• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Magnetic field of mathematical modeling and simulation of 3D magnetic pole array spherical actuator

    2015-04-24 05:30:24MENGHongjun孟宏君WANGZhanlin王占林JIAOZhongxia焦中夏

    MENG Hong-jun(孟宏君), WANG Zhan-lin(王占林), JIAO Zhong-xia(焦中夏)

    (School of Electrical Engineering and Automation, Bei Hang University, Beijing 100191, China)

    ?

    Magnetic field of mathematical modeling and simulation of 3D magnetic pole array spherical actuator

    MENG Hong-jun(孟宏君), WANG Zhan-lin(王占林), JIAO Zhong-xia(焦中夏)

    (School of Electrical Engineering and Automation, Bei Hang University, Beijing 100191, China)

    In this paper a new spherical actuator is designed and its advantages are compared to an existing spherical actuator, which function is limited by several design bottlenecks. First the output torque is too small. Second, the attitude is difficult to be accurately detected. The new three-dimensional magnetic pole array can solve these major problems. The new actuator features an outer rotor with multiple permanent magnet (PM) poles. Using an analytical solution and the finite element solution simulation, the feasibility of the approach is verified. A prototype was developed, tested, and experiments were conducted to obtain the practical value of the magnetic flux density.

    3-D magnetic pole array; spherical actuator; simulation; halbach; motor design

    The multiple degree-of-freedom (DOF) rotations widely exist in the world, such as the motions of shoulder, wrist, hip joints, and the eye balls. Conventional multi-DOF rotations are achieved with quite a few single-axis motors connected with linkages in serial or parallel, which inevitably leads to a complex, bulky and heavy structure of the system, and compromises the dynamic performance. Compared with the single-DOF motors, the size of multi-DOF motor is very compact, and it can be used for robotic joints, precision assembly tools, and satellite tracking antennas. The concept of spherical actuator refers to the electrical device that can achieve multi-DOF motions in a single joint. It was first proposed by Williams et al. in 1960s[1]. The rotor is made of ferromagnetic material with a spherical barrel shaped surface. A copper mesh is inlaid on the rotor surface to allow induction current to travel in longitudinal and latitudinal directions. The stator consists of two multiphase winding blocks that can be twisted with an angle about an axis perpendicular to the rotor’s axle, generating a rotational magnetic field. Including the rotation of the rotor and the twist of stator blocks, this motor has two-DOF motions, despite that the twist of the stator blocks was not accomplished by winding currents. Following that, spherical actuators with various structures have been proposed by researchers, such as the spherical stepper by Lee et al[2]. The hemispheric stator structure is designed to support coils, iron trimmings, bearings and the position measurement devices. A pair of permanent magnet (PM) poles is mounted on the rotor. The rotor is supported by six bearings on the stator. Energizing the stator coils sequentially, the rotor can be pulled to any desired position. Chirikjian et al. developed a PM spherical stepper motor[3-4]. 80 cylindrical rare-earth PMs were placed along the inside surface of a hollow plastic sphere with a twelve-inch diameter. Sixteen coils with iron cores are placed on the surface of a spherical cap and polarized to form the electromagnetic field within the stator. An adjustable magnet saddle holds the stator magnets so that the stator magnets can be repositioned and reoriented. Because the symmetry of the rotor-pole arrangement is different from that of the stator poles, the magnetic field created by energizing two or more stator coils generates a torque that can change the rotor orientation. The commutation has been studied in detail. Spherical PM actuators that can achieve 2/3 DOF motions has been developed by Wang et al[5]. Two or four PM poles and three or four windings are mounted in the system. The rotor is basically considered as fully magnetized rare earth materials (NdFeB) with high density (7.5 g/mm3), which increases the moment of inertia of the rotor in a certain degree. Wang Q et al. have proposed a PM spherical actuator with a multi-pole rotor and a multi-coil stator. The magnetic field is computed with an integral equation method[6]. Other studies of spherical actuator with multiple poles can be found in Refs.[7-8]. Multiple layers of PM poles and coils are mounted on the rotor and stator surfaces respectively, to generate torque in three orthogonal directions. Thus, the motions in three directions about the rotor center can be achieved accordingly. With respect to the multi-DOF spherical motions, various orientation measurement methods have also been proposed and investigated[9]. For all spherical actuators developed in the past, the electromagnetic poles are all mounted in a spherical-surface pattern or 2D pattern, although the PM and coil poles arrangement is different for particular designs. This design method undoubtedly constrains the design space of the electromagnetic poles, and thus reduces the force and torque output. Therefore, this objective of this paper is to propose a new type of concept for pole patterns in 3D space. Specifically, the PM and coil poles are not only arranged in a spherical surface. The new design concept purposes to increase the magnetic flux density in the actuator space, and thus the force/torque output performance. The magnetic field distribution of spherical actuator with 3D topological pole arrangement is studied in a numerical way in this paper. It will contribute to our subsequent study for actuator output performance.

