吳 霞,丁江華,袁利亞,陳國(guó)安
?
·論著·
心鈉素對(duì)多發(fā)性骨髓瘤細(xì)胞增殖及微小RNA-21 表達(dá)的影響
吳 霞,丁江華*,袁利亞,陳國(guó)安
目的 探討心鈉素(ANP)對(duì)多發(fā)性骨髓瘤(MM)細(xì)胞增殖的影響及其抗癌機(jī)制。方法 以MM1.S細(xì)胞為研究對(duì)象,觀察不同濃度ANP對(duì)MM細(xì)胞增殖與周期的影響,檢測(cè)A型利鈉肽受體(NPR-A)與C型利鈉肽受體(NPR-C)蛋白表達(dá),并分析ANP對(duì)MM細(xì)胞miRNA-21表達(dá)的影響。結(jié)果 1~100 μmol/L ANP以濃度依賴性抑制MM細(xì)胞增殖;其中,在24h時(shí)間點(diǎn)ANP對(duì)MM1.S細(xì)胞增殖抑制作用最強(qiáng);隨著時(shí)間延長(zhǎng),ANP 抑制作用呈減弱趨勢(shì)。ANP作用MM1.S細(xì)胞24h后,與對(duì)照組比較,各組G1期細(xì)胞比例均增加,S期與G2期細(xì)胞比例下降,PI及miRNA-21表達(dá)均低于對(duì)照組(P<0.01,P<0.05)。MM1.S細(xì)胞上存在NPR-A與NPR-C受體。結(jié)論 ANP與NPR-A/C受體結(jié)合,通過阻滯細(xì)胞周期于G1期與抑制miR-21表達(dá),發(fā)揮抗MM細(xì)胞增殖作用。
多發(fā)性骨髓瘤;心鈉素;細(xì)胞增殖;微小RNA-21
近10年,盡管新藥組成的化療方案及自體外周血干細(xì)胞移植的應(yīng)用極大地改善了多發(fā)性骨髓瘤(multiple myeloma, MM)預(yù)后,但至今MM仍然不可治愈,且其發(fā)病率逐年上升,已超過急性白血病,位居惡性血液病第2位[1]。由于MM患者多為老年人,自身免疫力低下,臟器功能不全,使大劑量化療及骨髓移植受到限制。因此,有必要積極探索對(duì)MM治療副作用小、安全有效的新型藥物。心鈉素(ANP)主要參與調(diào)節(jié)血壓以及維持機(jī)體電解質(zhì)平衡等重要功能。近年來,大量研究發(fā)現(xiàn)ANP對(duì)多種實(shí)體瘤(如小細(xì)胞肺癌、胰腺癌等)具有抗癌效應(yīng)[2]。然而,ANP在MM中的作用如何,目前報(bào)道較少。本研究通過觀察ANP對(duì)MM細(xì)胞增殖的影響,試圖探討ANP在MM中抗腫瘤作用及其機(jī)制。
1.1 實(shí)驗(yàn)試劑 RPMI-1640培養(yǎng)基、青鏈霉素混合液(雙抗)、胎牛血清(FBS)等購(gòu)自美國(guó)Gibco公司。Cell Counting Kit-8(CCK-8)購(gòu)自日本同仁化學(xué)研究所,Annexin V-FITC凋亡試劑購(gòu)自美國(guó)BD Biosciences公司。細(xì)胞周期測(cè)定試劑盒購(gòu)自杭州聯(lián)科生物公司,A型利鈉肽受體(NPR-A)與C型利鈉肽受體(NPR-C)抗體購(gòu)自美國(guó)Abcam公司,GADPH抗體購(gòu)自杭州賢至生物公司,二抗(羊抗兔)購(gòu)自美國(guó)EarthOx公司。RNA 提取試劑盒購(gòu)自德國(guó)Qiagen公司,逆轉(zhuǎn)錄試劑盒與熒光定量PCR擴(kuò)增試劑盒購(gòu)自北京天根生化科技有限公司。
