| 国产三级在线视频| 在线观看一区二区三区| 天堂动漫精品| 国产av不卡久久| 国产亚洲欧美在线一区二区| 一区二区三区免费毛片| 内地一区二区视频在线| 精品一区二区三区视频在线观看免费| 亚洲国产欧美人成| 亚洲欧美精品综合久久99| 亚洲最大成人中文| 91麻豆精品激情在线观看国产| 亚洲精品久久国产高清桃花| 免费观看精品视频网站| 日本免费一区二区三区高清不卡| 俄罗斯特黄特色一大片| 国产精品久久电影中文字幕| 身体一侧抽搐| 99国产综合亚洲精品| 性色avwww在线观看| 亚洲欧美精品综合久久99| 欧美高清成人免费视频www| 91字幕亚洲| 国产精品一区二区三区四区久久| 成人午夜高清在线视频| 99热6这里只有精品| 久久久久国内视频| 亚洲国产色片| 国产精品久久久久久久久免 | 亚洲午夜理论影院| 国产乱人伦免费视频| 国产乱人视频| 天美传媒精品一区二区| 乱码一卡2卡4卡精品| 欧美不卡视频在线免费观看| 国内精品一区二区在线观看| 久9热在线精品视频| 色视频www国产| 99热这里只有是精品50| 成人精品一区二区免费| 欧美最新免费一区二区三区 | 99国产综合亚洲精品| 在线免费观看不下载黄p国产 | 超碰av人人做人人爽久久| 国产一区二区三区在线臀色熟女| 国产视频一区二区在线看| 久久久久亚洲av毛片大全| 色吧在线观看| 国模一区二区三区四区视频| 尤物成人国产欧美一区二区三区| 又黄又爽又免费观看的视频| 欧美又色又爽又黄视频| 欧美日韩中文字幕国产精品一区二区三区| 天天躁日日操中文字幕| 久久99热6这里只有精品| 搡老熟女国产l中国老女人| 久久香蕉精品热| 午夜福利18| 欧美性猛交黑人性爽| 最近在线观看免费完整版| 天堂影院成人在线观看| 99久久九九国产精品国产免费| 亚洲美女黄片视频| 九色成人免费人妻av| 99久久无色码亚洲精品果冻| 99热这里只有是精品在线观看 | 人人妻人人看人人澡| 国产精品伦人一区二区| 午夜视频国产福利| 欧美日韩福利视频一区二区| 免费看日本二区| 中文字幕av在线有码专区| 亚洲专区中文字幕在线| 国产精品一区二区三区四区久久| 嫁个100分男人电影在线观看| 欧美国产日韩亚洲一区| 在线天堂最新版资源| 国产91精品成人一区二区三区| 禁无遮挡网站| 精品一区二区三区av网在线观看| av在线蜜桃| www.色视频.com| 狠狠狠狠99中文字幕| 午夜精品久久久久久毛片777| 麻豆av噜噜一区二区三区| 久久人妻av系列| 国产精品一区二区三区四区免费观看 | 不卡一级毛片| 免费观看人在逋| 日韩欧美在线二视频| 国产午夜福利久久久久久| 国产成人福利小说| 欧美国产日韩亚洲一区| 自拍偷自拍亚洲精品老妇| 狠狠狠狠99中文字幕| 在线播放国产精品三级| 亚洲精品一区av在线观看| 亚洲国产精品成人综合色| 天堂网av新在线| 自拍偷自拍亚洲精品老妇| 亚洲五月天丁香| 成人欧美大片| 男人舔女人下体高潮全视频| 三级毛片av免费| 久久久久久久久中文| 欧美在线黄色| 国产成人av教育| 欧美激情久久久久久爽电影| 九九热线精品视视频播放| 蜜桃亚洲精品一区二区三区| 精品人妻偷拍中文字幕| 久久午夜福利片| 国产激情偷乱视频一区二区| 国产精品av视频在线免费观看| 欧美乱妇无乱码| 91在线观看av| 天堂动漫精品| 亚洲国产精品久久男人天堂| 日本五十路高清| 欧美xxxx黑人xx丫x性爽| 国产av麻豆久久久久久久| 丁香欧美五月| 可以在线观看的亚洲视频| 欧美激情久久久久久爽电影| 欧美精品国产亚洲| 国产精品亚洲av一区麻豆| 好看av亚洲va欧美ⅴa在| 18禁黄网站禁片免费观看直播| 观看美女的网站| 欧美黄色淫秽网站| 亚洲午夜理论影院| 好男人电影高清在线观看| 精品久久国产蜜桃| 给我免费播放毛片高清在线观看| 国产久久久一区二区三区| 婷婷精品国产亚洲av| 美女大奶头视频| 最近中文字幕高清免费大全6 | 99在线视频只有这里精品首页| 