• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An Energetic Pb(Ⅱ) Complex of TANPyO: Synthesis, Thermal Decomposition Behavior and Catalytic Effect on Thermal Decomposition of AP

    2015-05-10 05:43:15CHENGJianZHANGRongxianFUDaixuanZHAOFengqiXUSiyuWANGXiaominLIUZuliang
    含能材料 2015年12期

    CHENG Jian, ZHANG Rong-xian, FU Dai-xuan, ZHAO Feng-qi, XU Si-yu, WANG Xiao-min, LIU Zu-liang

    (1. School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; 2. School of Chemical Engineeing, Jiangsu University, Zhenjiang 212013, China; 3. Sichuan Petroleum Perforating Materials Co.LTO, Neijiang 642177, China; 4. Xi′an Modern Chemistry Research Institute, Xi′an 710065, China; 5. School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China)

    1 Introduction

    In recent decades, extensive attention has been paid on high quality energetic material(EM) with high energy, high density, high heat resistance, and low sensitivity. The high quality EM was extensively used in the area of advanced conventional weapons, rocket propellants and explosives. There is tremendous interest in developing efficient methods to synthesize energetic complexes in recent years. Energetic complexes refer to series of complexes with high explosive performances, and have attracted considerable interest especially in primary explosives and energetic catalysts in pyrotechnic and propellant mixtures due to their potential properties, such as high energy, good fluidity, low sensitivities and good catalytic performance on the thermal decomposition of ammonium perchlorate (AP) and 1,3,5-trinitrohexahydro-1,3,5-triazine (RDX)[1-9].

    2,6-Diamino-3,5-dinitropyridine-1-oxide (ANPyO) and 2,4,6-triamino-3,5-dinitropyridine-1-oxide (TANPyO)[10]are realistic, high-performance energetic materials that are thermally stable and insensitive to shock, spark and friction[11], with similar performance, stability and sensitivity to that of 2,4,6-triamino-1,3,5-trinitrobenzene (TATB). They belong to a multi-amino, multi-nitro-heterocyclicN-oxide with structure units —N+—O-and —NH2. It may form stable complexes with a large number of metal ions similar to quinoxaline N1,N4-dioxide[12-13]. In accordance with previous studies on metal complexes of quinoxaline N1,N4-dioxide derivatives, we selected metals including Cu(Ⅱ)[14], Co(Ⅲ)[15], Fe(Ⅲ)[15], Pb(Ⅱ)[16]to construct novel ANPyO-based coordination compounds with similar structures to metal complexes of quinoxaline N1,N4-dioxide derivatives. The asymmetric unit of these metal complexes comprises one central metal canon and two or three deprotonated ANPyO anions. Each central metal canon has a distorted octahedron, coordinated by nitrogen and oxygen from deprotonated ANPyO. This unique coordination mode that ligands direct coordinate with metal ions without additional anions or cations can stabilize entire molecular complexes. Therefore, metal complexes of ANPyO exhibit good thermal stability, high density and low sensitivity, with some properties similar to ANPyO. Moreover, TG-DTG and DSC results show that these complexes have significant catalytic effects on the thermal decomposition of ammonium perchlorate(AP)[14-16]. A lot of applications have been proposed for metal complexes of ANPyO, such as insensitive explosive, propellant and energetic catalyst.

    Basedon our previous studies on metal complexes of ANPyO, we speculate that TANPyO can form energetic complexes with a large number of transition metal ions due to its similar structure and properties to ANPyO. Compared with transition metal ions i.e Cu(Ⅱ), Co(Ⅲ), Fe(Ⅲ), Ni(Ⅱ), the Pb(Ⅱ) ion[16]has large ion radius, variable coordination numbers, and diverse coordination geometries. The Pb(Ⅱ) ion also has a tendency to form stable framework structure with a large number of ligands. Furthermore, it is discovered that the lead salts of energetic compounds possess better catalytic effect and ability to reduce pressure exponent for the propellant.

    This study develops a new strategy for the synthesis and characterization of Pb(Ⅱ) complex of TANPyO (Pb(TANPyO)) and report its structure, sensitivity performances, thermal decomposition behavior and catalytic properties on the thermal decomposition of AP.

    2 Experimental

    2.1 Materials and Instruments

    All chemicals used were analytical grade, and purchased from commercial sources without further purification. IR spectra were recorded on a Nicolet-10 infrared spectrophotometer (Nicolet Company, USA) over the frequency range 4000-500 cm-1using the KBr pellet technique. Elemental analyses were performed with an Elementar vario EL Ⅲ microanalyzer (Elmentar Analysen Systeme GmbH, Germany).

    DSC studies were performed on a DSC823eMETTLER TOLEDO with heating rates of 2.5, 5, 10, 20 K·min-1. TG-DTG analysis was conducted on TGA/SDTA851eMETTLER TOLEDO under a nitrogen atmosphere at a heating rate of 10 K·min-1, at a flow rate of 30 mL·min-1.

    The friction sensitivity was measured by applying a Julius Peter apparatus following the BAM method[17]. Impact sensitivity was determined with the Bruceton method on a standard fall hammer apparatus, and the compacted sample was hit with a 2.5 kg drop hammer on the apparatus[18]. Shock sensitivity was determined on a designed shock sensitivity apparatus[19].

