• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Analytical design of effective thermal conductivity for fluid-saturated prismatic cellular metal honeycombs

    2016-11-14 03:41:41WenbinWngXiohuYngBinHnQinchengZhngXingfeiWngTinjinLu

    Wenbin Wng,Xiohu Yng,b,Bin Hn,c,Qincheng Zhng,d,?,Xingfei Wng,Tinjin Lu,d,?

    aMOE Key Laboratory for Multifunctional Materials and Structures,Xi’an Jiaotong University,Xi’an 710049,China

    bDepartment of Building Environment and Energy Engineering,Xi’an Jiaotong University,Xi’an 710049,China

    cSchool of Mechanical Engineering,Xi’an Jiaotong University,Xi’an 710049,China

    dState Key Laboratory for Strength and Vibration of Mechanical Structures,Xi’an Jiaotong University,Xi’an 710049,China

    Analytical design of effective thermal conductivity for fluid-saturated prismatic cellular metal honeycombs

    Wenbin Wanga,Xiaohu Yanga,b,Bin Hana,c,Qiancheng Zhanga,d,?,Xiangfei Wanga,Tianjian Lua,d,?

    aMOE Key Laboratory for Multifunctional Materials and Structures,Xi’an Jiaotong University,Xi’an 710049,China

    bDepartment of Building Environment and Energy Engineering,Xi’an Jiaotong University,Xi’an 710049,China

    cSchool of Mechanical Engineering,Xi’an Jiaotong University,Xi’an 710049,China

    dState Key Laboratory for Strength and Vibration of Mechanical Structures,Xi’an Jiaotong University,Xi’an 710049,China

    H i G H L i G H T s

    ?Modeled effective thermal conductivity(ETC)of prismatic cellular metal honeycombs(PCMHs)with a wider porosity range(0.7~0.98).

    ?Proposed ligament thermal conduction efficiency(LTCE)to analyze the influence of ligament inclined angle.

    ?Utilized equivalent interaction angle(EIA)to assess the overall heat conduction ability of honeycombs.

    ?Optimized the design for either heat conduction or insulation applications.

    A R T i C L Ei N F O

    Article history:

    14 January 2016

    Accepted 19 January 2016

    Available online 20 February 2016

    Effective thermal conductivity

    Prismatic cellular metal honeycomb

    Ligament heat conduction efficiency

    Analytical design

    Equivalent interaction angle

    A comparative optimal design of fluid-saturated prismatic cellular metal honeycombs(PCMHs)having different cell shapes is presented for thermal management applications.Based on the periodic topology of each PCMH,a unit cell(UC)for thermal transport analysis was selected to calculate its effective thermal conductivity.Without introducing any empirical coefficient,we modified and extended the analytical model of parallel-series thermal-electric network to a wider porosity range(0.7~0.98)by considering the effects of two-dimensional local heat conduction in solid ligaments inside each UC.Good agreement was achieved between analytical predictions and numerical simulations based on the method of finite volume.The concept of ligament heat conduction efficiency(LTCE)was proposed to physically explain the mechanisms underlying the effects of ligament configuration on effective thermal conductivity(ETC). Based upon the proposed theory,a construct strategy was developed for designing the ETC by altering the equivalent interaction angle with the direction of heat flow:relatively small average interaction angle for thermal conduction and relatively large one for thermal insulation.

    ?2016 The Authors.Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.This is an open access article under the CC BY-NC-ND license(http:// creativecommons.org/licenses/by-nc-nd/4.0/).

    Prismatic cellular metal honeycombs(PCMHs),as one kind of multifunctional lattice frame materials(LFMs),are of considerable interest in practical applications for their excellent performance in load bearing,acoustic/vibration damping,and thermal management[1-3].Generally,an interconnected network of solid struts and plates,as PCMH edges and faces,is integrated inside which a number of periodic prismatic voids arranged in one particular direction are formed.Through topological design of cell size and distributions,distinct cellular architectures as shown in Fig.1 may be constructed.Not only high specific stiffness/strength[4],but also multifunctional designs can be achieved with such PCMHs. For instance,in situations where a structure needs to carry simultaneously mechanical and thermal loads[5-8],PCMHs can be employed for active cooling applications such as multi-chip cooling(Fig.1(o))and jet blast deflecting[3].Alternatively,when the forced convective flow is stagnant[9,10],PCMHs may act as thermal insulation in thermal protection designs,e.g.,the skin layer of a re-entry vehicle.For these applications,it is essential to achieve distinctive target thermal function,either heat dissipation or insulation,via topological design.

    For heat dissipation/insulation applications,the effective thermal conductivity(ETC)of PCMH is a key material property.To estimate the ETC of PCMH saturated with different kinds of fluids(e.g.,air,water,or refrigerant),it is unlikely to employ conventional analytical approaches based on idealized assumptions,such as random homogenization[11]and phase symmetrical distribution[12],to obtain satisfactory predictions due to the complicated and heterogeneous topology of PCMH.Rather,resistance analysis of thermal-electrical networks shows flexible applicability,which has been recently applied to analyze thermal transport in a variety of porous materials,including open-or closed-cell foams[12-15],sintered metal fiber networks[16]and honeycombs[10,17].For example,based on the idealized non-twisted geometric model for wire-woven bulk Kagome(WBK)structures,Yang et al.[12]developed an analytical ETC model based on one-dimensional(1D)conduction for high porosity(>0.9)air-saturated WBK sandwiches,and empirically correlated the anisotropic ETC behavior of WBK using numerical simulations.However,few studies have been conducted either on ETC prediction for a wide range of PCMHs or thermal design of PCMHs having different functionalities.Besides,as most LFMs(including the PCMHs considered here)exhibit anisotropic topologies and a wide range of porosity,existing ETC models for porous media need to be revisited.Further,there is insufficient physical insight into thermal transport in such materials as well as the mechanisms of pore-level heat transport.

