• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Investigation on Analytical Model of Ballistic Impact on Light Ceramic/Metal Lightweight Armours

    2015-05-02 12:41:27
    船舶力學(xué) 2015年6期
    關(guān)鍵詞:背板彈體海量

    (College of Naval Architecture and Power,Naval Univ.of Engineering,Wuhan 430033,China)

    Investigation on Analytical Model of Ballistic Impact on Light Ceramic/Metal Lightweight Armours

    HOU Hai-liang,ZHONG Qiang,ZHU Xi

    (College of Naval Architecture and Power,Naval Univ.of Engineering,Wuhan 430033,China)

    To explore the design method of light ceramic composite armor,an approximate analytical model of ballistic impact on ceramic/metal composite armor focused on thin back plate and dishingshearing-petal failure was proposed,based on response characteristics experimental investigation and analysis of the response characteristics.The model takes into account projectile’s erosion failure and ceramic fragments out of bullet surface,moving in the direction of lateral and the anti-impacting to get the dynamic impacting response and failure in the ceramic/metal composite armor metal back panel and formula of ballistic limit velocity of the ceramic/metal composite armor and calculation. Model analysis results are in good agreement with those obtained with the test results.

    explosion mechanics;bullet proof model;high speed fragments; ceramic composite armor;deformation and energy absorption

    0 Introduction

    As ceramic materials are widely used in the design of protective armor for the protection of middle and high speed impact,the impact response characteristics of ceramic materials have been extensively and in-depthly studied[1].However,little energy will be absorbed in the penetration process due to the brittleness and low tensile strength of the ceramic.In the practical applications,ceramic as panels and back panel made of metal materials or fiber-reinforced composite materials are combined to form composite armor structures such as ceramic/metal, ceramic/composite materials combinations to improve its ballistic performance[2].As metal materials have high strength,better ductility and other features,they can provide a rigid support for ceramic panels to the benefit of mushrooming,eroding,fragmenting projectiles and reducing penetration performance,firstly;Then,they can make full deformation to absorb kinetic energy[3]of the projectile.

    There are three different investigation approaches as follows:the empirical method,numerical simulation and analytical modelling.The empirical method is the most widely used,but it costs too much,and its results are only valid for the specific projectile and target systems. The numerical simulations method require not only high performance computers to calculatefor a long time,but also a lot of material parameters difficult to be determined.So the theoretical method has become an important mean in the ballistic performance research of lightweight ceramic composite armor,by assuming some hypotheses which simplify the actual mechanisms of the penetration process[2].Now,a series of theoretical analytical models to describe lightweight ceramic/metal composite armor penetration process have been proposed.Such as ballistic limit estimation model of Florence[4-5],analytical models by Reijer[6]which consider the erosion and mushrooming of projectile and different backplate deformation modes,as well as analytical models of the constitutive behavior of ceramic powders after fragmentation of ceramic materials;analytical models proposed by Zaera et al[7]used in the ceramic/metal composite armor on the front and oblique shocks,and so on.The stress wave propagation were ignored in all of these models,and the impact process was divided into several time periods to respectively analyse the impulse response of ceramic panel and back metal panel.

    Based on the experimental and analytical results of ballistic impact characteristic of ceramic/metal composite armor in Ref.[3],a theoretical analytical model of dynamic response under the action of impact load was proposed,which is verified by experiment,in this paper.

    1 The model hypothesis

    The initial state of ceramic/metal composite armor under the impact of high speed fragments is shown in Fig.1.According to its responses characteristic,ignoring stress wave propagation process,the impact process can be divided into two stages.The first stage is by the projectile in contact with the ceramic panels to the end of the ceramic cone formation.At this stage,projectiles are eroded,but can not penetrate into ceramic panels,ceramic panels turning into ceramic cones,while the metal back plate remaining intact.At the second stage,back panel begins to move.Because the speed of ceramic cone is less than the initial velocity of projectile,the projectile will gradually penetrate and promote ceramic cone,and make parts of ceramic fragments flow in the the lateral and reverse impacting direction.When the speed of projectile equals with that of ceramic cone,they will impact the back plate together,so the second stage can be divided into two sub-stages:sub-stage of projectile penetrating into ceramic cones and sub-stage of the remaining ceramic cones impacting backplate.To facilitate the analysis,according to the result of the Ref.[3],some basic assumptions are as follows:

    (1)Projectile behavior

    The main approach to destroying energy absorption of projectile is the erosion of projectiles,ignoring the mushrooming deformation of projectiles and bending deformation of its petals. Assume that the projectiles are ideal rigid plastic materials and the initial impacting velocity of the projectile is V0.

    (2)Ceramic tile

    Fig.1 Schematic of initial condition

    Assume that the ceramic tile is an infinite plate and its thickness is hc.Since the energy dissipated in the formation of new surface due to fragmentation of ceramic is only a small fraction of the kinetic energy of the projectile(about 0.2%of tatal),a large part of impacting kinetic energy of the projectile redistributed as the kinetic energy of ceramic pieces[8].Therefore,ignoring the forming process of ceramic cone,we assume that the projectile and the ceramic cone effect on the backplate as a whole together.Assume that the diameter of the top ceramic cone equals to that of projectile[3]and its half cone angle is 65°.

    (3)Back plate

    Assume that back plate is a infinite rigid plastic thin plate,whose thickness is hb,and dynamic yield strength is Yb.We assume that the deformation failure mode of the metal backpanel:dishing-shearing-petal failure and dishing-petal failure.