    2.2 Synthesis

    2.2.1 Synthesis of TANPyO

    TANPyO was prepared according to literature [10]. Anal. Calcd.(%): C 26.09, H 2.61, N 36.52. Found: C 26.12, H 2.65, N 36.48.

    2.2.2 Synthesis of Pb(C5H4N6O5)

    Pb(CH3COO)2·3H2O(0.380 g, 1.0 mmol) was added to a solution of TANPyO (0.230 g, 1.0 mmol) in ethanol (20 mL) at 80 ℃ for 2 h, then cooled to room temperature and filtered, washed with ethanol and dried in air. An orange-yellow solid powder (0.381 g) formed with yield of 87.50%(based on TANPyO). m.p. 311-312 ℃. Calcd: Pb 47.61, C 13.79, H 0.92, N 19.31. Found: Pb 47.68, C 13.81, H 0.89, N 19.33. The molecular formula of Pb(TANPyO) is Pb(C5H4N6O5).

    3 Results and Discussion

    3.1 FTIR Spectra

    The FTIR spectra of TANPyO and Pb(TANPyO) are illustrated in Fig.1. The main vibration bands related with coordination are shown in Table 1.

    The FTIR spectrum of Pb(TANPyO) in Fig.1 shows a similar pattern with those previously reported for metal complexes in the family of quinoxaline N1,N4-dioxide[12-13]. Two strong bands corresponding toνas(NH2) andνs(NH2) of the amino group of 2-position and 6-position in the 3431 and 3362 cm-1region for the TANPyO, disappear after coordination. Only one band (ν(NH)) with medium intensity at 3304 cm-1is observed, it is in agreement with the presence of a secondary amine. Theνas(NH2) andνs(NH2) of the amino group of 4-position in the 3314 and 3253 cm-1region, for the TANPyO shift to medium after coordination, without a significant displacement. The strongν(N—O) at 1284 cm-1for the TANPyO, shifts to medium after coordination, without a significant displacement too. As previously reported, this behavior supports the coordination of the TANPyO to Pb(Ⅱ) through the N—O group and the deprotonated amino group.

    Fig.1 FTIR spectra of TANPyO and Pb(TANPyO)

    Table 1 Main IR bands of TANPyO and Pb(TANPyO) cm-1

    Note:νis stretching;νasis asymmetric stretching;νsis symmetric stretching, s is strong, m is medium.

    3.2 Sensitivity Tests

    To understand the stability and hazardous property of Pb(TANPyO), their sensitivity properties are measured, and compared with the sensitivity ones of TATB.The results are listed in Table 2.

    Table 2 Sensitivity test results for TANPyO and Pb(TANPyO)

    compoundd50/μmimpactsensitivity/cmfrictionsensitivity/kgshocksensitivity/mmTANPyO100300365.2Pb(TANPyO)98305364.9TATB100320364.5

    Note:d50is average particle size.

    TANPyO belongs to a multi-amino, multi-nitro-heterocyclic compound with symmetry structure. The intramolecular and intermolecular hydrogen bonds are formed by the amino and nitro groups[10]. The molecular structure of TANPyO is planar, which is similar to that of TATB. The extensive intramolecular and intermolecular hydrogen bonds can result in high crystal density, thermal stability and insensitive to impact and friction. As shown in Table 2, the impact sensitivity, friction sensitivity and shock wave sensitivity of TANPyO and TATB are 300 cm, 36 kg, 5.2 mm and 320 cm, 36 kg, 4.5 mm, respectively, showing that TANPyO and TATB are insensitive.

    It is believed that theintramolecular and intermolecular hydrogen bonds, the π-electron conjugated effect and the amino donor effect are responsible for the low sensitivity of TANPyO. When TANPyO forms the energetic complex with Pb(Ⅱ), the crystal structure of the energetic complex relative to TANPyO experiences two alterations. On one hand, when the crystal structure of the energetic complex changes from the TANPyO plane layered structure to the three-dimensional network structure, the intramolecular and intermolecular hydrogen bonds become weak. This is not conducive to reducing sensitivity of the Pb(Ⅱ) complex. On the other hand, TANPyO coordinates with Pb(Ⅱ) directly, which is unique,can stabilize the entire molecular complex and reduce the sensitivity of the Pb(Ⅱ) complex. The change in sensitivity of the Pb(Ⅱ) complex relative to TANPyO is the combined results of above-mentioned two aspects.

    As shown in Table 2, the impact sensitivity, friction sensitivity and shock wave sensitivity of Pb(TANPyO) is 305 cm, 36 kg and 4.9 mm, respectively, showing that in comparison with TANPyO, the sensitivities of Pb(TANPyO) are decreased. From above analysis, we consider that the form of coordinate bonds and chelation are the main reasons of lower sensitivity for the Pb(Ⅱ) complex.

    3.3 Thermal Decomposition

    DSC and TG-DTG determinationsare conducted to identify the thermal behavior of Pb(TANPyO). TG-DTG and DSC curves for Pb(TANPyO) at a heating rate of 10 K·min-1are shown in Fig.2 and Fig.3, respectively.