1.2 實(shí)驗(yàn)藥物 心鈉素購(gòu)自美國(guó)Sigma-Aldrich公司,用磷酸鹽緩沖液(PBS)溶解ANP,將其配制500 μmol/L的儲(chǔ)存濃度,分裝保存于-20℃。實(shí)驗(yàn)前用PBS緩沖液稀釋到工作濃度。
1.3 細(xì)胞培養(yǎng) MM1.S細(xì)胞株為懸浮生長(zhǎng)的細(xì)胞,具有K-Ras突變,由中國(guó)醫(yī)學(xué)科學(xué)院血液病醫(yī)院邱錄貴教授惠贈(zèng)。MM1.S細(xì)胞常規(guī)培養(yǎng)于含10%FBS、青霉素與鏈霉素組成的完全RPMI-1640培養(yǎng)基中,置于37℃、5%CO2的培養(yǎng)箱中進(jìn)行培養(yǎng),每3~4 d傳代1次。所有實(shí)驗(yàn)均取對(duì)數(shù)生長(zhǎng)期細(xì)胞。
1.4 實(shí)驗(yàn)分組 根據(jù)心鈉素濃度的不同,分成5組:對(duì)照組、1 μmol/L組、10 μmol/L組、50 μmol/L組、100 μmol/L組。
1.5 實(shí)驗(yàn)方法
1.5.1 CCK-8法檢測(cè)細(xì)胞增殖:收集細(xì)胞后計(jì)數(shù),向96孔培養(yǎng)板中分別加入細(xì)胞懸液、藥物和培養(yǎng)基,總體積200 μL,每孔細(xì)胞數(shù)為1×104個(gè),每組ANP濃度分別為0、1、10、50與100 μmol/L;另設(shè)只加培養(yǎng)基的空白孔作為空白對(duì)照。置細(xì)胞于培養(yǎng)箱內(nèi)分別培養(yǎng)24 h、48 h、72 h后,向每孔加入CCK-8試劑20 μL,混勻后孵育1 h,酶標(biāo)儀上檢測(cè)各孔OD值(A),實(shí)驗(yàn)重復(fù)3次,計(jì)算細(xì)胞增殖抑制率。細(xì)胞增殖抑制率=[1-(給藥組OD值-空白孔OD值)/(對(duì)照組OD值-空白孔OD值)]×100%。
1.5.2 流式細(xì)胞儀檢測(cè)細(xì)胞周期:收集細(xì)胞后計(jì)數(shù),調(diào)整細(xì)胞濃度為1×106個(gè)/ml。在96孔培養(yǎng)板中依次加入培養(yǎng)基、細(xì)胞懸液和藥物,總體積2.5 ml,每孔細(xì)胞數(shù)為1×106個(gè),各組ANP濃度分別為0、1、10、50與100 μmol/L。置培養(yǎng)箱內(nèi)孵育24 h后收集細(xì)胞,PBS洗滌細(xì)胞1次后重懸細(xì)胞,再加入預(yù)冷的純乙醇2 mL,4℃過夜。離心棄乙醇,室溫下加入2 ml PBS孵育15 min,離心棄上清后加入1 ml試劑A,震蕩10 s混勻,室溫孵育30 min。1 h內(nèi)在流式細(xì)胞儀488 nm激發(fā)波長(zhǎng)下測(cè)定細(xì)胞DNA含量,計(jì)算細(xì)胞增殖指數(shù)(PI)。PI=(S期+G2期)/(G1期+S期+G2期)。
1.5.3 蛋白質(zhì)印跡(Western blot)檢測(cè)NPR-A與NPR-C蛋白表達(dá):提取細(xì)胞總蛋白,進(jìn)行聚丙烯酰胺凝膠電泳(SDS-PAGE),然后轉(zhuǎn)移到硝基纖維素濾膜上,脫脂奶粉封閉1 h,分別加入兔抗人單克隆抗體NPR-A(1∶5000)與NPR-C(1∶400),4℃孵育過夜,洗膜后加入HRP標(biāo)記的二抗(1∶10,000),在ChemiDocTM XRS+System(Bio-Rad)中顯影攝像。