    Fig.1.Cross-sectional view of PCHMs with different cell shapes:(a)square honeycomb-I;(b)square honeycomb-II;(c)uniform hexagonal honeycomb;(d)non-uniform hexagonal honeycomb;(e)diamond honeycomb-I;(f)diamond honeycomb-II;(g)diamond honeycomb-III;(h)diamond honeycomb-IV;(i)triangular honeycomb;(j)multilayered corrugations;(k)mixed triangular-square honeycomb;(l)Kagome-I;(m)Kagome-II;(n)Kagome-III;(o)schematic of multi-layered corrugated core heat exchanger for multi-chip cooling application.

    This study aims to calculate the ETCs of fourteen different types of fluid-saturated PCMH using a combined approach of analytical modeling and numerical simulation.The PCMHs are divided into layers so that the parallel model can be applied to explore the detailed mechanisms of solid-fluid heat exchange in each layer.Subsequently,to capture local two-dimensional(2D)heat conduction,these layers are treated with the series model using a simplistic approximate method.Further,to physically explain the mechanisms underlying the effect of ligament configuration on ETC,the concept of ligament heat conduction efficiency is proposed.

    With reference to Fig.2(a),consider a porous medium(e.g.,multi-layer corrugated panel)with periodical ligaments immergedinalowconductingfluidphase.Becauseofsymmetry,only one half of a whole corrugated cell is selected.The conventional series model of thermal-electric resistance model[18]takes theform of

    Fig.2.(a)Schematic of heat conduction process in multi-layer corrugated panel and(b)approximate model for 2D local heat conduction.θis inclination angle.

    where kedenotes the ETC of PCMH,and ke,1,ke,2,...,ke,nare the ETC of each layer(hi)which can be calculated using the parallel model of thermal-electric resistance,as

    Here,ksandkfarethethermalconductivitiesofsolidligamentsand saturating fluid,respectively;Vi,sand Viare the ligament-occupied volume and the volume of the total layer,respectively.

    BeforetakingfurtheractiontodeveloptheanalyticalETCmodel for PCMHs,the principle task is to determine the thermo-physical mechanisms underlying heat flow in both fluid and solid media. In general,depending upon the ratio of solid conductivity to fluid conductivity,there mainly exist three different mechanisms:(a)when ks? kf,heat conduction in solid flows along the solidligaments,while it flows perpendicular to the heating and cooling surfaces in fluid;(b)when ksand kfare comparable,heat flow is homogenized in the PCMH;(c)when ks? kf,heat flow in fluid becomes dominant,flowing approximately perpendicular to solid ligaments.Therefore,for porous metallic materials such as PCMHs,the thermal conductivity of solid ligaments is significantly larger than that of the saturating fluid,e.g.,ks/kf> 8000 and ks/kf>300 for air-and water-saturated aluminum PCMHs,respectively. As a result,heat flow in such PCMHs is mainly transported along the tortuous aluminum ligaments.Consequently,according to the Fourier law of heat conduction,a modified ETC for each layer of the PCMH is given by

    Based on the theory as outlined above,further analysis is needed to account for different cell distributions.As shown in Fig.2(a)for multi-layer corrugation,with the face sheet selected as layer 1,the direction of heat flow is perpendicular to it since constant temperature is imposed,and ke,1is equal to ksin this layer.In layer 2,heat mainly flows along the solid ligaments,but at the joint that connects different ligaments,local 2D conduction exists due to sudden change in heat conduction area.The effect of local2DconductionisnotsignificantforhighporosityPCMHs(ε>0.9).However,for lower porosity levels(0.7~0.9),the 2D effect on ETC is no longer negligible because the 2D effect increases with increasing joint section volume as the porosity is reduced.Because of the intrinsic complexity of calculating analytically the 2D effect,a numerical method can be utilized to decide the integration of heat conduction distance[19].To this end,a series of numerical simulations are carried out to estimate the integral mean thermal path through the‘corner’(local 2D conduction area).It is found that the equivalent heat conduction area and distance may be approximately determined by the middle line of the cross-section at the corner,e.g.,isothermals and heat flux of specific triangular case as illustrated in Fig.2(b).Therefore,the ETC of layer 2 may be expressed as

    In the third layer,because of its unique topology and the big differenceofETCbetweensolidandfluid,heatflowsperpendicular to the x-direction.Based on such characteristics of heat flow,ETC in this layer may be determined as

    Similarly,the rest of layers can all be treated.Substituting the ETCs of these layers into Eq.(1)gives the final prediction of ETC for a multi-layer corrugated panel.

    Next,to determine an optimal topology with high/low thermal conductivity along the x-direction of Fig.1,fourteen PCMHs with different distributions of cell shape and cell size are analyzed. These PCMHs may be fabricated using a variety of methods,such as assembling slotted sheets,bonding corrugated plates,direct extrusion,and thermal chemical processing[20-22].In the method of slotted sheets assembling,electro-discharge machining(EDM)is firstly applied to slot thin metal strips,which are thenglued or brazed together.Honeycombs with flat edges,such as square honeycomb and diamond structures,can be fabricated by this method.However,panels with bent edges like corrugated panels are typically processed by preparing corrugated plates first,followed by stacking these plates to form multi-layer structures. The extrusion and thermal chemical methods are usually utilized to process PCMHs in a single step.In Fig.1,the prismatic cellular materials all possess cell ligaments with uniform thickness except for the square honeycomb in Fig.1(d)that has two double thickness walls.Detailed expressions of ETC prediction for PCMHs are listed in Table 1.

    Fig.3.Boundary conditions and mesh details for multi-layer corrugated panel.

    To validate the analytical model and to further explore the physical process of heat transport in prismatic cellular materials,numerical simulations are carried out using the finite volume method(FVM)embedded into the commercially available software ANSYS-Fluent 14.5.Solid geometries for different PCMHs generated with SolidWorks are first meshed in ANSYS-ICEM 14.5 and then exported to ANSYS-Fluent 14.5 for steady-state heat conduction analysis.For illustration,F(xiàn)ig.3 depicts the boundary conditions and mesh details for a multi-layer corrugated panel. Constant temperature boundary conditions are applied on the upper and lower faces,while the other four faces are taken as symmetrical.