99热精品在线国产| 婷婷丁香在线五月| 乱码一卡2卡4卡精品| 精品福利观看| 国产高清激情床上av| 欧美黑人巨大hd| 成年女人毛片免费观看观看9| 亚洲国产精品合色在线| 97人妻精品一区二区三区麻豆| 99国产综合亚洲精品| 老司机午夜十八禁免费视频| 窝窝影院91人妻| 一区二区三区高清视频在线| 久久人人精品亚洲av| 中文字幕熟女人妻在线| 99热这里只有是精品在线观看 | 少妇被粗大猛烈的视频| 俄罗斯特黄特色一大片| 欧美色欧美亚洲另类二区| 看片在线看免费视频| 91字幕亚洲| 99国产综合亚洲精品| 很黄的视频免费| 色5月婷婷丁香| 亚洲真实伦在线观看| 琪琪午夜伦伦电影理论片6080| 国产欧美日韩一区二区精品| 看片在线看免费视频| 免费看a级黄色片| 国产精品精品国产色婷婷| 非洲黑人性xxxx精品又粗又长| 免费av观看视频| 3wmmmm亚洲av在线观看| 日本a在线网址| 亚洲av电影不卡..在线观看| 黄色配什么色好看| 日韩欧美精品v在线| 日本免费a在线| 老司机午夜福利在线观看视频| 99国产精品一区二区三区| 最新中文字幕久久久久| 日韩欧美精品免费久久 | 日本精品一区二区三区蜜桃| 亚洲国产色片| 日日摸夜夜添夜夜添小说| 91午夜精品亚洲一区二区三区 | 亚洲av第一区精品v没综合| 中文字幕免费在线视频6| 欧美不卡视频在线免费观看| 国产免费av片在线观看野外av| 国产精品久久视频播放| 老女人水多毛片| 国产精品久久久久久久电影| 久久精品国产清高在天天线| 午夜福利视频1000在线观看| 精品久久久久久久人妻蜜臀av| 男人舔奶头视频| 久久6这里有精品| 日韩欧美在线二视频| 成人国产一区最新在线观看| 婷婷精品国产亚洲av在线| 最近视频中文字幕2019在线8| 97超级碰碰碰精品色视频在线观看| 国产免费男女视频| 一a级毛片在线观看| 日韩欧美精品免费久久 | 十八禁网站免费在线| 精品熟女少妇八av免费久了| 亚洲成av人片在线播放无| 国产野战对白在线观看| 制服丝袜大香蕉在线| 99久久成人亚洲精品观看| 免费无遮挡裸体视频| av欧美777| 毛片女人毛片| 免费一级毛片在线播放高清视频| 麻豆成人av在线观看| 97人妻精品一区二区三区麻豆| 国内毛片毛片毛片毛片毛片| 久久久国产成人精品二区| 波野结衣二区三区在线| 天堂动漫精品| 亚洲人成伊人成综合网2020| 国产成+人综合+亚洲专区| 色在线成人网| 夜夜爽天天搞| 亚洲第一电影网av| 欧美区成人在线视频| 亚洲av美国av| 日韩亚洲欧美综合| 精品久久久久久久人妻蜜臀av| www日本黄色视频网| 18美女黄网站色大片免费观看| 国产在视频线在精品| 亚洲一区二区三区色噜噜| 有码 亚洲区| 无人区码免费观看不卡| 亚洲天堂国产精品一区在线| 1000部很黄的大片| 久久久久久大精品| 久久精品国产99精品国产亚洲性色| 搡老熟女国产l中国老女人| 国产一级毛片七仙女欲春2| 日韩欧美免费精品| 亚洲久久久久久中文字幕| 亚洲精品在线美女| 国产精品一区二区三区四区久久| 国产精品嫩草影院av在线观看 | 99久久精品国产亚洲精品| 特级一级黄色大片| 国产精品久久久久久精品电影| 久久午夜亚洲精品久久| 夜夜躁狠狠躁天天躁| 国产免费一级a男人的天堂| 淫秽高清视频在线观看| 久久精品国产99精品国产亚洲性色| 免费无遮挡裸体视频| 精品午夜福利在线看| 国内精品久久久久久久电影| 内射极品少妇av片p| 亚洲18禁久久av| 别揉我奶头~嗯~啊~动态视频| 特级一级黄色大片| 欧美黄色片欧美黄色片| 久99久视频精品免费| 欧美绝顶高潮抽搐喷水| 久久亚洲精品不卡| 国产亚洲精品久久久com| 小蜜桃在线观看免费完整版高清| 免费看a级黄色片| 久久亚洲真实| 国产在视频线在精品| 在线观看av片永久免费下载| 欧美日韩乱码在线| 成人鲁丝片一二三区免费| 国产精品1区2区在线观看.