• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Load-Compression Relationship of Incompressible Circular Rubber Pad Bonded between Rigid Plates

    2015-12-12 08:52:18ZHENGYikanZHANGShilian
    船舶力學(xué) 2015年6期

    ZHENG Yi-kan,ZHANG Shi-lian

    (School of Naval Architecture,Ocean and Civil Engineering,Shanghai Jiao Tong University,Shanghai 200240,China)

    0 Introduction

    Rubber blocks bonded between two rigid plates have numerous engineering applications in the construction and transport industries,providing load-bearing,shock-absorption and vibration isolation.The modern automobile may have as many as 600 elastomeric components[1].The rubber components are usually rectangular blocks or circular pads,with bonded metal plates on both the upper and lower surfaces.Tsai and Lee[2]indicated the restricted lateral expansion on the bonded surfaces of the elastic layer causes higher compression stiffness,which is quite substantial for an incompressible material.As a consequence,this type of elastic mounts is widely adopted in the design of multilayered rubber bearings.

    The accurate prediction of the load-compression relationship of the reinforced elastomeric bearings is of great importance for many applications.The in-depth theoretical mechanical analysis of the component performance is especially crucial during the design stage.Gent and Lindley[3]derived the compressive stiffness of an incompressible elastic layer bonded between rigid plates for infinite-strip and circular pads.Gent and Meinecke[4]extended this method to the elastic layers for square and other shapes.Kelly developed a theoretical approach for deriving the compressive stiffness and tilting stiffness,taking the effect of bulk compressibility into consideration[5].The solutions are available for the layers of infinite-strip shape[6],circular shape[7]and square shape[8].The solutions mentioned above are based on two kinematic assumptions and one stress assumption[2].Namely,(1)Planes parallel to the rigid bounding plates remain plane and parallel;(2)Lines normal to the rigid bounding plates before deformation become parabolic after loading;(3)The normal stress components in all three directions can be approximated by the mean pressure.The third assumption is a rough approximation and does not accord with the fact.Koh and Kelly[9]derived the compression stiffness of the bonded square layer by a variable transform approach using only the kinematic assumptions.Tsai and Lee also utilized the kinematic assumptions and derived the compression stiffness of the rubber layers for infinite-strip shape,circular shape and square shape without limitation on the values of Poisson’s ratio and shape factor[2].Subsequently,Tsai and Pai[10]gave simplified forms of those formulae.

    Despite remarkable progress on the understanding of the characteristic of the compression stiffness of the reinforced rubber blocks,the derivations mentioned above are based on the linear elasticity.As a result,most of them only describe the initial stiffness of the rubber component and are not relevant to the amount of compression.However,rubber is a kind of hyperelastic material and in practice its constitutive relation is usually described by the potential function.Moreover,in real cases,the rubber components often experience finite strain rather than small strain,so the error of the above solutions may be tremendous.Lindley[11]derived a load-compression relationship for the circular rubber pad.Although it was in good agreement with the experimental results,the formula is lack of rational or continuum mechanical basis.There is also an empirical factor in the formula,which brings uncertainty to the result.Few theoretical load-deformation relationships in the literature are derived based on continuum mechanics.Klingbeil and Shield[12]proposed the theoretical load-compression relationships for the compression and tension of long rubber blocks as well as circular rubber pads based on the incompressible Mooney-Rivlin material.Following the same approach,Hill[13]derived partial solutions of finite elasticity for various situations.However,the theoretical solution of the circular rubber pads can only be acquired for the neo-Hookean and extreme Mooney materials.This puts a limitation on the practical application.

    In this paper,the load-compression relationship of the incompressible circular rubber pad bonded between rigid plates is derived.The kinematic assumptions mentioned above are adopted.The parabolic deformation shape was indicated by Koh and Kelly[9]to be a realistic assumption.The Mooney-Rivlin material is considered and the derivation is based on the continuum mechanics.The load-compression curves calculated by the derived formula were compared with the FEM solutions and the results of other existing formulae.

    1 Fundamental equations

    The circular rubber pad bonded between rigid plates is shown in Fig.1.The undeformed and deformed configurations of the rubber pad under compressive load are shown in Fig.2.The rubber pad is assumed as homogeneous,isotropic and incompressible.The undeformed radius is R0and the thickness is h.After deformation,the radius becomesand the thickness becomes λh.Here λ is the length ratio in z direction and is less than 1.0 in compression.The material and spatial cylindrical coordinates are demonstrated in Fig.2 as well,denote asandrespectively.The origins are located in the center of the circle and the mid-height of the pad.