    2 The shock response of the projectile and the ceramic tile

    2.1 StageⅠ

    In the initial stage of the projectile impact on the ceramic panel,the projectile is eroded, but cannot penetrate into the ceramic panel,because the penetration resistance of ceramic materials is much greater than the compressive strength of the projectile.The compression wave in ceramic tile caused by the projectile impact,propagates to the back of the panel,and then causes tensile wave when it reflected on the back panel,and all of these cause the ceramic panel conical crashing failure.Although,the fragmentation of the ceramic materials is throughout the whole process of penetration,but according to the analysis of Den Reijer[6]and Wilkins[9], fragmentation occurs mainly in the initial stage of the impacting process.Den Reijer assumed that when the compression stress wave propagates throughout the thickness of the ceramic panel,the back of the panel began to crack,and when the cracks generated on the back of the panel propagate to the target surface,ceramic cone forms.Therefore,the time required for forming the ceramic cones

    where hcis the thickness of ceramic tile,ulongis the velocity of the longitudinal stress wave,vcrackis the radial crack propagation speed.To coincide with the value of the time of duration in the first stage referred by Wilkins[9],den Reijer assumed that the value of vcrackequals to 1/5 of ulong.Therefore:half angle of ceramic cone is about 65°[3]。

    We take the Tate-Alekseevskii[10-11]equation to describe projectile’s erosion:

    Among them,Ypis the dynamic yield strength of the projectile’s material,ρpis the density of the projectile,is the velocity of the projectile,is the length of the projectile.For non-cylindrical projectiles,the equivalent diameter and length are selected according to the Eq.(4):

    where Lpis the actual length of the projectile,Mpis the mass of the projectile,is the diameter of the position z.

    2.2 StageⅡ

    Assuming the projectile impacts the back plate at the same speed of Vr0with the ceramic cones.According to the conservation of momentum theorem:

    When the ceramic cones generatedthe projectile begins to penetrate and promote ceramic cones,and ceramic materials in front of the projectile gradually separate from the surface of the warhead,moving to the side and anti-impacting direction.Ceramic material between the projectile and the back plate becomes thinner gradually.The speed of projectile’s tail isbut the speed of the projectile-ceramic interaction surface isThe difference between the two velocities is the erosion velocity of the projectile for this stage.The thickness of ceramic cones iswhose speed isThe difference betweenis the speed of the projectile penetrating into ceramic cones.

    When the ceramic cones generatedthe back plate begins to move.As the deformation of the back plate at the beginning stage is very small,the displacement and the movements of other parts can be neglected.That is,we can assume that only the part m of the back plate which contacts with the bottom surface of ceramic cones begins to move,and its movingspeed equals to that of the ceramic cones,but no displacements are generated.

    Tate-Alekseevskii[10-11]equation can be used to describe projectile’s erosion:

    where Rcis the penetration resistance of the ceramic panel.According to Ref.[12],when there is cover plate constraint,the penetration resistance Rcdecreases with the change of the thickness of the ceramic tile for Al2O3ceramics with the density of 3.6 g/cm3.When the thickness of the ceramic tile is more than 24 mm,Rckeeps steady at about 8 000 MPa;For Al2O3ceramics without cover plate constrants,Rcis about 5 100 MPa when the thickness of the ceramic tile is from 27.81 mm to 41.96 mm;For the ceramic cone fragmentations,Rcis less than the value above.ρpand ρcare the densities of the projectiles and the ceramic materials respectively.According to continuity conditions,the initial velocity and length of the projectile in the second stage equal to those of the ending of the first stage.When

    t=0.

    In solving Eqs.(6)-(9),it is possible to get resultswhich is insignificant in physics.So the projectile and the rest of the ceramic cones get the same speed,i.e.At this time,there are two situations as follows:

    And the change of the thickness of the ceramic cones still meets the Eq.(9).

    where hcris the thickness of the residual ceramic cones

    Due to the axial symmetry of the problem,the cylindrical coordinate system(r,θ,z)is set up as shown in Fig.2.The origin of coordinate is located in the center of the undeformed plate and the axis of z directs vertically downward.The thickness of the back plate is 2H,and the back plate is relaxed at the beginning.To simplify the expression,time is set to zero when the speed of the projectile equals to that of the ceramic cones in dynamic response analysis of the back plate.Assume that the area density of the metal back plate is μ1,and take

    Fig.2 The impact on the back plate by the projectile and ceramic cones

    Fig.3 Yield criterion

    3 The impact response of the metal back plate

    3.1 Yield criterion

    Suppose that the back panel is an ideal rigid-plastic material.So the three-dimensional von Mises yield criterion for the circular plate subjected to axisymmetric load is:

    where r,θ and z are coordinates of the cylindrical coordinate,and the origin of the coordinate is located in the center of the undeformed plate.Axis z directs vertically downwards.σrand σθare radial and circumferential stresses,respectively,τ is the shear stress of the r-z plane,and σ0is the yield stress of the material of the back plate.

    When the back plate occurs dishing-shearing-petal failure,shear force and bending moment are mainly dominated of the generalized stress in the back plate.Yield criterion can be written as:

    where Mrand Mθare the radial and circumferential bending moment per unit length,and Q is the radial shear force per unit length.Due to the axial symmetry of the problem,we assume the circumferential shear Qθof the target plate is 0.