    1 Permanent magnet spherical Actuators structure and operation mechanism

    Fig.1a shows the drive of the sphere in the sphere radial using two layers of the stator and rotor design. Inner rotor PM and outer rotor PM correspond to the coil even in Fig.1b. In order to facilitate the observation, outer rotor, outer stator aluminum frame and inner rotor, inner stator aluminum frame are made to hide. And along the latitudinal direction to do a bit split, each layer of the rotor permanent magnet spherical actuators are using a spherical structure on the surface. The rotor spherical uniform distribution of the eight fan spherical permanent magnets around the equator form a circle, eight permanent magnets are positive and negative staggered fixed in the stator, the permanent magnet material NdFeB N35H, its center is located on the equator, the stator spherical shell placed a three-tier independent control of the concentrated winding coil according to certain rules, the middle layer of the coil center is located in the equatorial position, another two-tier center and the equatorial plane was the distribution of plus or minus 30 degrees on each coil’s number 12 uniform, an stator a total of three and 36 coils. Rotor output shaft fitted with flanges, used to pass the electromagnetic torque shown in Fig.2.

    We increase the inner and outer rotor and design the structure of a layer with soft iron. It has two purposes: internal and external rotor field are isolated, so that the inner and outer rotor field directly interact only with its corresponding stator coil, the magnetic field and the moment of independence stand modeling. The inner and outer rotor poles of soft iron, output poles and other components form a closed loop magnetic circuit, which can complement one another.

    Fig.1 Schematics illustrating the mechanical structure of 3D magnetic pole array spherical actuators

    Fig.2 Permanent magnet spherical actuators mechanical structure

    According to a certain strategy, the stator coil is energized, the coil produces a magnetic field, fixed rotor magnetic field interaction. The drive Actuators rotor complete spherical anywhere positioning can be achieved. The distribution along the equatorial line of the coil is energized, the rotation movement; coil distribution along the line of longitude electricity, the yaw motion and pitching motion. Therefore, the three degrees of freedom spherical actuators connected to the rotor load to three degrees of freedom movement, due to its own structure and manufacturing process factors, however, permanent magnet spherical actuators the work area is limited within a deflection range.

    2 Magnetic field analysis of PM spherical actuator

    The magnetic field generated by spherical actuator rotor pole is the main part of the air gap magnetic field, the new structure of spherical actuator has two layers of rotor. The magnetic field can be divided into six parts:

    ① From the outer edge of outer back iron to external air field, denoted by the area one. The magnetization characteristics

    B1=μ0H1

    (1)

    whereμ0is the air permeability.

    ② From the outer edge of outer back iron to its inner edge, denoted by the area two. The magnetization characteristics:

    B2=μ0μrH2

    (2)

    whereμris the relative permeability of iron.

    ③ From the inner edge of outer back iron to outer edge of outer PM denoted by the area three. The magnetization characteristics:

    B3=μ0μmH3+μ0M0

    (3)

    whereμmis the relative permeability of PM. Which is NdFeB magnet, takeμm=1.2;M0=Br/μ0for the remanent magnetization,Brresidual magnetic flux density.

    ④ Outside the outer rotor air-gap magnetic field, denoted by field area 4. The magnetization characteristics

    B4=μ0H4

    (4)

    ⑤ Rotor pole internal magnetic field, is denoted by the site area. The magnetization characteristics

    B5=μ0μmH5+μ0M0

    (5)

    ⑥ The rotor core magnetic field is denoted by the field area. The magnetization characteristics

    B6=μ0μrH6

    (6)

    By Eqs.(1)-(6) we have

    (7)

    By Eq.(7), by the gradient of the scalar magneticΦk

    (8)

    Available from the above kinds of

    (9)

    (10)

    (11)

    (12)

    (13)

    (14)

    (15)

    (16)

    2.1 Through the solution of the scalar magnetic

    (17)

    Eqs.(9)-(16) show that solving the problem of the magnetic field generated by the rotor pole is actually solving the Laplace equation under certain boundary conditions. The Laplace equation is solved, the general solution

    (18)

    where

    (19)

    (20)

    Cnmis a coefficient determined by the surface integral of the following forms:

    (21)

    (22)

    Note that Eq.(21) is only effective in the rotor pole.

    Therefore, the residual magnetization vector is limited in the following range:

    For the rest of the non-magnetized rotor region equal to zero. By putting Eq.(22) into Eq.(21) we are

    (23)

    where

    (24)

    2.2 Boundary conditions

    By the above boundary conditions can be scalar magnetic particular solution.