    Fig.1 Circular rubber pads bonded between rigid plates

    Fig.2 Undeformed and deformed configurations of the rubber pad

    As mentioned above,two kinematic assumptions are adopted for this issue:planes parallel to the rigid plates remain plane and parallel and vertical lines become parabolic.Consequently,the transformation relation between the material and spatial coordinates are assumed to have the following forms:

    The inverse transformation is:

    where λ is the length ratio in z direction and α0is the relative extension in radial direction at the mid-height of the rubber pad,regarded as a first order small quantity.

    The incompressible condition requires that the volume of the rubber pad remains unchanged after deformation.If the second order small quantities are neglected,α0is found to be[3]:

    The covariant and contravariant components of the metric tensor of the material and spatial cylindrical coordinates are denoted as GAB,GAB,gij,gij,respectively.They have the following form:

    If the material and spatial coordinates are denoted byandthe deformation gradient F is defined by:

    where giand GAare covariant base vectors of}and reciprocal base vectors ofThe left Cauchy-Green deformation tensor is[14]:

    Similarly,the inverse of the left Cauchy-Green deformation tensor is:

    where cijcan be calculated by the following equation:

    Now substituting the productinto Eq.(1)and Eq.(4)by α,and define another parameter β,which is:

    Utilizing Eq.(8),Eq.(9)and Eq.(11)through Eq.(15),we can get the contravariant components of B and B-1.

    The Cauchy stress tensor of the incompressible hyperelastic material can be expressed by[14]:

    where I is the metric tensor ofis the unknown hydrostatic pressure; ψ1and ψ2are the partial derivatives of the potential function with respect to the first and second invariant of B,respectively.That is,

    For the incompressible Mooney-Rivlin material,

    Utilizing Eq.(16)through Eq.(21)and the symmetry of the stress tensor,the nonzero components of the Cauchy stress tensor are:

    The physical components of the stress tensor are identical to the above equations,except that Eq.(23)is substituted by the following equation:

    In the following sections,the physical stress components are adopted in the derivation and indicated by σij.

    2 Governing equations

    Consider the equilibrium equation in r direction and the boundary condition:

    where f1is equal to 0;r0is the radius of the rubber pad after deformation,which is a function of z.

    Differentiate the Eqs.(22),(25)and(26),we obtain:

    Once again take advantage of the assumption that α0is a first order small quantity,which means α and β are both first order small quantities.By neglecting the second order small quantities,Eqs.(29)through(31)become:

    where,by using Eqs.(7)and(14),

    Substituting Eqs.(32)through(35)into Eq.(27),we have:

    3 Solution of the governing equations

    Integrating Eq.(36)from r to r0and utilizing the boundary condition Eq.(28),we have:

    where d is the compression amount between the upper and lower surface of the rubber pad.

    From Eqs.(22)and(24),neglecting the second order small quantities,we obtain that:

    In practice,the total force acting on the rubber pad and the total compression are of most concern.As a consequence,the effective compression modulus is,on average of the volume,defined as:

    where the integral variable z has been transformed to Z to simplify the form of the integral.

    Substituting Eq.(38)into Eq.(39),Ecbecomes:

    From Eqs.(1)and(4),we have the relation:

    Take advantage of the assumption that α is first order small quantity to simplify the formula.Using Taylor’s series,it can be proved readily that the mean value of the polynomial of1+()α in Z direction equals the polynomial of the mean value of1+()α and the error is second order small quantity,namely:

    where k is an integer.Once again,from the incompressible condition,it can be derived that:

    Substituting Eq.(41)through Eq.(43)into Eq.(40),we get:

    At the beginning of the compression process,λ is approximately 1.0.Substituting 1.0 into Eq.(44)leads to:

    and the initial modulus of elasticity is:

    Moreover,for the incompressible Mooney-Rivlin material,the initial shear modulus is:

    Then Eq.(45)reduces to:

    where S is the shape factor of the circular layer.This equation is the same as the formula given by Gent and Lindley[3],which illustrates Eq.(48)is indeed the initial stiffness of the rubber component.

    Based on Eq.(48),Lindley proposed a load-compression relationship for the circular rubber pad taking finite strain into consideration[11],which is:

    where k is an empirical factor less than the theoretical value of unity and suggested to be 0.78 by Lindley.Both Eqs.(48)and(49)are adopted for comparison with Eq.(44)in the later discussion.