    Fig.2 TG-DTG curves of Pb(TANPyO)

    Fig.3 DSC curve of Pb(TANPyO)

    TG-DTG curves of Pb(TANPyO) is divided into two stages. The first stage is a fast mass-loss process, with 72.1% mass loss from the initial mass in the temperature range of 229.2-361.4 ℃, which reaches the largest rate at 319.6 ℃, The DSC curve of Pb(Ⅱ) complex shows that there is an exothermic process in the first stage, in the range of 291.6-355.9 ℃. A sharp exothermic peak is shown in the DSC curve with a peak temperature of 329.0 ℃. The first stage is the Pb-O, Pb-N bonds breaking and the ring breaking of TANPyO in the temperature range of 210.5-361.4 ℃. The second stage is a slow mass-loss process, with 4.1% mass loss from the initial mass in the temperature range of 361.4-500.0 ℃. The DSC curve of Pb(TANPyO) shows that there is no obvious change in the second stage. The mass fraction of the final residue is 23.8%.

    3.4 Non-isothermal Kinetics Analysis

    We studied the kinetic parameters of the first exothermic process of the complex by using Kissinger′s[20]and Ozawa-Doyle′s[21-22]methods. The Kissinger equation and Ozawa-Doyle equations are as follows:

    WhereTpis the peak temperature, ℃;Ris the gas constant, 8.314 J·mol-1·K-1;βis the linear heating rate, K·min-1;Cis a constant. Based on the multiple non-isothermal DSC curves obtained at four different heating rates of 2.5, 5, 10, 20 K·min-1, the values of the apparent activation energy (EKandEO) (where subscript K: Kissinger′s method: subscript O: Ozawa-Doyle′s method), the pre-exponential factor (AK) and linear correlation coefficient (rKandrO) of the two intense exothermic decomposition processes were determined by Kissinger′s and Ozawa-Doyle′s methods. The detailed data and the calculated kinetic parameters are listed in Table 3.

    The calculated results using both methods are within the normal range of the kinetic parameters of such thermal decomposition reaction, and correspond well with each other. Therefore, the Arrhenius equation of the exothermic decomposition process can be expressed as lnk=66.25-331.9x103/(RT).

    Table 3 Non-isothermal reaction kinetic parameters for Pb(TANPyO)

    β/K·min-1Tp/KEK/kJ·mol-1ln(Ak/s-1)rK2EO/kJ·mol-1rO2 2.5592.17 5599.29 10602.16 20606.65331.966.250.9747325.10.9761

    3.5 Effects on the Thermal Decomposition of AP

    AP is the common oxidizer in composite solid propellants, and the thermal decomposition characteristics of AP greatly influenceon the combustion behavior of solid propellants[23-24]. In order to provide theoretical support to further performance study as combustion catalysts, the Pb(TANPyO) is explored as a promoter to the thermal decomposition of AP. The catalytic effect of Pb(TANPyO) on the thermal decomposition of AP (Pb(TANPyO) and AP are mixed in a mass ratio of 1∶4) is investigated by TG-DTG and DSC measurements at a heating rate of 10 K·min-1under N2atmosphere in the range of 50-500 ℃. The results obtained are shown in Fig.4, Fig.5 and Fig.6.

    TG-DTG curves of pure AP and AP with 20% Pb(TANPyO) are shown in Fig.4 and Fig.5, respectively. As shown in Fig.4, the thermal decomposition of pure AP occurs in two mass-loss steps. The 21% mass-loss at low temperature of from 264.3 ℃ to 345.1 ℃ is attributed to the partial decomposition of AP. The 79% mass-loss at high temperature of 345.1℃ to 409.7 ℃ is caused by the complete decomposition of the intermediate to volatile products. The TG and DTG curves for the thermal decomposition of AP in the presence of Pb(TANPyO) are shown in Fig.5. The thermal decomposition of AP catalyzed by Pb(TANPyO) shows that there are no noticeable changes in the decomposition pattern. AP is completely decomposed at the lower temperature of 348.6 ℃ in a shorter time.

    Fig.4 TG-DTG curves of pure AP

    Fig.5 TG-DTG curves of AP with 20% Pb(TANPyO)

    The DSC curves for pure AP and AP in the presence of Pb(TANPyO) are also shown in Fig.6. The endothermic peak at 242.3 ℃ is due to a crystallographic transition. The exothermic peak at 330.2 ℃ and 432.5 ℃ in Fig.6 is attributed to the low-temperature decomposition (LTD) process and high-temperature decomposition (HTD) process of AP, corresponding to the two mass loss steps. The DSC curve of AP in the presence of Pb(TANPyO) shows that Pb(TANPyO) additive has no effects on the crystallographic transition temperature, but significant changes in the decomposition pattern.

    The exothermic band of the mixed system of Pb(TANPyO) with AP has two broad peak, revealing a complicated mechanism of decomposition. In comparison with pure AP, the high-temperature decomposition peak of the mixed system is shifted 88.7 ℃ downwards, the low-temperature decomposition peak of the mixed systems is shifted 28.3 ℃ downwards and the decomposition heat of the mixed system is increased by 392.2 J·g-1, indicating that AP decomposition is accelerated in the presence of Pb(TANPyO).

    a. AP with 20% Pb(TANPyO)

    b. pure AP

    Fig.6 DSC curves of pure AP and AP with 20% Pb(TANPyO)

    4 Conclusions

    (1) The energetic Pb(TANPyO) is synthesized and characterized, its molecular formula is determined as Pb(C5H4N6O5).

    (2) Impact sensitivity, friction sensitivity and shock wave sensitivity of the complex is 305 cm, 36 kg and 4.9 mm, respectively.