    The von Mises yield criterion in three-dimensional coordinate system,whose axises are Mr,Mθand Q,respectively,is an ellipsoid.In this paper,piecewise liners(see Fig.3)approximation was used to describes the ellipsoid yield criterion,which is approximate description as:

    3.2 Deformation assumption

    There will generate a plastic hinge circle on the fringes of the impact load whose radius is a.The second plastic hinge circle appears in the location where the shear force is zero,and its position changes over time(see Fig.4).Set r as the distance of any point on the surface to the center of the plate.The three regions of different deformation mechanisms of plate are the central part with a radius of a at the speed of vt,the outer area of R()t≤r≤∞ is free zone, and plastic deformation area ofcorresponds tois the radius of the perimeter of the plastic hinge circle,where)is a function of time.

    Fig.4 Deformation hypothesis

    3.3 Velocity field

    The energy dissipation rates calculated by stress and strain rate and by the general stress and general strain rate are the same,so:

    Assuming that shear strain rate is distributed uniformly along the thickness direction of the plate:

    From the Taylor expansion of radial velocity vr,we can get the radial velocity and the radial and circumferential strain rate as follows,by taking the first term:

    Assuming a uniform distribution of shear strain,shear strain rateon r-z plane is expressed as:

    deflection.

    From Eqs.(17)-(19),we can get the expression of general strain rate as follows:

    According to the yield criterion and Eq.(20),the general strain rate of plastic zone a≤can be expressed as:

    Normal velocity of the plastic zone is got by integrating the above equation for r:

    where K1and K2are the functions of time only.The material keeps still on the outside plastic hinge circle ofFrom Eq.(23),we can get:

    Assuming that the velocity of the plastic zone on the back plate of the plastic hinge is v. From Eq.(23)we can get:

    Substituting Eq.(24)into Eq.(25),we find:

    To simplify the equation,we make:

    From Eq.(23)we can get the velocity field of the plastic zone a≤r≤R()t,which can be expressed as:

    The acceleration field for the central part of the panel isand:

    3.4 Balance equation and its solution

    Ignoring the rotation inertia effect,balance equations of elements in Fig.5 are:

    where μ is the mass of the back plate per unit area.From Eq.(29), the dynamic equilibrium equation can be expressed as:

    According to the yield condition,the circumferential moment Mθcan be eliminated before integration.Substitute the acceleration field Eq.(28)into equilibrium Eq.(30),the equilibrium equation of the central part 0≤r≤a on the back panel can be expressed as:

    The equilibrium equation of the plastic zone a≤r≤R()tis:

    Fig.5 Schematic of the force on micro elements of the back plate

    Substituting Eq.(28)into Eq.(32),we can get:

    The expression of Q is the Eq.(33)divided by r on the right side,therefore:

    Because that when r=R()t,Q=0,from Eq.(33)we can get:

    To solve the simultaneous differential Eqs.(34)and(35),we get the dynamic response of the back plate.

    3.5 The deformation and failure of the back plate

    To solve Eq.(34)and Eq.(35),the initial value of Z2must be determined,which depends on the initial position of the outer plastic hingeWe assume that in the early period of response,circle of plastic hingeis stationary,namelyAnd whenSubstitutinginto Eq.(34)and(35),we get:

    From Eq.(36)and Eq.(37),we can obtain the initial value ofIn order to alculate the value of Z1and Z2,iterative solution is needed from Eq.(36)and Eq.(37).

    On the other hand,the velocity of the projectile,ceramic cones and the central part 0≤r≤a of the back plate is:

    (1)Bulging and dishing deformation failure

    When the slip velocity equals to 0,Z1=v=U,Shear slip stops,the back plate is not penetrated and bulging and dishing deformation failure occurs in the back panel.

    Eqs.(34)and(35)turn to:

    Iterative solution to calculate Z1and Z2need continued by Eqs.(38)and(39)until Z1equals to 0 and the response of the back plate ends.

    (2)Dishing-shearing-petal failure

    When the shear slip distance is greater than the thickness of plate,the back plate is penetrated,and shear failure will occur.At this time,U is the residual velocity of the projectile, and Eqs.(34)and(35)turn into:

    Iterative solution to calculate Z1and Z2is continued by Eqs.(40)and(41)until Z1equals to 0 and the response of the back panel ends.

    4 Experimental verification

    In order to verify the accuracy of ballistic analysis model,results of the analysis is compared with Ref.[3],and calculation parameters are shown in Tab.1.

    Tab.1 Parameters for calculation

    Tab.2 shows the comparation of experimental and analytical results on residual length and velocity.The table illustrates that most of remaining length of the projectile is larger than the experimental results,because the erosion and the mushrooming deformation were ignored. But due to the fact that target plate is penetrated or the initial impacting velocity of the projectile is close to the ballistic limiting velocity of the target,the deviation of the most of the results is less than 20%.According to the experimental results,the energy absorbed due to thedamage of the projectile is about 5%~12%of its initial impact kinetic energy.Therefore,because of this approximation,during the penetrating process,the total deviation of calculation results of the energy absorption is within 2.4%.The deviation between experimental and analytical results of residual velocity is less than 10%.