    4 FEM solutions and discussion

    The load-compression curves calculated by Eq.(44)were compared with the solutions of the nonlinear FEM program Abaqus,as well as the results of Eqs.(48)and(49).The FEM analysis is accomplished by using axisymmetric models and implicit algorithm.The incompressible Mooney-Rivlin material model was chosen and the hybrid stress element CAX4RH was adopted to avoid volumetric locking.Seven shape factors as shown in Tab.1 were considered with the same radius R0=200 mm.Four representative rubber materials from the engineering application,tabulated in Tab.1,were adopted in the calculation,indicated by Mat-1 through Mat-4.Among them,Mat-1 and Mat-2 have positive values of C2while Mat-3 and Mat-4 have negative values.Besides,the initial elastic modulus is much higher for Mat-2 and Mat-4.The compressive strain values,(d/h),in each calculation case are also shown in Tab.1.They are limited in a range so that the free surface is kept from contacting with the rigid plates.The maximal compression strain is 20%and it decreases with the increase of the shape factor S.

    Tab.1 Material parameters and the total compression strain used in the calculatio n

    Fig.3 and Fig.4 plot two typical load-compression curves for Mat-1 and Mat-3,with a shape factor of 0.25.It is seen that the results of Eq.(44)and the FEM fit very well while other formulae deviate from them gradually.The figures also show that Ecincreases with compres-sion.This tendency is more remarkable for Mat-1,i.e.,with a positive C2.It can be explained by subtracting Eq.(44)by Eq.(45),which leads to:

    The coefficients of C1and C2are positive since λ is less than 1.As a consequence,the term of C1makes Ecincrease with compression as C1is always positive.However,the term of C2may have the same or opposite effect depending on its sign.

    Fig.3 Load-deformation curves for Mat-1,S=0.25

    Fig.4 Load-deformation curves for Mat-3,S=0.25

    Fig.5 Effective compression modulus for Mat-1 at maximum compression

    Fig.6 Effective compression modulus for Mat-2 at maximum compression

    Similar phenomenon exists in other cases.The values of Ecat the maximum compression are plotted in Fig.5 through Fig.8.In these figures,Ecincreases significantly with the increase of S.This is because the first part of Eq.(44)is in proportion to the square of S.As expected,Eq.(44)provides the best fit to the FEM solution for all cases,irrespective of the material parameters and the shape factor.In a log-log coordinate,however,the accuracy of other formulae is not shown clearly.For this reason,the absolute value errors of all the formulae to the FEM solutions are shown in Fig.9 through Fig.12.Following observations are obtained:(1)The errors of Eq.(44)are very small and none is larger than 3.5%in all cases.(2)Eq.(48)has a low accuracy in most cases with a maximum error of 31.2%.(3)There is significant difference between the results of Eq.(49)with different values of k.When k=0.78,as suggested by Lindley,Eq.(49)provides a poor prediction of the rubber performance.When k=1,the effectiveness of Eq.(49)turned to be dominated by the sign of C2.The curves with negative C2have almost the same accuracy as Eq.(44).On the contrary,a positive C2still leads to a substantial error of over 20%.

    Fig.7 Effective compression modulus for Mat-3 at maximum compression

    Fig.8 Effective compression modulus for Mat-4 at maximum compression

    Fig.9 Absolute value error of effective compression modulus for Mat-1 at maximum compression

    Fig.10 Absolute value error of effective compression modulus for Mat-2 at maximum compression

    From the above discussing,it can be seen that the formula derived in this paper,i.e.,Eq.(44),provides a good approximation to the real effective compression modulus of incompressible Mooney-Rivlin type circular rubber pad.Although small deformation hypothesis is used for simplification in the derivation,the formula is proved valid for the finite strain situation with various shape factors.Eq.(48)and Eq.(49)are not as effective as Eq.(44)for the low accuracy or the sensitivity of the material parameters or the uncertainty brought by the empirical coefficient.

    Fig.11 Absolute value error of effective compression modulus for Mat-3 at maximum compression

    Fig.12 Absolute value error of effective compression modulus for Mat-4 at maximum compression

    5 Conclusions

    The load-compression relationship of the incompressible Mooney-Rivlin type circular rubber pad bonded between rigid plates is derived in this paper.The derivation is based on two kinematics assumptions,i.e.horizontal planes remain plane and vertical lines become parabolic after deformation.Different from most previous research where linear elasticity is utilized,the hyper-elastic Mooney-Rivlin type material is considered and the derivation complies with the theory of continuum mechanics.

    The theoretical solution,i.e.,Eq.(44),is obtained for this problem.The effective compression modulus is calculated on the average of the volume and the small deformation hypothesis is used for simplification.The comparison of the results to the FEM results shows the formula proposed has a very good accuracy in predicting the behavior of the circular rubber pad with various shape factors,even for the finite strain situation.

    The advantages of Eq.(44)are:(1)It has a simple form to use and the accuracy is very high;(2)It is based on the Mooney-Rivlin type material rather than linear elastic material,which means a wider engineering application range;(3)It can provide a prediction of the loadcompression relationship of the rubber block for the finite strain situation.