    Before proceeding further,a validation process is conducted. The ETCs of uniform hexagonal and triangular honeycombs are analytically modeled and numerically simulated,respectively.A comparison is made between the present predictions and the published numerical data[23].It is established that the present numerical analysis can not only reproduce existing simulation results(with a maximum deviation within 3.0%)but also achieve good agreement with the analytical predictions.

    Subsequently,analytical and numerical analyses are performed for the architectures shown in Fig.1 to explore the physical mechanismsofheatconductionindifferentPCMHs.Porosity,atthe first place,is considered to be a key factor in determining the ETC. Relatively high porosities in the range of 0.7~0.98 are considered,since the PCMHs within this porosity range have been extensively investigated for their high specific stiffness and strength.

    For square-I,square-II,uniform and non-uniform hexagon honeycombs,once porosity is determined,cell distribution is correspondingly decided.However,for the remaining PCMH structures of Fig.1,porosity is related to inclination angle of ligaments and ligament aspect ratio(t/l).To preclude the influence of inclination angle and to address specifically the effect of porosity,all the inclination angles are fixed at 60°.It can be observed from Fig.4 that,for all the structures considered,the ETC in either x-or y-direction increases with decreasing porosity.It needs to be pointed out thatthe ETCs are not linearly correlated with porosity.For sufficiently high porosities(ε>0.9),previous investigations[10,17]showed that the ETC exhibits a linear relationship with porosity,for heat conduction in thin solid ligaments could be approximately treated as 1D conduction.As the porosity is reduced,however,2D conduction in solid ligaments becomes remarkable.For instance,when the porosity is reduced to~0.7,ignoring such 2D heat conduction brings~20%deviation in ETC prediction.The effect of 2D heat con-duction on ETC prediction has been accounted for by the present model.Dividing a PCMH structure into sub-layers enables accurate depiction of heat conduction in each layer and efficient consideration of thermal interaction between fluid and solid.Besides,the concept of equivalent heat conduction distance and area proposedinthepresentstudyaccountsforlocalthermalconductionin solid,hence achieving a more accurate prediction(less than 4.6%)in comparison with the conventional 1D model.

    Table 1 Porosity(ε)and relevant items in Eqs.(1)and(3)for ETC along x-direction of selected PCMHs.

    Fig.4.Analytical predictions of ETCs for selected honeycombs in:(a)x-direction;(b)y-direction.

    Table 2 Analytical and numerical predictions of ETC in x-and y-directions for PCMHs of Fig.1.

    To design a porous material/structure for practical applications,the aspect ratio and inclination angle of ligaments as well as cell shape are the key morphological parameters to be considered. For thermal management with high ETC,the main principle is to put effective materials(metals)along the heat flux direction.In a lattice truss structure,the cell ligaments may be categorized into three maintypes:parallel,perpendicular,and inclinedto heat flow direction with an intersection angle of(90°-θ).If the ligaments are placed perpendicular to heat flow direction,they compose a series system together with the surrounding fluid,of which the ETC may be expressed as 1/ke= εs/ks+εf/kf.In comparison,if the ligaments are parallel to heat flow,a parallel model may be utilized to predict the ETC,as ke=εsks+εfkf.The parallel system provides a heat path in solid with maximum heat conduction area and shortest heat transfer distance.With increasing rotation of the ligaments from the parallel system,the distance for heat conduction increases while the heat conduction area decreases,until a series system is formed.According to Fourier’s law,we may have two arguments for a certain metallic ligament saturated in fluid.The superior thermal path for a single ligament is parallel to heat flux(parallel model for highest ETC),which possesses the highestthermalconductionefficiency,yieldingtheupperboundof ETC.On the contrary,if the ligament is perpendicular to heat flow(seriesmodelforlowestETC),ithasthelowestthermal conduction efficiency,resulting in the lower bound of ETC.

    From the results of Fig.4 and Table 2 it can be seen that,for a fixed inclination angle of 60°for all the PCMHs,the diamond-I of Fig.1(e)provides superior thermal conduction,while the multilayer corrugation of Fig.1(j)provides superior thermal insulation. For PCMHs having identical inclination angle,all the ligaments in diamond-I are configured with an intersection angle of 30° to heat flow:that is,no ligament is placed normal to heat flow. Consequently,diamond-IhasthehighestETCamongallthePCMHs investigated;see Fig.4(a)and Table 2.In diamond-II,some of its ligaments are placed normal to heat flow,leading to a reduced ETC along the x-direction compared with its parent structure,i.e.,diamond-I.In diamond-III and diamond-IV,as a few parallel ligaments are placed along the heat conduction direction,their ETCs are higher than that of diamond-II.

    Based on the physical mechanism of heat conduction,it is worthy to understand the particularly low ETC of multilayer corrugation.Given the distinct difference between fluid and metal as well as the special design of the joint,heat in this structure is forced to conduct along not only the inclined ligaments but also the‘series’ligaments,increasing dramatically the heat conduction distance.Compared to triangular structures as well as other competing honeycombs,the significant increase of heat conduction distance in the multi-layer corrugation reduces considerably its ETC.

    To further reveal the physical mechanisms,the concept of ligament thermal conduction efficiency(LTCE)is proposed to explain the reason why PCMHs with identical porosity exhibit different ETCs,as shown in Fig.4 and Table 2.Quantitatively,LTCE is defined here asη=sin2θe,θebeing the equivalent interaction angle(EIA)of a whole UC,which may be calculated by solving equation ke= (sin2θe)εsks+(1-εs)kfafter obtaining the ETC of a PCMH using the present analytical model.For diamond-I withθfixedat60°,thereexistsonlyonekindofligaments,i.e.,ligaments with an inclination angle of 60°.However,its EIA(θe)along the xdirection is calculated to be 59.2°.This is understandable because,at the joint,heat conduction area in the solid is reduced and hence the thermal conduction ability is decreased,which is reflected as a decrease in EIA.Thus,the presence of joints leads to reduced LTCE in PCMHs.