1.5.4 實(shí)時(shí)熒光定量聚合酶鏈反應(yīng)(PCR)檢測(cè)miR-21 mRNA表達(dá):逆轉(zhuǎn)錄引物與PCR引物序列由上海生物工程公司合成。按RNA提取試劑盒說明測(cè)定OD260/OD280比值,若比值在1.8~2.0之間說明RNA純度較好,即進(jìn)行逆轉(zhuǎn)錄。取各組RNA2 μg,依次加入miR-21與U6逆轉(zhuǎn)錄特異性引物及逆轉(zhuǎn)錄反應(yīng)體系,37℃加熱1 h,即獲得cDNA。配制PCR總反應(yīng)體系,按預(yù)變性(95℃,120 s)、變性(95℃,20 s)、退火(62℃,30 s)及延伸(68℃,45 s)順利進(jìn)行熒光定量PCR擴(kuò)增。以U6作為內(nèi)參,按2-△△Ct方法計(jì)算miR-21 mRNA相對(duì)表達(dá)量(F值)。見表1、2。
表1 逆轉(zhuǎn)錄引物序列
表2 聚合酶鏈反應(yīng)引物序列
2.1 細(xì)胞增殖活性測(cè)定 藥物作用24 h時(shí),1 μmol/L組、10 μmol/L組、50 μmol/L組、100 μmol/L組MM1.S細(xì)胞增殖抑制率呈濃度依賴性遞增(P<0.01),藥物作用48 h和72 h時(shí),除 10 μmol/L組、50 μmol/L組兩組之間比較差異無統(tǒng)計(jì)學(xué)意義(P>0.05),其余各組之間比較差異均有統(tǒng)計(jì)學(xué)意義(P<0.05)。與24 h比較,48 h和72 h時(shí)1 μmol/L組、100 μmol/L組MM1.S細(xì)胞增殖抑制率均有不同程度降低,呈時(shí)間依賴性(P<0.05),但10 μmol/L、50 μmol/L組24 h時(shí)增殖抑制率高于48 h和72 h(P<0.05),48 h和72 h時(shí)間點(diǎn)比較差異無統(tǒng)計(jì)學(xué)意義(P>0.05),見表3。
2.2 細(xì)胞周期檢測(cè) 藥物作用24 h后,與對(duì)照組比較,1 μmol/L組、10 μmol/L組、50 μmol/L組、100 μmol/L組G1期細(xì)胞比例均有不同程度的升高,且呈濃度依賴性遞增(P<0.05);G2期細(xì)胞比例均有不同程度的降低,且呈濃度依賴性遞減(P<0.05);各組PI均顯著低于對(duì)照組(P<0.01),且呈濃度依賴性遞減(P<0.05);4組S期細(xì)胞比例均低于對(duì)照組(P<0.05)),4組間比較差異無統(tǒng)計(jì)學(xué)意義(P<0.05),見表4。
表3 心鈉素對(duì)MM1.S細(xì)胞的增殖抑制率
注:與1 μmol/L組比較,aP<0.05,bP<0.01;與10 μmol/L組比較,cP<0.05,dP<0.01;與50 μmol/L組比較,eP<0.05,fP<0.01;與24 h比較,gP<0.05;與48 h比較,iP<0.05
表4 流式細(xì)胞儀檢測(cè)心鈉素作用MM1.S細(xì)胞24 h后細(xì)胞周期的結(jié)果
注:與對(duì)照組比較,aP<0.05,bP<0.01;與1 μmol/L組比較,cP<0.05;與10 μmol/L組比較,eP<0.05;與50 μmol/L組比較,gP<0.05
2.3 NPR-A與NPR-C蛋白檢測(cè) ANP作用24 h后,通過Western blot檢測(cè)NPR-A與NPR-C蛋白表達(dá),結(jié)果發(fā)現(xiàn)在MM1.S細(xì)胞上存在NPR-A與NPR-C受體,見圖1。