    [1]Morman K N,Pan T Y.Application of finite-element analysis in the design of automotive elastomeric components[J].Rubber Chem.Tech.,1988,61:503-533.

    [2]Tsai H C,Lee C C.Compressive stiffness of elastic layers bonded between rigid plates[J].International Journal of Solids and Structures,1998,35:3053-3069.

    [3]Gent A N,Lindley P B.The compression of bonded rubber blocks[J].Proceeding of the Institution of Mechanical Engineers,1959,173:111-117.

    [4]Gent A N,Meinecke E A.Compression,bending and shear of bonded rubber blocks[J].Polymer Engineering and Sciences,1970,10:48-53.

    [5]Kelly J M.Earthquake-resistant design with rubber[M].London:Springer,1993.

    [6]Chalhoub M S,Kelly J M.Analysis of infinite-strip-shaped base isolator with elastomer bulk compression[J].Journal of Engineering Mechanics ASCE,1991,117:1791-1805.

    [7]Chalhoub M S,Kelly J M.Effect of bulk compressibility on the stiffness of cylindrical base isolation bearings[J].International Journal of Solids and Structures,1990,26:734-760.

    [8]Koh C G,Kelly J M.Effects of axial load on elastomeric isolation bearings[R].Report no.UCB/EERC-86/12,Berkeley:Earthquake Engineering Research Center,University of California,1987.

    [9]Koh C G,Kelly J M.Compression stiffness of bonded square layers of nearly incompressible material[J].Engineering Structures,1989,11:9-15.

    [10]Tsai H C,Pai W J.Simplified stiffness formulae for elastic layers bonded between rigid plates[J].Engineering Structures,2003,25:1443-1454.

    [11]Lindley P B.Load-compression relationships of rubber units[J].J Strain Anal.,1966,1:190-195.

    [12]Klingbeil W W,Shield R T.Large-deformation analyses of bonded elastic mounts[J].Z.Angew.Math.Phys,1966,17:281-305.

    [13]Hill J M.A review of partial solutions of finite elasticity and their applications[J].International Journal of Non-Linear Mechanics,2001,36:447-463.

    [14]Huang Z P.Fundamentals of continuum mechanics[M].Beijing:Higher Education Press,2011.