    Fig.5.Influence of ligament inclination angle(θin Fig.2)on ETC of selected honeycombs:(a)x-direction;(b)y-direction.

    Table 3 Influence of ligament inclination angle on EIA of triangular honeycomb with a porosity of 0.8.

    Relative to diamond-I,other PCMHs have more complicated cellular topologies.In these PCMHs,a variety of ligaments with different inclination angles exist,forming a competing system that finally determines the ETC.Figure 5 presents the effect of ligament inclination angle upon ETC for PCMHs having identical porosity(0.8).Except those PCMHs having fixed inclination angle(square-I,square-II,uniform hexagon and non-uniform hexagon honeycombs),the ETC along the x-direction increases withincreasinginclinationangle(θinFig.2).Forafixedinclination angle(albeit less than 45°),square-II is the most favorable PCMH for heat conduction.Otherwise,diamond-I or diamond-IV is the preferable choice.

    We have explained in previous sections the difference of ETC between different PCMHs.In this section,we demonstrate further that,as the inclination angle is increased,the ETC increases.The physical mechanism for this change is that there is more heat conduction material in a parallel system increases,whereas less metallic material is present in its counterpart series system.As previously discussed,placing more materials in a series system(i.e.,perpendicular to the heating surfaces)is beneficial for heat conduction,resulting in increased ETC.Based on the present theory for ligament heat conduction efficiency,the variation trend of ETC in the y-direction as a function of inclination angle(Fig.5(b))may be understood as well.Besides,Table 3 presents the EIA of triangular honeycomb for selected inclination angles. As the inclination angle is increased,the EIA increases along the x-direction but decreases along the y-direction.Therefore,for those PCMHs with angle flexibility,increasing the inclination angle enhances conductivity along the x-direction and reduces conductivity along the y-direction.

    In summary,the effective thermal conductivities of fourteen different types of prismatic cellular metal honeycomb saturated with fluid are calculated,both numerically and analytically.A parallel-series thermal-electric network model based on unit cell topology is developed.The model is verified within a wide porosity range(0.7~0.98)by considering local 2D heat conduction and interactive effect between fluid and solid.The model is then utilized to analyze and design thermal conduction/insulation honeycomb structures.For thermal conduction,the fundamental principle is to place more metals along the heat flux direction. For thermal insulation,the multilayered corrugation is preferable because its unique structure enables elongated heat conduction distance.For a given cellular topology,the LTCE may serve as a quantitative parameter to identify competing mechanisms of heat conductionindifferenttypesofcellligament.WithlargeLTCEs,the overall competing effect of cell ligaments enhances the conduction ability of a honeycomb;otherwise,the structure is favorable for thermal insulation.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China(51506160,11472208,11472209),China Post-Doctoral Science Foundation Project(2015M580845),the FundamentalResearchFundsforXi’anJiaotongUniversity(xjj2015102),and the Beijing Key Lab of Heating,Gas Supply,Ventilating and Air Conditioning Engineering(NR2016K01).

    [1]Q.C.Zhang,X.H.Yang,P.Li,et al.,Bioinspired engineering of honeycomb structure—using nature to inspire human innovation,Prog.Mater.Sci.74(2015)332-400.

    [2]A.G.Evans,J.W.Hutchinson,N.A.Fleck,et al.,The topological design of multifunctional cellular metals,Prog.Mater.Sci.46(2001)309-327.

    [3]T.J.Lu,D.P.He,C.Q.Chen,et al.,The multi-functionality of ultra-light porous metals and their applications,Adv.Mech.36(2006)517-535(in Chinese).

    [4]L.J.Gibson,M.F.Ashby,Cellular Solids:Structure and Properties,Cambridge University Press,1997.

    [5]C.C.Seepersad,B.Dempsey,J.K.Allen,et al.,Design of multifunctional honeycomb materials,AIAA J.42(2004)1025-1033.

    [6]C.C.Seepersad,R.S.Kumar,J.K.Allen,et al.,Multifunctional design of prismatic cellular materials,J.Comput-Aided.Mater.11(2004)163-181.

    [7]D.F.Wu,A.F.Zhou,L.M.Zheng,et al.,Study on the thermal protection performance of superalloy honeycomb panels in high-speed thermal shock environments,Theor.Appl.Mech.Lett.4(2014)021004.

    [8]S.T.Liu,Y.C.Zhang,L.Peng,New analytical model for heat transfer efficiency of metallic honeycomb structures,Int.J.Heat Mass Transfer 51(2008)6254-6258.

    [9]C.T.Hsu,P.Cheng,K.W.Wong,Modified Zehner-Schlunder models for stagnant thermal conductivity of porous media,Int.J.Heat Mass Transfer 37(1994)2751-2759.

    [10]T.J.Lu,Heat transfer efficiency of metal honeycombs,Int.J.Heat Mass Transfer 42(1999)2031-2040.

    [11]T.H.Bauer,A general analytical approach toward the thermal conductivity of porous media,Int.J.Heat Mass Transfer 36(1993)4181-4191.

    [12]X.H.Yang,J.X.Bai,J.J.Kang,etal.,Effectivethermalconductivityofwire-woven bulk Kagome sandwich panels,Theor.Appl.Mech.Lett.4(2014)051010.

    [13]X.H.Yang,J.J.Kuang,T.J.Lu,et al.,A simplistic analytical unit cell based model for the effective thermal conductivity of high porosity open-cell metal foams,J.Phys.D Appl.Phys.46(2013)255302-255307.

    [14]X.H.Yang,T.J.Lu,T.Kim,Effective thermal conductivity modelling for closedcell porous media with analytical shape factors,Transp.Porous Media 100(2013)211-224.