    (1) BC (Boundary conditions)-A (r→∞)

    B1r|r→∞=0,B1φ|φ→∞=0,B1θ|θ→∞=0

    (2) BC-B (B1r|r=Ra=B2r|r=Ra)

    (3) BC-C

    (H1φ|r=Ra=H2φ|r=Ra,H1θ|r=Ra=H2θ|r=Ra)

    (4) BC-D (B2r|r=Rb=B3r|r=Rb)

    (5) BC-E

    (H2φ|r=Rb=H3φ|r=Rb,H2θ|r=Rb=H3θ|r=Rb)

    (6) BC-F (B3r|r=Rc=B4r|r=Rc)

    (7) BC-G

    (H3φ|r=Rc=H4φ|r=Rc,H3θ|r=Rc=H4θ|r=Rc)

    (8) BC-H (B4r|r=Rd=B5r|r=Rd)

    (9) BC-I

    (H4φ|r=Rd=H5φ|r=Rd,H4θ|r=Rb=H5θ|r=Rd)

    (10) BC-J

    (H6φ|r=0=H6φ|r=0,H6θ|r=0=H6θ|r=0)

    (11) BC-K (B5r|r=Re=B6r|r=Re)

    (12) BC-L

    (H5φ|r=Re=H6φ|r=Re,H5θ|r=Re=H6θ|r=Re)

    Refer to Fig.5, the power generated by each component in the direction of flux density can be determined. The length of the DL on behalf of poor line tangentOpoints on the sphere, only the radial component of the magnetic flux density BRI can generate torque to change the direction of the rotor. We focus on the BRI after the discussion.

    (25)

    (26)

    (27)

    (28)

    (29)

    (30)

    (31)

    (32)

    (33)

    (34)

    (35)

    (36)

    (37)

    In this section, a prototype of the spherical actuator and a magnetic field test platform has been developed. Experiments on 3D magnetic field distribution have been conducted to validate the analytical model. Furthermore, the result from analytical model is compared with the numerical result. Although FEM simulation is time-consuming, its precision is relatively high, because it has no model simplification and influence of manufacturing error. Therefore, it is a practical way to validate the analytical model. The material characteristics and design parameters are in accordance with those in experiments. The finite element solutions are obtained in natural boundary condition.

    3 Permanent magnet spherical actuators experimental study

    A spherical actuator with an outer rotor is developed for experimental investigation on the magnetic field as shown in Fig.3. The specification is listed in Tab.1. The air-core coils are symmetrically distributed about the equatorial plane of the stator. By using nonmetal material PTFE, the eddy current effect can be reduced by a large margin. The rotor mainly consists of alternate-polarity cylindrical PMs for the convenience of manufacturing and cost reduction, which are sintered by NdFeB35 withBrem=1.2 T andμm=1.099 7. Around the PM poles is a holder (back iron) made of ferromagnetic material (steel 1010). A joint bearing that can achieve 3-DOF rotation is assembled at the center to support the rotor.

    Fig.3 Spherical actuator with an outer rotor

    The main design parameters are shown in Tab.1.

    Tab.1 Structure specifications of the spherical actuator

    Since the magnetic flux density B is a 3D vector, it is necessary to measure all three components of the flux density vector at the measuring point. A three-axis hall probe is thus employed in the measurement. Fig.4 shows the complete flux density measurement system. The three-axis hall probe is mounted on three-axis translational motion stage. Through translation of the stage, the hall probe can achieve any desired location. The hall probe is also connected to a 3-channel Gauss meter to display the measured flux density. The rotor is fixed on a step motor that can spin along the rotor axis for 360°. The movement of 3-axis stage and the step motor can be controlled simultaneously by the motion driven controller. The Gauss meter and the motion controller are linked to a personal computer through serial ports. Through a Labwindows CVI program, the motion of 3-axis stage and the step motor can be controlled with ease and the three components of magnetic flux density can be stored at the same time.

    Fig.4 Testbed for measurement of flux density

    The hall probe moves along a path controlled by the algorithm of the program and takes measurements of flux density at sampling points along the path. Firstly, the hall probe arrives at the start point of the measuring arc. The neighboring sampling points keep a constant angle of Δθwith respect to the rotor center. After the probe reaches the finish point of the measuring arc, the step motor rotates to an angle Δφ. Then the probe returns to the start point and repeats the process until the motor reaches the predeterminedφ. Thus, flux density values on a spherical surface have been recorded. Then measurement on the neighboring spherical surface can be conducted by moving the probe with an radial offset Δr. This process is repeated until the flux density is significantly small. The entire process of positioning the probe, taking measurement of the flux density, and turning the rotor can be fully automated through the communication between the motion controller, Gauss meter and PC.

    Comparison of analytical model, numerical result and experimental result is shown in Fig.5 by 3D view.

    Fig.5 Comparision of analytical and experimental results of B4r (3D view)

    Fig.5 shows the distribution ofB4ralong latitudinal (φ) and longitudinal (θ) directions(θ=75°-105°,φ=0°-360°)at a fixed radial distance from the rotor center,r=75. The analytical and experimental results of the flux densityB4rare approximately the same. Because of the model error, the analytical result has a little difference. However, the peak value and the main trend are the same. The peak value of the flux density is at around 0.35-0.38 T.