    久久久精品94久久精品| 少妇粗大呻吟视频| 国产免费av片在线观看野外av| 久久国产精品大桥未久av| 久久性视频一级片| 成人18禁在线播放| 热99国产精品久久久久久7| 亚洲伊人色综图| 捣出白浆h1v1| 女警被强在线播放| 国精品久久久久久国模美| 又紧又爽又黄一区二区| 亚洲,欧美精品.| 电影成人av| 首页视频小说图片口味搜索| 欧美人与性动交α欧美软件| av天堂在线播放| 大香蕉久久网| 99香蕉大伊视频| 91大片在线观看| 九色亚洲精品在线播放| 热99久久久久精品小说推荐| 麻豆av在线久日| 午夜激情久久久久久久| 国产精品99久久99久久久不卡| 欧美精品高潮呻吟av久久| 国产精品自产拍在线观看55亚洲 | 免费不卡黄色视频| 亚洲av成人一区二区三| 91成人精品电影| 在线 av 中文字幕| av在线播放免费不卡| 少妇裸体淫交视频免费看高清 | 黑丝袜美女国产一区| 午夜老司机福利片| 欧美乱码精品一区二区三区| 少妇精品久久久久久久| 欧美在线一区亚洲| 亚洲精品国产色婷婷电影| a级毛片黄视频| 精品国产一区二区三区四区第35| 久久久久久久久久久久大奶| 成人18禁高潮啪啪吃奶动态图| 麻豆成人av在线观看| 人妻 亚洲 视频| 久久久久久久久久久久大奶| 黄片播放在线免费| 999久久久国产精品视频| 欧美日本中文国产一区发布| 成人黄色视频免费在线看| 91老司机精品| 亚洲 国产 在线| 岛国毛片在线播放| 亚洲伊人久久精品综合| 国产精品熟女久久久久浪| 国产一区有黄有色的免费视频| 91av网站免费观看| 国产精品免费大片| 天堂俺去俺来也www色官网| 他把我摸到了高潮在线观看 | 日韩欧美国产一区二区入口| 国产在线免费精品| 桃花免费在线播放| 曰老女人黄片| 欧美激情 高清一区二区三区| 最新的欧美精品一区二区| 正在播放国产对白刺激| 亚洲精品中文字幕在线视频| 亚洲成av片中文字幕在线观看| 桃红色精品国产亚洲av| 我的亚洲天堂| 久久婷婷成人综合色麻豆| 亚洲成av片中文字幕在线观看| tocl精华| 大片免费播放器 马上看| 成人国产一区最新在线观看| 国产亚洲精品久久久久5区| 国产精品亚洲av一区麻豆| 国产成+人综合+亚洲专区| 免费黄频网站在线观看国产| 久久人妻熟女aⅴ| 老司机午夜福利在线观看视频 | 人人妻人人澡人人爽人人夜夜| 亚洲人成伊人成综合网2020| 欧美 亚洲 国产 日韩一| 欧美av亚洲av综合av国产av| 国产精品久久久久久人妻精品电影 | 亚洲色图av天堂| 在线亚洲精品国产二区图片欧美| 免费观看av网站的网址| 一本—道久久a久久精品蜜桃钙片| 久久精品亚洲精品国产色婷小说| 精品国产一区二区三区四区第35| 久久九九热精品免费| 一级毛片女人18水好多| 涩涩av久久男人的天堂| 一级片免费观看大全| 一级片'在线观看视频| 精品高清国产在线一区| 老熟妇乱子伦视频在线观看| 欧美 日韩 精品 国产| 国产精品久久久人人做人人爽| 成年人免费黄色播放视频| 18在线观看网站| 久久久久国产一级毛片高清牌| netflix在线观看网站| 亚洲精品中文字幕在线视频| 宅男免费午夜| 天天添夜夜摸| 久久这里只有精品19| 啦啦啦中文免费视频观看日本| 日韩一区二区三区影片| 久久狼人影院| 国产av精品麻豆| 欧美日韩福利视频一区二区| 日本撒尿小便嘘嘘汇集6| 久久国产精品人妻蜜桃| 在线 av 中文字幕| 亚洲第一av免费看| 国产一区二区激情短视频| 一个人免费在线观看的高清视频| 高清黄色对白视频在线免费看| 日本av免费视频播放| 色综合欧美亚洲国产小说| 国产精品电影一区二区三区 | 亚洲色图av天堂| 午夜福利视频在线观看免费| 19禁男女啪啪无遮挡网站| 一边摸一边抽搐一进一小说 | av一本久久久久| 高清欧美精品videossex| 三上悠亚av全集在线观看| 一区二区日韩欧美中文字幕| 国产精品成人在线| 老司机深夜福利视频在线观看| 国产精品香港三级国产av潘金莲| 视频在线观看一区二区三区| 亚洲成人手机| 久久久欧美国产精品| 麻豆国产av国片精品| 丝袜美足系列| 国产av一区二区精品久久| 欧美精品一区二区免费开放| 亚洲欧美一区二区三区久久| 国产真人三级小视频在线观看| 亚洲av国产av综合av卡| 王馨瑶露胸无遮挡在线观看| 日韩 欧美 亚洲 中文字幕| 高清毛片免费观看视频网站 | 久9热在线精品视频| 热re99久久国产66热| 