    (3) The peak temperature of the complex decomposition reaction is 329.0 ℃, having a better heat-resistance ability.

    (4) The complex makes the low temperature exothermic decomposition peak and high temperature exothermic decomposition peak of AP decrease by 28.3 ℃ and 88.7 ℃, respectively, and the heat of decomposition of AP increase by 392.2 J·g-1, showing that the complex has significant catalytic effects on the thermal decomposition of AP.

    Acknowledgement:We gratefully acknowledge the financial support from Nanjing University of Science and Technology and Xi′an Modern Chemistry Research Institute.

    [1] Jones D E, Armstrong K, Parekunnel T, et al. The thermal behaviour of BTAW, a high nitrogen fuel[J].JournalofThermalAnalysisandCalorimetry, 2006, 86(3): 641-649.

    [2] Friedrich M, Galvez-Ruiz J C, Klapotke T M, et al. BTA copper complexes[J].InorganicChemistry, 2005, 44(22): 8044-8052.

    [3] Singh R P, Verma R D, Meshri D T, et al. Energetic nitrogen rich salts and ionic liquids[J].AngewandteChemieInternationalEdition, 2006, 45(22): 3584-3601.

    [4] ZOU M, JIANG X, LU L, et al. Nano or micro? A mechanism

    on thermal decomposition of ammonium perchlorate catalyzed by cobalt oxalate[J].JournalofHazardousMaterials, 2012, 225: 124-130.

    [5] Shvedenkov Y, Bushuev M, Romanenko G, et al. Synthesis and characterization of an energetic compound Cu(Mtta)2(NO3)2and effect on thermal decomposition of ammonium perchlorate[J].JournalofHazardousMaterials, 2011, 197: 199-203.

    [6] Karaghiosoff K, Klapotke T M, Mayer P, et al. Salts of methylated 5-aminotetrazoles with energetic anions[J].InorganicChemistry, 2008, 47: 1007-1019.

    [7] Liu H B, Jiao Q Z, Zhao Y, et al. Mixed oxides derived from Cu—Co layered double hydroxide nanorods: Preparation, characterization and their catalytic activities[J].JournalofAlloysandCompounds, 2010, 496(1-2): 317-323.

    [9] Shvedenkov Y, Bushuev M, Romanenko G, et al. Magnetic anisotropy of new layered copper(Ⅱ) bromide complexes of 1-substituted tetrazoles[J].EuropeanJournalofInorganicChemistry, 2005, 167: 1678-1682.

    [10] Hollins R A, Merwin L H, Nissan R A, et al. Aminonitropyridines and theirN-Oxides[J].JournalofHeterocyclicChemistry, 1996, 33: 895-904.

    [11] CHENG J. Synthesis, characterize and properties of insensitive explosive about pyridine derivatives[D].Nanjing; Nanjing University of Science and Technology, 2012.

    [12] Carolina U, Marisol V, Maria H T. Cytotoxic palladium complexes of bioreductive quinoxaline N1,N4-dioxideprodrugs[J].Bioorganic&MedicinalChemistry, 2009,17:1623-1629.

    [13] Belen T M, Carolina U, Antonio M. Design against of novel iron tuberculosis compounds as potential therapeutic agents[J].JournalofInorganicBiochemistry, 2010, 104: 1164-1170.

    [14] Liu J J, Liu Z L, Cheng J. Synthesis, crystal structure and properties of a novel tetra-nuclear Cu complex of ANPyO[J].JournalofSolidStateChemistry, 2013,197: 198-203.

    [15] Liu J J, Liu Z L, Cheng J, et al. Synthesis, crystal structure and properties of energetic complexes constructed from transition metal cations (Fe and Co) and ANPyO[J].RSCAdvances, 2013, 3(9): 2917-2923.

    [16] Liu J J, Liu Z L, Cheng J. Synthesis, crystal structure and catalytic effect on thermal decomposition of RDX and AP: An energetic coordination polymer [Pb2(C5H3N5O5)2(NMP)·NMP]n[J].JournalofSolidStateChemistry, 2013, 200: 43-48.

    [17] Meyer R, Kohler J. Explosives[M]. 4th revised and extended. New York: VCH publishers, 1993:197.

    [18] Dixon W J, Mood A M. A method for obtaining and analyzing sensitivity Data[J].JournaloftheAmericanStatisticalAssociation, 1948, 43:109-126.

    [19] Liu Z T, Lao Y L. Initiating explosive experimental[M]. Beijing: Beijing institute of technology, 1995:138.

    [20] Kissinger H E. Reaction kinetics in differential thermal analysis[J].AnalyticalChemistry, 1957, 29(11): 1702-1706.

    [21] Ozawa T. Chem. A new method of analyzing thermogravimetric data[J].BulletinoftheChemicalSocietyofJapan, 1965, 38: 1881-1886.

    [22] Doyle C D. Kinetic analysis of thermogravimetric data[J].JournalofAppliedPolymerScience,1961, 5(15): 285-290.

    [23] Liu H B, Jiao Q Z, Zhao Y, et al. Mixed oxides derived from Cu-Co layered double hydroxide nanorods: Preparation, characterization and their catalytic activities[J].JournalofAlloysandCompounds, 2010, 496(1-2): 317-323.