    Tab.2 Relationship between experimental and analytical results on residual characteristic

    5 Conclusion

    An approximate analytical model focused on thin back plate and dishing-shearing-petal failure of ceramic/metal composite armor subjected to ballistic impact was proposed.According to the results of the experimental investigation,the erosion failure of the projectile and the movement in the direction of lateral and the anti-impacting of ceramic fragments were taken into account in the analytical model.The dynamic response and failure mode of metallic back plate of the ceramic/metal composite armor were obtained.The formulas of ballistic limit velocity of the ceramic/metal composite armor and calculation methods of residual velocity of projectile were proposed.Model analysis results are in good agreement with those obtained with the test results.

    [1]Hou Hailiang,Zhu Xi,Kan Yulong.Advance of dynamic behavior of ceramic material under the impact of projectile[J]. Acta Armamentar II,2008,29(1):94-99.(in Chinses)

    [2]Hou Hailiang,Zhu Xi,Kan Yulong.Advance of ballistic performance of light ceramic composite armour under the impact of projectile[J].Acta Armamentar II,2008,29(2):208-216.(in Chinses)

    [3]Hou Hailiang,Zhu Xi,Li Wei.Investigation on bullet proof mechanism of light ceramic/steel armor[J].Acta Armamentar II,2013,34(1):105-114.(in Chinses)

    [4]Florence A L.Interaction of projectiles and composite armor plate[R].Stanford Research Institute,Menlo Park,CA,USA., AMIVIRG-CR-69-15,1969.

    [5]Hetherington J G,Rajagopalan B P.An investigation into the energy absorbed during ballistic perforation of composite armors[J].Int.J Impact Engng.,1991,11:33-40.

    [6]Den Reijer P C.Impact on ceramic faced armour[D].Ph.D.Thesis,Delft Technical University,The Netherlands,1991.

    [7]Zaera R,Sánchez-Gálvez V.Analytical modelling of normal and oblique ballistic impact on ceramic/metal lightweight armours[J].Int.J Impact Engng.,1998,21(3):133-148.

    [8]Woodward R L,Gooch W A,Jr R G O’Donnell,et al.A study of fragmentation in the ballistic impact of ceramics[J].Int. J Impact Engng,1994,15(5):605-618.

    [9]Wilkins M L.Mechanics of penetration and perforation[J].Int J Eng Sci,1978,16:793-807.

    [10]Tate A.A theory for the deceleration of long rods after impact[J].J Mech.Phys.Solids,1967,15:387-399.

    [11]Tate A.Further results in the theory of long rod penetration[J].J Mech.Phys.Solids,1969,17:141-150.

    [12]Li Ping.Dynamic response of ceramic and mechanism against long rod penetrators[D].Beijing:Beijing Institute of Technology,2002.(in Chinses)

    [13]Anderson C E,Jr,Morris,B L.The ballistic performance of confined Al2O3ceramic tiles[J].Int.J Impact Engng,1992,12 (2):167-187.

    輕型陶瓷/金屬?gòu)?fù)合裝甲抗彈分析模型研究

    侯海量,仲 強(qiáng),朱 錫

    (海軍工程大學(xué) 艦船工程系,武漢430033)

    為探討輕型陶瓷復(fù)合裝甲結(jié)構(gòu)設(shè)計(jì),在彈道沖擊響應(yīng)特性試驗(yàn)研究與分析的基礎(chǔ)上,針對(duì)薄金屬背板支撐的陶瓷復(fù)合裝甲,以金屬背板發(fā)生碟型變形-剪切-花瓣型失效為分析對(duì)象,建立了陶瓷/金屬?gòu)?fù)合裝甲侵徹過(guò)程的近似解析模型。模型考慮了彈體的侵蝕失效及陶瓷碎片脫離彈頭表面,向側(cè)向和反沖擊方向的運(yùn)動(dòng),得到了陶瓷/金屬?gòu)?fù)合裝甲中金屬背板的動(dòng)態(tài)沖擊響應(yīng)及失效,陶瓷/金屬?gòu)?fù)合裝甲的彈道極限速度計(jì)算公式和彈體的剩余速度計(jì)算方法,模型分析結(jié)果與試驗(yàn)結(jié)果吻合良好。

    爆炸力學(xué);抗彈機(jī)理;高速破片;陶瓷復(fù)合裝甲;變形吸能

    O347

    A

    侯海量(1977-),男,海軍工程大學(xué)高級(jí)工程師,碩士生導(dǎo)師;

    O347

    A

    10.3969/j.issn.1007-7294.2015.06.010

    1007-7294(2015)06-0723-14

    仲 強(qiáng)(1990-),男,海軍工程大學(xué)碩士研究生;

    朱 錫(1961-),男,海軍工程大學(xué)教授,博士生導(dǎo)師。

    Received date:2015-02-22

    Foundation item:Supported by the National Natural Scinence Foundation of China(Grant Nos.51179200 and 51209211)

    Biography:HOU Hai-liang(1977-),male,senior engineer,E-mail:hou9611104@163.com;

    ZHONG Qiang(1990-),male,master student.