    Fig.6 shows the comparison of the analytical, numerical and experimental results in 2D view, wherer=75, andθ=90. The black line is the analytical result. The hollow blue squares represent the numerical result and the small solid circle shows the experimental result. From the comparison, the maximum differences occur between two rotor poles. The difference is less than 5%. It indicates that the accuracy is relatively high. And the proposed magnetic field is acceptable. With the inclusion of high-order harmonics, the difference may be reduced further.

    When the two layers rotor spherical actuator coil (600 laps), given the 3.3 A current, peak torque 2.6 N·m, larger than single layer rotor spherical actuator (1.2 N·m), 2.166 7 times, as shown in Fig.7.

    Fig.6 Comparision of analytical, numerical and experimental results of B4r (2D view, θ=90°)

    Fig.7 Spherical actuator torque (3D view)

    4 Conclusions

    A novel PM spherical actuator with an outer rotor is proposed in this paper. The 3D magnetic field distribution is formulated analytically based on Laplace’s equations. With the FEM method, numerical results of magnetic field are obtained. A prototype and a field test platform are developed. Experimental verification on the magnetic field around the rotor has been carried out. Comparisons between analytical, numerical and experimental data have shown the consistency. The errors may come from the modeling error and the omission of the higher order terms of the harmonics.

    Hall sensors are mounted on thespherical actuator statorwhich location is difficult to detect in a small magnetic field. And two layers rotor in which the magnetic field increases twice, therefore it is easier to detect the rotor magnetic field.

    Because of its structural features, doublelayers rotor at the same input current, the output torque is larger than the single layer rotor spherical actuator(about twice).

    [1] Williams F, Laithwaite E, Eastham J F. Development and design of spherical induction actuatorss [J]. Proceedings of the IEEE (S0368-2692), 1959, 106(12): 471-484.

    [2] Lee K M, Kwan C K. Design concept development of a spherical stepper for robotic applications[J]. IEEE Transactions on Robotics and Automation (S1042-296X), 1991, 7(1): 175-181.

    [3] Lee Kok-Meng, Zhou Debao. A real-time optical sensor for simultaneous measurement of three-DOF motions [J]. IEEE/ASME Transactions on Mechatronics (S1083-4435), 2004, 9(3): 499-507.

    [4] Gregory S Chirikjian, David Stein. Kinematic design and commutation of a spherical stepper actuators[J]. IEEE Transactions on Mechatronics (S1083-4435), 1999, 4(4): 342-353.

    [5] Wang Qunjing, Li Zheng, Ni Youyuan, et al. Magnetic field computation of a PM spherical stepper actuators using integral equation method[J]. IEEE Transactions on Magnetics (S0018-9464),2006, 42(4): 31-734.

    [6] Wang Qunjing, Li Zheng, Chen Lixia, et al. Kinematic analysis and simulation of permanent magnet spherical stepper actuators[J]. Journal of System Simulation (S1004-731X), 2005, 17(9): 2260-2264.

    [7] Yan Liang, Chen I-Ming, Yang Guilin, et al. Torque modeling of a spherical actuator based on lorentz force law[C]∥International Conference on Robotics and Automation, Barcelona, Spain, USA: IEEE, 2005: 3646-3651.

    [8] David Stein, Edward R S, Gregory S C. Mathematical models of binary spherical-motion encoders[J]. IEEE/ASME Transactions on Mechatronics (S1083-4435), 2003, 8(2): 234-244.

    [9] Lee Kok-Meng, Zhou Debao. A real-time optical sensor for simultaneous measurement of 3-DOF motions[C]∥IEEE/ASME International Conference on Advanced Intelligence Mechatronics, Kobe, Japan, 2003: 472-477.

    (Edited by Cai Jianying)

    10.15918/j.jbit1004-0579.201524.0114

    TM 351 Document code: A Article ID: 1004- 0579(2015)01- 0097- 08

    Received 2013-12- 20

    Supported by the National Key Basic Research and Development Program (973 Program)( 2014CB046405)