亚洲欧美色中文字幕在线| 久久精品成人免费网站| 亚洲av成人一区二区三| 18禁国产床啪视频网站| 亚洲国产av影院在线观看| kizo精华| 久久这里只有精品19| 女性被躁到高潮视频| 国产不卡av网站在线观看| 久久香蕉激情| 丰满少妇做爰视频| 宅男免费午夜| 中文字幕色久视频| 国产精品久久久久久精品古装| 性高湖久久久久久久久免费观看| 色综合欧美亚洲国产小说| 一区二区三区激情视频| 18禁美女被吸乳视频| svipshipincom国产片| 妹子高潮喷水视频| 亚洲国产精品一区二区三区在线| 免费在线观看日本一区| 日韩 欧美 亚洲 中文字幕| 国产精品成人在线| 我要看黄色一级片免费的| 日韩欧美一区二区三区在线观看 | 婷婷丁香在线五月| 纯流量卡能插随身wifi吗| 少妇裸体淫交视频免费看高清 | 波多野结衣一区麻豆| 成人永久免费在线观看视频 | 一级毛片精品| 两个人免费观看高清视频| 欧美人与性动交α欧美精品济南到| 高清欧美精品videossex| 亚洲第一青青草原| 中文字幕色久视频| 18禁观看日本| 99riav亚洲国产免费| 国产成人免费无遮挡视频| 日本欧美视频一区| 99热国产这里只有精品6| 欧美性长视频在线观看| 天堂动漫精品| 中文字幕色久视频| 91字幕亚洲| 人成视频在线观看免费观看| 9191精品国产免费久久| 欧美黑人欧美精品刺激| 色综合欧美亚洲国产小说| 国产一区二区三区视频了| 国产av精品麻豆| 成人18禁高潮啪啪吃奶动态图| 精品人妻1区二区| 最近最新免费中文字幕在线| 一本大道久久a久久精品| 亚洲av美国av| 欧美一级毛片孕妇| 伊人久久大香线蕉亚洲五| 久久久久久久久久久久大奶| 亚洲中文日韩欧美视频| 美女高潮喷水抽搐中文字幕| 一级片'在线观看视频| 女人被躁到高潮嗷嗷叫费观| 夜夜爽天天搞| 午夜福利影视在线免费观看| 成年人免费黄色播放视频| 老司机福利观看| 一边摸一边做爽爽视频免费| 黄频高清免费视频| av国产精品久久久久影院| 国产日韩欧美在线精品| 国产成人av教育| 国产精品99久久99久久久不卡| videosex国产| 精品一区二区三区av网在线观看 | 精品国产一区二区久久| 蜜桃国产av成人99| 久久久久久久久久久久大奶| 超碰成人久久| 老司机影院毛片| 国产aⅴ精品一区二区三区波| 男女午夜视频在线观看| tocl精华| 国产精品98久久久久久宅男小说| 精品免费久久久久久久清纯 | 日韩免费av在线播放| 日韩人妻精品一区2区三区| 精品卡一卡二卡四卡免费| 国产精品国产av在线观看| 99久久精品国产亚洲精品| 在线观看www视频免费| 中文字幕另类日韩欧美亚洲嫩草| 国产成人免费无遮挡视频| 久久精品国产亚洲av香蕉五月 | 久久精品亚洲精品国产色婷小说| 精品人妻熟女毛片av久久网站| 大片电影免费在线观看免费| 91成人精品电影| 亚洲天堂av无毛| 老熟妇乱子伦视频在线观看| 国内毛片毛片毛片毛片毛片| 美女福利国产在线| 捣出白浆h1v1| 青青草视频在线视频观看| 美女午夜性视频免费| av福利片在线| 热re99久久精品国产66热6| 18禁美女被吸乳视频| 丁香六月欧美| 男女床上黄色一级片免费看| 黄色丝袜av网址大全| 国产野战对白在线观看| 黄色片一级片一级黄色片| 亚洲五月色婷婷综合| 久久人妻熟女aⅴ| 久久国产亚洲av麻豆专区| 1024香蕉在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲专区中文字幕在线| 国产黄色免费在线视频| 国产成+人综合+亚洲专区| 啦啦啦 在线观看视频| 久久久精品94久久精品| 国产主播在线观看一区二区| 大片电影免费在线观看免费| 国产野战对白在线观看| 一级,二级,三级黄色视频| 最近最新中文字幕大全电影3 | 久久久精品国产亚洲av高清涩受| 侵犯人妻中文字幕一二三四区| 色94色欧美一区二区| 国产亚洲午夜精品一区二区久久| 一区二区三区激情视频| 欧美日韩亚洲综合一区二区三区_| 91大片在线观看| 在线亚洲精品国产二区图片欧美| 亚洲精品中文字幕一二三四区 | 在线永久观看黄色视频| 91国产中文字幕| 99精品在免费线老司机午夜| 日韩视频在线欧美| 超色免费av| 亚洲成人手机| 国产91精品成人一区二区三区 | 搡老岳熟女国产| 国产欧美日韩一区二区精品| 亚洲va日本ⅴa欧美va伊人久久| 99re6热这里在线精品视频| 