    [24] Xia Z Q, Chen S P, Wei Q, et al. Syntheses and characterization of energetic compounds constructed from alkaline earth metal cations (Sr and Ba) and 1,2-bis(tetrazol-5-yl)ethane[J].JournalofSolidStateChemistry, 2011, 184(7): 1777-1783.

    99久久精品国产亚洲精品| 国产熟女xx| 久久久国产精品麻豆| 一a级毛片在线观看| 午夜视频精品福利| 一级毛片高清免费大全| 亚洲一卡2卡3卡4卡5卡精品中文| 制服丝袜大香蕉在线| 老司机靠b影院| 一级毛片女人18水好多| 精品久久久久久成人av| 久久草成人影院| bbb黄色大片| 青草久久国产| 午夜福利在线观看吧| 精品国产乱码久久久久久男人| 长腿黑丝高跟| 黄片小视频在线播放| 亚洲成人中文字幕在线播放| 国产精品综合久久久久久久免费| 欧美大码av| 欧美成狂野欧美在线观看| 久久久久久大精品| 少妇熟女aⅴ在线视频| 可以在线观看毛片的网站| 成人18禁在线播放| 国产日本99.免费观看| 国模一区二区三区四区视频 | 亚洲av中文字字幕乱码综合| 亚洲天堂国产精品一区在线| 狂野欧美激情性xxxx| 国产精品九九99| 日韩欧美国产一区二区入口| 小说图片视频综合网站| 国产单亲对白刺激| 最近最新中文字幕大全免费视频| 国产精品精品国产色婷婷| 丰满的人妻完整版| 久久亚洲精品不卡| 国产高清激情床上av| 日韩三级视频一区二区三区| cao死你这个sao货| 亚洲黑人精品在线| 午夜亚洲福利在线播放| a级毛片在线看网站| √禁漫天堂资源中文www| 亚洲成av人片在线播放无| 999久久久国产精品视频| 国产免费av片在线观看野外av| 欧美性猛交黑人性爽| 国产精品九九99| 久久天躁狠狠躁夜夜2o2o| 美女 人体艺术 gogo| 日韩欧美在线二视频| 看片在线看免费视频| av福利片在线观看| 亚洲一区二区三区色噜噜| 人人妻人人澡欧美一区二区| 床上黄色一级片| 最近最新免费中文字幕在线| av福利片在线| 国产成人av激情在线播放| 少妇熟女aⅴ在线视频| 免费无遮挡裸体视频| 此物有八面人人有两片| 亚洲,欧美精品.| 18禁美女被吸乳视频| 欧美日韩一级在线毛片| 99热这里只有是精品50| 女同久久另类99精品国产91| 久久精品人妻少妇| 久久国产乱子伦精品免费另类| 老汉色av国产亚洲站长工具| 一本久久中文字幕| 美女扒开内裤让男人捅视频| 欧美日韩国产亚洲二区| 久久久久久九九精品二区国产 | 香蕉丝袜av| 成人av在线播放网站| 国产精品久久电影中文字幕| 又黄又粗又硬又大视频| 久久婷婷成人综合色麻豆| 美女大奶头视频| 99在线人妻在线中文字幕| 日韩av在线大香蕉| 欧美日韩福利视频一区二区| 少妇的丰满在线观看| 黄色a级毛片大全视频| 婷婷亚洲欧美| 国产av在哪里看| 亚洲精品色激情综合| 制服丝袜大香蕉在线| 亚洲色图 男人天堂 中文字幕| 婷婷丁香在线五月| 久久久久免费精品人妻一区二区| ponron亚洲| 国产av一区二区精品久久| 久久久久久久久久黄片| 国产精品 国内视频| 最新在线观看一区二区三区| 可以在线观看毛片的网站| 国产亚洲av高清不卡| 婷婷精品国产亚洲av| 午夜影院日韩av| 亚洲男人天堂网一区| 在线观看美女被高潮喷水网站 | 欧美日韩瑟瑟在线播放| 日韩欧美精品v在线| 国产一区二区激情短视频| 日本 欧美在线| 非洲黑人性xxxx精品又粗又长| 欧美久久黑人一区二区| 精品一区二区三区视频在线观看免费| 男女下面进入的视频免费午夜| 视频区欧美日本亚洲| www.www免费av| 免费看日本二区| 免费在线观看日本一区| 麻豆成人av在线观看| 最好的美女福利视频网| 亚洲国产欧美人成| 可以在线观看的亚洲视频| 国产精品 欧美亚洲| 一本大道久久a久久精品| 好看av亚洲va欧美ⅴa在| 中文字幕久久专区| 中文字幕最新亚洲高清| 桃色一区二区三区在线观看| xxxwww97欧美| 亚洲男人的天堂狠狠| 国产单亲对白刺激| 又爽又黄无遮挡网站| 老司机午夜福利在线观看视频| 日韩有码中文字幕| 无人区码免费观看不卡| 久久久国产成人免费| 亚洲精华国产精华精| 午夜福利在线观看吧| 毛片女人毛片| 久99久视频精品免费| 高清毛片免费观看视频网站| 久久中文字幕一级| cao死你这个sao货| 国产69精品久久久久777片 | 国产私拍福利视频在线观看| 丰满人妻一区二区三区视频av | 亚洲 欧美 日韩 在线 免费| 老汉色∧v一级毛片| 欧美一区二区国产精品久久精品 | 亚洲熟女毛片儿| 国产黄a三级三级三级人| 精品无人区乱码1区二区| 特级一级黄色大片| 久久亚洲精品不卡| x7x7x7水蜜桃| 亚洲成人免费电影在线观看| 欧美日韩乱码在线| 在线播放国产精品三级| www.