    [15]X.H.Yang,J.X.Bai,H.B.Yan,et al.,An analytical unit cell model for the effective thermal conductivity of high porosity open-cell metal foams,Transp.Porous Media 102(2014)403-426.

    [16]Z.G.Qu,T.S.Wang,W.Q.Tao,et al.,A theoretical octet-truss lattice unit cell model for effective thermal conductivity of consolidated porous materials saturated with fluid,Heat Mass Transfer 48(2012)1385-1395.

    [17]S.Gu,T.J.Lu,A.G.Evans,On the design of two-dimensional cellular metals for combined heat dissipation and structural load capacity,Int.J.Heat Mass Transfer 44(2001)2163-2175.

    [18]J.C.Maxwell,ATreatiseonElectricityandMagnetism,ClarendonPress,Oxford,1881.

    [19]X.H.Yang,T.J.Lu,T.Kim,Thermal stretching in two-phase porous media: Physical basis for Maxwell model,Theor.Appl.Mech.Lett.3(2013)57-61.

    [20]H.N.Wadley,Multifunctional periodic cellular metals,Philos.T.R.Soc.A 364(2006)31-68.

    [21]J.K.Cochran,K.J.Lee,D.L.McDowell,et al.Multifunctional metallic honeycombs by thermal chemical processing,in:Proceedings of Processing and Properties of Lightweight Cellular Metals and Structures,2002,pp.127-136.

    [22]F.C?té,V.S.Deshpande,N.A.Fleck,et al.,The out-of-plane compressive behavior of metallic honeycombs,Mater.Sci.Eng.A 380(2004)272-280.

    [23]S.Hyun,S.Torquato,Optimal and manufacturable two-dimensional,Kagomelike cellular solids,J.Mater.Res.17(2002)137-144.

    29 September 2015

    at:MOE Key Laboratory for Multifunctional Materials and Structures,Xi’an Jiaotong University,Xi’an 710049,China.

    E-mail addresses:zqc111999@xjtu.edu.cn(Q.Zhang),tjlu@xjtu.edu.cn(T.Lu).

    http://dx.doi.org/10.1016/j.taml.2016.01.003

    2095-0349/?2016 The Authors.Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    in revised form