中文字幕色久视频| 日本黄色视频三级网站网址 | 亚洲精华国产精华精| 99精品在免费线老司机午夜| 午夜福利视频在线观看免费| 久久国产精品大桥未久av| 久久影院123| 国产野战对白在线观看| 免费观看av网站的网址| 亚洲精品乱久久久久久| a级毛片黄视频| 久久av网站| 热99re8久久精品国产| 高清欧美精品videossex| 国产精品久久久人人做人人爽| av福利片在线| 又黄又粗又硬又大视频| 考比视频在线观看| 99热国产这里只有精品6| 国产精品熟女久久久久浪| 亚洲第一青青草原| 国产精品秋霞免费鲁丝片| 手机成人av网站| 亚洲成av片中文字幕在线观看| 最新在线观看一区二区三区| 亚洲欧美激情在线| 久久精品成人免费网站| 麻豆乱淫一区二区| 亚洲人成电影观看| 日韩一区二区三区影片| 久久精品亚洲av国产电影网| 另类精品久久| 免费观看a级毛片全部| 精品国产亚洲在线| 免费人妻精品一区二区三区视频| 一边摸一边做爽爽视频免费| 久久性视频一级片| 欧美亚洲日本最大视频资源| 99香蕉大伊视频| 欧美亚洲日本最大视频资源| 中文字幕人妻熟女乱码| 老熟妇仑乱视频hdxx| 高清毛片免费观看视频网站 | 黄片小视频在线播放| 亚洲国产欧美一区二区综合| 91老司机精品| 男女午夜视频在线观看| 十八禁网站网址无遮挡| tocl精华| 亚洲va日本ⅴa欧美va伊人久久| 亚洲av美国av| 国产区一区二久久| 午夜两性在线视频| 丝袜美腿诱惑在线| 久久热在线av| 午夜福利视频在线观看免费| 国产精品成人在线| 我要看黄色一级片免费的| 亚洲男人天堂网一区| av片东京热男人的天堂| 在线观看66精品国产| 国产一区二区三区在线臀色熟女 | 久久人妻福利社区极品人妻图片| 成人永久免费在线观看视频 | 欧美成人午夜精品| 欧美成狂野欧美在线观看| 亚洲精品在线美女| av福利片在线| 精品亚洲乱码少妇综合久久| 女人精品久久久久毛片| 国产日韩欧美亚洲二区| 精品欧美一区二区三区在线| 欧美黑人精品巨大| 国产人伦9x9x在线观看| 久久av网站| 淫妇啪啪啪对白视频| 精品乱码久久久久久99久播| 青青草视频在线视频观看| 91精品三级在线观看| 怎么达到女性高潮| 久久久国产精品麻豆| 91精品国产国语对白视频| 欧美日韩中文字幕国产精品一区二区三区 | 在线观看66精品国产| 久久精品成人免费网站| 超碰97精品在线观看| 日本av免费视频播放| 老司机靠b影院| 欧美成狂野欧美在线观看| 在线观看www视频免费| 国产av又大| 老司机靠b影院| 精品熟女少妇八av免费久了| 97在线人人人人妻| 亚洲综合色网址| 亚洲第一av免费看| 高清在线国产一区| 一本一本久久a久久精品综合妖精| 91老司机精品| 午夜福利免费观看在线| 国产1区2区3区精品| 色94色欧美一区二区| 丝袜美足系列| 亚洲欧美一区二区三区黑人| 色老头精品视频在线观看| 久久亚洲真实| 天堂俺去俺来也www色官网| 亚洲熟女精品中文字幕| 黑人巨大精品欧美一区二区蜜桃| 亚洲伊人久久精品综合| 精品一区二区三卡| 亚洲欧洲日产国产| a级片在线免费高清观看视频| 成人18禁高潮啪啪吃奶动态图| 黄片小视频在线播放| 久久99热这里只频精品6学生| 黄色视频不卡| 日韩免费高清中文字幕av| 肉色欧美久久久久久久蜜桃| 九色亚洲精品在线播放| tocl精华| 97在线人人人人妻| 免费久久久久久久精品成人欧美视频| 黄片小视频在线播放| 亚洲 欧美一区二区三区| 国产免费现黄频在线看| 又黄又粗又硬又大视频| 午夜福利在线观看吧| 热re99久久精品国产66热6| 日韩有码中文字幕| 少妇精品久久久久久久| 在线播放国产精品三级| 久久久水蜜桃国产精品网| 亚洲成人手机| 99国产精品一区二区蜜桃av | 宅男免费午夜| 91精品国产国语对白视频| 久久中文字幕一级| 亚洲精品一卡2卡三卡4卡5卡| 99riav亚洲国产免费| 亚洲国产欧美日韩在线播放| 女人精品久久久久毛片| 人妻 亚洲 视频| 天堂8中文在线网| 国产三级黄色录像| 天天躁夜夜躁狠狠躁躁| 国产成人一区二区三区免费视频网站| 亚洲第一av免费看| 制服人妻中文乱码| videosex国产| 美女国产高潮福利片在线看| 久久九九热精品免费| 嫩草影视91久久| 中文字幕色久视频| 亚洲成人国产一区在线观看| 一级毛片精品| 狠狠狠狠99中文字幕| 亚洲精品成人av观看孕妇| 国产欧美日韩一区二区精品| 