    猜你喜歡
    背板彈體海量
    一種傅里葉域海量數(shù)據(jù)高速譜聚類方法
    尾錐角對(duì)彈體斜侵徹過(guò)程中姿態(tài)的影響研究
    橢圓截面彈體斜侵徹金屬靶體彈道研究*
    爆炸與沖擊(2022年2期)2022-03-17 07:28:44
    樂(lè)凱太陽(yáng)能電池背板:強(qiáng)勁支持光伏產(chǎn)業(yè)
    海量快遞垃圾正在“圍城”——“綠色快遞”勢(shì)在必行
    STOPAQ粘彈體技術(shù)在管道施工中的應(yīng)用
    上海煤氣(2018年6期)2018-03-07 01:03:22
    光伏含氟背板隱憂
    能源(2017年5期)2017-07-06 09:25:55
    一個(gè)圖形所蘊(yùn)含的“海量”巧題
    層壓過(guò)程對(duì)背板粘接涂層的影響
    播放器背板注塑模具設(shè)計(jì)
    麻豆精品久久久久久蜜桃| 欧美少妇被猛烈插入视频| 看非洲黑人一级黄片| 街头女战士在线观看网站| 交换朋友夫妻互换小说| 亚洲精品aⅴ在线观看| 精品熟女少妇av免费看| 国产男女超爽视频在线观看| 久久久久精品久久久久真实原创| 亚洲国产精品一区三区| 国产成人a∨麻豆精品| 少妇人妻精品综合一区二区| 青春草视频在线免费观看| 看免费成人av毛片| 午夜av观看不卡| 亚洲一级一片aⅴ在线观看| 亚洲色图综合在线观看| 超碰97精品在线观看| 美女中出高潮动态图| 伦理电影大哥的女人| 日韩av不卡免费在线播放| 中国三级夫妇交换| 热re99久久国产66热| 国产69精品久久久久777片| 精品一品国产午夜福利视频| 精品视频人人做人人爽| 欧美xxⅹ黑人| 国产一区亚洲一区在线观看| 国内精品宾馆在线| 久久国产精品男人的天堂亚洲 | 国产国拍精品亚洲av在线观看| 久久国产亚洲av麻豆专区| 麻豆精品久久久久久蜜桃| 精品国产一区二区三区四区第35| 国产熟女欧美一区二区| 香蕉国产在线看| 欧美国产精品一级二级三级| 熟女人妻精品中文字幕| 国产免费又黄又爽又色| 大话2 男鬼变身卡| 少妇的逼好多水| 啦啦啦视频在线资源免费观看| 久久99热6这里只有精品| 乱码一卡2卡4卡精品| 精品酒店卫生间| 蜜臀久久99精品久久宅男| 十分钟在线观看高清视频www| 嫩草影院入口| 新久久久久国产一级毛片| 国产一区二区激情短视频 | 亚洲综合色惰| 国内精品宾馆在线| 国产av一区二区精品久久| 亚洲欧美精品自产自拍| av又黄又爽大尺度在线免费看| 日本爱情动作片www.在线观看| 春色校园在线视频观看| 韩国精品一区二区三区 | 午夜老司机福利剧场| 久热久热在线精品观看| 亚洲精品美女久久av网站| 亚洲精品日韩在线中文字幕| 精品一区在线观看国产| 国产黄色视频一区二区在线观看| 80岁老熟妇乱子伦牲交| 欧美精品一区二区大全| 多毛熟女@视频| 亚洲四区av| 亚洲av在线观看美女高潮| 亚洲,欧美,日韩| 1024视频免费在线观看| 2018国产大陆天天弄谢| 美女国产高潮福利片在线看| 午夜福利乱码中文字幕| 满18在线观看网站| 午夜久久久在线观看| 老司机影院成人| 免费黄网站久久成人精品| 18禁国产床啪视频网站| 91国产中文字幕| 国产高清国产精品国产三级| 最近的中文字幕免费完整| 在线观看人妻少妇| av有码第一页| 婷婷色综合大香蕉| 国产免费视频播放在线视频| 97在线人人人人妻| 永久网站在线| 自拍欧美九色日韩亚洲蝌蚪91| 欧美人与性动交α欧美软件 | 欧美少妇被猛烈插入视频| 国产精品久久久久久精品电影小说| 国产高清三级在线| 欧美日韩一区二区视频在线观看视频在线| 五月玫瑰六月丁香| 女性被躁到高潮视频| 午夜福利视频在线观看免费| 免费观看av网站的网址| 亚洲av.av天堂| 好男人视频免费观看在线| 国产精品久久久久久久久免| 精品国产露脸久久av麻豆| av片东京热男人的天堂| 性色avwww在线观看| 日日啪夜夜爽| 国产福利在线免费观看视频| 激情五月婷婷亚洲| 欧美亚洲日本最大视频资源| 国产av精品麻豆| 亚洲国产欧美在线一区| 青春草国产在线视频| 人人妻人人爽人人添夜夜欢视频| 亚洲精品,欧美精品| 国产av国产精品国产| 国产老妇伦熟女老妇高清| 欧美丝袜亚洲另类| 夜夜爽夜夜爽视频| 日韩在线高清观看一区二区三区| 久久精品人人爽人人爽视色| 大话2 男鬼变身卡| 久久精品国产自在天天线| 黑丝袜美女国产一区| 免费高清在线观看视频在线观看| 99久久中文字幕三级久久日本| 综合色丁香网| 国产精品久久久久久精品电影小说| 