    *This article belongs to the Solid Mechanics

    亚洲精品一卡2卡三卡4卡5卡 | videos熟女内射| 亚洲五月色婷婷综合| 亚洲欧美精品自产自拍| a级片在线免费高清观看视频| 天堂俺去俺来也www色官网| 好男人视频免费观看在线| 亚洲国产精品一区三区| 欧美人与性动交α欧美精品济南到| 国产成人精品久久久久久| 亚洲成色77777| 赤兔流量卡办理| 亚洲少妇的诱惑av| 秋霞在线观看毛片| 手机成人av网站| 午夜91福利影院| 成年女人毛片免费观看观看9 | 精品一品国产午夜福利视频| 久久久久久久大尺度免费视频| 一边摸一边抽搐一进一出视频| 国语对白做爰xxxⅹ性视频网站| 国产99久久九九免费精品| 久久ye,这里只有精品| 女警被强在线播放| 午夜av观看不卡| 在线天堂中文资源库| 国产精品香港三级国产av潘金莲 | 免费观看a级毛片全部| 日韩av不卡免费在线播放| 欧美xxⅹ黑人| 看十八女毛片水多多多| www.999成人在线观看| 在线观看免费视频网站a站| 午夜两性在线视频| www日本在线高清视频| 久久国产精品人妻蜜桃| 欧美另类一区| 高清av免费在线| 日韩一卡2卡3卡4卡2021年| 后天国语完整版免费观看| 中国美女看黄片| 亚洲av欧美aⅴ国产| 欧美变态另类bdsm刘玥| 国产亚洲av片在线观看秒播厂| www日本在线高清视频| 欧美 亚洲 国产 日韩一| 男女边吃奶边做爰视频| 成人国产av品久久久| 久久久久久久精品精品| 色婷婷av一区二区三区视频| 婷婷色麻豆天堂久久| 久久99一区二区三区| 亚洲av日韩精品久久久久久密 | 大话2 男鬼变身卡| 你懂的网址亚洲精品在线观看| 国产免费现黄频在线看| 丝袜喷水一区| 国产野战对白在线观看| 十八禁高潮呻吟视频| 国产一级毛片在线| 精品国产超薄肉色丝袜足j| 国产精品一区二区精品视频观看| 在现免费观看毛片| 午夜福利影视在线免费观看| 一本—道久久a久久精品蜜桃钙片| 1024视频免费在线观看| 亚洲激情五月婷婷啪啪| 老鸭窝网址在线观看| 欧美在线一区亚洲| 男女免费视频国产| kizo精华| 少妇被粗大的猛进出69影院| 国产成人系列免费观看| 18禁观看日本| 欧美日韩精品网址| 丝袜脚勾引网站| 日日爽夜夜爽网站| 婷婷丁香在线五月| 最新在线观看一区二区三区 | 成人三级做爰电影| 可以免费在线观看a视频的电影网站| 两人在一起打扑克的视频| 日韩制服骚丝袜av| 成人国语在线视频| 青草久久国产| 久久性视频一级片| 欧美日韩成人在线一区二区| 99精国产麻豆久久婷婷| 19禁男女啪啪无遮挡网站| 亚洲人成网站在线观看播放| 国产免费又黄又爽又色| 人人妻,人人澡人人爽秒播 | 亚洲av美国av| 国产又色又爽无遮挡免| 国产午夜精品一二区理论片| 亚洲人成网站在线观看播放| 黄片小视频在线播放| 精品少妇黑人巨大在线播放| 深夜精品福利| 啦啦啦 在线观看视频| 大香蕉久久网| 90打野战视频偷拍视频| 美女脱内裤让男人舔精品视频| 精品国产一区二区三区久久久樱花| 在线观看一区二区三区激情| 精品亚洲乱码少妇综合久久| av在线老鸭窝| 国产淫语在线视频| 国产精品久久久人人做人人爽| 国产一卡二卡三卡精品| 亚洲第一青青草原| 欧美日本中文国产一区发布| 少妇被粗大的猛进出69影院| 亚洲视频免费观看视频| 免费在线观看完整版高清| 大香蕉久久网| 中文字幕人妻丝袜制服| 人妻一区二区av| 亚洲精品美女久久av网站| 日韩电影二区| 欧美激情 高清一区二区三区| 国产成人一区二区在线| 九草在线视频观看| 99精国产麻豆久久婷婷| 日韩,欧美,国产一区二区三区| 精品人妻熟女毛片av久久网站| 亚洲男人天堂网一区| www.av在线官网国产| 丝袜美腿诱惑在线| 欧美日韩亚洲综合一区二区三区_| 女性生殖器流出的白浆| 国产欧美日韩一区二区三 | 99久久99久久久精品蜜桃| 欧美日韩国产mv在线观看视频| 日本av手机在线免费观看| 91精品伊人久久大香线蕉| 一本综合久久免费| 欧美国产精品va在线观看不卡| 日本欧美国产在线视频| 精品福利观看| 建设人人有责人人尽责人人享有的| 99国产精品一区二区三区| 水蜜桃什么品种好| 激情视频va一区二区三区| 中文字幕亚洲精品专区| 在线观看人妻少妇| 久久狼人影院| 国产成人系列免费观看| 欧美黑人精品巨大| www.999成人在线观看| 美女脱内裤让男人舔精品视频| 国产成人精品久久二区二区91| 久久免费观看电影| 老汉色av国产亚洲站长工具| 国产高清不卡午夜福利| 国产成人精品久久久久久| 国产黄色免费在线视频| av福利片在线| 色精品久久人妻99蜜桃| 日本午夜av视频| 日韩制服骚丝袜av| 午夜激情久久久久久久| 青青草视频在线视频观看| 午夜日韩欧美国产| 老司机影院成人| 亚洲三区欧美一区| 黑人巨大精品欧美一区二区蜜桃| 男女午夜视频在线观看| h视频一区二区三区| 免费少妇av软件| www.999成人在线观看| 中文字幕另类日韩欧美亚洲嫩草| 麻豆av在线久日| 亚洲欧美成人综合另类久久久| 18禁裸乳无遮挡动漫免费视频| 又粗又硬又长又爽又黄的视频| 我的亚洲天堂| 一级毛片我不卡| 9热在线视频观看99| 老司机靠b影院| 美女午夜性视频免费| 日本黄色日本黄色录像| 国产精品二区激情视频| 99精国产麻豆久久婷婷| 满18在线观看网站| 日韩av不卡免费在线播放| 亚洲熟女精品中文字幕| 亚洲国产欧美在线一区| 黄色怎么调成土黄色| 午夜福利视频精品| 中文乱码字字幕精品一区二区三区| 国产老妇伦熟女老妇高清| 久久精品久久久久久噜噜老黄| 久久久国产一区二区| 啦啦啦中文免费视频观看日本| 国产片特级美女逼逼视频| 丰满饥渴人妻一区二区三| 97人妻天天添夜夜摸| 中文字幕亚洲精品专区| 美女中出高潮动态图| 久久久精品免费免费高清| 18禁国产床啪视频网站| 国产精品一区二区在线观看99| 中文字幕人妻丝袜一区二区| 叶爱在线成人免费视频播放| 