自偷自拍.com| 1024视频免费在线观看| 国产av麻豆久久久久久久| 村上凉子中文字幕在线| 午夜精品在线福利| 搡老熟女国产l中国老女人| 国产高清激情床上av| 欧美色视频一区免费| 国产亚洲精品综合一区在线观看 | 日韩大尺度精品在线看网址| 巨乳人妻的诱惑在线观看| 国模一区二区三区四区视频 | 91字幕亚洲| 岛国在线免费视频观看| 日日夜夜操网爽| 亚洲乱码一区二区免费版| 欧美黑人巨大hd| 精品国产乱子伦一区二区三区| 波多野结衣高清无吗| 亚洲av熟女| 亚洲欧美日韩高清在线视频| av中文乱码字幕在线| 免费人成视频x8x8入口观看| 国产成人精品久久二区二区免费| 日韩 欧美 亚洲 中文字幕| 日本一二三区视频观看| 久久精品国产综合久久久| 五月伊人婷婷丁香| 国产成人av教育| 国内精品一区二区在线观看| 亚洲无线在线观看| 午夜久久久久精精品| 男人舔女人的私密视频| 69av精品久久久久久| 亚洲欧美日韩高清在线视频| 久久久国产欧美日韩av| 麻豆成人午夜福利视频| 搞女人的毛片| 十八禁网站免费在线| 欧美日韩福利视频一区二区| 久热爱精品视频在线9| 变态另类丝袜制服| 亚洲男人的天堂狠狠| 午夜视频精品福利| 欧美在线一区亚洲| 男男h啪啪无遮挡| av欧美777| 久久午夜亚洲精品久久| 欧美日韩瑟瑟在线播放| 黄色视频不卡| 日韩欧美国产在线观看| 亚洲精品一区av在线观看| 国产精品久久视频播放| 国产亚洲精品一区二区www| 国产精品一及| 97超级碰碰碰精品色视频在线观看| av福利片在线观看| 亚洲av日韩精品久久久久久密| 久9热在线精品视频| 久久伊人香网站| 两个人看的免费小视频| 欧美日本视频| 午夜视频精品福利| 老鸭窝网址在线观看| 一级毛片精品| 国产91精品成人一区二区三区| 亚洲成a人片在线一区二区| 免费无遮挡裸体视频| 国产一区二区在线av高清观看| 99久久综合精品五月天人人| 欧美+亚洲+日韩+国产| 久久天躁狠狠躁夜夜2o2o| 一区二区三区国产精品乱码| 五月玫瑰六月丁香| 成年免费大片在线观看| 99久久久亚洲精品蜜臀av| а√天堂www在线а√下载| 国产99久久九九免费精品| 天天躁狠狠躁夜夜躁狠狠躁| 久久香蕉激情| 一级黄色大片毛片| 少妇裸体淫交视频免费看高清 | 国产在线观看jvid| 国产成人一区二区三区免费视频网站| 亚洲国产精品合色在线| 免费看美女性在线毛片视频| 亚洲欧美日韩高清在线视频| 国产91精品成人一区二区三区| 国产区一区二久久| 亚洲专区中文字幕在线| 久久精品成人免费网站| 99国产精品一区二区三区| 国产午夜精品久久久久久| 成年女人毛片免费观看观看9| 成人av一区二区三区在线看| 久久精品国产亚洲av高清一级| 国产成人av激情在线播放| 国产又色又爽无遮挡免费看| 麻豆成人午夜福利视频| 欧美三级亚洲精品| 亚洲五月天丁香| 一本综合久久免费| videosex国产| 两个人看的免费小视频| 亚洲国产看品久久| 99久久精品国产亚洲精品| 国产99白浆流出| 亚洲七黄色美女视频| 可以在线观看毛片的网站| 少妇被粗大的猛进出69影院| 国产视频内射| 男人舔奶头视频| 18禁裸乳无遮挡免费网站照片| 国产精品亚洲美女久久久| 亚洲男人天堂网一区| 特大巨黑吊av在线直播| 亚洲成人精品中文字幕电影| 真人一进一出gif抽搐免费| 免费观看精品视频网站| 在线视频色国产色| 午夜精品久久久久久毛片777| 中文字幕久久专区| 亚洲美女视频黄频| 特大巨黑吊av在线直播| 日韩欧美精品v在线| 国产精品美女特级片免费视频播放器 | 在线国产一区二区在线| 亚洲国产欧洲综合997久久,| 久久午夜综合久久蜜桃| 久久99热这里只有精品18| 两人在一起打扑克的视频| 成人特级黄色片久久久久久久| 欧美成人免费av一区二区三区| 亚洲 国产 在线| 亚洲成av人片免费观看| 757午夜福利合集在线观看| 中文字幕熟女人妻在线| 看片在线看免费视频| 日韩欧美三级三区| 