圖1 MM1.S細(xì)胞NPR-A、NPR-C受體表達(dá)
ANP為心鈉素,NPR-A為A型利鈉肽受體,NPR-C為C型利鈉肽受體,GADPH為內(nèi)參照
2.4 miR-21mRNA檢測(cè) ANP作用24 h后,對(duì)照組、1 μmol/L組、10 μmol/L組、50 μmol/L組、100 μmol/L組miR-21相對(duì)表達(dá)量分別為1.000±0.000、0.914±0.038、0.758±0.111、0.625±0.034、0.510±0.062。與對(duì)照組比較,1 μmol/L組、10 μmol/L組、50 μmol/L組、100 μmol/L組miR-21相對(duì)表達(dá)量均低于對(duì)照組,并呈劑量依賴性下降(P<0.01,P<0.05),其中以50 μmol/L組與100 μmol/L組下降最顯著。
ANP是由28個(gè)氨基酸組成的多肽,具有強(qiáng)大的降低血壓、擴(kuò)張血管、利尿及利鈉作用,主要參與機(jī)體水、電解質(zhì)平衡的調(diào)節(jié),臨床用于診斷與治療高血壓、心力衰竭等疾病[3-4]。近年來發(fā)現(xiàn)ANP對(duì)人胰腺癌、乳腺癌、甲狀腺髓樣癌、前列腺癌、黑色素瘤等多種腫瘤細(xì)胞具有抗癌作用,在這些瘤細(xì)胞表面均檢測(cè)到NPR-A與NPR-C受體的表達(dá)[5-8]。研究顯示:在實(shí)體腫瘤細(xì)胞中,ANP與NPR-A/NPR-C受體結(jié)合后,升高環(huán)磷酸鳥苷(CGMP)濃度,抑制細(xì)胞內(nèi)Ras-MEK1/2-ERK1/2信號(hào)通路[9]、阻斷有絲分裂原如表皮生長(zhǎng)因子(EGF)的活性、抑制AKT活性[10]、選擇性抑制信號(hào)傳導(dǎo)與轉(zhuǎn)錄活化因子3(STAT3)等[11]多種途徑,發(fā)揮抑制腫瘤細(xì)胞增殖,影響細(xì)胞周期,增強(qiáng)癌細(xì)胞對(duì)藥物的敏感性等作用。更重要的是ANP對(duì)正常人前列腺、腎臟與肺組織細(xì)胞無抑制作用[12],提示ANP應(yīng)用于臨床安全有效,抗瘤譜廣等特點(diǎn)。
然而,關(guān)于ANP在血液腫瘤中的作用研究甚少,國(guó)外僅1篇文獻(xiàn)報(bào)道ANP可能有抗白血病作用[13]。本實(shí)驗(yàn)發(fā)現(xiàn):在藥物作用24 h時(shí),ANP以濃度依賴性抑制骨髓瘤細(xì)胞(MM1.S)增殖,100 μmol/L濃度ANP時(shí)增殖抑制率達(dá)(93.14±1.97)%,與上述文獻(xiàn)中ANP對(duì)實(shí)體瘤的抗癌效應(yīng)相一致。隨著作用時(shí)間延長(zhǎng),ANP抑制作用有減弱趨勢(shì),分析可能與ANP的半衰期短有關(guān)。此外,在MM1.S細(xì)胞上檢測(cè)到NPR-A與NPR-C受體蛋白表達(dá),提示NPR-A與NPR-C為一種“通用性”受體蛋白[14],ANP可通過與NPR-A/C結(jié)合升高cGMP濃度,從而發(fā)揮抗MM細(xì)胞增殖作用。