天天躁夜夜躁狠狠久久av| 黄色片一级片一级黄色片| 夫妻午夜视频| 美女福利国产在线| 男男h啪啪无遮挡| 日本欧美国产在线视频| 激情视频va一区二区三区| 97在线人人人人妻| 精品亚洲乱码少妇综合久久| 国产免费又黄又爽又色| 免费看不卡的av| 亚洲av电影在线进入| 老鸭窝网址在线观看| 18禁黄网站禁片午夜丰满| 国产成人啪精品午夜网站| 真人做人爱边吃奶动态| 97精品久久久久久久久久精品| 999久久久国产精品视频| 欧美变态另类bdsm刘玥| 国产伦人伦偷精品视频| 免费观看a级毛片全部| 男女高潮啪啪啪动态图| 2018国产大陆天天弄谢| 亚洲欧美一区二区三区久久| 性色av一级| 午夜精品国产一区二区电影| tube8黄色片| 午夜福利,免费看| 99国产综合亚洲精品| 亚洲人成电影观看| 国产欧美日韩综合在线一区二区| 香蕉国产在线看| 99久久精品国产亚洲精品| 黄色怎么调成土黄色| 黄片播放在线免费| 亚洲av片天天在线观看| 建设人人有责人人尽责人人享有的| 亚洲图色成人| 午夜福利视频在线观看免费| 美女视频免费永久观看网站| 欧美国产精品va在线观看不卡| 日韩 亚洲 欧美在线| av天堂在线播放| 亚洲久久久国产精品| av有码第一页| 大话2 男鬼变身卡| 一级毛片 在线播放| 高清不卡的av网站| 国产精品久久久久久精品电影小说| 一级a爱视频在线免费观看| 韩国精品一区二区三区| 亚洲久久久国产精品| 91精品三级在线观看| 久久人妻福利社区极品人妻图片 | 国产精品熟女久久久久浪| 久久人人97超碰香蕉20202| 久久毛片免费看一区二区三区| 精品人妻在线不人妻| 熟女av电影| 免费女性裸体啪啪无遮挡网站| 国产成人一区二区三区免费视频网站 | a级片在线免费高清观看视频| 欧美黄色片欧美黄色片| 亚洲av日韩在线播放| 国产97色在线日韩免费| 中文字幕av电影在线播放| 在线观看免费高清a一片| 久久精品久久久久久久性| 日韩欧美一区视频在线观看| 国产高清不卡午夜福利| 两性夫妻黄色片| 亚洲av电影在线观看一区二区三区| 亚洲国产欧美网| 亚洲 国产 在线| 99re6热这里在线精品视频| 母亲3免费完整高清在线观看| 爱豆传媒免费全集在线观看| 精品高清国产在线一区| 成年av动漫网址| 免费在线观看完整版高清| 色精品久久人妻99蜜桃| 777米奇影视久久| 一区二区三区乱码不卡18| 纯流量卡能插随身wifi吗| 日韩 欧美 亚洲 中文字幕| 少妇裸体淫交视频免费看高清 | av视频免费观看在线观看| 精品久久久久久久毛片微露脸 | 高清视频免费观看一区二区| 亚洲人成77777在线视频| 汤姆久久久久久久影院中文字幕| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲欧洲日产国产| 日本av手机在线免费观看| 侵犯人妻中文字幕一二三四区| 精品国产一区二区三区四区第35| 性高湖久久久久久久久免费观看| 国产精品九九99| 中文欧美无线码| 国产精品免费大片| netflix在线观看网站| 女人被躁到高潮嗷嗷叫费观| 尾随美女入室| 亚洲一区二区三区欧美精品| 国产欧美日韩综合在线一区二区| 黑人猛操日本美女一级片| 亚洲国产最新在线播放| 国产亚洲av高清不卡| 日韩欧美一区视频在线观看| 最近中文字幕2019免费版| 女警被强在线播放| 啦啦啦中文免费视频观看日本| 国产精品久久久久久精品古装| 波多野结衣av一区二区av| 大陆偷拍与自拍| 精品国产乱码久久久久久小说| 欧美日韩亚洲国产一区二区在线观看 | 精品少妇黑人巨大在线播放| 欧美精品一区二区免费开放| 十分钟在线观看高清视频www| 在线观看免费高清a一片| 中文字幕制服av| 久久鲁丝午夜福利片| 一区在线观看完整版| 欧美中文综合在线视频| 久久精品亚洲熟妇少妇任你| 国产真人三级小视频在线观看| 精品免费久久久久久久清纯 | 七月丁香在线播放| 美女福利国产在线| 午夜激情av网站| 免费黄频网站在线观看国产| 51午夜福利影视在线观看| 欧美日韩亚洲国产一区二区在线观看 | 涩涩av久久男人的天堂| 亚洲久久久国产精品| 日本av免费视频播放| 青青草视频在线视频观看| 久久久精品区二区三区| 人人妻,人人澡人人爽秒播 | 欧美精品人与动牲交sv欧美| 高清av免费在线| 亚洲五月色婷婷综合| 国产精品麻豆人妻色哟哟久久| 国产成人精品在线电影| 性少妇av在线| 日韩免费高清中文字幕av| 男女午夜视频在线观看| 最近最新中文字幕大全免费视频 | 伊人久久大香线蕉亚洲五| 色网站视频免费| 首页视频小说图片口味搜索 | 夫妻性生交免费视频一级片| 桃花免费在线播放| 真人做人爱边吃奶动态| 久久精品国产a三级三级三级| 波野结衣二区三区在线| 国产成人免费观看mmmm| 免费日韩欧美在线观看| 在线观看人妻少妇| 天天操日日干夜夜撸| 中文精品一卡2卡3卡4更新| 欧美日韩av久久| 精品国产一区二区三区四区第35| 亚洲精品久久久久久婷婷小说| 校园人妻丝袜中文字幕| 999精品在线视频| avwww免费| 亚洲精品久久久久久婷婷小说| 91麻豆av在线| 咕卡用的链子| 国产亚洲欧美精品永久| 国产一区亚洲一区在线观看| 美女大奶头黄色视频| 日本猛色少妇xxxxx猛交久久| 国产在视频线精品| 欧美精品高潮呻吟av久久| 国产又爽黄色视频| 最近最新中文字幕大全免费视频 | 色播在线永久视频| 国产精品一区二区精品视频观看| 丁香六月天网| 黄频高清免费视频| av片东京热男人的天堂| av在线播放精品| 久久久久国产精品人妻一区二区| 国产一级毛片在线| 国产精品二区激情视频| 免费高清在线观看视频在线观看| 我的亚洲天堂| 狂野欧美激情性bbbbbb| www.自偷自拍.com| 国产真人三级小视频在线观看| 久久精品成人免费网站| 精品第一国产精品| 国产亚洲av高清不卡| av天堂在线播放| 99国产精品一区二区蜜桃av | av欧美777| 十八禁人妻一区二区| 中文字幕色久视频| 亚洲精品久久午夜乱码| 涩涩av久久男人的天堂| www.