伦理电影免费视频| 在线永久观看黄色视频| 亚洲avbb在线观看| 亚洲欧美日韩无卡精品| 在线看三级毛片| 国产爱豆传媒在线观看 | 男人舔女人的私密视频| 男女之事视频高清在线观看| 日本三级黄在线观看| 午夜两性在线视频| 天堂√8在线中文| 欧美日韩福利视频一区二区| 中文字幕av在线有码专区| www日本黄色视频网| 欧美日韩一级在线毛片| 国产99白浆流出| 1024视频免费在线观看| av免费在线观看网站| 午夜亚洲福利在线播放| 麻豆一二三区av精品| 国产高清激情床上av| 免费在线观看成人毛片| 成人国产一区最新在线观看| 久久这里只有精品19| 一二三四在线观看免费中文在| 欧美性猛交╳xxx乱大交人| 欧美最黄视频在线播放免费| 99热只有精品国产| 两个人看的免费小视频| 国产成年人精品一区二区| 亚洲国产中文字幕在线视频| 男人舔奶头视频| 一级作爱视频免费观看| 国产精品98久久久久久宅男小说| 亚洲精品国产精品久久久不卡| 欧美中文日本在线观看视频| 日韩欧美国产在线观看| 欧美成人午夜精品| 久久久水蜜桃国产精品网| 亚洲欧美激情综合另类| 欧美 亚洲 国产 日韩一| 久久精品国产清高在天天线| 在线观看免费午夜福利视频| 搞女人的毛片| 亚洲av美国av| 国产视频内射| 久久国产精品影院| 欧美性猛交黑人性爽| 国产久久久一区二区三区| 国产亚洲精品久久久久久毛片| 国产精品精品国产色婷婷| 午夜福利视频1000在线观看| 最近最新免费中文字幕在线| 亚洲精品av麻豆狂野| 亚洲欧美日韩东京热| 美女免费视频网站| 日韩有码中文字幕| 脱女人内裤的视频| 精品电影一区二区在线| 人成视频在线观看免费观看| 正在播放国产对白刺激| 人人妻,人人澡人人爽秒播| 亚洲无线在线观看| 日本三级黄在线观看| 又黄又爽又免费观看的视频| 国内揄拍国产精品人妻在线| 久久香蕉激情| 亚洲专区国产一区二区| 美女午夜性视频免费| 给我免费播放毛片高清在线观看| 久久久久免费精品人妻一区二区| 色综合亚洲欧美另类图片| 午夜精品在线福利| 91九色精品人成在线观看| 精品国产美女av久久久久小说| 日本一区二区免费在线视频| 激情在线观看视频在线高清| 国产私拍福利视频在线观看| 成年免费大片在线观看| 熟女电影av网| 亚洲性夜色夜夜综合| 最近最新中文字幕大全电影3| 精品人妻1区二区| 老鸭窝网址在线观看| 国产av麻豆久久久久久久| 婷婷六月久久综合丁香| 国产成人一区二区三区免费视频网站| 黄色成人免费大全| av在线天堂中文字幕| 久久久精品大字幕| 久久婷婷人人爽人人干人人爱| 亚洲成a人片在线一区二区| 老司机靠b影院| 中国美女看黄片| 99国产精品一区二区三区| 搡老妇女老女人老熟妇| 欧美日韩瑟瑟在线播放| 母亲3免费完整高清在线观看| 欧美精品啪啪一区二区三区| 久久亚洲真实| 精品国产亚洲在线| 一本一本综合久久| 日韩欧美国产一区二区入口| 99久久精品国产亚洲精品| 亚洲自拍偷在线| 欧美中文日本在线观看视频| 久久亚洲精品不卡| 亚洲第一电影网av| 亚洲精品美女久久久久99蜜臀| 50天的宝宝边吃奶边哭怎么回事| 视频区欧美日本亚洲| 人人妻人人看人人澡| a级毛片a级免费在线| 国产伦在线观看视频一区| 听说在线观看完整版免费高清| 久久久久免费精品人妻一区二区| 亚洲七黄色美女视频| 国产乱人伦免费视频| 中国美女看黄片| 精品国产超薄肉色丝袜足j| 久久性视频一级片| 成人国产一区最新在线观看| 国产69精品久久久久777片 | 亚洲精品美女久久av网站| 国产99久久九九免费精品| 女生性感内裤真人,穿戴方法视频| 久久久久久久久中文| 欧美性猛交╳xxx乱大交人| 不卡av一区二区三区| 国产成人精品久久二区二区91| 激情在线观看视频在线高清| 丝袜人妻中文字幕| 久久久久久人人人人人| 亚洲人成伊人成综合网2020| 99re在线观看精品视频| 级片在线观看| 国产一区二区激情短视频| 国产亚洲精品综合一区在线观看 | 亚洲熟女毛片儿| 午夜精品在线福利| 日韩精品青青久久久久久| 99久久精品国产亚洲精品| 亚洲国产精品sss在线观看| 欧美另类亚洲清纯唯美| 国产私拍福利视频在线观看| 黄色毛片三级朝国网站| 嫩草影院精品99| 一本大道久久a久久精品| 69av精品久久久久久| 亚洲人成网站在线播放欧美日韩| 好男人在线观看高清免费视频| 此物有八面人人有两片| 精品欧美一区二区三区在线| 国产精品 国内视频| 婷婷亚洲欧美| 国产亚洲av嫩草精品影院| 