    E-mail: mengzju@163.com

    免费在线观看黄色视频的| 亚洲图色成人| 老汉色av国产亚洲站长工具| 丝袜人妻中文字幕| 色哟哟·www| 又黄又粗又硬又大视频| 老女人水多毛片| 久久精品国产亚洲av涩爱| 一级,二级,三级黄色视频| 亚洲国产欧美在线一区| 97人妻天天添夜夜摸| av在线老鸭窝| 亚洲一码二码三码区别大吗| 亚洲伊人久久精品综合| 久久国产亚洲av麻豆专区| 妹子高潮喷水视频| 国产欧美亚洲国产| 国产欧美日韩综合在线一区二区| 亚洲精品av麻豆狂野| 热re99久久精品国产66热6| 免费看不卡的av| 国产女主播在线喷水免费视频网站| 成人国语在线视频| 亚洲精品日本国产第一区| 男女午夜视频在线观看| 在线看a的网站| 亚洲成国产人片在线观看| 免费观看无遮挡的男女| 精品亚洲乱码少妇综合久久| 国产av码专区亚洲av| 搡女人真爽免费视频火全软件| 久久99热这里只频精品6学生| 亚洲三区欧美一区| 久久精品国产亚洲av涩爱| 街头女战士在线观看网站| 国产亚洲最大av| 国产成人aa在线观看| 国产精品麻豆人妻色哟哟久久| 免费高清在线观看日韩| 18在线观看网站| 久久这里只有精品19| 多毛熟女@视频| 校园人妻丝袜中文字幕| 日韩制服丝袜自拍偷拍| 你懂的网址亚洲精品在线观看| 极品人妻少妇av视频| 卡戴珊不雅视频在线播放| 女人被躁到高潮嗷嗷叫费观| 性高湖久久久久久久久免费观看| 七月丁香在线播放| a级毛片黄视频| 欧美97在线视频| 久久精品国产亚洲av高清一级| 国产97色在线日韩免费| 婷婷色综合www| 少妇精品久久久久久久| 美女大奶头黄色视频| 亚洲内射少妇av| 亚洲一区中文字幕在线| 亚洲欧美成人精品一区二区| 午夜av观看不卡| 国产精品女同一区二区软件| 欧美成人午夜免费资源| 中文字幕人妻丝袜制服| 久久久久视频综合| 免费在线观看视频国产中文字幕亚洲 | 国产欧美日韩一区二区三区在线| 亚洲国产日韩一区二区| 日本vs欧美在线观看视频| 午夜日韩欧美国产| 在线观看一区二区三区激情| 人成视频在线观看免费观看| 丰满迷人的少妇在线观看| 韩国高清视频一区二区三区| 亚洲经典国产精华液单| 亚洲国产欧美在线一区| 9热在线视频观看99| 午夜福利乱码中文字幕| 欧美日韩视频精品一区| 精品卡一卡二卡四卡免费| 日日啪夜夜爽| 日韩成人av中文字幕在线观看| 韩国高清视频一区二区三区| 中文字幕人妻丝袜一区二区 | 大片电影免费在线观看免费| 男人爽女人下面视频在线观看| 成年女人在线观看亚洲视频| 国产精品无大码| 看免费av毛片| 国产亚洲精品第一综合不卡| a级毛片在线看网站| www.熟女人妻精品国产| 国产精品蜜桃在线观看| 在线天堂最新版资源| 18禁裸乳无遮挡动漫免费视频| 欧美人与性动交α欧美软件| 亚洲视频免费观看视频| 亚洲欧洲国产日韩| 欧美国产精品va在线观看不卡| 国产成人精品一,二区| 中文天堂在线官网| 久久97久久精品| 亚洲国产精品国产精品| 人成视频在线观看免费观看| 最近中文字幕高清免费大全6| 久久久久久人人人人人| 成人亚洲欧美一区二区av| 七月丁香在线播放| 欧美成人午夜精品| 久久精品人人爽人人爽视色| 国产精品三级大全| 麻豆精品久久久久久蜜桃| 伦精品一区二区三区| 欧美日韩一级在线毛片| www日本在线高清视频| 成年女人在线观看亚洲视频| av免费观看日本| 热re99久久国产66热| 精品亚洲成a人片在线观看| 国产成人精品久久久久久| 一边亲一边摸免费视频| 国产精品久久久久久久久免| 色网站视频免费| 爱豆传媒免费全集在线观看| 久久精品夜色国产| 国产免费现黄频在线看| 午夜久久久在线观看| 麻豆精品久久久久久蜜桃| 免费大片黄手机在线观看| 久久这里只有精品19| 老司机亚洲免费影院| 少妇被粗大的猛进出69影院| 波多野结衣一区麻豆| 午夜福利视频精品| 久久这里有精品视频免费| 久久99精品国语久久久| 少妇猛男粗大的猛烈进出视频| 国产日韩欧美亚洲二区| 男女啪啪激烈高潮av片| 日日爽夜夜爽网站| 国产成人精品一,二区| 久久免费观看电影| 久久 成人 亚洲| 丝袜喷水一区| 大香蕉久久成人网| 午夜91福利影院| 午夜影院在线不卡| 如日韩欧美国产精品一区二区三区| 中文字幕av电影在线播放| 亚洲少妇的诱惑av| 满18在线观看网站| 免费观看无遮挡的男女| 