| 国产国拍精品亚洲av在线观看| 99久久精品国产亚洲精品| 亚洲av中文字字幕乱码综合| 少妇人妻一区二区三区视频| 午夜福利视频1000在线观看| 91在线观看av| 丰满的人妻完整版| 99精品久久久久人妻精品| 国产精品国产高清国产av| 久久人人爽人人爽人人片va | 国语自产精品视频在线第100页| 亚洲精品粉嫩美女一区| 欧美中文日本在线观看视频| 看十八女毛片水多多多| 国产精品一及| 亚洲国产色片| 国内精品一区二区在线观看| 色综合亚洲欧美另类图片| 国产欧美日韩一区二区精品| 国产精品人妻久久久久久| 搡女人真爽免费视频火全软件 | 国产熟女xx| 夜夜看夜夜爽夜夜摸| 欧美三级亚洲精品| 亚洲熟妇中文字幕五十中出| 精品人妻熟女av久视频| 黄色一级大片看看| 久久久久亚洲av毛片大全| 精品久久久久久久久亚洲 | 亚洲五月天丁香| 18+在线观看网站| 亚洲精品在线美女| 亚洲最大成人av| 九色国产91popny在线| 2021天堂中文幕一二区在线观| 成人无遮挡网站| 在线观看舔阴道视频| 国产私拍福利视频在线观看| 两人在一起打扑克的视频| 亚洲中文字幕日韩| 精品免费久久久久久久清纯| 亚洲天堂国产精品一区在线| 午夜福利高清视频| 两个人视频免费观看高清| 欧美最黄视频在线播放免费| avwww免费| 少妇人妻精品综合一区二区 | 91久久精品电影网| а√天堂www在线а√下载| 12—13女人毛片做爰片一| 亚洲av免费在线观看| 嫩草影院入口| 中文字幕久久专区| 国产三级在线视频| 在现免费观看毛片| 老司机深夜福利视频在线观看| 久久精品国产亚洲av香蕉五月| 热99re8久久精品国产| 国产亚洲精品久久久久久毛片| 我要搜黄色片| 啦啦啦韩国在线观看视频| 99久久精品热视频| 桃色一区二区三区在线观看| 亚洲国产精品合色在线| 天堂动漫精品| 久久精品国产亚洲av天美| 人人妻,人人澡人人爽秒播| 日韩欧美精品免费久久 | 欧美一区二区国产精品久久精品| 成人亚洲精品av一区二区| 大型黄色视频在线免费观看| 高清毛片免费观看视频网站| 少妇熟女aⅴ在线视频| 舔av片在线| a级一级毛片免费在线观看| 久久99热这里只有精品18| 美女 人体艺术 gogo| 亚洲人成网站在线播放欧美日韩| 俄罗斯特黄特色一大片| 国产精品电影一区二区三区| 亚洲激情在线av| 午夜福利成人在线免费观看| 神马国产精品三级电影在线观看| 亚洲成av人片免费观看| 成年版毛片免费区| 免费观看人在逋| 真人做人爱边吃奶动态| 在线免费观看的www视频| 如何舔出高潮| 日韩欧美国产一区二区入口| 男人和女人高潮做爰伦理| 国产毛片a区久久久久| 99国产综合亚洲精品| 国产av麻豆久久久久久久| 99热只有精品国产| 日本在线视频免费播放| 免费看a级黄色片| 国产高清有码在线观看视频| 国产伦在线观看视频一区| 国产高清视频在线观看网站| 国产精品99久久久久久久久| 国产麻豆成人av免费视频| 午夜视频国产福利| 深夜精品福利| 如何舔出高潮| 午夜影院日韩av| 国产精品美女特级片免费视频播放器| 麻豆成人av在线观看| 色精品久久人妻99蜜桃| 国产精品乱码一区二三区的特点| 久久精品综合一区二区三区| 国产高清三级在线| 日本 av在线| 亚洲成人久久爱视频| 又紧又爽又黄一区二区| 琪琪午夜伦伦电影理论片6080| 国产欧美日韩一区二区精品| 久久国产精品影院| 极品教师在线免费播放| 99久国产av精品| 精品人妻1区二区| 久9热在线精品视频| 一区二区三区激情视频| 亚洲精品粉嫩美女一区| 亚洲av不卡在线观看| 亚洲真实伦在线观看| 久99久视频精品免费| 精品一区二区三区视频在线观看免费| а√天堂www在线а√下载| 国产在线男女| 国产精品三级大全| 亚洲欧美日韩高清在线视频| 国产精品免费一区二区三区在线| 首页视频小说图片口味搜索| 91字幕亚洲| 别揉我奶头~嗯~啊~动态视频| 国产一区二区三区视频了| 午夜免费激情av| 