自偷自拍.com| av视频免费观看在线观看| 亚洲成av片中文字幕在线观看| 大话2 男鬼变身卡| 久久ye,这里只有精品| 欧美国产精品va在线观看不卡| 欧美成人精品欧美一级黄| 色94色欧美一区二区| 国产精品 国内视频| 亚洲精品乱久久久久久| 久久人人爽av亚洲精品天堂| 久久久精品区二区三区| 黑人巨大精品欧美一区二区蜜桃| 黄色一级大片看看| 国产精品一国产av| 亚洲av电影在线观看一区二区三区| 99久久综合免费| 中文字幕亚洲精品专区| 国产亚洲欧美在线一区二区| 一本—道久久a久久精品蜜桃钙片| 亚洲情色 制服丝袜| 亚洲国产精品成人久久小说| 久久精品aⅴ一区二区三区四区| 久久性视频一级片| 两个人看的免费小视频| 久久国产亚洲av麻豆专区| 少妇精品久久久久久久| 午夜福利乱码中文字幕| 天天操日日干夜夜撸| 国产成人av教育| 国产精品99久久99久久久不卡| 国产精品国产av在线观看| 国产精品偷伦视频观看了| xxx大片免费视频| 国产老妇伦熟女老妇高清| 亚洲精品久久成人aⅴ小说| 母亲3免费完整高清在线观看| 久久久精品94久久精品| 黄色视频在线播放观看不卡| 一级黄色大片毛片| 欧美变态另类bdsm刘玥| 男人操女人黄网站| 国产精品 欧美亚洲| 一区二区三区激情视频| 免费高清在线观看日韩| 99精品久久久久人妻精品| 一级毛片女人18水好多 | 久久人妻熟女aⅴ| 亚洲一卡2卡3卡4卡5卡精品中文| 国产av国产精品国产| 无遮挡黄片免费观看| 男女免费视频国产| 国产一区亚洲一区在线观看| 亚洲国产最新在线播放| 精品人妻一区二区三区麻豆| 免费高清在线观看日韩| 久久性视频一级片| 午夜福利影视在线免费观看| 免费在线观看影片大全网站 | 80岁老熟妇乱子伦牲交| 永久免费av网站大全| 美女扒开内裤让男人捅视频| 欧美成人精品欧美一级黄| 深夜精品福利| 国产亚洲精品久久久久5区| 这个男人来自地球电影免费观看| 久久影院123| 国产精品熟女久久久久浪| 欧美在线黄色| 超色免费av| 久久 成人 亚洲| 丝瓜视频免费看黄片| 亚洲人成77777在线视频| 成人黄色视频免费在线看| 国产高清videossex| 热re99久久精品国产66热6| 亚洲国产精品国产精品| 国产一卡二卡三卡精品| 观看av在线不卡| 久久青草综合色| 免费看av在线观看网站| 黑丝袜美女国产一区| 久久久久视频综合| 午夜福利影视在线免费观看| 天堂俺去俺来也www色官网| 成在线人永久免费视频| 国产成人免费观看mmmm| 亚洲专区国产一区二区| 精品人妻在线不人妻| 久久精品国产亚洲av涩爱| 日本猛色少妇xxxxx猛交久久| 2021少妇久久久久久久久久久| 蜜桃国产av成人99| 精品国产乱码久久久久久男人| 欧美日韩亚洲国产一区二区在线观看 | 精品少妇久久久久久888优播| 亚洲午夜精品一区,二区,三区| 巨乳人妻的诱惑在线观看| 后天国语完整版免费观看| 亚洲精品av麻豆狂野| 午夜视频精品福利| 日韩av不卡免费在线播放| 久久人人爽av亚洲精品天堂| 精品人妻一区二区三区麻豆| a级毛片在线看网站| 搡老乐熟女国产| 日韩 欧美 亚洲 中文字幕| 欧美人与性动交α欧美精品济南到| 国产视频一区二区在线看| 久久久亚洲精品成人影院| av电影中文网址| 国产一区二区激情短视频 | 18在线观看网站| av在线播放精品| 啦啦啦 在线观看视频| 国产高清国产精品国产三级| 日韩电影二区| 人人妻人人澡人人看| 久久久精品区二区三区| 女人久久www免费人成看片| 日日夜夜操网爽| 欧美激情极品国产一区二区三区| 亚洲情色 制服丝袜| 久久亚洲国产成人精品v| xxxhd国产人妻xxx| 91麻豆精品激情在线观看国产 | 久久国产精品影院| 久久精品成人免费网站| 亚洲自偷自拍图片 自拍| 午夜福利免费观看在线| 久久久国产一区二区| 亚洲欧美一区二区三区久久| 久久久久精品人妻al黑| 久久这里只有精品19| 在现免费观看毛片| 亚洲人成77777在线视频| 女警被强在线播放| 夜夜骑夜夜射夜夜干| 蜜桃在线观看..| 亚洲五月婷婷丁香| 亚洲情色 制服丝袜| tube8黄色片| 国产成人精品久久久久久| 国产亚洲欧美精品永久| 无遮挡黄片免费观看| 亚洲黑人精品在线| 热99国产精品久久久久久7| 男人添女人高潮全过程视频| 日本a在线网址| 国产片内射在线| 波多野结衣av一区二区av| 如日韩欧美国产精品一区二区三区| 国产亚洲av高清不卡| 国产精品一区二区在线观看99| 亚洲av成人精品一二三区| 天天躁夜夜躁狠狠躁躁| 亚洲精品自拍成人| 97人妻天天添夜夜摸| 欧美激情极品国产一区二区三区| 色视频在线一区二区三区| av天堂在线播放| 亚洲国产av新网站| 精品少妇一区二区三区视频日本电影| 精品福利永久在线观看| 亚洲情色 制服丝袜| 一区二区日韩欧美中文字幕| 如日韩欧美国产精品一区二区三区| 丁香六月欧美| 大香蕉久久网| svipshipincom国产片| 美女中出高潮动态图| 中国美女看黄片| 黄色视频在线播放观看不卡| 国产一区二区三区综合在线观看| 性少妇av在线| 亚洲精品国产av蜜桃| 丝袜人妻中文字幕| 亚洲精品第二区| 99精国产麻豆久久婷婷| 日日夜夜操网爽| 欧美97在线视频| 国产激情久久老熟女| 黑人巨大精品欧美一区二区蜜桃| 亚洲人成电影免费在线| 国产精品久久久久成人av| 欧美日韩综合久久久久久| 夫妻午夜视频| 亚洲人成网站在线观看播放| 久久久精品国产亚洲av高清涩受| 亚洲精品国产av蜜桃| 久久精品亚洲av国产电影网| 激情视频va一区二区三区| 国产在线免费精品| 视频区图区小说| 在现免费观看毛片| 女人久久www免费人成看片| 美女福利国产在线| 99re6热这里在线精品视频| 啦啦啦在线免费观看视频4| 久久久国产精品麻豆| 啦啦啦中文免费视频观看日本| 国产欧美亚洲国产| 9色porny在线观看| 亚洲男人天堂网一区| 亚洲 欧美一区二区三区| 90打野战视频偷拍视频| 国产在视频线精品|