亚洲精品久久成人aⅴ小说| 久久精品亚洲av国产电影网| 国产免费一区二区三区四区乱码| 久久毛片免费看一区二区三区| 中文欧美无线码| 美女福利国产在线| 秋霞伦理黄片| 人人妻人人澡人人看| 久久国内精品自在自线图片| 在线精品无人区一区二区三| 又粗又硬又长又爽又黄的视频| 国产精品国产三级国产专区5o| 99国产精品免费福利视频| 性少妇av在线| 亚洲精品在线美女| 精品国产乱码久久久久久男人| 夫妻午夜视频| 伊人久久国产一区二区| 久久久亚洲精品成人影院| 黄色怎么调成土黄色| 亚洲图色成人| 大香蕉久久成人网| 五月天丁香电影| 熟女av电影| 精品国产一区二区久久| 午夜激情av网站| 高清视频免费观看一区二区| 国产精品亚洲av一区麻豆 | 欧美变态另类bdsm刘玥| 极品人妻少妇av视频| 国产成人aa在线观看| 成年人免费黄色播放视频| 99久久中文字幕三级久久日本| 免费黄色在线免费观看| 性高湖久久久久久久久免费观看| 制服人妻中文乱码| www.自偷自拍.com| 国产黄频视频在线观看| 成年人午夜在线观看视频| 99国产精品免费福利视频| 亚洲精品乱久久久久久| 最近的中文字幕免费完整| av有码第一页| 在线观看国产h片| 精品99又大又爽又粗少妇毛片| 亚洲欧美精品自产自拍| 亚洲 欧美一区二区三区| 在线观看一区二区三区激情| 人人妻人人澡人人看| 水蜜桃什么品种好| 在线天堂最新版资源| 精品第一国产精品| 久久精品熟女亚洲av麻豆精品| 免费观看a级毛片全部| 不卡av一区二区三区| 高清视频免费观看一区二区| 国产精品免费大片| 高清在线视频一区二区三区| 亚洲熟女精品中文字幕| 97人妻天天添夜夜摸| 日韩熟女老妇一区二区性免费视频| 国产男女内射视频| 久久久久久人妻| 交换朋友夫妻互换小说| 一本久久精品| 国产在线视频一区二区| 成人影院久久| 国产亚洲av片在线观看秒播厂| 18在线观看网站| 咕卡用的链子| 欧美激情极品国产一区二区三区| 多毛熟女@视频| 韩国精品一区二区三区| 国产一区二区三区av在线| 久久国内精品自在自线图片| 国产在线免费精品| 天堂8中文在线网| 国产色婷婷99| av片东京热男人的天堂| 香蕉精品网在线| 人成视频在线观看免费观看| 美女福利国产在线| 一级毛片电影观看| 午夜影院在线不卡| 亚洲欧洲国产日韩| 飞空精品影院首页| 久久99精品国语久久久| 国产精品99久久99久久久不卡 | 少妇人妻久久综合中文| 日韩 亚洲 欧美在线| 午夜福利在线免费观看网站| 久久99热这里只频精品6学生| 精品视频人人做人人爽| av免费在线看不卡| 18禁动态无遮挡网站| av网站免费在线观看视频| 免费观看性生交大片5| 日韩电影二区| 成人国产av品久久久| 久久精品国产亚洲av天美| 国产成人精品久久久久久| 亚洲精品av麻豆狂野| 午夜免费观看性视频| 国产一区二区在线观看av| 三级国产精品片| 国产男女超爽视频在线观看| 丰满迷人的少妇在线观看| 老女人水多毛片| 婷婷色综合大香蕉| 一边摸一边做爽爽视频免费| 精品福利永久在线观看| 性色avwww在线观看| 国产又色又爽无遮挡免| 大片电影免费在线观看免费| 欧美精品高潮呻吟av久久| 观看av在线不卡| 最近2019中文字幕mv第一页| 亚洲一码二码三码区别大吗| 2021少妇久久久久久久久久久| 十八禁网站网址无遮挡| av天堂久久9| 亚洲第一av免费看| 美女国产视频在线观看| 三上悠亚av全集在线观看| 亚洲精品视频女| 欧美 亚洲 国产 日韩一| 国产在线免费精品| 亚洲色图综合在线观看| 免费在线观看完整版高清| 高清av免费在线| 亚洲av在线观看美女高潮| 亚洲色图 男人天堂 中文字幕| 亚洲国产色片| 男女免费视频国产| 免费在线观看视频国产中文字幕亚洲 | 国产亚洲午夜精品一区二区久久| 亚洲欧美色中文字幕在线| 久久精品国产自在天天线| 侵犯人妻中文字幕一二三四区| 天堂中文最新版在线下载| 久久韩国三级中文字幕| 欧美激情极品国产一区二区三区| 看免费av毛片| 亚洲,欧美,日韩| 欧美国产精品一级二级三级| 久久狼人影院| 免费不卡的大黄色大毛片视频在线观看| 欧美成人精品欧美一级黄| 亚洲av中文av极速乱| 国产精品熟女久久久久浪| 亚洲人成77777在线视频| 黄色怎么调成土黄色| 免费看不卡的av| 国产男女内射视频| 一区福利在线观看| 高清av免费在线| av在线老鸭窝| 日韩一卡2卡3卡4卡2021年| 蜜桃国产av成人99| 在线观看免费日韩欧美大片| 日韩一区二区三区影片| 亚洲av国产av综合av卡| 九色亚洲精品在线播放| 母亲3免费完整高清在线观看 | 国产精品.