MM細(xì)胞存在著明顯的細(xì)胞周期分布異常,嚴(yán)重影響MM預(yù)后。臨床發(fā)現(xiàn)MM的S期細(xì)胞比例顯著高于正常漿細(xì)胞,而且S期細(xì)胞比例是MM重要的獨(dú)立預(yù)后指標(biāo)之一[15]。本實(shí)驗(yàn)結(jié)果顯示:不同濃度ANP作用MM1.S細(xì)胞24 h后,與對(duì)照組比較,G1期比例增加,S期與G2期比例下降,隨著藥物濃度升高細(xì)胞增殖指數(shù)下降。提示ANP阻滯MM1.S細(xì)胞于G1期,從而抑制骨髓瘤細(xì)胞DNA合成,這與ANP在實(shí)體瘤中抑制細(xì)胞DNA合成的結(jié)論是一致的[5-6]??梢?,應(yīng)用ANP調(diào)節(jié)MM細(xì)胞周期(特別是S期)分布,可作為MM治療的潛在策略。
miR-21作為原癌基因,是目前唯一發(fā)現(xiàn)幾乎在所有腫瘤中均存在過表達(dá)的miRNA[16-18]。miR-21的過表達(dá)導(dǎo)致多種信號(hào)通路異常激活,包括Ras-MEK1/2-ERK1/2、PI3K/AKT等,而這些通路正好與MM的發(fā)生密切相關(guān)[19-20]。臨床發(fā)現(xiàn)miR-21在MM患者骨髓單個(gè)核細(xì)胞中表達(dá)明顯高于正常對(duì)照組,復(fù)發(fā)/難治MM患者中miR-21表達(dá)高于初治組,化療有效者miR-21表達(dá)明顯降低,化療無效或進(jìn)展者組miR-21無明顯變化[21]。上調(diào)miR-21可導(dǎo)致MM對(duì)馬法蘭產(chǎn)生耐藥,而miR-21表達(dá)下調(diào)可增加MM細(xì)胞對(duì)地塞米松及阿霉素的敏感性[22-23],表明miR-21參與MM發(fā)病、進(jìn)展及耐藥發(fā)生。研究表明miR-21抑制劑在體內(nèi)具有抗MM作用[24]。本實(shí)驗(yàn)發(fā)現(xiàn),ANP處理后,MM1.S細(xì)胞miR-21的表達(dá)明顯下調(diào),提示ANP可以通過下調(diào)miR-21表達(dá)發(fā)揮抗MM細(xì)胞增殖作用。
綜上所述,ANP在心力衰竭患者中,循環(huán)中的水平可增加至正常的10~40倍,患者各項(xiàng)生理指標(biāo)依然可以保持相對(duì)正常,即使在正常生理?xiàng)l件下ANP 的水平可隨著年齡的增加而升高[25-26]。與傳統(tǒng)化療藥物相比,ANP無骨髓抑制、肝腎功能損害等不良反應(yīng),安全性好。目前ANP作為藥物已被用于心力衰竭、高血壓等疾病的治療。Ueda等[27]報(bào)道應(yīng)用ANP成功治療2例原發(fā)性腎病綜合征引起的急性腎損傷,提示ANP有助于改善腎功能。由于MM患者多為老年人,臟器功能不全,且MM本身即可引起腎功能衰竭,ANP對(duì)于MM患者無疑是一種潛在的治療新藥物。
[1] Siegel R, Ma J, Zou Z,etal. Cancer statistics, 2014[J].CA Cancer J Clin, 2014,64(1):9-29.
[2] Vesely D L. Cardiac hormones for the treatment of cancer[J].Endocr Relat Cancer, 2013,20(3):R113-R125.
[3] Vesely D L, Douglass M A, Dietz J R,etal. Three peptides from the atrial natriuretic factor prohormone amino terminus lower blood pressure and produce diuresis, natriuresis, and/or kaliuresis in humans[J].Circulation, 1994,90(3):1129-1140.