欧美三级亚洲精品| 嫁个100分男人电影在线观看| 国产白丝娇喘喷水9色精品| 欧美zozozo另类| 免费看光身美女| 超碰av人人做人人爽久久| 国产伦在线观看视频一区| 欧美日韩乱码在线| 欧美激情国产日韩精品一区| 亚洲内射少妇av| 中文字幕久久专区| 亚洲熟妇熟女久久| 日本在线视频免费播放| 黄色女人牲交| 级片在线观看| 在线免费观看的www视频| 欧美一级a爱片免费观看看| 黄片小视频在线播放| 国产 一区 欧美 日韩| 99久久精品热视频| 日韩欧美在线二视频| 国内揄拍国产精品人妻在线| 色吧在线观看| 人妻久久中文字幕网| 五月伊人婷婷丁香| 国产精品久久久久久久久免 | 国产免费av片在线观看野外av| aaaaa片日本免费| 美女大奶头视频| 久久精品国产99精品国产亚洲性色| 欧美bdsm另类| 欧美国产日韩亚洲一区| 国产三级中文精品| bbb黄色大片| 国产精品一区二区性色av| 国内毛片毛片毛片毛片毛片| 真人一进一出gif抽搐免费| 三级国产精品欧美在线观看| 亚洲欧美日韩高清专用| 身体一侧抽搐| www.www免费av| 夜夜看夜夜爽夜夜摸| 给我免费播放毛片高清在线观看| 亚洲第一区二区三区不卡| 久久性视频一级片| 999久久久精品免费观看国产| 18禁裸乳无遮挡免费网站照片| 国产精品亚洲一级av第二区| 欧美成狂野欧美在线观看| 国产免费一级a男人的天堂| 日韩有码中文字幕| 日韩精品青青久久久久久| 久久久国产成人精品二区| 一a级毛片在线观看| 亚洲久久久久久中文字幕| 男女做爰动态图高潮gif福利片| 中文字幕人妻熟人妻熟丝袜美| 免费电影在线观看免费观看| 国产在线精品亚洲第一网站| 九色成人免费人妻av| 在线国产一区二区在线| 最近在线观看免费完整版| ponron亚洲| x7x7x7水蜜桃| 日韩欧美在线二视频| avwww免费| 久久伊人香网站| 久久婷婷人人爽人人干人人爱| 亚洲国产精品久久男人天堂| 亚洲中文字幕一区二区三区有码在线看| 国产av不卡久久| 看黄色毛片网站| 嫩草影院新地址| 黄色一级大片看看| 国产精品久久视频播放| 亚洲国产高清在线一区二区三| 日韩高清综合在线| 12—13女人毛片做爰片一| 少妇人妻精品综合一区二区 | 亚洲成人免费电影在线观看| 日韩高清综合在线| 日本黄色视频三级网站网址| 一级作爱视频免费观看| 午夜福利在线在线| 亚洲av不卡在线观看| 国产精品久久久久久精品电影| 国产又黄又爽又无遮挡在线| 99在线人妻在线中文字幕| 在线国产一区二区在线| 嫩草影院新地址| 国产激情偷乱视频一区二区| 亚洲性夜色夜夜综合| 欧美潮喷喷水| 亚洲狠狠婷婷综合久久图片| 国产伦精品一区二区三区四那| 日韩欧美免费精品| 亚洲经典国产精华液单 | 国产一级毛片七仙女欲春2| 日韩 亚洲 欧美在线| 三级国产精品欧美在线观看| 很黄的视频免费| av国产免费在线观看| 国产av一区在线观看免费| 国产黄a三级三级三级人| 亚洲,欧美,日韩| 成人无遮挡网站| 在线观看av片永久免费下载| 欧美丝袜亚洲另类 | 国产主播在线观看一区二区| 亚洲久久久久久中文字幕| 88av欧美| 国产精品不卡视频一区二区 | 亚洲经典国产精华液单 | 国产免费一级a男人的天堂| 久久久久性生活片| 国产主播在线观看一区二区| 夜夜躁狠狠躁天天躁| 亚洲国产欧美人成| 欧美绝顶高潮抽搐喷水| 18美女黄网站色大片免费观看| 国产爱豆传媒在线观看| 亚洲第一欧美日韩一区二区三区| 国产免费av片在线观看野外av| 国产探花在线观看一区二区| 性色av乱码一区二区三区2| 在线a可以看的网站| 99精品久久久久人妻精品| 少妇人妻一区二区三区视频| 国产又黄又爽又无遮挡在线| 国产一区二区在线av高清观看| 两性午夜刺激爽爽歪歪视频在线观看| 久久天躁狠狠躁夜夜2o2o| 老熟妇仑乱视频hdxx| 亚洲精品456在线播放app | 97超视频在线观看视频| 9191精品国产免费久久|