久久久| 天堂8中文在线网| kizo精华| 久久午夜综合久久蜜桃| 18禁国产床啪视频网站| 中国国产av一级| 日韩欧美一区视频在线观看| 色哟哟·www| 国产色婷婷99| 亚洲内射少妇av| 亚洲第一av免费看| 欧美日韩亚洲国产一区二区在线观看 | 午夜久久久在线观看| 一个人免费看片子| av又黄又爽大尺度在线免费看| 日日啪夜夜爽| 亚洲国产av影院在线观看| 久久久久久人人人人人| 久久精品国产自在天天线| 欧美亚洲日本最大视频资源| 男人操女人黄网站| 中文字幕亚洲精品专区| 久久精品久久久久久噜噜老黄| 黄色 视频免费看| 一区二区三区精品91| 国产精品免费视频内射| 久久久亚洲精品成人影院| 又黄又粗又硬又大视频| 中文字幕人妻丝袜制服| xxxhd国产人妻xxx| 成年女人在线观看亚洲视频| www.精华液| 国产乱人偷精品视频| 国产精品 国内视频| 婷婷色综合www| 熟女电影av网| 热99国产精品久久久久久7| 国产有黄有色有爽视频| 国产精品熟女久久久久浪| 亚洲第一区二区三区不卡| 丰满少妇做爰视频| 免费女性裸体啪啪无遮挡网站| 王馨瑶露胸无遮挡在线观看| 久久精品人人爽人人爽视色| 欧美日韩国产mv在线观看视频| 亚洲成色77777| 美女福利国产在线| 精品国产一区二区三区久久久樱花| 大片免费播放器 马上看| 久久久国产精品麻豆| 美女福利国产在线| 最近中文字幕2019免费版| 久久精品国产综合久久久| 午夜福利在线免费观看网站| 婷婷色综合www| 狠狠婷婷综合久久久久久88av| 一本久久精品| 国产福利在线免费观看视频| 777久久人妻少妇嫩草av网站| 美女大奶头黄色视频| 国产 精品1| 精品福利永久在线观看| 99热全是精品| 午夜av观看不卡| 国产成人欧美| 99热国产这里只有精品6| 午夜精品国产一区二区电影| 日本vs欧美在线观看视频| 涩涩av久久男人的天堂| 亚洲av福利一区| 美女午夜性视频免费| 亚洲精品国产一区二区精华液| 秋霞伦理黄片| 国产日韩一区二区三区精品不卡| 久久精品国产亚洲av涩爱| 啦啦啦中文免费视频观看日本| 日韩,欧美,国产一区二区三区| 久久99热这里只频精品6学生| 亚洲国产日韩一区二区| 精品卡一卡二卡四卡免费| 99精国产麻豆久久婷婷| 女性被躁到高潮视频| 高清黄色对白视频在线免费看| 美女国产高潮福利片在线看| 18在线观看网站| 啦啦啦啦在线视频资源| 免费在线观看黄色视频的| 国产深夜福利视频在线观看| 一本—道久久a久久精品蜜桃钙片| 国产一区有黄有色的免费视频| 国产成人精品婷婷| 亚洲精品一二三| 久久人人爽av亚洲精品天堂| 女性生殖器流出的白浆| 夜夜骑夜夜射夜夜干| 亚洲国产精品999| 制服人妻中文乱码| 免费大片黄手机在线观看| 国产成人a∨麻豆精品| 免费高清在线观看日韩| 老司机影院成人| 精品福利永久在线观看| 丰满饥渴人妻一区二区三| 免费观看a级毛片全部| 九九爱精品视频在线观看| 美女国产视频在线观看| 精品视频人人做人人爽| 丰满迷人的少妇在线观看| 日本黄色日本黄色录像| 亚洲欧美一区二区三区久久| 国产女主播在线喷水免费视频网站| 日韩 亚洲 欧美在线| 只有这里有精品99| 久久久久久人妻| 国产97色在线日韩免费| 日韩欧美一区视频在线观看| 午夜免费鲁丝| 夫妻性生交免费视频一级片| 中文字幕精品免费在线观看视频| 满18在线观看网站| 亚洲三区欧美一区| 亚洲欧洲国产日韩| 国产xxxxx性猛交| 欧美少妇被猛烈插入视频| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 在线观看一区二区三区激情| av一本久久久久| 欧美人与善性xxx| 午夜福利视频精品| 满18在线观看网站| 国产亚洲一区二区精品| 亚洲欧美成人综合另类久久久| 国产亚洲精品第一综合不卡| 多毛熟女@视频| 欧美+日韩+精品| 热re99久久国产66热| 久久人妻熟女aⅴ| 国产精品免费视频内射| 美女主播在线视频| 欧美av亚洲av综合av国产av | 亚洲五月色婷婷综合| 波多野结衣一区麻豆| 精品亚洲乱码少妇综合久久| www.