国产深夜福利视频在线观看| 尾随美女入室| 交换朋友夫妻互换小说| av免费在线看不卡| 精品卡一卡二卡四卡免费| 精品亚洲乱码少妇综合久久| 国产成人精品久久久久久| 精品久久国产蜜桃| 香蕉精品网在线| 久久精品人人爽人人爽视色| 2018国产大陆天天弄谢| 晚上一个人看的免费电影| 久久久国产精品麻豆| xxx大片免费视频| 精品一区二区三区视频在线| 亚洲在久久综合| 亚洲欧洲国产日韩| 最后的刺客免费高清国语| 国产精品久久久av美女十八| 日本与韩国留学比较| 亚洲精品久久午夜乱码| 精品亚洲成a人片在线观看| 亚洲国产精品一区二区三区在线| 天美传媒精品一区二区| 国产亚洲av片在线观看秒播厂| 久久国产精品大桥未久av| 国产欧美另类精品又又久久亚洲欧美| 中文乱码字字幕精品一区二区三区| 国产又色又爽无遮挡免| 日韩精品有码人妻一区| 色婷婷久久久亚洲欧美| 少妇的逼水好多| 日本色播在线视频| www日本在线高清视频| 国产亚洲精品第一综合不卡 | 在线观看一区二区三区激情| 永久网站在线| 高清视频免费观看一区二区| 十八禁网站网址无遮挡| 欧美精品一区二区大全| 国产精品女同一区二区软件| 三上悠亚av全集在线观看| 熟女电影av网| av片东京热男人的天堂| 欧美日韩av久久| 亚洲少妇的诱惑av| 黑丝袜美女国产一区| 又粗又硬又长又爽又黄的视频| 久久午夜福利片| 中文字幕免费在线视频6| 亚洲国产日韩一区二区| 国产国拍精品亚洲av在线观看| 久久精品国产综合久久久 | 日本-黄色视频高清免费观看| 有码 亚洲区| 曰老女人黄片| 一区二区日韩欧美中文字幕 | www.色视频.com| 高清不卡的av网站| 久久人人97超碰香蕉20202| 国产免费一级a男人的天堂| 中国三级夫妇交换| 好男人视频免费观看在线| 久热这里只有精品99| 国产精品久久久久久久电影| 中文精品一卡2卡3卡4更新| 美女国产高潮福利片在线看| 国产av一区二区精品久久| 又大又黄又爽视频免费| 久久午夜福利片| 女人被躁到高潮嗷嗷叫费观| 久久国产精品大桥未久av| 日本色播在线视频| 在线观看免费高清a一片| 男女午夜视频在线观看 | 多毛熟女@视频| 亚洲欧美清纯卡通| 秋霞伦理黄片| 99久久中文字幕三级久久日本| 美女内射精品一级片tv| 99久久人妻综合| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 欧美成人午夜精品| 九九在线视频观看精品| 制服诱惑二区| 欧美日韩国产mv在线观看视频| 亚洲美女搞黄在线观看| 久久女婷五月综合色啪小说| 制服诱惑二区| 一本大道久久a久久精品| 亚洲精品一区蜜桃| 成年美女黄网站色视频大全免费| √禁漫天堂资源中文www| 日本av手机在线免费观看| 久久精品久久久久久久性| 免费看光身美女| av福利片在线| 国产成人a∨麻豆精品| 男女午夜视频在线观看 | 亚洲国产色片| 中国美白少妇内射xxxbb| 国产黄色免费在线视频| 国语对白做爰xxxⅹ性视频网站| 男女午夜视频在线观看 | 国产亚洲最大av| 乱人伦中国视频| 国产熟女欧美一区二区| 久久午夜综合久久蜜桃| 精品亚洲成国产av| 欧美bdsm另类| a级毛色黄片| 亚洲av电影在线进入| 国产激情久久老熟女| 欧美成人午夜精品| 久久久久精品人妻al黑| 国产欧美另类精品又又久久亚洲欧美| 久久久久精品性色| 天堂中文最新版在线下载| 国产亚洲欧美精品永久| 纯流量卡能插随身wifi吗| 90打野战视频偷拍视频| 免费不卡的大黄色大毛片视频在线观看| 国产亚洲一区二区精品| 亚洲人成77777在线视频| 激情五月婷婷亚洲| 亚洲美女搞黄在线观看| 色5月婷婷丁香| 亚洲精品乱久久久久久| 丝袜在线中文字幕| 欧美人与善性xxx| 少妇人妻久久综合中文| 国产成人aa在线观看| 国产av码专区亚洲av| 国产精品免费大片| 国内精品宾馆在线| 亚洲成色77777| 亚洲av.av天堂| 国产精品99久久99久久久不卡 | 热re99久久精品国产66热6| 精品少妇黑人巨大在线播放| 亚洲一级一片aⅴ在线观看| 热99国产精品久久久久久7| 巨乳人妻的诱惑在线观看| 亚洲av成人精品一二三区| 婷婷色综合www| 久久国产精品男人的天堂亚洲 | 久久韩国三级中文字幕| 精品亚洲成国产av| 亚洲精品美女久久av网站| 国产欧美另类精品又又久久亚洲欧美| 亚洲精品中文字幕在线视频| 女性生殖器流出的白浆| 一级毛片电影观看| 久久久久久久国产电影| 国产精品成人在线| 九色亚洲精品在线播放| 男的添女的下面高潮视频| 一本久久精品| 亚洲av电影在线进入| 校园人妻丝袜中文字幕| 另类亚洲欧美激情| 