色在线成人网| 亚洲精品国产色婷婷电影| 欧美日本中文国产一区发布| 久久精品亚洲精品国产色婷小说| 中国美女看黄片| 欧美亚洲日本最大视频资源| 成人国产av品久久久| 一级片'在线观看视频| 亚洲精品一二三| 黄色毛片三级朝国网站| 亚洲av日韩在线播放| 久久国产精品影院| 69精品国产乱码久久久| 亚洲国产毛片av蜜桃av| 成人影院久久| 人人妻人人澡人人爽人人夜夜| 老司机亚洲免费影院| 久久免费观看电影| 午夜精品国产一区二区电影| 成年女人毛片免费观看观看9 | 亚洲熟女毛片儿| 一进一出抽搐动态| 天天影视国产精品| 久久人人爽av亚洲精品天堂| 99精国产麻豆久久婷婷| 久久国产精品影院| 国产国语露脸激情在线看| tube8黄色片| 伦理电影免费视频| 亚洲精品国产精品久久久不卡| 又黄又粗又硬又大视频| 黄片大片在线免费观看| 精品人妻1区二区| 国产亚洲午夜精品一区二区久久| 黄色视频不卡| 国产老妇伦熟女老妇高清| 国产精品偷伦视频观看了| 91字幕亚洲| av网站在线播放免费| 亚洲av美国av| 成人永久免费在线观看视频 | 日韩欧美国产一区二区入口| 夫妻午夜视频| 日韩熟女老妇一区二区性免费视频| 老司机亚洲免费影院| 久久九九热精品免费| 国产日韩欧美亚洲二区| 久久午夜综合久久蜜桃| 午夜福利在线免费观看网站| 欧美日韩精品网址| 18禁黄网站禁片午夜丰满| 天天影视国产精品| 日本av手机在线免费观看| 国产亚洲精品久久久久5区| 亚洲三区欧美一区| 最新在线观看一区二区三区| 亚洲第一青青草原| 国产成+人综合+亚洲专区| 高清毛片免费观看视频网站 | 高清欧美精品videossex| 嫁个100分男人电影在线观看| 亚洲伊人色综图| 丰满人妻熟妇乱又伦精品不卡| 亚洲中文av在线| 老熟妇乱子伦视频在线观看| 99热国产这里只有精品6| 国产精品香港三级国产av潘金莲| 一级毛片精品| 母亲3免费完整高清在线观看| 三上悠亚av全集在线观看| 亚洲精品国产一区二区精华液| 在线天堂中文资源库| 五月天丁香电影| 男人操女人黄网站| 天天影视国产精品| av国产精品久久久久影院| 久久99一区二区三区| 少妇粗大呻吟视频| 欧美另类亚洲清纯唯美| 国产欧美日韩精品亚洲av| 欧美性长视频在线观看| 欧美人与性动交α欧美精品济南到| 午夜免费成人在线视频| 伦理电影免费视频| 久久中文字幕一级| 不卡一级毛片| av又黄又爽大尺度在线免费看| 国产欧美日韩精品亚洲av| 女性被躁到高潮视频| 午夜精品久久久久久毛片777| 日韩 欧美 亚洲 中文字幕| 啦啦啦在线免费观看视频4| 国产福利在线免费观看视频| 在线亚洲精品国产二区图片欧美| www.精华液| 一个人免费在线观看的高清视频| 欧美成人午夜精品| 一本色道久久久久久精品综合| 亚洲,欧美精品.| 超碰成人久久| 欧美日韩一级在线毛片| av欧美777| 色综合婷婷激情| 18在线观看网站| 久久久国产欧美日韩av| 高潮久久久久久久久久久不卡| 91成年电影在线观看| 免费在线观看视频国产中文字幕亚洲| 亚洲精华国产精华精| 黄色 视频免费看| 久久国产精品男人的天堂亚洲| 日韩大片免费观看网站| 国产精品国产av在线观看| 免费在线观看日本一区| 天堂动漫精品| 丰满少妇做爰视频| 日韩人妻精品一区2区三区| 精品少妇一区二区三区视频日本电影| 欧美日韩成人在线一区二区| www.自偷自拍.com| 亚洲综合色网址| 国产精品免费一区二区三区在线 | 国产色视频综合| 亚洲av成人不卡在线观看播放网| 精品午夜福利视频在线观看一区 | 亚洲天堂av无毛| 精品亚洲成国产av| 午夜久久久在线观看| 一区福利在线观看| 精品第一国产精品| 国产亚洲欧美在线一区二区| 无限看片的www在线观看| 色精品久久人妻99蜜桃| 悠悠久久av| 成人国产av品久久久| 欧美人与性动交α欧美精品济南到| 日韩欧美国产一区二区入口| 欧美成人免费av一区二区三区 | 少妇精品久久久久久久| 成人18禁在线播放| 日本黄色日本黄色录像| 午夜福利影视在线免费观看| 国产精品 国内视频| 欧美日韩黄片免| e午夜精品久久久久久久| 一区二区日韩欧美中文字幕| 99精品在免费线老司机午夜| 久久中文字幕人妻熟女| 午夜激情av网站| 久久香蕉激情| 国产一区有黄有色的免费视频| 久久ye,这里只有精品| 国产在线免费精品| 欧美精品啪啪一区二区三区| 亚洲五月婷婷丁香| 涩涩av久久男人的天堂|