精华液| 在线精品无人区一区二区三| 咕卡用的链子| 91午夜精品亚洲一区二区三区| 国产无遮挡羞羞视频在线观看| 少妇人妻 视频| 国产日韩欧美在线精品| 亚洲av电影在线观看一区二区三区| 久久久久精品人妻al黑| 一级片免费观看大全| 亚洲精品第二区| 男人操女人黄网站| 国产乱人偷精品视频| 一边亲一边摸免费视频| 91精品三级在线观看| 久久精品国产综合久久久| 精品福利永久在线观看| 香蕉精品网在线| 99久久中文字幕三级久久日本| 久久久精品免费免费高清| 人人澡人人妻人| 亚洲经典国产精华液单| 国产片特级美女逼逼视频| 亚洲精品,欧美精品| 久久精品国产亚洲av天美| av网站在线播放免费| 亚洲,欧美精品.| 嫩草影院入口| 人成视频在线观看免费观看| 国产精品久久久久久久久免| 久久久久视频综合| 尾随美女入室| 一区二区三区乱码不卡18| 男的添女的下面高潮视频| 国产成人欧美| 国产精品人妻久久久影院| 久久亚洲国产成人精品v| 午夜福利视频精品| 老鸭窝网址在线观看| 999精品在线视频| 中国三级夫妇交换| 国产精品不卡视频一区二区| 好男人视频免费观看在线| 男的添女的下面高潮视频| 亚洲国产欧美日韩在线播放| 亚洲精品乱久久久久久| 国产成人一区二区在线| 亚洲欧美清纯卡通| 国产黄频视频在线观看| 久久久国产欧美日韩av| 成人影院久久| 99国产综合亚洲精品| 一级a爱视频在线免费观看| 国产欧美日韩综合在线一区二区| 日韩精品免费视频一区二区三区| 亚洲 欧美一区二区三区| 寂寞人妻少妇视频99o| 青春草国产在线视频| 少妇人妻 视频| 日韩一区二区视频免费看| 亚洲精品av麻豆狂野| 国产成人精品无人区| 999精品在线视频| 成年女人毛片免费观看观看9 | 香蕉精品网在线| 久久久久国产一级毛片高清牌| 欧美黄色片欧美黄色片| 日韩欧美精品免费久久| 亚洲人成电影观看| 涩涩av久久男人的天堂| 久久热在线av| 精品国产乱码久久久久久男人| 青春草国产在线视频| 国产成人免费观看mmmm| 亚洲,欧美精品.| 午夜福利影视在线免费观看| 街头女战士在线观看网站| av在线老鸭窝| 精品少妇久久久久久888优播| 欧美xxⅹ黑人| 国产精品蜜桃在线观看| 国产男女内射视频| 久久久久久久久久久免费av| 免费黄色在线免费观看| 99热网站在线观看| 亚洲男人天堂网一区| 国产精品久久久久成人av| 久久99蜜桃精品久久| 久久久a久久爽久久v久久| 亚洲情色 制服丝袜| 在线天堂最新版资源| 另类精品久久| 亚洲国产欧美在线一区| www.av在线官网国产| 丝袜脚勾引网站| 又大又黄又爽视频免费| 久久久欧美国产精品| 国产免费一区二区三区四区乱码| 超色免费av| 亚洲国产毛片av蜜桃av| 91在线精品国自产拍蜜月| 精品福利永久在线观看| 久久精品国产亚洲av天美| 欧美精品av麻豆av| 叶爱在线成人免费视频播放| 韩国高清视频一区二区三区| 亚洲国产欧美在线一区| av有码第一页| 少妇熟女欧美另类| 日韩三级伦理在线观看| 欧美激情极品国产一区二区三区| 狂野欧美激情性bbbbbb| 99热网站在线观看| 91精品三级在线观看| av女优亚洲男人天堂| 久久久精品国产亚洲av高清涩受| 另类亚洲欧美激情| 一本大道久久a久久精品| 日本午夜av视频| 午夜福利乱码中文字幕| 亚洲国产最新在线播放| 香蕉国产在线看| 亚洲三级黄色毛片| 91精品伊人久久大香线蕉| 亚洲精品久久久久久婷婷小说| 少妇精品久久久久久久| 免费观看无遮挡的男女| 婷婷色麻豆天堂久久| 久久久a久久爽久久v久久| 亚洲 欧美一区二区三区| 日韩av不卡免费在线播放| 伊人久久国产一区二区| 人人妻人人添人人爽欧美一区卜| 午夜福利网站1000一区二区三区| 老熟女久久久| 观看美女的网站| 欧美精品人与动牲交sv欧美| 伊人久久国产一区二区| 人人妻人人添人人爽欧美一区卜| 中文天堂在线官网| 精品人妻一区二区三区麻豆| 亚洲精品久久午夜乱码| 精品人妻偷拍中文字幕| 精品人妻一区二区三区麻豆| 亚洲精品久久午夜乱码| 亚洲激情五月婷婷啪啪| 欧美av亚洲av综合av国产av | 久久精品国产a三级三级三级| 久久人人爽av亚洲精品天堂| 纵有疾风起免费观看全集完整版| 亚洲av在线观看美女高潮| 色视频在线一区二区三区| 久久免费观看电影| tube8黄色片| 男男h啪啪无遮挡| 国产精品无大码|