丰满乱子伦码专区| 在线观看免费视频网站a站| 久久这里只有精品19| 天堂俺去俺来也www色官网| 免费观看在线日韩| 人人澡人人妻人| 超碰97精品在线观看| 精品福利永久在线观看| 夜夜骑夜夜射夜夜干| 日韩熟女老妇一区二区性免费视频| 中文精品一卡2卡3卡4更新| 日日啪夜夜爽| 免费人妻精品一区二区三区视频| 两个人看的免费小视频| 久久久久久久亚洲中文字幕| 你懂的网址亚洲精品在线观看| 少妇猛男粗大的猛烈进出视频| 在线观看一区二区三区激情| 七月丁香在线播放| 日韩一区二区三区影片| 男女边摸边吃奶| 观看美女的网站| 国产精品久久久久久精品古装| 国产成人精品久久久久久| 中文字幕最新亚洲高清| 国产不卡av网站在线观看| 国产极品粉嫩免费观看在线| 国产精品久久久久成人av| 欧美最新免费一区二区三区| 日韩av免费高清视频| 久久99热6这里只有精品| 亚洲久久久国产精品| 亚洲欧洲国产日韩| 国产精品久久久久成人av| 波野结衣二区三区在线| 国产成人精品婷婷| 三级国产精品片| 午夜福利,免费看| 菩萨蛮人人尽说江南好唐韦庄| 精品久久久精品久久久| 中文字幕人妻丝袜制服| 亚洲 欧美一区二区三区| 丁香六月天网| 汤姆久久久久久久影院中文字幕| 下体分泌物呈黄色| 九草在线视频观看| 五月玫瑰六月丁香| 青春草国产在线视频| 亚洲精品自拍成人| 精品少妇内射三级| 亚洲三级黄色毛片| 婷婷色综合大香蕉| 久久人人97超碰香蕉20202| 日韩av不卡免费在线播放| 中文字幕av电影在线播放| 午夜福利视频在线观看免费| 美女国产视频在线观看| 欧美xxxx性猛交bbbb| 久久久久国产网址| 日韩av免费高清视频| 欧美97在线视频| 最新的欧美精品一区二区| 18禁在线无遮挡免费观看视频| 青春草视频在线免费观看| 欧美人与性动交α欧美精品济南到 | 免费在线观看完整版高清| 日本vs欧美在线观看视频| 国产 精品1| 成人免费观看视频高清| 精品久久国产蜜桃| 成年动漫av网址| 国产极品粉嫩免费观看在线| 欧美日韩av久久| 免费在线观看完整版高清| 成人18禁高潮啪啪吃奶动态图| 亚洲图色成人| 国产精品国产三级专区第一集| 国产成人a∨麻豆精品| 国产精品久久久av美女十八| 各种免费的搞黄视频| 欧美丝袜亚洲另类| 欧美精品一区二区大全| 久久国产亚洲av麻豆专区| 少妇高潮的动态图| 在线观看美女被高潮喷水网站| 久久人人97超碰香蕉20202| 大陆偷拍与自拍| 99久久综合免费| 成人午夜精彩视频在线观看| 久久精品久久久久久噜噜老黄| 国产精品99久久99久久久不卡 | 午夜精品国产一区二区电影| 国产精品偷伦视频观看了| 有码 亚洲区| 日本猛色少妇xxxxx猛交久久| 日本av免费视频播放| 狂野欧美激情性xxxx在线观看| 建设人人有责人人尽责人人享有的| 日韩一区二区视频免费看| 美女大奶头黄色视频| 久久久久人妻精品一区果冻| 乱码一卡2卡4卡精品| 纵有疾风起免费观看全集完整版| 国产男人的电影天堂91| 中文字幕亚洲精品专区| 亚洲av欧美aⅴ国产| 久久韩国三级中文字幕| 国产成人一区二区在线| 一区二区三区精品91| 午夜免费鲁丝| 精品一区二区三卡| 亚洲激情五月婷婷啪啪| 精品第一国产精品| 韩国av在线不卡| 精品亚洲成a人片在线观看| 亚洲 欧美一区二区三区| 18禁观看日本| 精品人妻熟女毛片av久久网站| 亚洲中文av在线| 精品久久国产蜜桃| 免费黄色在线免费观看| 亚洲丝袜综合中文字幕| 亚洲精品乱码久久久久久按摩| 男女高潮啪啪啪动态图| 国产精品一二三区在线看| 捣出白浆h1v1| av免费观看日本| 久久韩国三级中文字幕| 男人舔女人的私密视频| 精品酒店卫生间| 最新中文字幕久久久久| av在线播放精品| 老女人水多毛片| 日本-黄色视频高清免费观看| av免费在线看不卡| 女性被躁到高潮视频| 久久亚洲国产成人精品v| 美女主播在线视频| 美女国产高潮福利片在线看| 18+在线观看网站| 少妇人妻 视频| 国产综合精华液| 欧美亚洲日本最大视频资源| 欧美3d第一页| 99国产精品免费福利视频| 亚洲色图 男人天堂 中文字幕 | 在线天堂最新版资源| 自拍欧美九色日韩亚洲蝌蚪91| 一本久久精品| 亚洲人成网站在线观看播放| 国产精品偷伦视频观看了| 欧美少妇被猛烈插入视频| 欧美日韩av久久| 亚洲三级黄色毛片| 美女脱内裤让男人舔精品视频| 亚洲av.av天堂| 在线观看免费高清a一片| 日韩欧美一区视频在线观看| 国产一区二区在线观看日韩| 国产av国产精品国产| 久热久热在线精品观看| 高清视频免费观看一区二区| 99精国产麻豆久久婷婷| av福利片在线| 