日韩免费av在线播放| 国产视频内射| 亚洲美女视频黄频| 国内精品久久久久精免费| 久久久久久久午夜电影| 欧美绝顶高潮抽搐喷水| 一边摸一边抽搐一进一小说| 久久婷婷成人综合色麻豆| 很黄的视频免费| 精华霜和精华液先用哪个| 亚洲avbb在线观看| 亚洲男人天堂网一区| 男男h啪啪无遮挡| 制服丝袜大香蕉在线| av福利片在线观看| 久久久国产成人免费| 2021天堂中文幕一二区在线观| 老司机福利观看| 国产精品一及| 看片在线看免费视频| 国产黄色小视频在线观看| 国产精品99久久99久久久不卡| 香蕉国产在线看| 国产三级中文精品| 蜜桃久久精品国产亚洲av| 一进一出好大好爽视频| 成人精品一区二区免费| 日本免费a在线| 国产精品亚洲一级av第二区| 麻豆成人午夜福利视频| 国产在线观看jvid| 观看免费一级毛片| 露出奶头的视频| 精品国内亚洲2022精品成人| 国产成年人精品一区二区| 精品第一国产精品| 免费在线观看完整版高清| svipshipincom国产片| 亚洲国产看品久久| www国产在线视频色| 神马国产精品三级电影在线观看 | 欧美三级亚洲精品| 久久天躁狠狠躁夜夜2o2o| 亚洲一区中文字幕在线| 我要搜黄色片| 9191精品国产免费久久| 欧美性猛交黑人性爽| 国产精品野战在线观看| 亚洲18禁久久av| 精品国产乱子伦一区二区三区| 亚洲,欧美精品.| 久久热在线av| 久久中文看片网| 91大片在线观看| 久久天堂一区二区三区四区| 国产精品久久电影中文字幕| avwww免费| 特大巨黑吊av在线直播| 亚洲国产精品999在线| 欧美3d第一页| 亚洲乱码一区二区免费版| 精品欧美一区二区三区在线| 丁香欧美五月| 国产精品亚洲av一区麻豆| 欧美午夜高清在线| 日韩欧美在线乱码| 国产精品 国内视频| 18禁观看日本| 亚洲avbb在线观看| 亚洲中文av在线| 亚洲av五月六月丁香网| 成人av在线播放网站| 色噜噜av男人的天堂激情| 亚洲欧美日韩高清在线视频| 亚洲欧美一区二区三区黑人| 亚洲成人免费电影在线观看| 夜夜夜夜夜久久久久| 国产欧美日韩一区二区三| 亚洲av成人精品一区久久| 国产av不卡久久| 怎么达到女性高潮| 国产一区二区激情短视频| 脱女人内裤的视频| 亚洲精品国产精品久久久不卡| 丁香六月欧美| 视频区欧美日本亚洲| 欧美乱码精品一区二区三区| 嫩草影院精品99| 麻豆成人av视频| 欧美激情在线99| 国产白丝娇喘喷水9色精品| 亚洲高清免费不卡视频| 国语自产精品视频在线第100页| 丝袜美腿在线中文| 亚洲中文字幕日韩| 禁无遮挡网站| 亚洲欧美精品自产自拍| 国产淫片久久久久久久久| 寂寞人妻少妇视频99o| 国产成人aa在线观看| 国产乱人视频| 日韩一区二区三区影片| 神马国产精品三级电影在线观看| 人妻系列 视频| 少妇被粗大猛烈的视频| 蜜桃久久精品国产亚洲av| 日日撸夜夜添| 男女那种视频在线观看| 99热只有精品国产| 国产激情偷乱视频一区二区| 国产一区二区在线av高清观看| 日日摸夜夜添夜夜添av毛片| 两个人视频免费观看高清| 网址你懂的国产日韩在线| 日韩高清综合在线| 天堂中文最新版在线下载 | 一区二区三区免费毛片| 免费看光身美女| 中国美女看黄片| 在线观看免费视频日本深夜| 久久久色成人| 久久久久久九九精品二区国产| 久久人人爽人人片av| 亚洲欧美日韩无卡精品| 中文字幕免费在线视频6| 国产蜜桃级精品一区二区三区| 中文在线观看免费www的网站| 久久中文看片网| 免费人成在线观看视频色| 97在线视频观看| 国产午夜精品论理片| 91久久精品国产一区二区成人| 两个人视频免费观看高清| 日本熟妇午夜| 丝袜美腿在线中文| 小说图片视频综合网站| 久久午夜亚洲精品久久| 欧美一区二区精品小视频在线| 最近的中文字幕免费完整| 亚洲av中文av极速乱| 麻豆精品久久久久久蜜桃| 3wmmmm亚洲av在线观看| 精品人妻一区二区三区麻豆| av免费在线看不卡| 99热精品在线国产| 亚洲无线在线观看| 久久精品国产亚洲av涩爱 | 久久精品国产亚洲av天美| 亚洲av免费在线观看| 天堂av国产一区二区熟女人妻| 一个人免费在线观看电影| 国产黄片美女视频| 亚洲最大成人手机在线| 国产精品久久久久久亚洲av鲁大| 一级av片app| 国产精品,欧美在线| 99久久精品一区二区三区| 亚洲av第一区精品v没综合| 三级男女做爰猛烈吃奶摸视频| 性插视频无遮挡在线免费观看| 麻豆久久精品国产亚洲av| 国产美女午夜福利|