[4] Potter L R, Yoder A R, Flora D R,etal. Natriuretic peptides: their structures, receptors, physiologic functions and therapeutic applications[J].Handb Exp Pharmacol, 2009(191):341-366.
[5] Vesely B A, Mcafee Q, Gower W J,etal. Four peptides decrease the number of human pancreatic adenocarcinoma cells[J].Eur J Clin Invest, 2003,33(11):998-1005.
[6] Gower W R, Vesely B A, Alli A A,etal. Four peptides decrease human colon adenocarcinoma cell number and DNA synthesis via cyclic GMP[J].Int J Gastrointest Cancer, 2005,36(2):77-87.
[7] Vesely B A, Song S, Sanchez-Ramos J,etal. Four peptide hormones decrease the number of human breast adenocarcinoma cells[J].Eur J Clin Invest, 2005,35(1):60-69.
[8] Vesely D L, Eichelbaum E J, Sun Y,etal. Elimination of up to 80% of human pancreatic adenocarcinomas in athymic mice by cardiac hormones[J].In Vivo, 2007,21(3):445-451.
[9] Vesely D L. Cardiac Hormones Target the Ras-MEK 1/2-ERK 1/2 Kinase Cancer Signaling Pathways[J].Cancers (Basel), 2011,3(1):1182-1194.
[10]Serafino A, Moroni N, Psaila R,etal. Anti-proliferative effect of atrial natriuretic peptide on colorectal cancer cells: evidence for an Akt-mediated cross-talk between NHE-1 activity and Wnt/β-catenin signaling[J].Biochim Biophys Acta, 2012,1822(6):1004-1018.
[11]Lane M L, Frost C D, Nguyen J P,etal. Potent selective inhibition of STAT 3 versus STAT 1 by cardiac hormones[J].Mol Cell Biochem, 2012,371(1-2):209-215.
[12]Skelton W P 4th, Pi G E, Vesely D L. Four cardiac hormones cause death of human cancer cells but not of healthy cells[J].Anticancer Res, 2011,31(2):395-402.
[13]Knau B, Sturm C, Heim J M,etal. Particulate ANp-sensitive guanylyl cyclase in blood and bone marrow cells of patients with acute leukemia[J].Eur J Med Res, 1997,2(3):101-105.
[14]Vesely D L. Metabolic targets of cardiac hormones' therapeutic anti-cancer effects[J].Curr Pharm Des, 2010,16(9):1159-1166.
[15]San M J, Garcia-Sanz R, Gonzalez M,etal. A new staging system for multiple myeloma based on the number of S-phase plasma cells[J].Blood, 1995,85(2):448-455.
[16]Pink R C, Samuel P, Massa D,etal. The passenger strand, miR-21-3p, plays a role in mediating cisplatin resistance in ovarian cancer cells[J].Gynecol Oncol, 2015.
[17]Monzo M, Martinez-Rodenas F, Moreno I,etal. Differential MIR-21 Expression in Plasma From Mesenteric Versus Peripheral Veins: An Observational Study of Disease-free Survival in Surgically Resected Colon Cancer Patients[J].Medicine (Baltimore), 2015,94(1):e145.
[18]Shan L, Ji Q, Cheng G,etal. Diagnostic value of circulating miR-21 for colorectal cancer: A meta-analysis[J].Cancer Biomark, 2015,15(1):47-56.
[19]Liu L Z, Li C, Chen Q,etal. MiR-21 induced angiogenesis through AKT and ERK activation and HIF-1α expression[J].PLoS One, 2011,6(4):e19139.
[20]Zhao Y, Xu Y, Luo F,etal. Angiogenesis, mediated by miR-21, is involved arsenite-induced carcinogenesis[J].Toxicol Lett, 2013,223(1):35-41.