男男h啪啪无遮挡| 国产乱人偷精品视频| 国产福利在线免费观看视频| 91久久精品国产一区二区三区| 女的被弄到高潮叫床怎么办| av女优亚洲男人天堂| 日韩一区二区三区影片| 久久久久久久久久成人| av片东京热男人的天堂| 如何舔出高潮| 免费在线观看黄色视频的| 久久精品国产亚洲av天美| 日本av免费视频播放| 国产精品熟女久久久久浪| 高清视频免费观看一区二区| 日韩不卡一区二区三区视频在线| 国产国语露脸激情在线看| 国产精品女同一区二区软件| videos熟女内射| 国产成人精品久久久久久| 天堂8中文在线网| 天天躁夜夜躁狠狠躁躁| 久久精品人人爽人人爽视色| 十分钟在线观看高清视频www| 热re99久久国产66热| 赤兔流量卡办理| 亚洲欧洲国产日韩| 在线免费观看不下载黄p国产| 日本黄色日本黄色录像| 亚洲国产欧美在线一区| 欧美性感艳星| 18+在线观看网站| 草草在线视频免费看| 国产精品久久久久久精品古装| 肉色欧美久久久久久久蜜桃| av天堂久久9| 人妻 亚洲 视频| 亚洲欧洲国产日韩| 最近的中文字幕免费完整| 成人亚洲欧美一区二区av| 午夜福利视频精品| 国产免费又黄又爽又色| 日本色播在线视频| 久久久久精品性色| 久久精品国产鲁丝片午夜精品| 欧美精品一区二区免费开放| 99久久综合免费| 熟女av电影| 国产视频首页在线观看| 十八禁高潮呻吟视频| 亚洲精品视频女| 一级a做视频免费观看| 99久国产av精品国产电影| 欧美+日韩+精品| 18禁裸乳无遮挡动漫免费视频| 黄色 视频免费看| 午夜av观看不卡| 久久久久网色| av有码第一页| 美女国产视频在线观看| 亚洲国产成人一精品久久久| 伊人亚洲综合成人网| 国产精品久久久久久av不卡| av有码第一页| 日韩av免费高清视频| 又黄又爽又刺激的免费视频.| 亚洲国产欧美在线一区| 久久久久久久国产电影| 99视频精品全部免费 在线| 亚洲成人手机| 成年女人在线观看亚洲视频| 99久久中文字幕三级久久日本| 亚洲成人一二三区av| 最近最新中文字幕大全免费视频 | 色94色欧美一区二区| 纵有疾风起免费观看全集完整版| 97在线视频观看| 成人综合一区亚洲| 色婷婷av一区二区三区视频| 老女人水多毛片| 国产精品一国产av| 欧美日韩av久久| 中文字幕人妻丝袜制服| av卡一久久| 色5月婷婷丁香| 九色成人免费人妻av| 亚洲av免费高清在线观看| 国产成人一区二区在线| 国产成人精品婷婷| 九九爱精品视频在线观看| 久久久亚洲精品成人影院| 黄色毛片三级朝国网站| 国产av一区二区精品久久| 日韩制服骚丝袜av| 国产精品国产三级国产专区5o| 中文字幕人妻丝袜制服| 黑人猛操日本美女一级片| 麻豆乱淫一区二区| 国产成人精品在线电影| 欧美精品av麻豆av| 亚洲av综合色区一区| 亚洲av综合色区一区| 天天躁夜夜躁狠狠久久av| 欧美另类一区| 亚洲精品国产av蜜桃| 天天操日日干夜夜撸| 免费观看无遮挡的男女| 久久精品熟女亚洲av麻豆精品| 国产一区二区在线观看av| 99久久精品国产国产毛片| 久久久久久久久久成人| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲国产成人一精品久久久| 亚洲激情五月婷婷啪啪| 亚洲婷婷狠狠爱综合网| 日韩成人伦理影院| 日韩三级伦理在线观看| 成年人午夜在线观看视频| 99国产精品免费福利视频| 青春草亚洲视频在线观看| 国产日韩欧美亚洲二区| 极品人妻少妇av视频| 欧美xxxx性猛交bbbb| 波野结衣二区三区在线| 欧美精品国产亚洲| 男人舔女人的私密视频| 欧美精品一区二区免费开放| 老司机亚洲免费影院| 久久久国产精品麻豆| 亚洲情色 制服丝袜| 久久久欧美国产精品| 国产 一区精品| 在线观看www视频免费| 亚洲精品aⅴ在线观看| 亚洲,一卡二卡三卡| 美女中出高潮动态图| av免费在线看不卡| 欧美成人午夜免费资源| 99香蕉大伊视频| 日韩一区二区三区影片| 高清黄色对白视频在线免费看| 午夜福利视频精品| 在线精品无人区一区二区三| 国产一区二区在线观看av| 国产亚洲av片在线观看秒播厂| 又大又黄又爽视频免费| 人妻系列 视频| 边亲边吃奶的免费视频| 嫩草影院入口| 熟女av电影| 午夜久久久在线观看| 韩国精品一区二区三区 | 国产免费又黄又爽又色| 18禁裸乳无遮挡动漫免费视频| 欧美日韩亚洲高清精品| 日韩一本色道免费dvd| 亚洲av免费高清在线观看| 亚洲国产日韩一区二区| 国产亚洲午夜精品一区二区久久| 国产老妇伦熟女老妇高清| 亚洲欧美一区二区三区黑人 | 亚洲欧美日韩卡通动漫| 久久久精品免费免费高清| 久久久久视频综合|