[21]Zhang T L, Sun L, Wang S M,etal. Expression of miR-21 in multiple myeloma and its clinical significance[J].Zhongguo Shi Yan Xue Ye Xue Za Zhi, 2012,20(3):616-619.
[22]Munker R, Liu C G, Taccioli C,etal. MicroRNA profiles of drug-resistant myeloma cell lines[J].Acta Haematol, 2010,123(4):201-204.
[23]Wang X, Li C, Ju S,etal. Myeloma cell adhesion to bone marrow stromal cells confers drug resistance by microRNA-21 up-regulation[J].Leuk Lymphoma, 2011,52(10):1991-1998.
[24]Leone E, Morelli E, Di Martino M T,etal. Targeting miR-21 inhibits in vitro and in vivo multiple myeloma cell growth[J].Clin Cancer Res, 2013,19(8):2096-2106.
[25]Rubattu S, Sciarretta S, Valenti V,etal. Natriuretic peptides: an update on bioactivity, potential therapeutic use, and implication in cardiovascular diseases[J].Am J Hypertens, 2008,21(7):733-741.
[26]Volpe M, Rubattu S, Burnett J J. Natriuretic peptides in cardiovascular diseases: current use and perspectives[J].Eur Heart J, 2014,35(7):419-425.
[27]Ueda K, Hirahashi J, Seki G,etal. Successful treatment of acute kidney injury in patients with idiopathic nephrotic syndrome using human atrial natriuretic Peptide[J].Intern Med, 2014,53(8):865-869.
Effects of Atrial Natriuretic Peptide on the Proliferation of Myeloma Cells and microRNA-21 Expression
WU Xia1, DING Jiang-hua1,2, YUAN Li-ya3, CHEN Guo-an1
(1. Department of Hematology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, China; 2. Department of Hematology and Oncology, 171 Hospital of the PLA, Jiujiang, Jiangxi 332000, China; 3. Hematology Institution, Academy of Medical Science of Jiangxi Province, Nanchang 330006, China)
Objective To explore the effects of Atrial Natriuretic Peptide (ANP) on cell proliferation of multiple myeloma (MM) and its anticancer mechanisms. Methods The MM1.S cells were used in this study, and the effects of different concentrations of ANP on cell proliferation and cell cycle were observed. The protein expressions of natriuretic peptide receptor-A (NPR-A) and NPR-C were detected, and the effect of ANP on microRNA-21 (miR-21) expression in MM1.S cells were also analyzed. Results The 1-100 μmol/L ANP inhibited the MM cell proliferation in a dose-dependent manner; at the 24thh, ANP had the most potent anti-proliferative activity against MM cells, and then anti-proliferative activity became weaker and weaker with time went by. After ANP affected MM1.S cells for 24 h, compared with those in control group, the cell ratios in G1 phase were increased, while the cell ratios in S and G2 phases were decreased, and the expressions of proliferation index (PI) and miRNA were lower than those in control group (P<0.01,P<0.05). The NPR-A and NPR-C receptors were found in MM1.S cells. Conclusion ANP in combination of NPR-A/C receptor has anti-proliferative effect in MM cells by blocking cell cycle in G1 phase and inhibiting the miR-21 expression.
Multiple myeloma; Atrial natriuretic factor; Cell proliferation; microRNA-21
國(guó)家自然科學(xué)基金(81460037);江西省自然科學(xué)基金(20122BAB205022)
330006 南昌,南昌大學(xué)第一附屬醫(yī)院血液科(吳霞,陳國(guó)安);332000 江西 九江,解放軍171醫(yī)院血液腫瘤科(丁江華);330006 南昌,江西省醫(yī)學(xué)科學(xué)研究院血液研究所(袁利亞)
袁利亞,E-mail: yly405@126.com
R329.2
A
2095-140X(2015)03-0045-05
10.3969/j.issn.2095-140X.2015.03.011
2014-12-20 修回時(shí)間:2015-01-20)
*為共同第一作者